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A Late Quaternary record of highstand shedding from an isolated carbonate platform (Juan de Nova, southern Indian Ocean)
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 13, 15, 23 and 25) are marked by an increase in the aragonite content within the sediment. Aragonite is likely sourced from the nearby Juan de Nova carbonate platform ~10 km to the south, and is interpreted to result from flooding of the platform top. Platform inundation allows carbonate muds to be winnowed from their original shallow-water environment of deposition, suspended in the water column, and redeposited onto the proximal slopes and within the basin. Sharp increases in aragonite content at the beginning of each highstand interval can be used to estimate the approximate sea-level range when platform flooding occurred; results show that the depth of the platform top has likely changed little over the past 1 Myr due to balanced aggradation and subsidence. Previously hypothesized large-scale aragonite dissolution cycles are evidenced by a disproportionally low aragonite increase during MIS 11. This study provides a new, exceptionally long record of highstand shedding, expanding the known occurrences of the process to the southern Indian Ocean and supporting its importance as a globally significant depositional mechanism that impacts deep-sea stratigraphic records.

Introduction

Unlike terrigenous sediments, carbonates are usually exported to the deep sea in greater abundance during periods of relatively high sea level. Carbonate content in sediments adjacent to flat-topped platforms has often been seen to increase and decrease proportionally with sea level change [START_REF] Reymer | Site 632: Pliocene-Pleistocene sedimentation cycles in a Bahamian basin[END_REF][START_REF] Paul | Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean)[END_REF][START_REF] Chabaud | Sedimentary processes determining the modern carbonate periplatform drift of Little Accepted Article This article is protected by copyright. All rights reserved[END_REF], reflecting the production and export of carbonate during times when the platform top is flooded. This phenomenon (highstand shedding of carbonate platforms; [START_REF] Schlager | Highstand shedding of carbonate platforms[END_REF] has been documented in both modern-day settings [START_REF] Hine | Offbank transport of carbonate sands along open, leeward bank margins: Northern Bahamas[END_REF][START_REF] Droxler | Pliocene-Pleistocene aragonite cyclic variations in holes 714a and 716b (the Maldives) compared with hole 633a (the Bahamas): records of climate-induced CaCO 3 preservation at intermediate water depths[END_REF][START_REF] Andresen | Timing and distribution of calciturbidites around a deeply submerged carbonate platform in a seismically active setting (Pedro Bank, Northern Nicaragua Rise, Caribbean Sea)[END_REF][START_REF] Droxler | Unique and exceptionally long interglacial Marine Isotope Stage 11: window into Earth warm future climate[END_REF][START_REF] Rendle-Bühring | Controls on grain-size patterns in periplatform carbonates: marginal setting versus glacio-eustacy[END_REF][START_REF] Lantzsch | Sea-level related resedimentation processes on the northern slope of Little Bahama Bank (Middle Pleistocene to Holocene)[END_REF][START_REF] Paul | Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean)[END_REF][START_REF] Paul | Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean)[END_REF][START_REF] Betzler | Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean)[END_REF]Jorry et al., 2010;[START_REF] Droxler | Deglacial origin of barrier reefs along low-latitude mixed siliciclastic and carbonate continental shelf edges[END_REF] and in the geologic record [START_REF] Everts | Interpreting compositional variations of calciturbidites in relation to platform-stratigraphy: an example from the Paleogene of SE Spain[END_REF][START_REF] Reijmer | Calciturbidite composition related to exposure and flooding of a carbonate platform (Triassic, Eastern Alps)[END_REF][START_REF] Vecsei | Sea-level highstand and lowstand shedding related to shelf margin aggradation and emersion, Upper Eocene-Oligocene of Maiella carbonate platform, Italy[END_REF]. Past studies [START_REF] Page | Sediment fluxes to Marion Plateau (southern Great Barrier Reef province) over the last 130 ky: new constraints on 'transgressive-shedding'off northeastern Australia[END_REF]2005;[START_REF] Dunbar | Late Quaternary shedding of shallow-marine carbonate along a tropical mixed siliciclastic-carbonate shelf: Great Barrier Reef, Australia[END_REF]2003), however, indicate that mixed systems may be more complicated than the simple highstand shedding model proposed originally by [START_REF] Droxler | Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas[END_REF]. Because the record of highstand shedding in the modern oceans is generally limited to carbonate platforms and margins in only a few well-studied localities, new information is needed to better understand the carbonate response to sea-level change at a global scale.

Here, we describe for the first time an exceptionally long record of highstand shedding of carbonate mud from Juan de Nova, an isolated, volcano-cored carbonate platform in the southern Indian Ocean. A single 27 m sediment core, collected on the lower seamount rise,
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This article is protected by copyright. All rights reserved. records the export of carbonate sediment and the timing of platform flooding over the past 1 Myr in the form of aragonite cyclicity within seafloor muds. This study provides a new, high resolution example of the highstand shedding concept, validating it as a primary control on sedimentary character and sedimentation rate in this undocumented region of the deep-sea area near carbonate platforms.

Background

Juan de Nova island (40 km 2 ) is the subaerially exposed portion of a small (200 km 2 ), volcano-cored carbonate platform 135 km off the western coast of Madagascar in the Mozambique Channel (Fig. 1A,B). The subaerial island itself (Fig. 1C) contains evidence of karstification and erosion of lithified carbonate reefs from the previous highstand (Jorry et al., 2016). The crescent-shaped morphology of the island and the large sand bank on its northern side (red-orange in Fig. 1D) are due to the predominance of winds from the south (Fig. 1E; Météo France, 2017). The top of the overall platform, ranging between +15 and -30 m water depth, is generally flat and circular (Fig. 1D) [START_REF] Jorry | Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): A preliminary study[END_REF]. Sediment on the platform top is lacking in mud, consisting primarily of carbonate sand < 2mm in diameter, composed mostly of the skeletal fragments of calcareous algae (Halimeda), Scleractinian corals, molluscs and foraminifers [START_REF] Jorry | Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): A preliminary study[END_REF]. Clastic or volcanic material has not been observed on the platform top.

