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)] where an interpretation of monovariate polynomials with two bounds is provided in terms of a quaternion algebra and the Euler four-squares formulas. Thanks to this structure, we generate a new nonlinear projection algorithm onto the set of polynomials with two bounds. The numerical analysis of the method provides theoretical error estimates showing stability and continuity of the projection. Some numerical tests illustrate this novel algorithm for constrained polynomial approximation.

Introduction

Given n P N we let P n be the set of univariate polynomials of degree less or equal to n, and set by convention P ´1 " t0u. A central result is the Lukàcs Theorem [9, Sec. 1.21] which characterizes polynomials with one lower bound. Specifically, let P ǹ Ă P n be the subset of positive (or nonnegative) polynomials on the segment r0, 1s, namely P ǹ :" tp P P n , such that 0 ď ppxq for all x P r0, 1su.

In this article we will consider the case of even degrees. The extension to odd degrees is essentially a question of technical matters, with no new ideas with respect to the material presented in this work.

Theorem 1.1 (Even degree [9]). Take n P N and p P P 2n . Then there exists a P P n and b P P n´1 such that ppxq " a 2 pxq `b2 pxqwpxq with weight wpxq " xp1 ´xq.

The problem considered in this article is the design and analysis of a nonlinear projection algorithm onto the set of polynomials with one lower bound and one upper bound, U 2n :" tp P P n , such that 0 ď ppxq ď 1 for all x P r0, 1su.

Our approach is based on the observation that we have U 2n " tp P P 2n | 1 ´p P P 2n u.
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Given that there already exist projection algorithms on P 2n (see [START_REF] Campos-Pinto | Algorithms For Positive Polynomial Approximation[END_REF][START_REF] Després | Iterative calculation of sum of squares[END_REF]), our present objective is to design a nonlinear algorithm that maps a pair pp 0 , 1´p 1 q P P 2n ˆP 2n into U 2n . To do so we will first describe a specific parametrization of the set U 2n that heavily relies on the four-squares identity of Euler [6, p. 54]. This theoretical framework will then be used to build a practical algorithm for bounded polynomial approximation. To our knowledge, this work is the first attempt to use the algebraic structure of Euler's identity to build an algorithm with such advanced properties.

The organization is as follows. In the next section we introduce some elementary concepts and notation, and we specify some of the aforementioned algebraic properties: the quaternion structure is recalled, its expression in the Chebychev basis is given and some norms are defined. In Section 3 we then specify our approximation problem with two bounds and define the nonlinear projection algorithm: it is an extension of the theoretical decomposition method from [START_REF] Despres | Correction to: Polynomials with bounds and numerical approximation [ MR3715896[END_REF][START_REF] Després | Polynomials with bounds and numerical approximation[END_REF] with a new nonlinear correction step. In Section 4 we perform the numerical analysis of the method and state in Theorem 4.2 a continuity or stability result. Finally in the last section we illustrate the method with some simple numerical tests.

Notations and basic properties of U 2n

2.1. Representation of polynomials with two bounds. A polynomial p belongs to U 2n if and only if p P P 2n and 1 ´p P P 2n . Define the set of quadruplets Q n :" P n ˆPn´1 ˆPn ˆPn´1 .

By Theorem 1.1, for any p P U 2n , there is a quadruplet q " pa, b, c, dq P Q n such that a 2 pxq `b2 pxq wpxq `c2 pxq `d2 pxq wpxq " 1. It is convenient to define the function M : Q n Ñ P 2n by [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] M pqqpxq :" a 2 pxq `b2 pxq wpxq `c2 pxq `d2 pxq wpxq , and the set U n " tq P Q n , such that M pqq " 1u .

The function pa, b, c, dq Þ Ñ a 2 `b2 w maps U n onto U 2n , so it is sufficient to characterize U n to get a characterization of the set of polynomials U 2n .

A central tool will be a recent factorization result recalled in Theorem 2.1 below, that involves a multiplication law on quadruplets based on Euler's four-square identity [START_REF] Euler | Demonstratio theorematis fermatiani omnem numerum sive integrum sive fractum esse summam quatuor pauciorumve quadratorum[END_REF]. Given two elements r " pα, β, γ, δq and q " pa, b, c, dq

in Q 8 " Y nPN Q n , we define rq :" pA, B, C, Dq P Q 8 with (2) $ ' ' ' ' & ' ' ' ' % A " α a ´β b w ´γ c ´δ d w , B " β a `α b ´δ c `γ d , C " γ a `δ b w `α c ´β d w , D " δ a ´γ b `β c `α d .
Note that this is actually a modified version of Euler's four-square identity, where the signs are different. The sign convention adopted here will make it simpler to describe Q 8 by quaternions. The neutral element for this multiplication law is p1, 0, 0, 0q, and every element of U 8 " Y nPN U n has an inverse. Indeed, define the conjugate of q " pa, b, c, dq in Q 8 by q " pa, ´b, ´c, ´dq.

Then a direct application of formula (2) yields qq " qq " pM pqq, 0, 0, 0q, @ q P Q 8 .

In particular, qq " qq " p1, 0, 0, 0q, @ q P U 8 so that U 8 has indeed a non-commutative group structure. Note that q " q and that r q " q r. Moreover M is a morphism, namely M pqrq " M pqqM prq for any quadruplets q and r in Q 8 . With an additional natural addition defined by pα, β, γ, δq `pa, b, c, dq " pα `a, β `b, γ `c, δ `dq and a scalar multiplication λpa, b, c, dq " pλa, λb, λc, λdq, Q 8 is a non-commutative R-algebra which inherits all its algebraic properties from the quaternions. Indeed if one represents the quadruplet pa, b, c, dq by the following quaternion-valued formal function a `ib ? w `jc `kd ? w, then the usual quaternions operations based on the relations i 2 " j 2 " k 2 " ijk " ´1 coincide with those introduced here on our polynomial quadruplets. In this sense, the equality holds pa, b, c, dq " a `ib ? w `jc `kd ?

w P Q n .
The interest of this algebraic formalism lies in the following factorization result.

Theorem 2.1 ( [START_REF] Despres | Correction to: Polynomials with bounds and numerical approximation [ MR3715896[END_REF][START_REF] Després | Polynomials with bounds and numerical approximation[END_REF]). Let n P N. For any q P U n there is e P U 1 such that eq P U n´1 . As a consequence, any quadruplet q P U n admits a factorization in at most n elements e 1 , e 2 , . . . , e n of U 1

q " e 1 e 2 . . . e n .

