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Audition as a Trigger of Head Movements

B. Cohen-Lhyver, S. Argentieri, B. Gas

Sorbonne Université, CNRS, Institut des Systémes Intelligents et de Robotique,
ISIR, F-75005 Paris, France

Summary. In multimodal realistic environments, audition and vision are the
prominent two sensory modalities that work together to provide us with a best
possible understanding of the perceptual contents of the world. Yet, when designing
artificial binaural systems, this collaboration often not honored. Instead, substantial
effort is made to construct best performing purely-auditory-analysis systems, some-
times with goals and ambitions that reach beyond human capabilities. It is often
not considered that, what enables us to perform so well in complex environments,
is the ability of, (i), using more than one source of information, for instance, visual
in addition to auditory one and, (ii), making assumptions about the objects to be
perceived on the basis of a-priory knowledge. In fact, the human capability of infer-
ring information from one modality to another one helps substantially to efficiently
analyze the complex environments that humans face everyday. Along this line of
thinking, this chapter addresses the effects of attention reorientation triggered by
audition. Accordingly, it discusses mechanism that lead to appropriate motor reac-
tions, such as head movements for putting our visual sensors toward an audiovisual
object of interest. After presenting some of the neuronal foundations of multimodal
integration and motor reactions linked to auditory-visual perception, some ideas and
issues from the field of a robotics are tackled. This is accomplished by referring to
computational modeling. Thereby some biological bases are discussed as underlie
active multimodal perception, and it is demonstrated how these can be taken into
account when designing artificial agents endowed with human-like perception.

1 Introduction

Assume the following situation: A listener in a lecture hall attends a talk
of a fellow researcher. The conference room is almost full, and everyone has
reached a seat. Yet people keep sparingly moving in all along the talks, trying
to make as little noise as possible while they thread their way through the
rows to find an available chair. While the talk is still going on, a sharp, vivid,
but muffled due to the distance, sound of a small glass breaking on the floor
of the lecture hall reaches the listener’s right ear. A first observable reaction,
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Fig. 1. Attention reorientation caused by the occurrence of an unpredictable stim-
ulus leading to head movement towards the audiovisual source. This motor reaction
enables the visual sensors to acquire supplemental data about the object of interest

— after |Corbetta et al.| (2008]).

will very likely to be the turn-to reflex, namely, listeners quickly turn their
heads towards the object that has caused the sound.

Why?

Such head movements are an attempt to guide the optical sensors (eyes) to
spatial areas of interest, namely, to enable an analysis complementary to the
one that has already been performed beforehand by the auditory modality.
This primary analysis is indeed responsible for the alerting mechanism. Reac-
tions triggered in such a way are generally termed attention reorienting. In the
case discussed here, the reaction was initiated by auditory cues — see Fig.[I}
Turning our head in a case like this is a manifestation of the need to focus on
a particular object of interest that occurs in an environment.

Attention reorienting is an observable consequence of the integration of
multiple complex mechanisms giving humans the ability to react quickly to
complex environments. In particular, head movements are triggered by various
different signals and situations, for instance, danger signals, but also unex-
pected perceptual objects such as stimuli requiring our attention or carrying
an interest with respect to a task to accomplish.

In the situation described above — besides the notion of danger signal — a
main characteristics of the “falling glass” object is its obvious rareness in the
context given and, consequently, its low predictability. In other words, neither
any perceptual clue nor any prior information has supported anticipation of
this object. But whatever the origins of the head movements are, they resulted
in putting the optical sensors towards an area that required deeper analyses
of the perceptual information.
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What does actually “cause” head-turn reactions?

As stated above, audition is a modality capable of triggering movements of
the head towards an unpredictable object. However, will that reaction also
occur in a situation were glasses are constantly falling and breaking on the
ground? In other words, how important is the context in which an object is
occurring, and how does this context with consequent motor reaction? A same
object can thus either trigger motor reactions in a specific environment, or
remain completely unnoticed in a different environment. A dog barking in a
kennel would certainly provoke a different reaction in you than if barking in
your bedroom, given that it is not your own dog. The difference between these
two environments is the predictability of the object to occur. Thus, it has to
be concluded that the occurrence of an auditory, visual, or audiovisual object
is not an inherent attribute of the corresponding signals. It is the context
that determines consequent motor reactions. Predictability is thus a key in
understanding the mechanism of attention reorienting.

In particularly, all these considerations are of importance when it comes to
the design of artificial agents endowed with human-like multimodal perception
capabilities. Such agents aim at understanding complex environments in a
similar way as humans do. Thus, they have to be able to process the different
kinds of signals as perceived by their dedicated sensors, artificial ears and eyes
for instance, but also to know how to combine them appropriately to form a
multimodal perceptual world. The technologies of both sound processing and
image processing, that is, a multimodal approach are needed to provide these
robots with an adequate comprehension of the world. However, at least in the
robot community, audition and vision are often considered as two separate
senses with distinct information channels, each used to form perceptual worlds
in their own particular way.

In order provide more evidence of the relevance of a thorough multimodal
understanding of the world, the question will be addressed of “How can audi-
tion be utilized as a trigger for head movements towards objects of interest?”
that is, how can one modality, for example, audition, be used for requisition
of another modality, for instance, vision, to the end of gaining a better un-
derstanding of a multimodal environment? To address this question, four key
neuronal phenomena are discussed in the second section of this chapter, which
form a solid basis of the comprehension of multimodal integration, motor re-
actions, and prediction abilities of the human sensory cortices. First will be
introduced the Superior Colliculus, a brain structure that is responsible for the
cross-modal integration of audio and visual information, and for a consequent
motor reaction depending on this incoming data. Secondly will be described
the Reverse Hierarchy Theory (RHT), formalized in the first decade of the
2000’s, and that proposes a powerful hypothesis about how audio and visual
streams of data are processed both along a complementary bottom-up and
top-down manner. Thirdly, the Mismatch Negativity phenomenon will be de-
scribed, a phenomenon that illustrates how sensitive to unpredictable inputs
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the sensory cortices are. Finally, the concept of Saliency will be discussed, for
its strong involvement in sensory data analysis, especially for the detection,
and subsequent reaction, to discontinuities in the sensory flow. Understand-
ing these mechanisms provide helpful hints for designing artificial intelligences
aimed at being integrated in robots that are to be furnished with human-like
perception. As an example, a computational model of the head-turn reflex
driven by auditory information will be described in the third section, namely
the Head Turning Modulation (HTM) model. A conclusive section will then
sum up the chapter.

2 Neuronal roots

There is extensive literature available concerning the relevant phenomena
mentioned above. It includes binaural audition and sound processing by dedi-
cated cortical areas, binocular vision, and image processing by other dedicated
cortical areas, multimodal integration, attention computing, and motor reac-
tions — both in reflexive as well as in reflective behavior — compare |Blauert
and Brown| (2018]), this volume.

Consequently, the following descriptions are restricted to biological founda-
tions of attention reorientation caused by audition. Four neuronal mechanisms
are dealt with in this context. These are mechanisms that represent primary
biological components to be understood and considered when designing ar-
tificial agents with attentional capabilities driven by multimodal perception.
Importantly, even though these phenomena are all involved in attention reori-
entation in their own particular way, they will here be described separately,
for biological evidence of direct links between them in the processing of au-
diovisual signals has not been extensively studied, as for now.

2.1 Superior Colliculus

The Superior Colliculus (SC), is a good example for illustrating how impor-
tant multimodal integration is in the analysis of sensory information. It is
now widely accepted that multimodal integration is crucial even for unimodal
perceptual flow analysis (Atilgan et al.,[2018), in particular when it comes to
designing artificial systems that use auditory, auditory, visual, or any other
sensory modality. Taking for example the cocktail party effect (Cherry| (1953);
Cherry and Taylor| (1954)) and the related analysis of auditory and visual
information, the following two approaches to cross-modal interaction are con-
ceivable.

e One may consider auditory and vision as two distinct modalities being
separately processed through different and well characterized channels;
and only the results of these analyses in each perceptual modality being
used for further analyses and integration
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e One may, alternatively, consider that cross-modal integration is already
performed at low levels of the participating modal pathways, thus bene-
fiting as early as possible from each available source of information.