The submarine flanks of the Juan de Nova volcanic edifice are steep (0-47°, with upper slope generally around 25-35° and steeper on the windward side; [START_REF] Counts | Sedimentation adjacent to atolls and volcano-cored carbonate platforms in the Mozambique Channel (SW Indian Ocean)[END_REF], reflecting the underlying volcanic nature of the platform. The adjacent basin floor ranges
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This article is protected by copyright. All rights reserved. between 2000 and 2500 m water depth (Fig. 1D). Although platform-derived sediments are intermixed with those from the Madagascar shelf on the deep seafloor, the Juan de Nova island and platform top form a pure carbonate environment. The marine sediment core that is the focus of this study (MOZ4-CS09) lies on the lower slope of the leeward (northern) side of the platform margin in 1909 m water depth and on a slope of 4.3° inclination (Fig. 1D).

Further details of slope morphology and sedimentation on Juan de Nova and surrounding areas can be found in [START_REF] Counts | Sedimentation adjacent to atolls and volcano-cored carbonate platforms in the Mozambique Channel (SW Indian Ocean)[END_REF].

In the southern and central Indian Ocean, the South Equatorial Current (SEC) flows at low latitudes from east to west as part of ocean-scale anticyclonic gyres. The island of Madagascar shields the Mozambique Channel (and thus Juan de Nova) from the direct influence of these currents, diverting flow north and south (Northeast and Southeast Madagascar Currents) and creating large eddies that move southwards across the Mozambique Channel (Fig. 1A; [START_REF] Schott | Indian Ocean circulation and climate variability[END_REF]. Surface currents surrounding Juan de Nova island are variable, though in situ measurements show a consistent south to north current direction, with intensities ranging from less than 20 to more than 100 cm/sec near the surface (Fig. 1D). The Mozambique Channel is seasonally affected by monsoons; rainfall primarily occurs in the summer months between November and May [START_REF] Saetre | Surface currents in the Mozambique Channel[END_REF].

Methodology

Core MOZ4-CS09 (16°50.802' S, 42°45.440' E) was collected with a Calypso piston coring system by the R/V Pourquoi Pas? during the research cruise PAMELA-MOZ04 in 2015 [START_REF] Jouet | PAMELA-MOZ04 cruise[END_REF] Current data around the island were collected by the R/V
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L'Atalante during the PTOLEMEE survey in 2014 with a hull-mounted ADCP (150 kHz) and were processed using Cascade 7.1 software. The core was described on board, photographed, and analysed with a GEOTEK multisensor core logging system (MSCL) and an AVAATECH energy dispersive X-ray fluorescence (ED-XRF) core scanner every centimetre. MSCL provided bulk density and reflectance data (light/dark value). Semiquantitative compositional data for various chemical elements, including strontium (Sr), was provided by ED-XRF. In order to corroborate ED-XRF results, samples were taken in the core every 10 cm for bulk mineralogical composition using X-ray diffraction (XRD) analysis, performed in-house using a Bruker AXS diffractometer. Additional quantification (percentage) of major elements was performed using a Bruker wavelength dispersive XRF (WD-XRF). In order to obtain a higher-resolution record of sediment composition over time, aragonite composition from the 130 XRD measurements were compared to the WD-XRF and ED-XRF Sr content measured approximately every centimetre [START_REF] Chéron | Focus on sulfur count rates along marine sediment cores acquired by XRF Core Scanner[END_REF].