The structure of the proof [START_REF] Despres | Correction to: Polynomials with bounds and numerical approximation [ MR3715896[END_REF][START_REF] Després | Polynomials with bounds and numerical approximation[END_REF] is as follows. One starts from q P U n and shows that there exists e 1 P U 1 such that e 1 q P U n´1 . The construction of e 1 is explicit and based on the examination of the two dominant coefficients of each of the four polynomial components of q. The proof is ended by iteration on n, n ´1, . . . On the basis of this result, one has a constructive characterization of polynomials with bounds. The question addressed in the present work is the evaluation of this structure for algorithmic purposes. Since (3) is a very nonlinear formula, it is not easy to handle. However, in the rest of this article, we will show that it is possible to obtain an efficient nonlinear projection onto U n using this structure.

Chebychev basis.

It is well-known that Chebychev polynomials enjoy good stability properties which make them suitable for numerical algorithms [8]. Indeed some preliminary tests [START_REF] Després | Polynomials with bounds and numerical approximation[END_REF] for the application of Theorem 2.1 have confirmed that the monomial basis may suffer from very poor numerical accuracy for high order polynomials. Our findings are also that Chebychev bases are well adapted to the expression of Euler's four-square formula (2) along their coefficients. These reasons explain why only Chebychev bases are considered in this work for algorithmic purposes.

The shifted Chebychev polynomials of the first kind are the only polynomials such that

T n ˆcospθq `1 2 ˙" cospnθq, θ P R, n P N.
The polynomial T n is of degree n and the definition actually extends to negative indices, as T ´n " T n . The shifted Chebychev polynomials of the second kind are the only polynomials such that

U n ˆcospθq `1 2 ˙" 2 sinpnθq sinpθq , θ P RzπZ, n P N.
Now U n is of degree n ´1, recalling our convention P ´1 " t0u, and again we may extend the definition to negative indices: one has U ´n " ´Un . Note that the shifted Chebychev polynomials of second kind are usually defined without the factor 2, and with an index that is the degree of the polynomial. Our notation will allow to simplify some of the subsequent computations.

Chebychev polynomials enjoy natural orthogonality properties [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]9]. Define the scalar products xf, gy T "

ż 1 0 f pxq gpxq wpxq ´1{2 dx , xf, gy U " ż 1 0 f pxq gpxq wpxq 1{2 dx.
Then for any pi, jq P Z 2 ztp0, 0qu, one has xT i , T j y T " xU i , U j y U " π 2 δ ij where δ ij is the Kronecker symbol and xT 0 , T 0 y T " π. These formulas are established by noticing that the weight is such that w `cospθq`1

2 ˘" sin 2 pθq 4 .
Remark 2.2. One has the identity for all n P N 1 " T n pxq 2 `Un pxq 2 wpxq.

It underlines that the Lukàcs decomposition of a polynomial is non unique.

2.2.1.

A Chebychev basis for the set U n . Any pa, b, c, dq P U n admits a Chebychev representation [START_REF] Després | Polynomials with bounds and numerical approximation[END_REF] apxq " It will be convenient to extend these coefficients for all i P Z, setting a i " c i " 0 or b i " d i " 0 when i is outside of the above ranges. The coefficients of the product (2) of two quadruplets r and q can be expressed quite handily in the Chebychev basis. Indeed, as a consequence of the De Moivre formulas, for any pi, jq P Z 2 one has (7)

n ÿ i"0 a i T i pxq , cpxq " n ÿ i"0 c i T i pxq , bpxq " n ÿ i"1 b i U i pxq , dpxq " n ÿ i"1 d i U i pxq , with (5) 
T i T j " T i´j `Ti`j 2 , U i U j w " T i´j ´Ti`j 2 , U i T j " U i`j `Ui´j 2 .
It is useful to consider the sign function sgnpxq " 1 for x ą 0, sgnpxq " ´1 for x ă 0 and sgnp0q " 0.

Lemma 2.3. The coefficients of the polynomials in (2) can be expressed as

(8) $ ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' % 2 A k " ÿ i`j"k pα i a j `βi b j ´γi c j `δi d j q `ÿ |i´j|"k pα i a j ´βi b j ´γi c j ´δi d j q, 2 B k " ÿ i`j"k pβ i a j `αi b j ´δi c j `γi d j q `ÿ |i´j|"k pβ i a j `sij α i b j ´δi c j `sij γ i d j q, 2 C k " ÿ i`j"k pγ i a j ´δi b j `αi c j `βi d j q `ÿ |i´j|"k pγ i a j `δi b j `αi c j ´βi d j q, 2 D k " ÿ i`j"k pδ i a j ´γi b j `βi c j `αi d j q `ÿ |i´j|"k pδ i a j ´sij γ i b j `βi c j `sij α i d j q,
where s ij " sgnpj ´iq.

Proof. Obtained from (2) and the De Moivre formulas [START_REF] Nocedal | Numerical optimization[END_REF].

Lemma 2.4. Take q P Q n . One can write M pqq " ř 2n i"0 M pqq i T i which is expressed with the Chebychev basis of the first kind only. The dominant coefficient is

(9) M pqq 2n " 1 2 pa 2 n ´b2 n `c2 n ´d2
n q and the next one is

(10) M pqq 2n´1 " # a n a n´1 ´bn b n´1 `cn c n´1 ´dn d n´1 if n ě 2 , 2 a 1 a 0 `2 c 1 c 0 if n " 1 .
Proof. The expansion of M pqq along the Chebyshev basis shows products T α T β and products U α U β . The De Moivre formulas [START_REF] Nocedal | Numerical optimization[END_REF] yield that all products can be expanded along the T γ solely. Direct computations yield the coefficients M pqq 2n and M pqq 2n´1 . In formula (10), the case n " 1 comes from the term δ i0 in [START_REF] Després | Iterative calculation of sum of squares[END_REF].

For later use we define U piq n Ă Q n as the subset of quadruplets q such that the 2i dominant coefficients of M pqq vanish, (11)

U piq n " M ´1`P 2n´2i ˘X Q n Obviously, q P Q n is in U piq n if
and only if M pqq 2n´2i`1 " ¨¨¨" M pqq 2n " 0, and in particular q P U pnq n iff M pqq P R. Thus one has the embeddings

U n Ă U pnq n Ă ¨¨¨Ă U p1q n Ă Q n . 2.3. Metrics.
The continuity properties of the projection algorithm defined in the next section will be analyzed with convenient norms which are defined below.