The first approach is actually guided by a common misconception, namely,
the assumption that sensory cortices process information solely from the sen-
sors they they are directly connected to: the auditory cortex processes only
auditory input sounds from the ears, while the visual cortices only process
visual inputs from the eyes. However, there is ample evidence nowadays that
a strict separation of different modalities and the accompanying neural areas
does not exist. For instance, various studies have shown the ability of the
visual cortex to also process sounds (Shams et all |2005; [Turilli et al.| [2012;
Vetter et al.| |2014)). Others have found in return that the auditory cortex can
also process visual input (Sharma et al., 2000; Belin et al., [2000; [Finney et al.,
2001)). Of course, the auditory cortex has the major role in sound processing,
and the visual cortex is far from contributing as much as the former one in
sound processing. But in the context discussed here, the question is not how
important the cross-modal contribution is, but rather the fact that it does
exist at all.

The SC is a suitable candidate for the location where cross-modal integra-
tion actually happens in the central nervous system. Perhaps nowhere is the
convergence of modalities more evident than there, as asserted by Meredith
and Stein| (1986) on the basis of a extensive review of research works on mul-
timodal integration in mammal brains. Located in the brainstem, the SC is
organized in seven layers, split into two functional units. One of these receives
sensory inputs (mainly from vision, audition, and proprioception), the other
one generates motor commands on the basis of this sensory input. These mo-
tor commands can, for instance, be eye saccades (Moschovakis [1996)), body
movements (Stein et al., 2004)), in particular head movements(Mayj, 2006]).

By binding quick motor reactions to sensory inputs, the SC is thought
to play an important role in attentional reactions, in particular exogeneous
onesﬂ Two major phenomenon have been observed in attentional reactions in
which the SC is involved, namely,

e If two cross-modal stimuli are sufficiently overlapping in space and time,
a synergistic effect will be observed in the multimodal neurons of the SC,

e This synergy will be more pronounced when the modality of the stimuli
is the less influential one in the neurons of the SC — a phenomenon called
multimodal enhancement.

Moreover, multimodal integration is dependent on the congruence of the per-
ceived stimuli: when two or more stimuli arise from the same perceptual en-
tity, like an audiovisual object for instance, or when they share perceptual

! That is, reactions caused by the stimuli themselves, in opposition to endogeneous
ones as are caused in a goal-driven way.
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attributes, like an audiovisual clickﬂ Interestingly, when there is a conflict,
that is an incongruence between auditory and visual information supposedly
belonging to the same perceptual object, vision usually takes over the other
modalities: a phenomenon (Hay et al., 1965) named wisual capture. For in-
stance, Pick et al|(1969)) showed that the visual spatial position of an object
is not alterable by incongruent auditory stimuli. According to the review on
visual capture by (Posner et al.,[1976)), the reason why vision takes the lead on
other modalities might be explained by the “relatively weak capacity of visual
inputs to alert the organism to their occurrence.” Thus, attention is prefer-
ably put on visual analysis to counterbalance the relative inherent lack of
saliency of visual stimuli. However, it has to be kept in mind that the relative
importance of visual dominance has been reconsidered by |[Spence and Driver|
(1994} [1996| [1997alb) and later by Turatto et al| (2002). These findings are
crucial for the understanding of how multimodal information is gathered and
integrated. In fact, visual and auditory information are not considered equal
in multimodal object formation and, consequently, with regard to potential
reactions to their appearance in an environment.

As compared to visual scenes, auditory scenes are inherently more prone
to salient objects. Nevertheless, some particular cases of auditory capture over
vision have been observed and reported (see |(Gebhard and Mowbray| (1959)
for instance). A later hypothesis by [Welch and Warren| (1980) provides a plau-
sible explanation of the underlying mechanisms of visual or auditory capture.
Obviously, vision is particularly adapted to spatial analysis whereas auditory
fits particularly temporal analysis. This hypothesis, called modality appropri-
ateness, is based on the specifics of the sensors themselves.

More recently, [Fendrich and Corballis| (2001)) used an experimental paradigm
after Welch and Warren| (1980) that led to the observation of a more pro-
nounced effect of auditory capture versus visual capture. Interestingly, the
authors have introduced the notion of Intersensory Temporal Locking (ITL),
thus providing a more comprehensive explanation of the different observed
phenomena of modal capture. The ITL, supported by a prior study of
, is defined as a mechanism allowing the sensory cortices to solve
potential temporal ambiguities in the perception of multimodal stimuli and
offers a good basis for the understanding of when either auditory or vision
lead perception, and what kind of stimuli triggers such modal capture.

In addition, the experiments of |[Shams et al| (2001) and
, both leading to the observation of auditory capture over visual capture,
combined to the opposite results obtained a decade before by
[Rosenblum| (1993). Shams issued a statement as to which

“The discontinuous stimulus in one modality alters the percept of the
continuous stimulus in the other modality, yet not as strongly vice
versa.”

2 An audiovisual click is a quick and simple sound, such as a pure tone section,
presented together with a visual object, such as a dot or a cross of equal duration.
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In summing up, all the studies mentioned above lead to the conclusion that
multimodal perception consists of more than sole concatenation of auditory
and visual data for forming the representation of multimodal objects in higher
cerebral areas. The phenomena of auditory capture, visual capture, modality
appropriateness, or discontinuity vs. continuity of perceived signals, indicate
that auditory and vision are definitely working together closely, whereby each
modality of the two mutually benefits from this advantage.

2.2 The Reverse Hierarchy theory

Consider the cases of the voice of somebody talking in a completely silent
room in contrast to talking in a very crowded and noisy place (and again, we
are close to the cocktail party situation). This raises the following question:

Are identical stimuli in different surroundings processed in the same way?

A recent model of perceptual information analysis, the Reverse Hierarchy The-
ory (RHT), puts the following insight to the fore. The informational context
in which stimuli are perceived has an impact on the deepness and thorough-
ness of their analysis. RHT has been introduced and put into a formalized
algorithm by (Hochstein and Ahissar, 2002 |Ahissar and Hochstein) [2004)),
(Nelken and Ahissar, |2006) and recently (Nahum et al. [2008). The core of
this theory is to bridge between high-level representations of perceived sig-
nals (such as auditory objects) to correlated low-level cues (such as frequency
spectrum, ITD, or ILD). As to the latter ones, it is of interest whether these
cues are necessary or not for taking high-level decisions, such as to initiate
adequate motor actions. On the one hand, a rule is that the more difficult
a discrimination task is, the more low-level attributes gain in relevance for
refining auditory stream analysis, for example, for solving ambiguities. On
the other hand, if the informational context is simple, the high-level repre-
sentation of the perceptual streams (i.e. objects) will be usable directly, thus
making deeper and more thorough analyses of the streams dispensable.

The RHT is thus also linked to internal representations of the world and,
specifically, to the ways in which perceptual streams are combined to achieve
a unified and robust perception of multimodal entities, perceptual objects.
Indeed, as (Shammal, |2008) sums up,

If the high “objects” and their “low-levels cues” are congruent, the
feed-forward process is rapid, and the use of all available salient cues
is effective and comprehensive.

Thus, in addition to the capabilities of perceptual streams analysis due to
powerful features extraction, the ability to rapidly provide access to high-
level representations of the perceptual world is quite astonishing as well. This
is due to the fact that high-level representations include temporal integration
and prior assumptions about incoming sensory information — see Sec.[2.3]
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Further, the RHT helps to understand attentional processes. In cases of
incongruent perceptual streams such as, for instance, two males speaking in
approximately the same spatial region, the theory postulates that the mech-
anisms that require low-level cues to disambiguate the two streams will be
easily disrupted by competing cues. The way perceptual information streams
are processed by the sensory areas of the brain, in particular those dealing
with vision and audition, has for long been interpreted as almost exclusively
being dominated by bottom-up processing. With the RHT however, there is
now an innovative attempt for explaining the links between the traditional
sensor-to-cortex pathway and the cortex-to-sensor one, namely, that they are
activated depending on the complexity of the information to be processed.
Consequently, RHT is of help when constructing artificial agents equipped
with human-like perception. It suggest to process the data that such agents
acquire with respect to the context in which they have been collected. In par-
ticular, it shows that making assumptions about what is coming up next in a
scene can be useful for accelerating and simplifying the processing of sensory
information. To be sure, the existence of such processes in humans implies
that their brain has prediction abilities. And with these prediction abilities
comes also the potential validation or invalidation of them by real perceived
information. As for the other phenomena involved with attention, whenever
there is a difference between 'what is expected’ and 'what is perceived’, a cere-
bral reaction, possibly followed by a motor one, is triggered. To illustrate this,
the next section introduces the Mismatch Negativity phenomenon, a physio-
logical reaction to deviant incoming sensory information with respect to the
prediction made by these cortices.