Strontium is preferentially concentrated in aragonite when it is precipitated in seawater [START_REF] Schlanger | Strontium storage and release during deposition and diagenesis of marine carbonates related to sea-level variations. In: Physical and chemical weathering in geochemical cycles[END_REF], and the Ca/Sr ratio in sediment has been used in the past as a proxy for detrital carbonate [START_REF] Boardman | Banktop responses to Quaternary fluctuations in sea level recorded in periplatform sediments[END_REF][START_REF] Hodell | Onset of "Hudson Strait" Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (∼ 640 ka)?[END_REF][START_REF] Chabaud | Sedimentary processes determining the modern carbonate periplatform drift of Little Accepted Article This article is protected by copyright. All rights reserved[END_REF]. Here, Sr and aragonite content showed a highly significant correlation (r 2 =0.86, with a single outlying point removed at 980 cm depth; Fig. 2A), with generally less than 10% deviance between XRD and WD-XRF measurements (Fig. 2B). These results indicate that Sr content alone can confidently be used to estimate the aragonite flux over time. Aragonite-enriched and aragonite-deficient intervals in the core were also imaged with a scanning electron microscope to better visualize the nature of lithologic changes.
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One-centimetre-thick sediment samples were taken every 10 cm for extraction of benthic foraminifera. Monospecific Cibicidoides wuellerstorfi samples (3-8 individuals per sample, >200 µm, total of 266 samples) were picked and analysed for 18 O/ 16 O (δ 18 O hereafter, expressed in ‰ versus Vienna Pee-Dee Belemnite, VPDB relative to isotopes at the Leibniz Laboratory for Radiometric Dating and Stable Isotope Research at Kiel University, Germany, using a Kiel IV carbonate preparation device connected to a MAT 253 mass spectrometer from ThermoScientific. Precision of all different laboratory internal and international standards (NBS-19 and IAEA-603) is ± 0.09 ‰. The primary age model was based on correlation of the benthic δ 18 O record to the LR04 benthic stack [START_REF] Lisiecki | A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[END_REF], using the program AnalySeries [START_REF] Paillard | AnalySeries 1.0: a Macintosh software for the analysis of geophysical time-series[END_REF]. Tie points and error are noted in Table 1; error of tie points is primarily a result of the sampling interval and averages 5.4 kyr. Data used for the age model is available online as a supplementary data set at SEANOE (https://doi.org/10.17882/58006). This stratigraphic framework was further constrained by biostratigraphic datums or biohorizons as defined by first and last occurrences of calcareous nannofossil species (Thierstein et al., 1977;[START_REF] Sato | Coccolith biostratigraphy of the Arabian Sea[END_REF][START_REF] Reale | Distribution of the calcareous nannofossil Reticulofenestra asanoi within the Early-Middle Pleistocene transition in the Mediterranean Sea and Atlantic Ocean: correlation with magneto-and oxygen isotope stratigraphy[END_REF] as well as by dominance intervals within this group of single species/taxonomical categories, which were calibrated to isotopic stages according to [START_REF] Pujos | Spatio-temporal distribution of some Quaternary coccoliths[END_REF], [START_REF] Weaver | High resolution stratigraphy of marine Quaternary sequences[END_REF][START_REF] Giraudeau | Biostratigraphic age models and sedimentation rates along the southwest African margin[END_REF]. Once the age model was established, the percentage of aragonite in the core (as determined by XRD) was compared to sea level for a given time interval, rounded to the closest 1 kyr. Sea-level values used were taken from [START_REF] Spratt | A Late Pleistocene sea level stack[END_REF] until 800 ka, and from [START_REF] Miller | A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records[END_REF] for older dates (mean values). Percentage of aragonite was also compared to the estimated available optimal area for carbonate production on the platform, as determined from bathymetric data on the present-day platform.
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Bulk grain sizes of samples from Juan de Nova platform top, collected during shallow marine investigations during the REEFCORES project (2011)(2012)(2013)(2014), were determined by sieving in several size classes from >16 mm down to a minimum of 2 mm. Grain size analysis throughout the core was carried out with a Malvern Mastersizer 3000 laser diffraction particle sizer, which measured all grains between 10 nm and 2 mm. The coarsergrained bed between 3 and 4 m depth was selected for further analysis-a sample of several grams was split and sieved at three different size fractions (0.063-0.5 mm, 0.5-1 mm, and 1-2 mm). Each fraction was further split, and approximately 300 grains per size class were examined under a binocular microscope to determine their origin, using [START_REF] Milliman | Recent sedimentary carbonates: Part 1 marine carbonates[END_REF] as a guide for identification. Elsewhere in the core, presumed unconformities in muds were sampled for thin sections. These were vacuum impregnated with blue epoxy and prepared at the University of Bordeaux. Muds in the core were also imaged in-house at Ifremer using an FEI Quanta 200 scanning electron microscope.

Mass accumulation rates of aragonite (MAR ar ; g.cm -2 /kyr) were calculated using the methodology of Jorry et al. (2010): MAR ar = wt% ar * LSR * ρ db where wt% ar is the weight percent aragonite, as determined by XRF core scanner, LSR is the linear sedimentation rate (cm•ky -1 ), and ρ db is the dry bulk density (g•cm -3 ) (Jorry et al., 2010). ρ db was calculated by removing the density of water from pore space:

ρ db = ρ b -(FP * ρ w )
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where ρ b is the bulk density, FP is fractional porosity, and ρ w is the density of water. ρ b was directly measured on the core onboard the RV Pourqoui Pas? using a multisensor core logging system, and FP was directly calculated from these bulk density measurements.

The potentially productive area of the platform top was calculated for various hypothetical sea levels by generating smoothed bathymetric contours on the high-resolution Lidar grid shown in Fig. 3A. As this dataset merged with the lower-resolution deeper bathymetric data at the platform top margin, the uppermost part of the slope did not have continuous coverage. Calculated areas in the upper slope therefore were estimated using a simple geometric model and projecting the slope gradient out laterally from the areas where data was acquired, leading to similar values for depths below 60 m. Calculated areas should therefore be regarded as reasonable approximations.

Results

Sedimentology of the platform top and adjacent seafloor

The platform top contains numerous metre-scale patch reefs in its interior and a discontinuous fringing reef along the northern margin (Fig. 3A). Samples taken on the platform top (water depths between 1 and 21 m; locations shown in Fig. 3A) were examined for comparison with deep-sea sediments in core. Sediment composition on the platform top is relatively coarse, consisting almost entirely of carbonate sand and gravel in the form of aragonitic skeletal fragments (Fig. 3B through D). Detailed results of platform top sediment composition can be found in [START_REF] Jorry | Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): A preliminary study[END_REF].
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On the adjacent deep seafloor, core MOZ4-CS09 consists almost entirely of muds (Fig. 4A) containing abundant planktonic foraminifera and variable proportions of carbonate and siliciclastic minerals. Except for carbonate sand layers in the upper part of the core, the dominant grain size over the entire 27 m length is less than 20 µm, although the tests of foraminifers may reach sand-size (63 µm to 2 mm). Despite the apparent lithological homogeneity, compositional variations in the mud are evidenced by quantifiable colour changes (Fig. 4A). The XRD and WD-XRF data (Fig. 2) reveal that these cyclic colour changes correspond to changes in the aragonitic content within the mud, with lighter colours containing proportionally more aragonite than darker, browner intervals. Increases in aragonite abundance were easily discernible in SEM images by the presence or absence of micron-scale needle-like crystals within the sediment (Fig. 4B 1 , 448 cm depth). In places, these needles show evidence of dissolution and pitting (Fig. 4B 2 , 1410 cm depth). Elsewhere, where XRF/XRD data showed aragonite to be less abundant, sediment consisted primarily of platy clay minerals (Fig. 4B 3 , 600 cm depth), identified as silicate clays by EDS analysis [START_REF] Counts | Sedimentation adjacent to atolls and volcano-cored carbonate platforms in the Mozambique Channel (SW Indian Ocean)[END_REF]. While these clay-rich intervals are found on the seafloor adjacent to the platform, the clastic material likely does not originate from the platform itself, which at present only contains carbonate sediment.