For any real polynomial p, we consider its weighted L 1 norm }p} :"

ż 1 0 |ppxq| dx a wpxq .
For quadruplets q " pa, b, c, dq P Q n , we define a specific norm ~¨( 12) ~q~2 :" }M pqq} "

ż 1 0 a 2 w ´1 2 `ż 1 0 b 2 w 1 2 `ż 1 0 c 2 w ´1 2 `ż 1 0 d 2 w 1 2 .
The orthogonality of Chebychev polynomials yields the Plancherel-like equality

(13) ~q~2 " π p|a 0 | 2 `|c 0 | 2 q `π 2 n ÿ i"1 p|a i | 2 `|b i | 2 `|c i | 2 `|d i | 2 q.
Since M is a morphism and M peq " 1 for e P U 8 , one has (14) ~eq~" ~q~for any e P U 8 , q P Q 8 .

This last property is very useful when dealing with the decomposition formulas of Theorem 2.1.

The projection algorithm

In order to motivate our projection algorithm we consider the problem of computing a polynomial approximation with two bounds to some given function f assuming that, as a preliminary step, we are able to construct two polynomials with one bound, p 0 P P 2n and p 1 P 1 ´P 2n , which both approximate f in some sense,

p 0 " a 2 `b2 w « f and p 1 " 1 ´c2 ´d2 w « f.
By construction, the polynomial p 0 is non negative and the polynomial p 1 is less than 1. The point is that this preliminary step is doable: for example we refer to [START_REF] Campos-Pinto | Algorithms For Positive Polynomial Approximation[END_REF][START_REF] Després | Iterative calculation of sum of squares[END_REF] where effective algorithms are proposed to compute polynomial approximations with one bound. The method [START_REF] Campos-Pinto | Algorithms For Positive Polynomial Approximation[END_REF] is restricted to monovariate polynomials, while [START_REF] Després | Iterative calculation of sum of squares[END_REF] is more general and adresses multivariate polynomials. In the numerical section we shall use a third different method described in the appendix. In all cases, one ends up with a quadruplet q " pa, b, c, dq

P Q n such that M pqq " a 2 `b2 w `c2 `d2 w " p 0 `1 ´p1 « 1.
In particular, the quadruplet q may not be in U n , so that neither p 0 or p 1 are in U 2n .

The numerical illustrations at the end show it is indeed the case. Our objective is then to construct an algorithm which projects q " pa, b, c, dq into q " pr a, r b, r c, r dq P U n and thus provides a polynomial approximation p :" r a 2 `r b 2 w " 1 ´r c 2 ´r d 2 w « f with two bounds, p P U 2n .

To do so we will use the iterative decomposition technique developped in the theoretical proof of [START_REF] Despres | Correction to: Polynomials with bounds and numerical approximation [ MR3715896[END_REF][START_REF] Després | Polynomials with bounds and numerical approximation[END_REF] with an additional correction step.

3.1. Definition of the projection. The design principle of the algorithm is to follow the iterative factorization structure developed in the proof of Theorem 2.1. Since this procedure is applied to a quadruplet that is not in the set U n , the key issue is to design a correction step that effectively allows to perform each iterative factorization. Thus our construction involves two functions that will be properly described below, see Definitions 3.4, 3.7 and 3.9.

' The new correction function χ

n : Q n Ñ U p1q n is a projection onto U p1q n , see (11). From q P Q n it creates p
q " χ n pqq by modifying only the two dominant coefficients of the four polynomials constituting q, in order for the two dominant coefficients of M pp qq to vanish.

' The factorization function φ n : U p1q n Ñ U 1 , which from a corrected quadruplet p q explicitly builds an element e " φ n pp qq P U 1 such that ep q P Q n´1 . It relies on a technical adaptation of the proof of Theorem 2.1.

The structure of the algorithm is then as follows. Π n :

# Q n ÝÑ U n q Þ ÝÑ e 1 e 2 . . . e n r 0
where each factor is computed iteratively, setting q n :" q and for i " 0, . . . , n ´1,

$ & % p q n´i :" χ n´i pq n´i q P U p1q n , e i`1 :" φ n´i pp q n´i q P U 1 , q n´pi`1q :" e i`1 p

q n´i P Q n´pi`1q .
Here, χ n´i is the correction function defined in Def. 3.4 and 3.7, φ n´i is the factorization function defined in Def. 3.9 and e i`1 p q n´i is a quaternion product. Finally the last term r 0 P U 0 in (15) is defined as r 0 :" " q 0 {M pq 0 q 1{2 if q 0 ‰ 0 , p1, 0, 0, 0q otherwise .

The correction function χ

n : Q n Ñ U p1q n for n ě 2.
Let q " pa, b, c, dq P Q n and let us define χ n pqq :" p q " pp a, p b, p c, p dq P U p1q n . The polynomials p a, p b, p c and p d are defined by changing only the dominant coefficients of pa, b, c, dq in the Chebychev basis (4). This is performed as follows.

The low order coefficients remain unchanged, namely

p a i " a i , p b i " b i , p c i " c i , p a i " a i for all i ď n ´2
In order for p q to be an element of U p1q n , the remaining high order coefficients must satisfy the algebraic relations (9)-(10)

(17) # p a 2 n ´p b 2 n `p c 2 n ´p d 2 n " 0 , p a n p a n´1 ´p b n p b n´1 `p c n p c n´1 ´p d n p d n´1 " 0 .
Since we desire χ n pqq to be as close as possible to q, we decide to project 

(18) X " pa n , a n´1 , b n , b n´1 , c n , c n´1 , d n , d n´1 q t onto the algebraic manifold V Ă R 8 defined
V " tY P R 8 such that Y t AY " Y t BY " 0u
with symmetric block diagonal matrices

A " diagpS, ´S, S, ´Sq P M 8 pRq, B " pT, ´T, T, ´T q P M 8 pRq where

S " ˆ1 0 0 0 ˙, T " ˆ0 1 1 0 ˙.
The set V is also called the correction manifold in the following. The Lagrangian associated to ( 19) is

LpY, λ, µq " 1 2 `}X ´Y } 2 `λ Y t AY `µ Y t BY ˘.
The triplets pY, λ, µq satisfying the first order optimality condition ∇L " 0 are those satisfying Y P V and

M λ,µ Y " X with (20) M λ,µ " I `λ A `µ B .
The conditions of invertibility of M λ,µ reduce to the invertibility of I ˘pλS `µT q.