2.3 Mismatch negativity
Can the apparition of stimuli be anticipated?

Anticipation, or prediction, is the ability to have a strong belief about what
is coming up next. This ability has the potency of considerably accelerating
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processing of perceptual data. Further, it enables the sensory cortices to de-
tect inconsistent, salient and/or incongruent, objects. “Inconsistent, salient
or incongruent” objects are such that somehow do not fit prior predictions.
Consequently, they may require special reactions, such as a motor commands
to redirect the sensors in order to get additional data that would help under-
stand the origin of the observed unpredictability. As an example, imagine a
strong male with an angry face uttering with high pitch and very calm voice:
“Yesterphinge, I was in the elephant”. The following lists three cases in which
an anticipation is initiated. Yet, it may turn out be wrong in the end.

1. The characteristics of the voice (an angry face would anticipated a loud,
low-pitched voice)

2. The semantic content of the speech, that is, certain words have a higher
probability to occur in the given context (“...in the elephant”)

3. The words themselves, given the context and the initial syllables (“Yester-
phinge” instead of “Yesterday”).

For all three cases the following holds. If what is perceived does not match
prior expectation, a quick reaction is triggered. One of the first reaction to
these unexpected objects occurring in a predictable stream of information can
be observed in the sensory areas (such as the auditory or visual cortices) in
terms of a particular neuronal response, the Mismatch Negativity (MMN).

This effect, when elicited, signals a quick attentional response to ob-
jects that do not match the expectations of the sensory areas. Discovered
by INdétanen et al.|(1978]), the MMN can thus be described as a quick specific
reaction to the incongruence of an auditory or visual object with regard to the
short-term context in which it appears. MMN is particularly present in the
auditory areas (Molholm et al.,2005)), specifically in the temporal superior cor-
tex and the frontal cortex (Alho, [1995). It occurs at around 100-200 ms after
the deviant stimulus. For instance, when in a repeated sequence of sounds of a
center-frequency of 1000 Hz, unexpectedly a sound at 1032 Hz is presented, it
will be recognized as deviant from the predictable sequence perceived so far.
The neuronal reaction to this deviant sound will show up as the MMN — see
Figure[3] MMN has also been observed when there are amplitude or timbre
variation ((Naatdnen and Alho,|1995))). It is thus an effect that is linked either
the apparition of new percepts or to variations in the perceptual attributes of
ongoing ones.

Mismatch negativity is certainly an indication of a reaction to an unpre-
dictable stimulus. Yet, its role in the formation of a perceptual world model
has also to be seen under the following aspects. By being able on the basis
of only three or four occurrences of a stimulus, to infer a rule that enables
the prediction of the next stimulus to appear, the sensory cortices can speed
up the processing of the incoming stream of stimuli by just checking if the
actual perceived stimulus matches the prediction. If it does match, there is no
need to fully process the stimulus, and computation time is saved (behavior
to be linked to the RHT, see above). However, if it does, a warning signal (the
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Fig. 3. Mismatch negativity. Upper curve: Neural responses recorded in 80 % of
the occurrences of randomly presented sounds of 1000 Hz center frequency (black
dotted lines), of deviant sounds at different center frequencies in 20 % of the occur-
rences (green lines). Lower curve: Differences of the responses to deviant sounds
as compared to the 1000 Hz reference — after [Naitanen et al| (2007).

MMN) is generated to potentially initiate a motor reaction such as, for in-
stance, a head movement. This reaction is a way to motivate a deeper analysis
of the unpredictable stimulus, for instance, by bringing other available and
relevant sensors into play that gather additional information for the analysis.

Friston| (2005) has highlighted the fact that the brain’s internal represen-
tations of the world can be utilized to predict what most probably happens
next in the environment. Along this line of thinking, [Lochmann and Deneve
(2011) introduced the notion of predictive coding for the causing of inference
with regard to sensory objects that are not directly recognizable from sensory
cues. |Arnal and Giraud| (2012) in their review of cortical oscillations and sen-
sory predictions, listed several mechanisms that allow the auditory cortex to
predict the point in time when a stimulus is most likely to happen in the given
context. In fact, MMN accompanies all prediction processes in the brain. Yet,
for two reasons these processes are more than just simple anticipation: (i),
it makes the analysis of the perceptual scene faster and, (ii), it represents a
powerful way of revealing unpredictable changes in the perceptual stream of
information, especially in the auditory one.

Mismatch Negativity teaches us that when auditory (and visual) stimuli
are processed, the sensory cortices are very soon able to form a predictable
sequence, thus enabling instant detection of perceptual irregularities. But even
more so, the MMN reveals already at this stage of sensory information pro-
cessing, that there is no stimulus standing out per se: AsFie—22iHustrates
sehematieally; a stimulus can be detected as deviant, or incongruent, in a
certain sequence of perceptual objects, but it would be rated as “normal” i
different sequence. Consequently, the relative importance of a stimulus With
regard to whether is will in fact trigger an attentional reaction, has to be de-
fined in view of its relations to the current environmental surroundings. To be
sure, these surrounding can be variable. Thus, stimuli may change their per-
ceptual role accordingly. They will elicit different behavioral responses from
one situation to another one, from one context to another, from one place to
another, and/or from one point in time to another one. Whereas the MMN
has not yet been directly linked to any direct motor reaction, its strong in-
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volvement in attentional reactions (Escera et al., {1998, 2003) makes it a solid
basis for triggering eye, body or head movement gereration due to incongru-
ent stimuli or objects, especially through the notion of Saliency, presented in
the following section.

2.4 Saliency

Saliency is a measure of how much a stimulus, such as a sound wave or the pixel
of an image, differs from what surrounds it, be it temporally or spatially. In
human perception, saliency has mainly been studied in vision, as it is often the
case for the visual system is easier to study than the audio one. In particular,
following the definition of |Treisman and Gelade| (1980), saliency stems from
local singularities that are exhibited within a stream of perceived data. For
instance, within an image composed of numerous red circles, the presence of
a unique green one would present a local singularity, in terms here of color:
the green circle would then be considered as salient. From this analysis of the
perceptual streams, and mainly exhibited by the auditory and visual cortices,
attentional reactions can be elicited, such as eyes movements towards visual
stimuli of high intensity ((Wolfe| 1994} Nothdurftl |2006])).

Moreover, saliency is shaped and influenced by learning and experience.
For instance, while a musician is able to detect a false note instantly without
even having to focus on listening, it could go by unnoticed an untrained person.
In the visual system, the primary visual cortex (V1) already has a map of
visual saliency (Li, 2002)). Mazer and Gallant| (2003) have shown that the
activity of neurons of the extrastriated visual area (V4), a structure placed
higher in the hierarchy of visual signals analysis, can predict towards which
particular area in space an eye saccade will be directed an ongoing visual
exploration task. This observation supports the assumption of presence of a
topographical map of saliency in (V4). Further, the intra-parietal lateral area
(Bisley and Goldberg), 2006]) and the frontal eye field (Thompson and Bichot,
2005|) have been associated with the phenomenon of visual saliency as well.