Discrete beds of carbonate sand are relatively rare in the core, with only one (from 319-337 cm) reaching a significant thickness. Grain size in this bed fines upward overall, although grains are consistently between 0.42 and 0.43 mm in diameter (medium sand) for a 10 cm interval in the bed centre (Fig. 4C). Sand-sized grains in this bed are almost all skeletal fragments, predominantly consisting of calcareous algae, corals, and both benthic and planktonic foraminifers. This composition is size-dependant: foraminifers make up an increasingly higher proportion at finer fractions (Fig. 4D). This bed and others like it have
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previously been interpreted as the product of turbiditic events, ultimately originating from the platform top [START_REF] Counts | Sedimentation adjacent to atolls and volcano-cored carbonate platforms in the Mozambique Channel (SW Indian Ocean)[END_REF], but likely incorporating slope material during downslope movement.

Core chronology

The age model reveals that the upper ~18 m of core sediments are a continuous record spanning approximately the last 500 kyr, back to MIS 13 (Fig. 5). In this section of the core, isotope data closely matches the LR04 stack. The stratigraphic framework for the upper part of the core is also confirmed by the presence of key datums (Emiliania huxleyi, Pseudoemiliania lacunosa, and Reticulofenestra asanoi) as well as dominance changes within the Gephyrocapsa species group (Table 2). Below this point, an age model compatible with both the LR04 stack and the nannofossil data required the placement of two unconformities in the lower part of the core, one from 513-550 ka (MIS 13-14), and a much larger one between 623 and 872 ka (MIS 16-21). Both of these unconformities coincide with a sharp change in sediment colour (lighter grey vs. darker brown), which represents a change in the composition of the finest sediment fraction. Unconformities could also be seen in thin section to be characterized by differences in abundance of planktonic foraminifera, with increased abundance below the unconformity in both cases (Fig. 6). The shorter, shallower unconformity (Unconformity 1) was not a result of biostratigraphic constraint; its placement was based instead on the absence of the second, isotopically lighter peak at the end of the MIS 13 interglacial interval. However, the age of sediments between ~18 and 22 m is confirmed to be around MIS 15-16 based on the presence of P. lacunosa, the absence of R. asanoi, and the transition between the G. caribbeanica and the small Gephyrocapsa acme zones [START_REF] Weaver | High resolution stratigraphy of marine Quaternary sequences[END_REF]. The deeper unconformity (Unconformity 2) lasted much longer,
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spanning approximately 250 kyr. This duration is the result of both biostratigraphic restrictions and best-fit matching of the isotope ratio curve. Most notably, the simultaneous presence of dominant small forms of Gephyrocapsa, and of common P. lacunosa and R. asanoi coccoliths in a sample taken at 2372 cm depth constrains this interval to MIS 23-25.

The dominance of G. caribbeanica together with the common occurrence of P. lacunosa and R. asanoi near the bottom of the core further constrains the age of the oldest sediments retrieved as between MIS 25 and MIS 30 (ca. 0.94 to 1 Ma). (Table 2). The age model shown in Figure 5 is therefore the most parsimonious interpretation of the two independent data sets: isotopes and nannofossil biostratigraphy.

Aragonite cycles and sea level

The comparison of the benthic δ 18 O record and the aragonite content shows a clear, direct relationship (Fig. 5). Isotopically lighter intervals (interglacial periods, i.e., MIS 1,5,7,9,[START_REF] Chéron | Focus on sulfur count rates along marine sediment cores acquired by XRF Core Scanner[END_REF]13,15,23,and 25) correspond in almost every instance to increased aragonite content relative to intervening stages 6,8,10,12,14,22,24,[START_REF] Milliman | Recent sedimentary carbonates: Part 1 marine carbonates[END_REF]. Although this relationship holds up across multiple glacial-interglacial cycles, the rapid increases in aragonite content consistently lag behind the initial lightening of isotope ratios by several thousand years (Table 3). Since MIS are tied to eustatic rise and fall, variations in aragonite content in the core can be correlated directly to global sea-level magnitude and timing, generally increasing in conjunction with sea-level rise, and decreasing correspondingly with sea-level fall [START_REF] Spratt | A Late Pleistocene sea level stack[END_REF][START_REF] Miller | A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records[END_REF]Fig. 5). Holocene sea level curves generated specifically for the western Indian Ocean (Camoin et al., 2011;[START_REF] Zinke | Acme zone of Small Gephyrocapsa -common to rare E. huxleyi MIS 6-8 1060 Acme zone of Small Gephyrocapsa -common to rare E. huxleyi MIS 6-8 1417 Acme zone of G. caribbeanica -absence of E. huxleyi MIS 9-11 1719 Acme zone of G. caribbeanica -rare to common P. lacunosa MIS 12-15 1920 Transition between acme zones of G. caribbeanica and small Gephyrocapsa -rare to common P. lacunosa -absence of R. asanoi MIS 15 2116 Acme zone of Small Gephyrocapsa -rare to common[END_REF] generally overlap with the composite curves shown in Figure 5, and also correlate well with the most recent (MIS 1-2) aragonite increase. When the percentage of aragonite in the core
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(all data, as measured by XRD) is cross-plotted against the sea level for a given age, the relationship can be seen to hold, with an R 2 value of 0.411 (Fig. 7A). Marine isotope stages can also be differentiated, with glacial stages clustering together due to their overall lower aragonite content.