The four eigenvalues of the symmetric matrix M λ,µ " M t λ,µ P M 8 pRq are 1 ˘pλ ȃ|λ| 2 `4|µ| 2 q{2 and 1 ˘pλ ¯a|λ| 2 `4|µ| 2 q{2. It is natural to define the open and convex set D " tpλ, µq P R 2 such that M λ,µ ą 0u " t|λ| `µ2 ă 1u.

This set is bounded with boundary BD " t|λ| `µ2 " 1u. Moreover, on D it holds I ˘pλS `µT q ě 0, hence }λS `µT } ď 1 in the matrix 2-norm over R 2 , which results in a uniform bound 

}M λ,µ } ď 2,
G X pλ, µq with (22) G X pλ, µq " X t M ´1 λ,µ X .
The function G X enjoys the following nice property. Lemma 3.2. Assume G X has a critical point pλ ˚, µ ˚q P D, in the sense that ∇G X pλ ˚, µ ˚q " 0. Then Y ˚" M ´1 λ ˚,µ ˚X is in the correction manifold V. Proof. One has the differential formula dM ´1 " ´M ´1dM M ´1 which holds for matrices M ą 0. So an explicit calculation shows that

B λ G X pλ ˚, µ ˚q " ´Xt M ´1 λ ˚,µ ˚AM ´1 λ ˚,µ ˚X " ´Y ˚tAY ˚" 0. Similarly B µ G X pλ ˚, µ ˚q " ´Y ˚tBY ˚" 0, hence Y ˚P V. In particular, V ‰ H.
The following result shows that, generically, pλ ˚, µ ˚q exists and is a global minimum of the functional G X . Lemma 3.3. For any X P R 8 , the function G X : D Ñ R `is convex and C 1 . Moreover there is a dense open subset S Ă R 8 such that whenever X P S, the function G X tends to `8 on the boundary of D (namely, it is coercive).

Proof. The convexity stems from the non-negativity of M λ,µ since for α,

β P R 2 ˆα β ˙tHess G X pλ, µq ˆα β ˙" X t M ´1 λ,µ pαA `βBqM ´1 λ,µ pαA `βBqM ´1 λ,µ X ě 0.
By explicitly inverting M λ,µ and using the notation (18), one has that

G X pλ, µq " pa n ´µa n´1 q 2 1 `λ ´µ2 `a2 n´1 `pb n `µb n´1 q 2 1 ´λ ´µ2 `b2 n´1 `pc n ´µc n´1 q 2 1 `λ ´µ2 `c2 n´1 `pd n `µd n´1 q 2 1 ´λ ´µ2 `d2 n´1 .
This shows that G X is C 1 on D and goes to `8 on BD " tpλ, µq s.t. |λ| `µ2 " 1u as soon as the terms between parenthesis do not vanish (uniformly in µ). It is the case for

X P S " ta n c n´1 ‰ a n´1 c n and b n d n´1 ‰ b n´1 d n u Ă R 8 .
The set S is an open and dense subset of R 8 .

At this point, for any X in the dense set S of Lemma 3.3, we know that the dual optimization problem admits at least one solution pλ ˚, µ ˚q P D that is a critical point of G X . We can then define

(23) χpXq : S ÝÑ V, X Þ ÝÑ χpXq " M ´1 λ ˚pX q,µ ˚pX q X
where pλ ˚pX q, µ ˚pX qq is a global minimizer of G X obtained by a given convex optimization method. Of course, the definition of χ may vary since there are possibly several global minima (the precise implementation is detailed in Section 5). Also by perturbation around S, the function χ can defined χpXq : R 8 ÝÑ V with the same restrictions concerning the choice of the minimizer which is non unique as well and the choice of the perturbation. Regardless of these choices, we may now state the complete definition of χ n when n ě 2.

Definition 3.4. The function χ n : Q n Ñ U p1q n takes q " papxq, bpxq, cpxq, dpxqq as argument and returns χ n pqq " p q " pp apxq, p bpxq, p cpxq, p dpxqq with

p a i " a i , p b i " b i , p c i " c i , p d i " d i for all i ď n ´2 and ´p a n , p a n´1 , p b n , p b n´1 , p c n , p c n´1 , p d n , p d n´1 ¯" χ pa n , a n´1 , b n , b n´1 , c n , c n´1 , d n , d n´1 q
where the projection χ is defined in (21)-(23). where the right hand side vanishes for X P V; (iii) it is idempotent, i.e. χ ˝χ " χ.

These estimates are uniform with respect to the choice of the minimizer in (21).

Proof. Let X P S and Y ˚" χpXq " M ´1 λ ˚,µ ˚X as defined in Lemma 3.2. We know that Y ˚P V.

(i) One has

X t Y ˚" Y ˚tM λ ˚,µ ˚Y ˚" Y ˚tpI `λ˚A `µ˚B qY ˚" }Y ˚}2
which yields the first estimate }Y ˚} ď }X}. (ii) A Taylor formula with integral remainder expansion yields

G X pλ ˚, µ ˚q " G X p0, 0q ´pλ ˚X t AX `µ˚Xt BXq `2 ż 1 0 X t M ´1
sλ ˚,sµ ˚pλ ˚A `µ˚B qM ´1 sλ ˚,sµ ˚pλ ˚A `µ˚B qM ´1 sλ ˚,sµ ˚X p1 ´sq ds.

Since G X pλ ˚, µ ˚q ď G X p0, 0q and the matrices commute 

M ´1 sλ ˚,
}Z ˚}2 " 2 ż 1 0 pM ´3{2 sλ ˚,sµ ˚Z ˚qt M 3 sλ ˚,sµ ˚M ´3{2 sλ ˚,sµ ˚Z ˚p1 ´sqds ď 2 ż 1 0 }M sλ ˚,sµ ˚}3 › › ›M ´3{2 sλ ˚,sµ ˚Z ˚› › › 2 p1 ´sqds ď 2 ż 1 0 2 3 › › ›M ´3{2 sλ ˚,sµ ˚Z ˚› › › 2 p1 ´sqds ď 2 4 ż 1 0 pZ ˚qt M ´3 sλ ˚,
: Q n Ñ U p1q n satisfies (i) ~χn pqq~ď ~q~, q P Q n , (ii) ~q ´χn pqq~ď C ~q~1 {2 p|M pqq 2n | `|M pqq 2n´1 |q 1{4 , q P Q n , (iii) χ n ˝χn " χ n .
for some constant C ą 1.