The human auditory system also respond well to saliency, and potentially
also triggering motor reactions, in particular head and body movements. How-
ever, the attributes that the auditory sense is sensitive to, and on which it
bases its interpretation of the auditory scene, are different from those used
in vision. In particular, as concerns saliency, the auditory system mainly pro-
cesses spectral and temporal modulations (Yost, [1992; |Alain et al., [2001)) and,
based on these, it is able to extract auditory entities of relevance even in
noisy environments (Hall et al., [1984)). Addressed acoustic attributes are pre-
dominately such as spectral contrast, temporal contrast, and intensity. These
are then exploited in parallel by neurons of the auditory areas, consequently
leading the formation of saliency maps dedicated to specific attributes. These
maps are then merged in order to create a global map of auditory saliency
of the actual acoustical environment — compare Figure[d Be it for the visual
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such as intensity, spectral and temporal contrasts. The resulting maps are combined

into a comprehensive auditory-saliency map following a normalization step Figure
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or the auditory system, the creation of saliency maps within dedicated sen-
sory areas is an important step toward understanding the world models of the
systems. Indeed, these maps provide potential candidates for a reorientation
of attention. For instance, a person speaking at a certain azimuth outside
the visual field of a listener and thus requiring a head movement, or a sud-
denly moving target that requires an eye saccade. These movements will lead
to both a different capturing position of the audio sensors, thus refining the
audio data processing, and to the bringing of the visual sensors towards the
object of interest, thus allowing the capture of visual data that will greatly
help the auditory system to raise potential ambiguities in the identification
and/or localization of an object.

Saliency, be it visual, auditory or multimodal, has intensively been dis-
cussed, modeled and implemented in the robotics, artificial intelligence, and
computational neurosciences communities (see for instance Koch and Ullman
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(1985); [Itti et al. (1998); Oliva et al. (2003); Kayser et al. (2005); Duangu-
dom and Anderson| (2007)); Ruesch et al.|(2008)). However, whereas it is a key
component of the fashion in which low-level attributes shape motor reactions,
it is not sufficient enough for a comprehensive understanding of attention re-
orientation. Indeed, by solely considering low-level attributes of the perceived
stimuli, the means for including feedback from higher levels of the central
nervous system are rather limited, though not impossible — compare Blauert
and Brown| (2018]), this volume.

2.5 Conclusion of Section [2]

How does the sensory areas of the brain deal with information coming from
different sensors, each one having its own very particular characteristics, to
the end of triggering relevant behavioral reactions to the incoming percep-
tual streams? In this section, this question was addressed by presenting four
phenomenon that are part of the global and very complex mechanism of atten-
tion. These phenomena are, (i), the Superior Colliculus as a brain structure
responsible for multimodal integration and consequent motor reactions, (ii),
the Reverse Hierarchy Theory as an attempt to explain how the sensory areas
compute stimuli differently given their level of ambiguity and the specific sur-
roundings and, (iii), the Mismatch Negativity as a quick neuronal response to
localize unpredictable perceptual objects, and (iv) Saliency, as a reaction to
local singularities low-level characteristics of perceived signals are susceptible
to exhibit. Each of them represents an important part of attention in multi-
modal perception. Integration, prediction abilities, detection of incongruences,
selective in-depth analyses of the perceptual streams, and motor reactions are
directly bound to each of these neuronal phenomena. The active component
of perception is particularly relevant in this contexts. Indeed, whenever there
are ambiguities in the understanding of an environment, motor reactions will
enable the brain to access new information for refining its previous represen-
tation of the scene. In doing so, this additional information will help solving
the previous ambiguities. At the same time, learning mechanisms will con-
tinuously increase the system’s knowledge, and thus prepare the system for
future similar tasks. For instance, when the position of an auditory object
seems to be odd, that is, incongruent or unexpected, turning the head toward
this object will initiated a redirection of visual sensors to an adequate position
for better localization.

The next section will introduce a computational model rooted in the bi-
ological phenomena described here, and that provides to a mobile robot an
attentional behavior.

3 Modulating the head movement — the HTM model

The previous section listed and described some important mechanisms play-
ing a role in attention, perception and motor reactions to either incongruent,
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salient or unpredictable events. From a technological point of view, several
attentional systems have already been implemented. Most of them, however,
share an important thing: they heavily rely on data that have been gathered
before the robot even started its life, data for which dedicated learning sys-
tems have been specifically trained to solve very specific problems that the
robot has not even encountered yet. But when considering the phenomena
presented above, none of them rely on prior learning of specific skills: saliency
is a property of the signals, the MMN is a very short-term reaction and is
heavily adaptable, so as the RHT, and the SC computes a quick multimodal
integration directly followed by a motor reaction depending on the content of
the incoming multimodal information. Consequently, it should be possible to
design an artificial system that implements the key features of human audi-
tory (and visual) attention without having to priorly gather huge amount of
training data that could help solve only one or few specific problem.

In this section will thus be described the Head Turning Modulation model,
a model aiming at providing an answer to the central question of this chapter,
which is

How can audition be used as a trigger for head movements towards objects of
interest?

In this context, three different important aspects were presented with re-
gard to the global phenomenon, attention reorientation, in which the afore-
mentioned question is included. In the following, an attempt is described to
provide a binaural and binocular humanoid robot with the ability to learn
how to identify unpredictable auditory objects and, when appropriate, trigger
head movements toward these objects for collecting supporting visual informa-
tion. This model of high-level attention, recently introduced by the authors in
Cohen-Lhyver et al| (2015, 2016}, 2018) is mainly based on the four biological
phenomena already discussed. The principal contributions of the HTM model
are now outlined here with the a specific idea in mind, namely that some
characteristic behavior of artificial agents can be achieved without having to
deal with overly complex algorithms.

The section is organized as follows. The first part is dedicated to the
description of the concepts that the HTM relies on, that is, especially the two
modules that constitute it (the Dynamic Weighting model and the Multimodal
Fusion & Insoutterference module). The second part introduces aspects of
algorithmic formalization of the two different modules. Finally, a third part
presents some of the results obtained in simulations and on a real robot.

3.1 Concepts and global architecture

The Head Turning Modulation acts similarly to a Blackboard system (Schy-
mura, (2018)), this volume) and contains two principle modulesﬂ

3 That will be called Knowledge Sources when integrated to the Two!EARS soft-
ware.



Audition as a Trigger of Head Movements 15

e The Dynamic Weighting module (DW) is deciding whether an audiovi-
sual object appearing in the environment is incongruent, given the other
audiovisual objects already detected in the past in this environment,

e The Multimodal Fusion & Inference module (MFI) is in charge of provid-
ing the DW module with corrected and completed audiovisual classes as
a basis for the computation of congruence.

As shown on Fig.[5] auditory and visual labels provided by dedicated clas-
sification experts are exploited by the HTM for emitting hypotheses (i), on
the audiovisual class the detected sources belong to and, (ii), on which of
these sources the robot should focus. Each computational expert is dedicated
to the detection and the recognition of particular auditory labels or wvisual
labels (T'wolEars et al.l [2012). For instance, one expert is dedicated to the
detection and recognition of the sound speech, another one to the sound
barking, still another one to the visual entity male, and so on. On this basis,
each hypothesis might potentially lead to the triggering of head movements
towards audiovisual sources of interest.

Importantly, these audiovisual sources appear randomly in the environ-
ment — that is, by not following any pattern the robot either understands or
not and, consequently, can predict or not. By the way, triggering head move-
ments towards any audiovisual source would not require any form of particular
intelligence. The low-level attributes of the signals are often sufficient to lo-
calize the objects for sending meaningful motor commands. However, the goal
here is to modulate head movements, that is, to either trigger and inhibit
them. Indeed, not all of these head movements are relevant. For instance,
turning the head toward the tenth barking dog in a room populated with
only barking dogs, is very likely redundant such as not providing any useful
additional information. Thus, by inhibiting some head movements, the head
of the robot can be used for other kinds of movements, as may be requested
by other tasks. The two modules constituting the HTM module have been
designed and implemented in a way that they are able to understand the
environment being explored by the robot in terms of audiovisual objects of
importance. Thereby, the attribute of importance is assigned to objects in the
following ways.

e The DW module implements the notion of importance through the con-
cept of congruence. Congruence is defined here as semantic saliency since
it is not applied to the low-level attributes of the perceived signals, such
as spectral composition, ILD, or ITD, but rather on high-level represen-
tations of these signals, namely audiovisual classes. The classes c(a, v) are
made by the concatenation of an auditory label, a, and a visual label, v.
On this basis, and without any prior knowledge of the actual environment,
the DW aims at determining whether an audiovisual source is incongru-
ent or not to the environment being explored. If it is, a motor reaction
is triggered toward this audiovisual object. This is motor reaction can be