To filter out other factors that may influence aragonite content, the relationship between aragonite and sea level was also examined only during the short periods at stage transitions (Fig. 7B), where both aragonite and sea level are rapidly increasing. These intervals show an aragonite/sea-level relationship that is much more robust (R 2 =0.714) compared to that when all data are included. If this relationship is applied to the whole core to create a curve predicting the expected aragonite content at a given sea level (blue curve in Fig. 7C), the actual aragonite values (orange curve in Fig. 7C) can be seen to deviate substantially from the expected relationship during certain intervals. These exceptions often take the form of abnormally low aragonite content during periods of high sea level (blue shading in Fig. 7C). In particular, this is seen during MIS 9, 11, and 12-13, but is best exemplified during stage 11. During this period, which is characterized by exceptional warmth and high sea levels [START_REF] Droxler | Unique and exceptionally long interglacial Marine Isotope Stage 11: window into Earth warm future climate[END_REF], aragonite content is, on average, lower than all other interglacial periods observed, and is substantially less than predicted by the relationship shown in Fig. 7B.

Sedimentation and mass accumulation rates

Due to the construction of the core chronology (benthic δ 18 O correlation to the LR04 benthic stack), bulk linear sedimentation rates (LSR) are necessarily consistent between tie points (Table 1), with values ranging from 1.7 to 8.1 cm/kyr (Fig. 5). These values, while variable, are in line with Quaternary sedimentation rates on carbonate slopes and proximal
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This article is protected by copyright. All rights reserved. basins in other regions (e.g., periplatform ooze sedimentation rates reported by Droxler & Schlager, 1985). MAR Ar range from 0 to 3.6 g•cm -2 •kyr -1 . Like aragonite content, both LSR and MAR Ar show a relationship with sea level: in general, both increase during highstand (mean approx. 4.8 cm/year) and decrease during lowstand (mean approx. 3.5 cm/year), with both curves rising and falling at approximately the same times. The pattern of MAR Ar change also generally follows the aragonite content curve, though MAR Ar for a given interval may be strongly affected by the LSR. The primary example of this occurs during MIS 9, when aragonite content is as high as other highstand intervals, but both the LSR and the MAR Ar are substantially lower than other times when sea-level maxima were of similar magnitude (e.g., MIS 5, when sea level was within a few 10s of metres; [START_REF] Dutton | Phasing and amplitude of sea-level and climate change during the penultimate interglacial[END_REF][START_REF] Dutton | Sea-level rise due to polar ice-sheet mass loss during past warm periods[END_REF].

Discussion

Origins of aragonite cyclicity

The relationship described here between aragonite content, accumulation rate, and past sea-level change is consistent with the depositional mechanism of highstand shedding, where carbonate sediments are exported off of flat-topped platforms and into the deep sea during times when the platform is inundated by seawater [START_REF] Schlager | Highstand shedding of carbonate platforms[END_REF]. Export is believed to be through winnowing and off-platform transport in suspension and subsequent fallout; there is no evidence for dilute gravity flows in most of the fine-grained muds that form the majority of the core. The aragonite muds described here are interpreted to originate from the shallow-water top of the Juan de Nova platform, where they are precipitated inorganically in supersaturated seawater [START_REF] Macintyre | Comment on the origin of aragonite needle mud: a picture is worth a thousand words[END_REF][START_REF] Milliman | Great Bahama Bank aragonitic muds: mostly inorganically precipitated, mostly exported[END_REF], biogenically in the skeletons of organisms where they begin as larger particles and subsequently break down (Conrad Neuman & Land, 1975), or mechanically/chemically
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through the feeding and digestive processes of fish [START_REF] Perry | Fish as major carbonate mud producers and missing components of the tropical carbonate factory[END_REF][START_REF] Salter | Reef fish carbonate production assessments highlight regional variation in sedimentary significance[END_REF].

Core MOZ4-CS09 lies only 10.5 km from the platform margin, well within the range that fine-grained sediment could be transported by wind or tide-generated currents, or by density cascading processes [START_REF] Jorry | Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): A preliminary study[END_REF][START_REF] Wilson | Density cascading: off-shelf sediment transport, evidence and implications, Bahama Banks[END_REF]. MAR Ar and aragonite percentages in core muds often decrease gradually after the initial rise at the beginning of highstand; this may be due to autocyclic processes (e.g., the growth of fringing reefs) that store sediment on the platform top and form barriers to export [START_REF] Boardman | Banktop responses to Quaternary fluctuations in sea level recorded in periplatform sediments[END_REF]. The initial drop in sea level following the initial transgression may also disrupt the carbonate factory, reducing exported sediment volumes. Thus, the relationship seen during transitions represents the highstand shedding response before the initiation of these other, secondary factors that affect carbonate volume on the seafloor. The correlation between MAR Ar and bulk LSR suggests that LSR increase during highstand is driven by the increase in aragonite, showing that the aragonite content variation through time is not simply the result of changing amounts of clastic dilution. Rather than replacing some component of non-aragonitic sediment, the aragonitic fraction is added to the deposit.

Although the winnowing mechanism plays a substantial role in sediment export, some part of the aragonite response is probably also due to increased carbonate productivity on the platform top [START_REF] Paul | Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean)[END_REF]. During glacial lowstands, only the steep flanks of the platform would be submerged, resulting in substantially less area in the shallow photic zone where most carbonate is produced. Inundation of the platform top during interglacials, however, would result in a substantial increase in the area available for carbonate productivity. [START_REF] Bosscher | Computer simulation of reef growth[END_REF] and [START_REF] Glaser | High production and highstand shedding from deeply submerged carbonate banks, northern Nicaragua Rise[END_REF] note that carbonate reef growth is highest at depths of <20 m, so this depth is used here as an estimate of optimal carbonate productivity for varying sea levels from 0 to -130 m relative to the
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present. (Fig. 8). Such calculations assume a platform morphology similar to that of the present-day, and present uncertainties for each variable, including the fact that production may also occur at deeper depths. However, they may provide a first approximation of sealevel related changes in carbonate production. The results show that flooding of the flat platform top may lead to over 150 km 2 available for optimal carbonate production, but the relatively steep slopes below the margin (up to 45° on the lower margin/upper slope) have up to an order of magnitude smaller productive area, with a minimum of ~1 km 2 of space available for carbonate production. It is unlikely that the subaerially exposed platform top itself would generate any substantial volume of fine-grained carbonate, as freshwater cementation may result in rapid induration of exposed sediment [START_REF] Dravis | Rapidity of freshwater calcite cementation-implications for carbonate diagenesis and sequence stratigraphy[END_REF] that may later dissolve through karst formation. Similar differences in potential productive area were found by [START_REF] Glaser | Controls and development of late Quaternary periplatform carbonate stratigraphy in Walton Basin (northeastern Nicaragua Rise, Caribbean Sea)[END_REF] in the Caribbean Walton Basin. The increased rate of flux of aragonite to the deep seafloor, as seen in the MAR ar shown in Figure 5, is therefore a combination of both a depositional mechanism and increased sediment supply.