Proof. These properties follow from Proposition 3.5, observing that the non zero coefficients of q ´χn pqq coincide with those of X ´χpXq: using (13) this gives 

~q~2 ´~χ n pqq~2 " π 2 `}X}

The correction function χ

1 : Q 1 Ñ U p1q 1 .
For n " 1, the correction function χ n needs a specific definition. Indeed, in order for p q " χ 1 pqq to be in U p1q 1 , the following relations must hold (24)

# p a 2 1 ´p b 2 1 `p c 2 1 ´p d 2 1 " 0,
p a 1 p a 0 `p c 1 p c 0 " 0, and they slightly differ from the previous ones (17). However the method and results are essentially the same. Specifically, (24) define a slightly different set of constraints

r V " t Ỹ " pp a 1 , p a 0 , p b 1 , p c 1 , p c 0 , p d 1 q P R 6 such that Ỹ t à Ỹ " Ỹ t B Ỹ " 0u
with symmetric block diagonal matrices à " diagpS, ´1, S, ´1q P M 6 pRq, B " pT, 0, T, 0q P M 6 pRq.

This leads to the dual optimization problem 

Q 1 Ñ U p1q 1 takes q " pa 1 T 1 pxq`a 0 , b 1 U 1 , c 1 T 1 pxqc 0 , d 1 U 1 q as argument and returns χ 1 pqq " p q " pp a 1 T 1 pxq `p a 0 , p b 1 U 1 , p c 1 T 1 pxq `p c 0 , p d 1 U 1 q with pp a 1 , p a 0 , p b 1 , p c 1 , p c 0 , p d 1 q " χpa 1 , a 0 , b 1 , c 1 , c 0 , d 1 q
and χ defined by (25-26).

The function χ 1 has the same properties as χ n for n ě 2. In particular the results of Corollary 3.6 can be established also for n " 1. We state this as a proposition for later reference.

Proposition 3.8. Let n ě 1. The correction function χ n : Q n Ñ U p1q n satisfies (i) ~χn pqq~ď ~q~, q P Q n , (ii) ~q ´χn pqq~ď C ~q~1 {2 p|M pqq 2n | `|M pqq 2n´1 |q 1{4 , q P Q n , (iii) χ n ˝χn " χ n .
for some constant C ą 1.

The factorization function φ

n : U p1q n Ñ U 1 for n ě 1.
Definition 3.9. The factorization function φ n : U p1q n Ñ U 1 takes p q " pp a, p b, p c, p dq as argument. If p a 2 n `p c 2 n " 0, it returns φ n pp qq " p1, 0, 0, 0q. Otherwise it is defined as follows.

Case n ě 2: then φ n pp qq "

K pα 1 T 1 `α0 , β 1 U 1 , γ 1 T 1 `γ0 , δ 1 U 1 q where (27) α 1 " p a n , β 1 " ´p b n , γ 1 " ´p c n , δ 1 " ´p d n , ( 28 
) α 0 " p a n´1 2 ´p b n p b n´1 `p d n p d n´1 2pp a 2 n `p c 2 n q p a n `p b n p d n´1 ´p d n p b n´1 2pp a 2 n `p c 2 n q p c n , (29) γ 0 " ´p c n´1 2 `p b n p b n´1 `p d n p d n´1 2pp a 2 n `p c 2 n q p c n `p b n p d n´1 ´p d n p b n´1 2pp a 2 n `p c 2 n q p a n ,
and K " `α2

0 `γ2 0 `1 2 pα 2 1 `β2 1 `γ2 1 `δ2 1 q ˘´1{2 which is correctly defined since α 2 1 `γ2 1 ą 0. Case n " 1: then φ 1 pp qq " K p q with K " M pp qq ´1{2 " ˆp a 2 0 `p c 2 0 `1 2 pp a 2 1 `p b 2 1 `p c 2 1 `p d 2 1 q ˙´1{2 .
Remark 3.10. If p a 2 n `p c 2 n " 0 then p q P U p1q n . So by (17) (or (24) if n " 1), one has also p b 2 n `p d 2 n " 0 and thus p q P Q n´1 . This explains why these cases are distinguished in the definition. Proposition 3.11. For all p q P U p1q n , one has φ n pp qq P U 1 and φ n pp qqp q P Q n´1 .

Proof. If n " 1, then since p q P U p1q 1 , one has M pp qq 2 " M pp qq 1 " 0, so clearly φ 1 pp qq P U 1 and φ 1 pp qqp q P Q 0 . Consider the product formulas (8). Regardless of the values of α 0 and γ 0 , the product pA, B, C, Dq " pα, β, γ, δq p q is such that B n`1 " C n`1 " D n`1 " 0; thanks to (17) one also has A n`1 " 0. The next coefficients of pA, B, C, Dq are

2 A n " ´p a n p a n´1 ´p b n p b n´1 `p c n p c n´1 ´p d n p d n´1 ¯`2 pα 0 p a n ´γ0 p c n q , 2 B n " ´´p b n p a n´1 `p a n p b n´1 `p d n p c n´1 ´p c n p d n´1 ¯`2 pα 0 p b n `γ0 p d n q , 2 C n " ´´p c n p a n´1 `p d n p b n´1 `p a n p c n´1 ´p b n p d n´1 ¯`2 pγ 0 p a n `α0 p c n q , 2 D n " ´´p d n p a n´1 `p c n p b n´1 ´p b n p c n´1 `p a n p d n´1 ¯`2 p´γ 0 p b n `α0 p d n q .
Thanks to the choice of α 0 and γ 0 in ( 28) and ( 29), all these coefficients vanish too.

To simplify the computation of B n and D n , notice that since p a 2 n `p c 2 n " p b 2 n `p d 2 n , the coefficients α 0 and γ 0 rewrite

α 0 " p a n´1 2 `p c n p d n´1 ´p a n p b n´1 2p p b 2 n `p d 2 n q p b n ´p a n p d n´1 `p c n p b n´1 2p p b 2 n `p d 2 n q p d n ,
and

γ 0 " ´p c n´1 2 `p c n p d n´1 ´p a n p b n´1 2p p b 2 n `p d 2 n q p d n `p a n p d n´1 `p c n p b n´1 2p p b 2 n `p d 2 n q p b n . Thus φ n pp qqp q P Q n´1 . Finally φ n pp qq P U 1 since M pKpα, β, γ, δqq pxq " K 2 2 pp a 2 n ´p b 2 n `p c 2 n ´p d 2 n q T 2 pxq `K2 2 pp a n p a n´1 ´p b n p b n´1 `p c n p c n´1 ´p d n p d n´1 q T 1 pxq `K2 ˆα2 0 `γ2 0 `1 2 pp a 2 n `p b 2 n `p c 2 n `p d 2 n q ˙T0 " 1 .
This ends the proof.