16 Cohen-Lhyver et al.

r———n
| [ HEAD TURNING MODULATION
i | AuditoryldentityKs " ol "~
| | ' \
| | ! '
| | I I
_| g }-» DnnL i S 1 ( a ) 1
= 1 1
| © | 1 5 | Audiovisual |
| g 1S C categories 1
| k3 | 1 1
o 1 1
i () VisualLocationkS I e 1
ROBOT ‘5 g 1 Dynamic Weighting 1
[ = | 1 module 1
[ 1| (b) 1
w 1 1
| | 1 1
— g VisualldentityKS 1 1
1 1
| | 1 1
L —— 4 1 1
1 1
1 1
\ !
S L
< MOVEMENT
top-down bottom-up
-— —

Fig. 5. Schematic architecture of the HTM model and its two main components.
(a) The Multimodal Fusion & Inference module, in charge with providing to the
DW module corrected audiovisual classes from classification experts outputs. (b)
The Dynamic Weighting module, in charge with computing how congruent an au-
diovisual object actually is, given the environment that it is appearing in. Each
of the two modules can trigger head movements separately. The red box depicts
the computational component that realizes the combination of the different motor
commands and puts them into an order to prioritize one of them, depending on the
actual situation

compared to those triggered by the Superior Colliculus (see Sec. or
the MMN (see Sec.[2.3)

e The MFI module implements the notion of importance through the prism
of reduction of uncertainty of the auditory and visual labels received from
the classification experts. More precisely, the MFI module analyzes the
uncertainty that it senses with regard to the combination of auditory and
visual information, in particular, regarding the assignment of audiovisual
labels, a combination that contributes to the multimodal representation of
objects as used within the HTM. The MFI module is primarily based on
the Reverse Hierarchy Theory (see Sec.[2.2)). A further aspect originates
from the principle of Intrinsic motivation of a person or an artificial agent
to accomplish a particular action for the sake of an internal rewarding
system, such as Berlyne| (1950, [1954) have first described and theorized.
Compare also Macedo and Cardosol (2001)); Baranes and Oudeyer] (2009,
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2010) for examples of artificial systems furnished with such kind of mo-
tivations. In practice, the classification experts mentioned above are not
unlikely to provide erroneous labels due to classification errors, or even
missing labels due to occlusions, such as happens when objects are placed
outside the field of view of the robot. Thus, the MFI module, being di-
rectly coupled with DW module, is in charge of providing the estimated
audiovisual classes ¢ the perceived objects might belong to. This analy-
sis consists of a fusion of auditory and visual information as acquired by
an active unsupervised learning algorithm, linked to the usage of head
movements.

One potential issue arises here, that is, both modules have the ability to
trigger head movements for their respective task. The MFI generates motor
commands to acquire its multimodal representation, while the DW generates
its commands for an attention-driven behavior directed to incongruent ob-
jects. Both head movements must then be assigned priorities — see the red
box in Fig.[5} Since the DW takes decision based on congruence of audiovisual
objects perceived, this information must be exempted from any classification
or fusion errors. Thus, the motor commands triggered by MFI are prioritized
against the ones triggered by DW. The following subsection provides details
about the two modules constituting the HTM.

3.2 Algorithmic formalization

This section provides details of the algorithmic formalization of the two mod-
ules constituting the HTM, modules that respectively rely on Congruence and
intrinsic motivation through reduction of uncertainty. As mentioned before,
the HTM relies on the notion of multimodal object populating the environ-
ments the robot will explore. But this notion of object is not objective: it is
already an interpreted notion arising from the convergence of different streams
of information into a unified and coherent internal representation. Thus, con-
sidering that the environments are objectively populated with audiovisual
sources emitting auditory, visual or audiovisual events ¥y, one of the first
task of the HTM is to make emerge the notion of object, such as

W, = {0k, c(¥n)} — 0; = {6;,S(0;)}, with (o)) = {€%(0;),2"(0;)}, (1)

where ¢ represents the real audiovisual class of the event Wy, € depicts the
estimated classes (audio, visual or both) the object o; belongs to, ) the real
angular position of the event, and éj the estimated one by the localization
expert. The estimated classes € come from the analysis performed by the MFI
(see Section of the data brought by the audio and visual classification
experts that have been trained beforehand to identify particular sounds and
images. And it is these audiovisual classes that will be utilized by the DW to
compute the congruence of the concerned object. The raw data the HTM will
retrieve from the Blackboard system will be organized as follows:
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V[t] = (P[t], Ot]), with P[¢] = (P[t], P"[t]) and O[t] = (O@*[t], O"[t]). (2)

where on the one hand P*[t] = (p{[t], ..., p%, [t]) and PV[t] = (p{[t], ..., P}, [t])
are the vectors of probabilities from the auditory and the visual classification
experts, respectively; and on the other hand @“[t] = (07[t],...,0%,[t]) and
O"[t] = (07[t],...,0%,[t]) are the vectors of probabilities from the auditory
and visual localization experts, respectively. This is precisely the vectors P¢
and P? that the MFI will try to correct or, whenever one of them is missing,
to infer.

The following section introduces the DW corresponding to the highest
level, that is the closest to cognition abilities, module of the HTM.

3.2.1 Congruence — the DW module

Within the DW, emphasis has been put on dealing only with high-level repre-
sentations of the perceived multimodal data, namely the auditory classes that
they belong to. Following this idea, the aim of a reactive robot — in terms of
head movements as driven by the congruence concept — is the detection of
which audiovisual object in an unknown environment is incongruent as com-
pared to what has been observed so far. The system has neither access to
the content of the multimodal objects that populate this environment nor to
their time of appearance. The only tool that the HTM has when entering a
new room, is a set of classification experts that have been trained beforehand
(provided by the TWO!EARS projectﬂ Further, the DW is designed to ex-
ploit further relevant knowledge that is available to it for usage in other later
explored unknown environments.

Congruence is based on a kind of conditional pseudo-probabilities where
the probability of observing a certain audiovisual class depends on the envi-
ronment in which it occurs. In other words, the less an audiovisual object has
been observed in the past, the less likely it is to occur again in the futureﬂ On
the contrary, the more an audiovisual object has been observed in the past,
the more likely it is to occur again in the future.

This has been formalized by means of the posterior probability of an object
0; to belong to a class c(l)(ai, vg) in the environment e®

W (q;
cWayg, vk
p(or € Oas i) | 0) = p (Ofas ) | 0) = L]y
where |¢()(a;, vy,)| depicts the number of objects that have already been asso-
ciated to the audiovisual class ¢ (a;,vy), and N; is the total number of ob-
jects detected so far. Since no information is available about what class is more
likely to occur in a given environment, the probability p (oj € c(az,vp) | e(l))

will be compared to the equiprobability K; = 1/|C(!)| of observing any class

4 Software freely available from www.twoears.eu
5 This obviously indicates a link to Bayesian theory.
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detected so far. Thus, it is possible to take a decision on the congruence of
the considered object by

0j € ¢W(a,vy) is incongruent < p(c(a;, v1)) < K. 4)

Following that, and to render the notion of importance of the emitting objects,
two functions have been designed to assign weights to them with respect to
their congruence
[ ] f(.:)[n] = 1/(1 + 1006_2”) lfp (C(l) (ai7vk)) S Kla (5)
W, [n| =

’ foln] = (1/1+0.01e*) -1 else,

where f9 is an increasing positive function converging to 1 and dedicated
to incongruent objects (high weight equals high importance), fS is its sym-
metrically decreasing negative function converging to —1 and dedicated to
congruent objects, and where n is a temporal index that is systematically
reset whenever the congruence state of the object changes. To trigger a head
movement, the object with the highest weight, that is, the most incongruent,
will be considered as the target of the motor reaction. And if two objects
share the same weight, the one that appeared the latest will be prioritized,
thus applying a form of motivation by novelty. Note that the computation of
the motor orders, not detailed here (see |[Cohen-Lhyver| (2017) for complete
description), is conceptually and mathematically formalized by the use of a
GPR model (developed by |Gurney et al.| (2001a)) |(Gurney et al. (2001b))) and
inspired by the basal ganglia-thalamus-cortex loop present in humans and
playing an important role in motor command selection.