Because the modern-day platform is inundated, highstand shedding processes are likely currently operating on Juan de Nova, with mud generated and exported through the processes discussed above. This is confirmed by sedimentological observations on the platform top: sediments are composed primarily of aragonite, and little or no mud is currently preserved, despite the presence of organisms with aragonitic skeletons. The process may be occurring elsewhere in the region-on the top of nearby Glorieuses platform (around 780 km to the northwest), aragonitic muds are also not preserved, and have been hypothesized to have been winnowed into the adjacent basin there as well [START_REF] Prat | Geomorphology and sedimentology of a modern isolated carbonate platform: The Glorieuses archipelago, SW Indian Ocean[END_REF] al., 2018). The finest fraction of these sediments may be transported far offshore in suspension, where they are subsequently deposited as hemipelagic fallout. Numerous canyons (visible in Fig. 1D) incise the Madagascar slope and provide further evidence of sediment transport from the island. Shallow current data (Fig. 1D) shows currents originating from the south/southwest, resulting in a current shadow on the north side of the island where the core was collected. Sediments deposited in this area are therefore likely protected from the effects of deep contour currents; evidence for substantial bottom current modification (sediment waves, contourite drifts, scours, etc.) are not seen in the bathymetric data collected. Jorry et al. (2010) introduced the concept of 're-flooding windows' to denote the interval during which flat platform tops are inundated during the glacial-interglacial transitions. This concept can also be applied here on a longer timescale by examining sea level at the onset of intervals of aragonite production. In Juan de Nova, aragonite content generally matches the pattern of sea-level change, i.e., a rapid rise at the onset of interglacial stages, and a gradual decrease during subsequent regressions. In most cases, however, the rate of aragonite increase is sharper than the rate of sea-level rise. The window during which this sharp increase occurs is interpreted to coincide with the flooding of the relatively flat platform top, and to mark the onset of the highstand shedding process. This occurs most clearly at the onset of interglacial conditions in MIS 1,5,7,9,[START_REF] Chéron | Focus on sulfur count rates along marine sediment cores acquired by XRF Core Scanner[END_REF]15,and 25 (labelled in Fig. 5; numbers represent sea-level values at the onset and termination of rapid aragonite increase). If the spike in aragonite production during these intervals can be assumed to represent the moment of platform flooding, in all of these instances the flooding event happened when sea level was between 57 and 2 m below its current level (Fig. 5). The

Platform flooding windows
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This article is protected by copyright. All rights reserved. average depth of the onset of flooding is 36.7 m, and the average depth where aragonite production stops increasing is 12.4 m. The mean depth of platform flooding is thus 24.6 m, very close to the predominant depth of the current platform top, which is submerged to between 10-30 m [START_REF] Jorry | Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): A preliminary study[END_REF].

While some uncertainty necessarily exists with the core chronology, sea-level reconstructions, and the exact placement of the flooding window, the agreement between these estimates supports the idea that the subsea height of the platform top during these periods was not substantially different from its current state. Substantial aggradation over the past ~1 Myr, if not balanced by subsidence, would have resulted in flooding windows that trended lower than current values. Substantial net subsidence of that platform can be excluded as well, as the presence of highstand shedding necessarily indicates a submerged platform, and sea-level values have only exceeded the current highstand by few metres at most for short periods over the past several sea-level cycles. It is therefore inferred that aggradation and subsidence have been equally matched over most of the Late Quaternary, and the relative height of the platform has stayed much the same as subsidence and deposition have kept pace. Although no direct measurements of tectonic subsidence or uplift have been reported from Juan de Nova., [START_REF] Camoin | Late glacial to post glacial sea levels in the Western Indian Ocean[END_REF] note subsidence rates for several other islands in the region (based on Eemian reef terrace data), which range from 0.03 to 0.25 mm yr -1 . These values are comparable to sedimentation rates compiled for several other Holocene shallow-water carbonate systems (e.g., 0.5-2 mm yr -1 for bioclastic shoals; [START_REF] Strasser | Carbonate sedimentation rates today and in the past: Holocene of Florida Bay, Bahamas, and Bermuda vs. Upper Jurassic and Lower Cretaceous of the Jura Mountains (Switzerland and France)[END_REF], demonstrating that sedimentation could have easily kept pace with any ongoing platform subsidence. [START_REF] Courgeon | Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique Channel seamounts (SW Indian Ocean)[END_REF] estimate the rate of subsidence for the nearby Glorieuses platform at 0.01-0.015 mm yr-1, in line with these other estimates.
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Aragonite Dissolution Cycles