Remark 3.12. The factorization built in the previous proof provides a constructive proof of Theorem 2.1. Indeed if M pqq " 1, one can check that the correction step is not active in the projection algorithm (16), i.e., p q n´i " q n´i for all i. One recovers the decomposition formulas of Theorem 2.1.

Error estimates

With the material developed above, one can now use the projection and consider Π n pqq " pã, b, c, dq P U n for q " pa, b, c, dq P Q n . But for practical purposes, which ultimately is our concern, such a procedure would have little interest if the difference q ´Πn pqq was large. It is precisely the purpose of this section to analyze this difference.

Since the projection algorithm is very nonlinear, one can expect technical difficulties in proving sharp error estimates. In what follows, we explain how the various estimates and properties already obtained combine to show some continuity properties of the projection Π n .

In order to quantify the distance to U n , we define the difference (30) εpqq " M pqq ´1.

The main theoretical result of this work is as follows.

Theorem 4.1. Let n P N and H ą 0. For any quadruplet q P Q n satisfying ~q~ď H, one has ~q ´Πn pqq~ď pn `1q CpHq max ! }εpqq}, }εpqq} 2 ´p2n`1q ) .

for some constant CpHq ą 0 depending only on H.

It is instructive to reformulate Theorem 4.1 in terms of polynomials rather than in terms of quaternions.

Corollary 4.2 (of Theorem 4.1). Let n P N, H ą 0 and q " pa, b, c, dq P Q n an arbitrary quadruplet satisfying ~q~ď H. Note p 0 " a 2 `b2 w and p 1 " 1 ´c2 ´d2 w and consider pã, b, c, dq " Π n pqq. There exists a constant CpHq ą 0 such that the polynomial with two bounds p :" ã2 `b 2 w " 1 ´c 2 ´d 2 w P U 2n satisfies }p 0 ´p} ď pn `1q CpHq max

! }p 0 ´p1 }, }p 0 ´p1 } 2 ´p2n`1q ) .
Proof. Using the definition of the norms } ¨}, ~¨~and two Cauchy-Schwarz inequalities, we write }p 0 ´p} " }pa `ãqpa ´ãq `pb `bqpb ´bqw} " ş 1 0 |pa `ãqpa ´ãqw ´1 2 `pb `bqpb ´bqw The result follows by combining the estimate of Theorem 4.1 with the equality εpqq " M pqq ´1 " p 0 ´p1 and the observation that ~Πn pqq~" }M pΠ n pqqq} 1{2 " }1} 1{2 " ? π.

To prove Theorem 4.1 we begin by establishing a couple of elementary estimates.

Proposition 4.3.

There is a constant C ą 1 such that for any integer n ě 1 and any q P Q n , the nonlinear correction operator χ n satisfies

(31) ~q ´χn pqq~ď C ~q~1 {2 }εpqq} 1{4
as well as

(32) }εpχ n pqqq} ď C p1 `~q~3 {2 q }εpqq} 1{4 .
Proof. Let q " pa, b, c, dq and p q " pp a, p b, p c, p dq " χ n pqq. The first estimate follows from Proposition 3.8, and the observation that the i-th coefficients of M pqq and εpqq " M pqq ´1 in the pT n q Chebyshev basis coincide for i ě 1, thus Denoting next q n " q and q n´pi`1q " e i`1 χ n´i pq n´i q as in Definition 3.1, we write a telescopic decomposition q 0 " e n χ 1 pq 1 q " e n q 1 `en pχ 1 pq 1 q ´q1 q " ¨¨"

|M pqq i | " |εpqq i | " 2 π | xεpqq, T i y T | ď 2 π }εpqq}}T i } L 8 p0,
e n e n´1 . . . e 1 q n `n´1 ÿ i"0

e n e n´1 . . . e i`1 pχ n´i pq n´i q ´qn´i q rewritten as e n e n´1 . . . e 1 q n ´r0 " ´˜n´1 ÿ

i"0

e n e n´1 . . . e i`1 pχ n´i pq n´i q ´qn´i q ¸`pq 0 ´r0 q .

The identity (33) and the triangular inequality yield ~q ´Πn pqq~ď n´1 ÿ i"0 ~en e n´1 . . . e i`1 pq n´i ´χn´i pq n´i qq~`~q 0 ´r0 ~.

Using again (14) and the fact that r0 q 0 " M pq 0 q 1{2 (still from Definition 3.1), one gets ~q ´Πn pqq~ď

n´1 ÿ i"0
~qn´i ´χn´i pq n´i q~`~r 0 q 0 ´p1, 0, 0, 0qď

C n´1 ÿ i"0 ~qn´i ~3{2 }εpq n´i q} 1{4 `|M pq 0 q 1{2 ´1|
where the last inequality uses (31 

}εpqq} 1{4 i `CpHq}εpqq} 1{4 n`1{2 .
This is enough to conclude.

Numerical illustration

To illustrate the properties of our projection algorithm we have implemented a global polynomial approximation method. Given some data px r , y r q r"1,...,2n`1 , our method builds a polynomial with two bounds, p P U 2n , such that the values pppx r qq r are a good approximation to py r q r . For this purpose we begin by interpolating the data px r , y r q r by their Lagrange polynomial p P P 2n , and use p as an effective target function. Ne note that in general p may be outside of the desired bounds.

The method is divided in three stages.

' In the first stage, one computes a polynomial approximation with one lower bound, p 0 " a 2 `b2 w P P 2n . The goal is to compute explicitly a, b and not just p 0 . Several methods related to this problem have been proposed by the authors in previous contributions [START_REF] Després | Iterative calculation of sum of squares[END_REF][START_REF] Campos-Pinto | Algorithms For Positive Polynomial Approximation[END_REF]. Here, we use another technique described in Appendix A. ' In the second stage we apply the same method as in the first stage to the data px r , 1 ´yr q r"1,...,2n`1 . This yields another polynomial 1 ´p1 " c 2 `d2 w P P 2n and hence a second approximation p 1 to the data, now with one upper bound. ' The third stage consists of applying the projection algorithm defined in Section 3.