All of this leads to the very definition of environment. In the robotics
community, an environment is most often defined by its physical existence,
its topographical characteristics (including the size of the room), the number
of access points, usable paths, zones of danger, and light conditions. In the
context of the DW (and, by extension, of the HTM), however, an environment
is also understood in terms a semantic approach, namely, by the audiovisual
objects that are present in it. Going even a bit further, a refined definition
reads as follows

An environment is defined by the relative congruence of all the audio-
visual classes that have been perceived in it

In the vein of this definition, two very different rooms, such as two conference
rooms at different universities, will be considered as being identical, if and
only they share the same set of audiovisual classes congruence values. The
respective status of congruence of the audiovisual classes detected in all the
already explored environments consequently constitute the knowledge of the
world the DW creates. This knowledge is used by the DW whenever it detects
that the current explored environment is similar enough to one the robot
already explored in the past. Being able to transfer acquired knowledge to new
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unknown environments quickens the understanding of it by taking advantage
of the past experience of the robot.

But taken that congruence relies on a multimodal representation of the
objects perceived in the explored environments, what happens when an ob-
ject is placed behind the robot, thus hindering it from acquiring adequate
visual information? Turning the head toward the object to get the full data in
order to properly compute congruence would definitely be absurd since if this
object would be thereafter considered as congruent, a head turn would have
already been triggered. . . Such conflicting situation motivated the creation of a
Multimodal Fusion & Inference module, as described in the following section.

3.2.2 Reduction of uncertainty — the MFI module

To circumvent deadlock situation of the mentioned kind, a second module
with the ability of inferring missing data has been developed. The Multimodal
Fusion & Inference module also constitutes a reflective feedback loop in that
it uses auditory and visual data coming from the sensors (after they have been
processed by the dedicated classification experts) in order to send back a motor
command, as illustrated in Figure[6] This motor command will give the robot
access to new data that might this time redefine the best motor action for the
robot. Once again, since the system relies solely upon high-level representation
of the perceived data, namely, audiovisual classes, the inference made by the
MFI module will be about auditory labels in view of known visual ones, or
about visual labels in view of known auditory ones. Although a functional
comparison between the MFT and the DW modules would make one think that
they are performing identical actions—taking multimodal input and outputing
a motor command—thus both being similar to how the Superior Colliculus
works (see Section2.1)), the MFI module however differs from the SC in that
that it is actually triggering a head movement whenever. A FINIR

To achieve this, it is necessary to learn the relationships between auditory
and visual labels — such as barking dog or a speaking male. In other words,
every time the robot faces an object which emits sound, the MFI module will
take the chance to learn the audiovisual pair that is perceived. Once this learn-
ing has been accomplished, the MFT is able to offer an inference of a missing
modality. However, it has to be kept in mind that classification experts are
prone to errors. In particular the auditory experts, when the acoustic condi-
tions become be challenging, such as in reverberant and noise surroundings—
although the use of multi-conditional training (May et al., 2011), for instance,
lowers their impact—, or when the explored environment differs to much from
the one used for the prior experts training. Thus, relying too much on the
output of these classifiers would lead to erroneous learning of the audiovisual
pairs.

The MFI has been designed around a Self-Organizing Map (SOM), after
Kohonen| (1982)). Such learning algorithm performs a vector quantization of
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Fig. 6. Multimodal Fusion & Inference module architecture.

high-dimensional input data into a lower dimensional map (in our case, two-
dimensional). Indeed, a SOM is a map composed of a certain number of nodes
(or neurons) that represent the constituting vectors of the matrix of data to
be processed. A SOM organizes these vectors in space by assigning them a
particular node within the map. What results from this procedure is a modified
representation of the input data as a map that has a lower dimension than
the initial set of vectors, making it easier to process while also enabling the
categorization of the input data. The SOM map is tonotopically organized.
This means that when two regions of the SOM map are spatially close, the data
that they represent are also close. The purposes of a SOM are organizing the
existing data in clusters, then determining the class that a new input belongs
to by localizing the node within the map which is most similar to the new
vector, and finally, identifying the cluster that this node belongs to. But while
the SOM algorithm provides a powerful unsupervised learning paradigm, it
had to be adapted to the particular conditions in which the HTM, and the
MFT in particular, has access to the data it has to processﬁ

The first major change comes from the use of not only one SOM to learn
the data, but of one SOM per modality used to define an object, thus creating
the Multimodal Self-Organizing Map (M-SOM), as depicted in Figurem Here,
auditory and visual data have been used to define an object. The overall M-

6 Will only be presented here conceptually what has been changed. See
(2017) for a thorough description of all the contributions of the M-SOM.
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Fig. 7. Illustration of the Multimodal Self-Organizing Map which embeds two sub-
networks, each of them being dedicated to coding the information from each modality
used to define an object (audition and vision in our case).

SOM used in the MFT thus includes two interconnected subnetworks that will
jointly participate in the creation of the internal representation of the robot’s
world, in terms of the audiovisual classes that have been observed during its
exploration, as Figure[§] illustrates.

The second major change consists in modifying the learning process. In-
deed, while the SOM is built, and usually used, to process full matrix of data,
and since, as already stated before, the HTM does not have access to prior
knowledge about the objects appearing in the environments, the M-SOM will
only be fed with one vector of data at a time. That is, whenever a vector of
data is available, the MFI has to be capable to integrate it in the M-SOM so
that a learning iteration can happen. Obviously, since the goal of the MFI is
to learn the relationship between the two modalities, a vector of data is sent
to the M-SOM if and only if this data comes from both visual and auditory
sensors and are about the same object, that is, whenever the robot faces an ob-
ject emitting sound. And this is particularly here that the reflective feedback
loop is present, through the triggering of head movements towards audiovisual
sources of interest, in order for the robot to face these sources belonging to
audiovisual classes that might need further learning.

Third, while in a traditional SOM the proofs of convergence are numerous,
the problem the MFT has to solve does not imply one, or several, good solution:
the robot being designed to always explore unknown environments, there is
no possibility to know what are all the audiovisual classes that will be present.
Consequently, the MFT implements the notion of local convergence of the M-
SOM. In particular, the quality of the learning will be assessed by the MFI on
a class-by-class manner: if the estimation of the audiovisual class an object is
supposed to belong to is not trustworthy enough, more audiovisual data will
be required in order to enhance the quality of the knowledge about this class.
Such additional data is obtained by triggering a head movement towards the
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concerned source. Local convergence is formalized by the implementation of an
inference ratio ¢(c¢\Y (a;, vy)) is used to determine whether, in an environment,
e), an audiovisual class, c(l)(ai,vk), needs to be further learned by the M-
SOM, or whether it has converged already to a trustworthy representation,
according to:

t=20

Fig. 8. Multimodal Self-Organizing Map (M-SOM). Each square represents a node
(or a neuron) that codes a particular distribution of the input data to be analyzed.
The figure shows the evolution of such a map during a 500 time steps in an ex-
periment in simulated conditions. In the beginning the map is unorganized, and
gradually, with the amount of data it is fed with, it creates clusters of neurons that
represent similar categories of data. This M-SOM embeds two interconnected SOMs
dedicated to each modality used to define the notion of object (audition and vision
here). Four audiovisual classes have been created here, as the four highest regions
of this map depict. The M-SOM is thereafter used to find the class of a new vector
of classification experts data — after |Cohen-Lhyver| (2017).
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Equation @ describes the behavior of the MFI when it comes to setting
up a hypothesis about a missing modality, and this hypothesis constitutes the
reflective core of the feedback loop the MFI represents. If the ratio is too low,
a command will be requested for turning the head toward the sound source
in order to acquire visual data. By doing so at time t + 1, given that the
data from the missing modality have now being available, the inference ratio
q (c(l)(ai, vk)) will be updated with the new information and used to feed the
M-SOM thus refining the learning. This ratio will then be compared to a dy-
namically changeable threshold K, € R* = [0, 1] to decide whether it is now
high enough to accept the inference as trustworthy. If yes, no head movement
will be initiated. If no, head movement will be triggered. The threshold has
an effect on how quickly the MFI trusts its inference abilities.