The cyclical, sawtooth pattern of seafloor aragonite content near carbonate platforms has also been observed elsewhere in the world, with alternative mechanisms proposed for its origin. [START_REF] Reymer | Site 632: Pliocene-Pleistocene sedimentation cycles in a Bahamian basin[END_REF] observe that the aragonite content in a core from the Bahamas correlates well to small-scale changes in the δ 18 O curve, suggesting that these small-scale changes are unlikely to be the result of simple export variations related to flooding and exposure of the platform. They propose that the coupling between the two curves may be due to the dissolution of metastable aragonite on the seafloor, a process tied to sea level and climate. In other examples [START_REF] Droxler | Quaternary aragonite cycles and oxygen-isotope record in Bahamian carbonate ooze[END_REF][START_REF] Emmermann | Mineralogy, geochemistry and microfacies of late Quaternary periplatform sediments: Carbonate export cycles and secondary processes-Sanganeb Atoll and Abington Reef, Sudan, Central Red Sea[END_REF], the aragonite response has also been hypothesized to be at least partially the result of climate-related dissolution rather than changes in the amount of carbonate exported. In these studies, evidence for dissolution during glacial periods is partially in the form of a time offset between the relative aragonite increase and the lightening of δ 18 O isotope values, where the dissolution ceases and the apparent increase in aragonite precedes sea level rise and platform flooding by several thousand years, suggesting that export was not at work. In the core studied here, the opposite is the case-aragonite content increases usually occur several thousand years after the initial sharp change in δ 18 O values (Table 3). Although there is some range of error in the age model, the pattern of aragonite increase lagging behind sea level rise is consistent across several cycles, and is thus more in line with the increased production and export of sediment after banktop flooding rather than glacial-interglacial-scale cycles of deep-sea dissolution.

Additionally, the overall sedimentation rates in core MOZ4-CS09 tend to increase during highstand intervals (Fig. 5), supporting the idea that the bulk input of aragonite to the seafloor is changing cyclically. [START_REF] Sepulcre | Large 14 C age offsets between the fine fraction and coexisting planktonic foraminifera in shallow Caribbean sediments[END_REF] note that bioturbation can also lead to an offset between the fine fraction of sediment and the foraminiferal δ 18 O record. The precise magnitude of the offset in the Juan de Nova core may therefore have been different than what
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Larger-scale aragonite supercycles that span multiple glacial-interglacial cycles have also been proposed [START_REF] Droxler | Pliocene-Pleistocene aragonite cyclic variations in holes 714a and 716b (the Maldives) compared with hole 633a (the Bahamas): records of climate-induced CaCO 3 preservation at intermediate water depths[END_REF]. These cycles of carbonate dissolution are proposed to operate at a larger wavelength (100s of ky) than the glacial-interglacial dissolution cycles discussed above. The minima of the most recent cycle is centred in MIS 11, which is characterized by exceptionally high sea levels (≤ 20 m above present, 13-20 m above present, or 6-13 m above present, according to [START_REF] Kindler | Elevated marine terraces from Eleuthera (Bahamas) and Bermuda: sedimentological, petrographic and geochronological evidence for important deglaciation events during the middle Pleistocene[END_REF], [START_REF] Droxler | Unique and exceptionally long interglacial Marine Isotope Stage 11: window into Earth warm future climate[END_REF], and [START_REF] Dutton | Sea-level rise due to polar ice-sheet mass loss during past warm periods[END_REF], respectively). In the Juan de Nova core, aragonite content during this time is on average lower than all other interglacial periods observed (Fig. 5, Fig. 7C), which may be a product of this larger dissolution supercycle. Evidence of dissolution can be seen in the sediments here in the form of pitting on the surface of aragonite needles (Fig. 4B, 1410 cm). Alternatively, the diminished aragonite response on Juan de Nova may be due to a reduction in carbonate productivity because of drowning of the platform; sea level during MIS 11 in particular may have been higher than present by up to 20 m [START_REF] Kindler | Elevated marine terraces from Eleuthera (Bahamas) and Bermuda: sedimentological, petrographic and geochronological evidence for important deglaciation events during the middle Pleistocene[END_REF], perhaps enough to incipiently drown the platform below its optimal productivity zone and reduce carbonate production. Aragonite content remains high, however, during MIS 5e, which was characterized by similarly warm temperatures and high sea levels, suggesting that dissolution may be more likely.
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Comparison with highstand shedding elsewhere

In the Gulf of Papua and the northeastern shelf of Australia, mixed-system rimmed carbonate shelves have been shown to have a more complex relationship with sea level than simple highstand shedding. In these cases, carbonate export was shown to peak during regression or transgression (Harper et al., 2015;Page & Dickens, 2005, respectively). In Juan de Nova, this is not usually the case-for most intervals, trends in aragonite content generally follow the sea-level curve. Once the platform floods during transgression, as mentioned above, subsequent aragonite peaks are generally coincident with maximum highstand. This suggests that carbonate production and export are dependent more on the water depth of the platform top rather than the trajectory of sea-level change. This 'classical' type of highstand shedding has also been documented in a number of other localities around the globe.