From the polynomials pa, b, c, dq this computes pã, b, c, dq " Π n pa, b, c, dq and provides a polynomial approximation with two bounds p " ã2 `b 2 w, as described in Corollary 4.2. The minimization of the dual convex problem which is necessary to compute χ n is performed with a Newton conjugate gradient trust-region algorithm [START_REF] Nocedal | Numerical optimization[END_REF]. In our tests, the minimum is reached between 2 and 5 iterations. This operation is repeated n times (see Definition 3.1). The cost of one iteration does not depend on n.

In the following, we take n " 5 so that we are looking for approximations of degree 10. On the horizontal axis the values correspond to Chebyshev nodes, x r " 0.0051, 0.0452, 0.1221, 0.2297, 0.3591, 0.5000, 0.6409, 0.7703, 0.8779, 0.9548, 0.9949.

In the first three test cases we choose different values of py r q r , so that the corresponding Lagrange polynomials p have larger amplitudes and exceed the desired bounds. The goal here is to compare qualitatively p with the projected polynomial p, in order to witness the quality of the projection. The last test case is an experimental error analysis. We project a series of polynomials at given distances from the set U 2n and compare the numerical convergence rate with the theoretical result of Theorem 4.1.

First test case.

In this first test case we choose y r " 0.1500, 0.2402, 0.1101, 0.0997, 0.9062, 0.5877, 0.5548, 0.1095, 0.8883, 0.6343 and 0.3360. Althougt y r P p0, 1q, the Lagrange polynomial p may not be within the bounds. Indeed it exceeds the bounds for x « 0.2 and x « 0.9. The results are displayed in Figure 1. One observes that as expected p 0 ě 0, p 1 ď 1. Finally the projected polynomial is truly between 0 and 1, and seems to be a satisfactory approximation of p. 3 a perfect behavior in terms of satisfaction of the bounds for the projected polynomial, moreover the qualitative profile of the curve seems to be preserved.

5.4. Fourth test case: error analysis. In this last numerical test, we want to discuss the estimate of Theorem 4.1 numerically. To proceed we start by defining y r ptq " tpy r ´ȳq `ȳ , where the values y r are those of the previous test case (Section 5.3), ȳ is their average and t P r0, 1s. From x r and y r ptq we define the associated Lagrange polynomial p t . Clearly p t " tp `p1 ´tqȳ with p the Lagrange polynomial associated with px r , y r q r . Thus, since ȳ P r0, 1s and p R r0, 1s (see Figure 3), there is some t ˚P p0, 1q such that p ptq P r0, 1s if t ď t ˚. Above the critical value of t the polynomial p t violates the bounds. We denote by q t the quaternion corresponding to the Lukacs approximations of p t and we compare }εpq t q} and ~qt ´Πn pq t q~for various values of t. In our numerical test we chose t " 1., 0.8, 0.6, 0. The factor 2 n´1 is taken so that α 0 and β 0 are of the same order as the other components of α and β. Then the approximation polynomial p is defined by p 0 pxq " arα ˚spxq 2 `brβ ˚spxq 2 wpxq

The optimization problem is nonlinear and non-convex. However, it can be solved efficiently in practice. Indeed, one can compute explicitely both the gradient and hessian of the functional J. In the numerical tests of Section 5, we used a Newton conjugate gradient trust-region algorithm. The initial couple pα, βq is taken to be appropriate roots of Chebychev polynomials. In this way, the initial polynomials arαs and brβs are proportional to T n and U n , yielding arαs 2 pxq`brβs 2 pxqwpxq being some constant polynomial. In all the cases of Section 5, n " 5 and the algorithm converges after around 30 iterations.
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 31 The projection onto U n is defined by the factorized formula (15)

( 25 )Definition 3 . 7 .

 2537 pλ ˚p Xq, µ ˚p Xqq P arg inf pλ,µqP r D G X pλ, µq with G X pλ, µq " Xt M ´1 λ,µ X with a matrix Mλ,µ " I `λ Ã `µ B and a bounded convex domain now defined as r D " tpλ, µq P R 2 : µ 2 ´1 ď λ ď 1u. Thus we define (26) χ : R 6 ÝÑ r V, X Þ ÝÑ χp Xq " M ´1 λ ˚p Xq,µ ˚p Xq X where pλ ˚p Xq, µ ˚p Xqq is the global minima of the convex and coercive nonlinear program (25) obtained by a given optimization method. The function χ 1 :

2 `pb `bq 2 w} 1 2 }pa ´ãq 2 `pb ´bq 2 w} 1 2 ď

 2122 ~q `Πn pqq~~q ´Πn pqqď pH `~Π n pqq~q ~q ´Πn pqq~.
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 2 Figure 2. Second test case: Bottom right: Lagrange polynomial p; Bottom left: Upper bound Lukacs approximation; Top right: Lower bound Lukacs approximation; Top left: Projection p; Even if the polynomial p 0 and p 1 are slightly out of bounds, a perfect satisfaction of the bounds is observed for p.
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 3 Figure 3. Third test case: Bottom right: Lagrange polynomial p; Bottom left: Upper bound Lukacs approximation; Top right: Lower bound Lukacs approximation; Top left: Projection p; Even if the polynomials p 0 and p 1 are largely out of bounds, a perfect satisfaction of the bounds is observed for p.

  The mathematical issue is that the Euclidean projection on this non-convex set cannot be properly defined. Indeed if one denotes by } ¨} the euclidean norm in R 8 the following quadratically constrained quadratic program

	(19)	inf Y PV	1 2	}X ´Y } 2 ,
	may have multiple solutions. Via a dual convex nonlinear program, we are never-
	theless able to explicitly compute at least one solution, which reveals sufficient for
	our algorithmic purposes. Once we are provided with a suitable candidate written
	as			

by (17). The problem is thus reduced to building a projection χ : R 8 Ñ V.

χpXq " ´p a n , p a n´1 , p b n , p b n´1 , p c n , p c n´1 , p d n , p d n´1 ¯t ,

we may gather the coefficients to determine χ n pqq. This will properly stated in Definition 3.4.

3.2.1.