For instance, a threshold of 0.2 would allow for eight out of ten wrong
inferences on a particular class before stipulating that the inference is not
trustworthy. Likewise, a threshold of 0.9 would require at least nine on ten
good inferences before inhibiting head movements. The presence of such a
threshold may suggests that it is solely responsible for the global performances
of the MFI, but this not the case as it is explained later in this section.
Extensive evaluation of the impact of the threshold value on the quality of
MFT knowledge has revealed that variations are low for threshold values in
the range of 0.5-0.9 (Cohen-Lhyver} 2017)).

Thus, why staying with the option of setting different threshold values at
all? This is the reason: The lower the threshold, the less head movements will
be triggered but potentially more errors will be made. On the other hand,
the higher the threshold, the more head movements will be triggered. Conse-
quently, a suitable adaptation of the threshold can a make sense when consid-
ering the specific situation that a robot is actually exposed to. For example,
in a search-and-rescue scenario the priority would be put on the search for
victims, thus not requiring a full understanding of all audiovisual entities that
are present in the current environment (low threshold), while in a room with-
out any high priority task to accomplish, the robot has all the time needed
for a complete exploration (high threshold).

Concerning the computation of motor orders potentially triggered by the
MFT, it has been formalized similarly to the DW (see , that is through
a GPR model enabling the selection of which object needs to be focused on.

To sum up, the main purpose of MFT is reduction of uncertainty about its
knowledge using of motor reactions, hence implementing a reflective feedback
loop that links information from classification experts to a motor command
that will in return provoke the perception of new data, and so on. There-
fore, two hypotheses are set up with regard to whether an audiovisual object
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belongs to a certain class, in particular, one being based on the incoming
stream of auditory labels and another one on the stream of visual labels. As
an example, the robot may be facing a person and perceiving a barking sound
originating from the same location: how confident is the MFI that this audio-
visual source belongs to the audiovisual class barking person? The possible
behavior of the MFI in such a case may alternatively be as follows.

1. The robot has encountered several (barking person) in the past and the
MFT is now confident that it is not a classification error. The DW module
can thus rely on this audiovisual fusion for computing the congruence of
this audiovisual object

2. The robot has never encountered such a audiovisual class and will thus
need to gather further auditory and visual data before potentially creating
a new audiovisual class

3. The robot has already encountered this class but is still not confident
enough whether the source does indeed belongs to it. In this case the
MFT will initiate a head movement to gather more auditory and visual
information.

3.2.3 Combination of the two modules

The combination of the two modules consisted mainly in dealing with which
module should take the lead whenever both are triggering a head movement.
Still staying within the paradigm of the GPR implementation of motor com-
mands (see , the computation of the motor orders triggered by the DW
has been slightly modified in order to take into account the activity of the
MFTI, so that, in fine, the MF1I is prioritized over the DW. Indeed, the former
being dedicated to provide the latter with clean data, it has to take over the
DW until the MFT is confident enough in its knowledge (See. Combining
the two modules leads to a global behavior of the HTM in three phases, as
depicted in Figure[d] At first and until ¢ = 135, the MFI is prioritized since
it is gathering information and creating knowledge. Then, from ¢ = 135 to
t = 310, both modules trigger head movements: the MFI is confident in its
knowledge about certain audiovisual classes (speech male for instance) but
not about others (crying female). Finally, from ¢ = 310 to the end of the
simulation, the MFI does not trigger any head movement letting the DW in
sole charge of deciding of the importance of the audiovisual objects present
in the environment.

3.3 Experiments & results

In order to evaluate the HTM and its two modules, experiments in simu-
lated and in realistic environments have been conducted. Simulations allow
to modify the complexity of an environments and to focus only on the results
of the analyses performed by the computational modules without taking into
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Fig. 9. Three-phase behavior resulting from the combination of the DW and the
MFI. Top: Head movements triggered by the DW (up, red) or the MFI (down,
blue). Bottom: Time course of the scenario depicting which and when audiovisual
objects are appearing in the environment. The blue line denotes the object to which
the robot drives its attention.

account any hardware issues. Realistic environments are suitable to assessing
performances of artificial system in the real world, that is, with real objects,
classification and localization experts working in real-time on real data, and
real robots with their mechanical limitations and imperfections.

This section briefly presents major results achieved with the HTM, first
in simulated conditions and, secondly in a testing room where different envi-
ronments are available. But before presenting these results, it is necessary to
describe what will be evaluated, in both the simulations and in the real world.

3.3.1 The naive robot

The HTM model covers several fields of AI and robotic behavior, such as at-
tention, learning, and perception. Moreover, robots endowed with head move-
ments capabilities are rather rare and, as explained before, there is no correct
way for a robot to behave — only something that could be qualified as relevant
as compared to how human beings would behave. Thus, it was necessary to
find a reference system to compare to when assessing whether a robot, when
driven by the HTM, exhibits a “better” behavior than other systems. In the
current study, a “naive” robot R,, was employed for this purpose — also re-
ferred to as naive system. It is similar to the system that |Girard et al. (2002)
has used and has the following two main characteristics.

1. The naive robot does not perform any further analysis of the data that it
gets from the classification experts than concatenating them, that is, the
auditory and visual labels are taken from the experts as is without any
temporal integration or deeper processing
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Fig. 10. Illustration of a simulated environment. The environments are populated
with various audiovisual sources belonging to a certain audiovisual classes that the
robot does not know beforehand. Some of them are emitting sound (blue), others
are silent, (red). The ability of the robot to acquire “correct” knowledge about
the semantic content of the scene is assessed on the basis of congruence of the
perceived objects, either via the quality of audiovisual fusion or via the quality of
head movements triggering or inhibition.

2. The naive system triggers head movements whenever there is a new audio-
visual source appearing in the environment being explored. This behavior
could be comparable with a simpler version of the motivation by saliency
or novelty. In fact, every time a new object enters the scene, the naive
system will guide the robot to focusing on it.

A robot driven by the HTM will thus be compared to this naive robot in
terms of the quality of the classification and fusion of audiovisual data by
the dedicated experts on the one hand, and the number of head movements
triggered during the exploration of several environments on the other hand.
Indeed, the HTM is a system that modulates the head movements by either
triggering or inhibiting them. As a result of HTM employment a significant
improvement of the quality of the data from the experts and a lower number
of movements of the head is expected, while maintaining reasonable behavior
in terms of the choices as to which objects in the scene should be focused on.

3.3.2 Simulations

The simulations consisted firstly in emulating the behavior of the classifica-
tion and localization experts. The output of the simulated auditory and visual
classification experts were emulated, with a certain error rate per frame in-
cluded in the data generation process in order to reflect the real behavior of
the real classifiers. Actually, in addition to a whole virtual environment the
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Fig. 11. Number of head movements generated in multisource scenarios. Movements
generated by the HTM, (blue), and by the naive robot, (red). The arrows point
to the positions of audiovisual sources, their length representing the number of
movements toward the considered source. The histograms depict the total sum of
generated movements, by the MFI, (dark purple), by the DW, (light purple),
and by the naive robot, (red). The (white) numbers correspond to the number of
movements by module, averaged over five trials, and their sum, (black).

robot explores, the simulation tool generate probabilities of an auditory/visual
frame to belong to a certain auditory/visual class. Thus, one vector per modal-
ity, made of as many components as there are experts implemented, will be
rendered at every time step. The simulated environments included different
numbers of audiovisual sources which can appear anywhere and at any time for
durations unknown to the system—see Figure [I0] Two different general cases
have been tested, namely, single-source scenarios with no concurring sound
sources and multi-source scenarios but only the results from multi-source sce-
narios are presented here. These simulated environments were populated with
ns = [3,5,7,10] overlapping audiovisual sources, and a simulated error rate
per audio and/or visual frame of ¢ = 0.3, meaning that for every audio/visual
frame, there is a 30% chance that the highest audio/visual probability does
not correspond to the correct audio/visual class. All numbers presented are
the result of averaging over five runs for each scenario.
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Figure [11] depicts the results obtained under multisource conditions. The
histograms are the most interesting data to look at. They depict how many
movements were triggered by the DW & MFI modules versus the naive robot.
Interestingly, the more complex the environment gets, the more impact the
HTM system has on the number of head movements. Indeed, in the scenario
with ten audiovisual sources all emitting at the same time, the naive robot
triggers up to 93.8 head movements while the HTM triggers only 45.6, that is
less than half of them. Importantly, given the temporal dynamic of the HTM
(the MFI module triggers head movements first, then, once it converged, lets
the DW module take the lead), and the absence for now of an habituation
mechanism for the DW module, the number of head movements triggered by
this module will increase linearly and constantly with time. More precisely,
this means that as long as an incongruent object keeps popping up in the
scene, the DW module will continue requesting the behavioral head movement
reaction towards it, despite the number of times it already requested this
reaction. On the other hand, the MFI module, having a convergence criterion,
see Equation @, will not trigger any additional head movement as long as no
new object belonging to a new audiovisual class appears in the environment.
In Figure and for the ng = 10 case, this dynamic implies that if the
environment stays the same, in terms of audiovisual objects composition, the
number of head movements triggered by the MFT module will cap at 11.6 (on
average), whereas the DW module will continue triggering them as time goes
on (and similarly for the naive robot).