A dual convex program. The set of constraints of the optimization problem (17) is written as

  3.2.2. Properties of the non convex optimization problem. }X} 1{2 p ˇˇX t AX ˇˇ`ˇˇX t BX ˇˇq 1{4

	Proposition 3.5. The function χ has values in the correction manifold V, and
	(i) it is nonincreasing in the euclidean norm of R 8 , namely
	}χpXq} ď }X};
	(ii) it satisfies the estimate	
	}X ´χpXq} ď 2	3 4

  sµ ˚pλ ˚A `µ˚B q " pλ ˚A `µ˚B qM ´1

			sλ ˚,sµ	˚,
	one has the inequality
		ż 1	
	2	0	pZ ˚qt M ´3 sλ ˚,sµ

˚Z ˚p1 ´sqds ď pλ ˚X t AX `µ˚Xt BXq where Z ˚" pλ ˚A `µ˚B qX. It yields

  By definition of Y ˚one has X ´Y ˚" pλ ˚A `µ˚B qY ˚. So }X ´Y ˚}2 " Y ˚tpλ ˚A `µ˚B qpX ´Y ˚q " Y ˚tpλ ˚A `µ˚B qX " Y ˚tZ ˚ď }Y ˚} }Z ˚}. The estimate in (ii) yields }χ ˝χpXq ´χpXq} " 0 since χpXq P V. The proof is ended. Corollary 3.6. Let n ě 2. The correction function χ n

	So }X ´Y ˚} ď }Y	˚} 1 2 }Z	˚} 1 2 . One concludes with (i) and the previous
	technical bound.		
	(iii)		

sµ ˚Z ˚p1 ´sqds ď 2 3 pλ ˚X t AX `µ˚Xt BXq. Using |λ ˚| `pµ ˚q2 ă 1, one gets the technical bound }Z ˚} ď 2

  1q " 2 π }εpqq}. With the estimates of Proposition 4.3 in hand, we can now prove Theorem 4.1.Proof of Theorem 4.1. For q P Q n we write Π n pqq " e 1 e 2 . . . e n r 0 , according to Definition 3.1. Using that ~eq~" ~q~for e P U 1 , see (14), one notes that (33) ~q ´Πn pqq~" ~en e n´1 . . . e 1 q n ´r0 ~.

	For the second estimate we compute
	}εpp qq} " }p a 2 `wp b 2 `p c 2 `w p d 2 ´1}
	" }εpqq `pp a `aqpp a ´aq `wp p b `bqp p b ´bq `pp c `cqpp c ´cq `wp p d `dqp p d ´dq}
	ď }εpqq} `~q `p q~~q ´p qď
	C `}εpqq} 3{4 `~q `p q~~q~1 {2 ˘}εpqq} 1{4
	where the first inequality is obtained like in the proof of Corollary 4.2, and the
	second one is (31). Finally estimate (32) is obtained by using ~p q~ď ~q~from Proposition 3.8, and the bound }εpqq} ď }1} `}M pqq} " ? π `~q~2.

  ). Since the correction functions χ n´i are nonincreasing in the ~¨~norm (see again Proposition 3.8), one has ~qn´i ~ď H and thus Using the morphism property M pe i p qq " M pp qq and Estimate (32), we finally write }εpq n´i q} " }εpχ n´i`1 pq n´i`1 qq} ď CpHq}εpq n´i`1 q} 1{4 ď ¨¨¨ď CpHq}εpqq} 1{4 i

	~q ´Πn pqq~ď CpHq where we have also used that | ? M ´1| ď n´1 ÿ i"0 }εpq n´i q} 1{4 `C }εpq 0 q} 1{2 a ~q ´Πn pqq~ď CpHq n´1 ÿ |M ´1| for all M ě 0. which, combined with the previous estimate, yields i"0

  Even if the polynomial p 0 and p 1 are marginally out of bounds, a perfect satisfaction of the bounds is observed for p.5.2.Second test case. Now y r " 0.3326, 0.5950, ´0.0938, ´0.1245, 0.5431, 0.8908, 1.1076, ´0.0181, 0.5964, 0.4571 and ´0.1833. The results are displayed on Figure2. Despite the large overshoot and undershoot of p 0 and p 1 respectively, one sees that the projected polynomial yields a satisfactory approximation of p.5.3. Third test case.In this third test case y r " 0.0114, ´0.5135, 1.3829, ´0.0664, 0.5856, ´0.5031, 0.8059, ´0.2111, 0.9622, 1.0676 and 1.2445. This is a much more severe test in terms of accuracy since the violation of the upper and lower bounds are extreme, and indeed of similar amplitude than the bounds themselves. However we observe in Figure
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r , y r q Figure 1. First test case: Bottom right: Lagrange polynomial p; Bottom left: Upper bound Lukacs approximation; Top right: Lower bound Lukacs approximation; Top left: Projection p;

  5, 0.43, 0.38, 0.35, 0.33, 0.32, 0.31, 0.305, 0.301, 0.298, 0.296, 0.294, 0.293, 0.292, 0.291, 0.2908, 0.2906, 0.2904 and 0.29. The results are showed on Figure4. The slope is approximately equal to 1 in logarithmic scale which suggests that ~qt ´Πn pq t q~" Op}εpq t q}q. This emphasizes that the error estimate of Theorem 4.1 is probably far from being sharp. Moreover, we see on this test case the convergence and stability of the method.

p ˇˇX t AX ˇˇ`ˇˇX t BX ˇˇq 1{2 .

Appendix A. An algorithm for positive polynomial approximation

Here we briefly describe the method used in the numerical tests to compute the positive (or nonnegative) polynomial approximations in Lukacs form. The problem is to find two polynomials a P P n and b P P n´1 defining a positive polynomial p 0 pxq " apxq 2 `bpxq 2 wpxq such that given some data px r , y r q r"1,...,R (in general with R " dimpP 2n q " 2n `1) the images pp 0 px r qq r are a good approximation of py r q r .

Our algorithm consists in a least-square minimization where a and b are "oscillating polynomials" parametrized by their roots. This parametrization is motivated by the method of [START_REF] Campos-Pinto | Algorithms For Positive Polynomial Approximation[END_REF] where a similar technique has been developped and analysed for positive interpolation.

Mathematically the method relies on the following optimization problem. Find pα ˚, β ˚q P argmin αPR n`1 ,βPR n J t pα, βq where the objective function is Jpα, βq " R ÿ r"1 |arαspx r q 2 `brβspx r q 2 wpx r q ´yr | 2 ,