3.3.3 Realistic environments

The experiments performed in realistic environments were conducted with the
real robot in a pseudo-anechoic room where several audiovisual sources were
placed. The auditory data were emitted by different loudspeakers with QR
codes attached to them to identify them as visual objects. Three environ-
ments were tested as listed in the-Table |1l The following audiovisual sources
were employed: barking dog, screaming baby, piano female, speaking male.
Moreover, with this model being dedicated to modulation of head movements,
the scenarios did not include any whole-body movements but head movements
only. Additionally, even though realistic experiments in conditions similar to
the ones created for the simulations conducted above would have been ideal,
the specific and numerous constraints of real robotic systems (and their un-
derlying software components) make it impossible to recreate such complex
scenarios. Especially in the case of audition, dealing with multi-source local-
ization and/or recognition has shown to be particularly difficult in rooms that
are different from the one where the training has been priorly achieved (which
is our case here). That is why simpler environments have been set up, so as
to enable relevant tests of the HTM system.

Importantly, one of the major role of the MFI is to clean up the data
coming from the experts for they exhibit a certain amount of error per frame.
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’ Test-scenario characteristics ‘

max

’e(i) ns N ‘Present audiovisual classes| Angular position 9(“‘“)‘
barking dog #1 320°
11/ 3] 1 |barking dog #2 35°
speaking male 70°
crying baby #1 70°
2 (|3 | 1 |crying baby #2 35°
piano female 320°
crying baby #1 70°
slls| 1 crying baby #2 35°
barking dog 320°
speaking male 280°

Table 1. Specification of three scenarios created under real conditions for evaluating
the HTM on a real robot.

Figure[I2] shows the average number of good classifications versus fusion rate
of the incoming audiovisual data as delivered by the experts, (red), and after
the MFI computations, (blue). At the end of the exploration, the MFI pro-
vides an improvement of about 183.6% in the good classification rate, that is,
from 37.9% to 69.6%. Taking only the labels as assigned by the classification
experts would lead to the creation of multiple different audiovisual classes —
as illustrated by Figure[I3] This figure illustrates how the MFI considerably
narrows the ensemble of possible audiovisual classes: from 22 detected by the
experts, the MFI converges to only 5, that is a & 78% diminution. Within these
five possible audiovisual classes, the piano female one is erroneous and should
have been classified as piano male. But this wrong classification was output
only two times, representing only 7.6% of the total number of time frames dur-
ing which the correct piano male objects emitted sound. If the DW module
had worked directly on the experts output, the results of congruence analysis
would definitely be seriously corrupted. As an example, the femaleSpeech
alarm audiovisual pairing has been positively detected six times by the naive
robot, that is, by the identification experts. This association however never
occurred in the explored environment. Its repeated detection, if no MFI mod-
ule was involved in the prior data analysis and learning phase, would have led
to a definitely erroneous behavioral reaction triggered by the DW module and
exhibited by the robot’s head movement towards the source. The usefulness
of the MFT for the DW module and for the robot’s internal representation at
large, is thus convincingly demonstrated.

3.3.4 Discussion and conclusions of Section [3]

The results presented here for simulated and realistic environments show that
the HTM is able to drastically lower the number of head movements toward
unpredictable audiovisual sources on the basis of congruence and reduction of
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Fig. 12. Average good audiovisual classification rate as a function of time and
computed on a rectangular sliding window (that is, at each time frame ¢, from
frame 0 to frame t) for the MFI (Iun), (blue), and the naive robot (I, ), (red),
that is directly at the classifiers output. The two numbers denote the final results
at the end of exploration. Figure adapted from |Cohen-Lhyver et al| (2018).

uncertainty based on computational analysis by the DW and the MFI mod-
ules. Modulating the generation of such head movements is of importance for
achieving suitable means of behavior regarding the detection of what is of im-
portance and what is not. These two modules enable mobile robots endowed
with human like audiovisual perception to explore unknown environments and
to react quickly and without prior knowledge to incoming audiovisual objects.
The “How”, “Where” and “When” of the objects to appear in the environ-
ments is unknown to the system — and thus to the robot. In combination,
these two modules form the Head Turning Modulation model and constitute
a complete system, which is working closely together with several experts
(classification and localization) in order to establish a form of endogeneous
attentional behavior in humanoid robots.

4 Final discussion and conclusion

Audition and vision are two major senses used by most mammals and hu-
mans in particular. Both exhibit incredible performances in perceiving and
processing the world in their own way. The data that they uses are often very
complex, be it spatially or temporally, and can change dynamically. The sys-
tem of very sensitive sensors (eyes and ears) coupled to incredibly powerful
means of analysis, such as dedicated sensory areas in the auditory and visual
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Fig. 13. Audiovisual classes created by the naive robot, (red), and by the MFI,
(blue). The height of histograms depicts the number of frames for which the cor-
responding audiovisual class has been assigned. Figure adapted from
conmmot-amongst-the-two-fusion-systens.

cortices, make us understand the real world without too much of an effort.
However, when trying to “simulate” such systems, as human-like robotics aim
to do, audition and vision are often considered as two separate information
channels. Moreover, it is rather rare to see artificial systems with an addi-
tional “cognitive” layer of multimodal integration allowing the robot to build
a deeper internal representation of the world than just a collection of object
labels. Also behavioral rules are often pre-determined by the experimenter
leading to “if-else” statements kind of reactions, such as If a baby is crying,
go to the baby. These kind of rules might be useful in simple scenarios and for
robots with a short lifespan but whenever the robotic agent is put in more
complex and varying environments, which have to be explored for longer peri-
ods of time (weeks, months, years...) the binary priorly defined rules cannot
anticipate all the different objects prone to occur. In particular, relevant and
comprehensive behavioral rules for guiding the exploration properly will not
readily be available.

Thus, the idea of letting the robot create its own behavioral rules was cen-
tral to the HTM model the proposed and described here. Inspired by several
biological phenomena as are involved in the understanding of the audiovisual
perceptual worlds, the HTM model is an example of how audition can be used
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as a trigger for head movements towards particular audiovisual sources of in-
terest, thus enable requisition of data from the visual modality for refining
the perception of audiovisual sources of importance. In particular, the results
presented in Sec.[3.3.3] provide evidence for the usefulness of multimodal in-
tegration of auditory and visual information for humanoid robot to explore
unknown environments when prior knowledge of their audiovisual content is
sparse. Moreover, the time needed for the robot to behave adequately and
meaningful in unknown environments becomes significantly shorter in this
way. Actually, only a few examples are enough for the robot to create its first
behavioral rules, thus undermining the widespread misconception that real-
time learning and the inability to quickly react in unknown conditions come
in couples.

Certainly, the HTM model is far from being the only computational model
that integrates several modalities in order to enrich the representation of the
world models of robots (see Noda et al.| (2014) for instance). But most cur-
rent models rely on strong a priori knowledge gained from off-line learning
in controlled environments, or such as are available in the form of “if-else”
statements. Such paradigms often prohibit the robots from either learning
more from what they experience, or from quickly adapting to situations that
have not encountered before. Yet, the ability of doing so is one of the most
powerful competences that human brains have, that is, to quickly adapt to
odd situations, be they odd because of their unpredictability or because of
their novelty.
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