Evidence for highstand shedding in carbonates elsewhere has taken the form of either: 1) changes in the frequency, thickness, or changes in lithology of turbidite deposition in adjacent basins (Haak and Schlager, 1989;[START_REF] Bernet | Turbidite frequency and composition in the distal part of the Bahamas transect[END_REF][START_REF] Betzler | Carbonate shedding and sedimentary cyclicities of a distally steepened carbonate ramp (Miocene, Great Bahama Bank)[END_REF][START_REF] Reijmer | Mineralogy and grain size variations along two carbonate margin-to-basin transects (Pedro Bank, Northern Nicaragua Rise)[END_REF][START_REF] Paul | Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean)[END_REF][START_REF] Reijmer | Calciturbidites and calcidebrites: Sea-level variations or tectonic processes?[END_REF], 2) differing sediment composition of highstand vs. lowstand deposits (Grammer & Ginsburg, 1992), or 3) fine-grained aragonite export during highstand [START_REF] Paul | Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean)[END_REF]. Highstand shedding of fine-grained carbonate mud, as seen here, has been observed in numerous other localities (Fig. 9 and references therein), with most records substantially shorter than the one reported here. The longest core records showing this trend, extending over 2 Myr (truncated in Fig. 9B, 9C), are from IODP expeditions in the Bahamas and the Maldives [START_REF] Droxler | Pliocene-Pleistocene aragonite cyclic variations in holes 714a and 716b (the Maldives) compared with hole 633a (the Bahamas): records of climate-induced CaCO 3 preservation at intermediate water depths[END_REF][START_REF] Reymer | Site 632: Pliocene-Pleistocene sedimentation cycles in a Bahamian basin[END_REF]. The record from JDN discussed here is the longest in the southern Indian Ocean, and because of the quantitative core scanning method used, it provides a higher level of detail than most
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This article is protected by copyright. All rights reserved. other records (Fig. 9). Like the core described here, each of the cores in these previous studies shows a sharp increase in aragonite content at the beginning of stages 1, 5, 7 and 9, marking the flooding of each respective platform or shelf. The muted aragonite response during MIS 11 is most obvious in the Juan de Nova core and in the nearby Maldives (column C), suggesting the proposed aragonite dissolution supercycle operating during this time may have been more intense in the Indian Ocean. Although the mid-Brunhes event around MIS 11 marks a fundamental change in the amplitude of glacial-interglacial cycles on some other records [START_REF] Holden | The Mid-Brunhes Event and West Antarctic ice sheet stability[END_REF], the magnitude of aragonite responses in Juan de Nova, the Maldives and the Bahamas during MIS 13 and 15 are not appreciably different than later interglacial periods [START_REF] Droxler | Pliocene-Pleistocene aragonite cyclic variations in holes 714a and 716b (the Maldives) compared with hole 633a (the Bahamas): records of climate-induced CaCO 3 preservation at intermediate water depths[END_REF][START_REF] Reymer | Site 632: Pliocene-Pleistocene sedimentation cycles in a Bahamian basin[END_REF][START_REF] Droxler | Unique and exceptionally long interglacial Marine Isotope Stage 11: window into Earth warm future climate[END_REF]. Later stages (MIS 22 and earlier), however, do not have the same clear correlation with glacialinterglacial cycles. While a general comparison can be made with these previously described records, the inherent error due to the lower resolutions, variable aragonite calculation methods, and different age models used in each study prevent a detailed comparison of the precise timing and magnitude of aragonite content changes. In addition, other cores were recovered at differing distances from their respective platforms, and each adjacent platform lies at a different depth, so the exact sedimentary response would be expected to differ slightly between records.

Conclusions

Deep sea sediments from a 27 m piston core near Juan de Nova island are characterized by cyclical variations in aragonite content that correspond to Late Quaternary glacial-interglacial episodes. These deposits are interpreted to be the product of highstand shedding, where carbonate sediments (in the form of fine-grained aragonite mud) are
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This article is protected by copyright. All rights reserved. produced and exported from the top of the nearby Juan de Nova platform during interglacial intervals. Greenhouse conditions during these times result in higher sea level, which floods the shallow platform and triggers increased carbonate production. Platform muds are then winnowed and transported off-platform in suspension, where they are redeposited in the deep sea. The core records discussed here show a new occurrence of this phenomenon in a region where it has not previously been documented. In addition, the Juan de Nova record is exceptional in its resolution and length when compared to most other documented instances of highstand shedding. Analysis of platform flooding windows suggests that little appreciable net subsidence or aggradation of the edifice has occurred in the past 1 Myr; these processes were likely balanced, keeping the height of the platform at relatively the same level. The new record is consistent with past hypotheses of increased seafloor dissolution of aragonite around MIS 11, supporting the idea that dissolution cycles affected the southern Indian Ocean. These results further confirm the recurrence of highstand shedding across time and space, as many other localities around the world have been shown to share a similar aragonite response to sea level. This study underscores the importance of highstand shedding as a mechanism of carbonate transfer to the deep sea throughout the Late Quaternary, and therefore an important global control on sedimentation.
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Figure Captions
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This article is protected by copyright. All rights reserved. used for nannofossil determination and SEM and grain size analyses. B) SEM images of core sediments, showing abundant needle-like crystals of aragonite at depths 448 and 1410 cm, and platy clay minerals at 600 cm. C) Quantitative grain size information for the carbonate sand bed between 320 and 340 cm. D) Compositional data for sands from the interval 338-340 cm, the base of the bed shown in (C). A total of 855 individual grains of three size classes were analysed for taxonomic affiliation, with identification aided by [START_REF] Milliman | Recent sedimentary carbonates: Part 1 marine carbonates[END_REF].

Figure 5: Age model of the core, based on correlation with the LR04 benthic stack [START_REF] Lisiecki | A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[END_REF]. Column 1: Benthic δ 18 O isotope (‰ VPDB). MIS boundaries (Cohen & Gibbard, 2016) and unconformities (1780-1784 cm / 513-550 ka and 2180-2186 cm / 623-872 ka) are marked. Column 2: Aragonite content (%), as measured by both XRF and XRD.

Note convergence of the two methods. Interpreted platform flooding windows highlighted in red. Column 3: Linear sedimentation rates (cm/kyr) and aragonite mass accumulation rates (MAR Ar s, g*cm/ky) for the core. Column 4: Reference sea-level curves from [START_REF] Spratt | A Late Pleistocene sea level stack[END_REF] and [START_REF] Miller | A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records[END_REF]. Both curves generated from global composites of δ 18 O isotope data; [START_REF] Spratt | A Late Pleistocene sea level stack[END_REF] only extends back to 800 ka. 

  . The clastic component of mud on the deep seafloor likely originates from nearby continental shelves, where river systems in Madagascar deposit large volumes of clastic sediment (Fontanier etAccepted ArticleThis article is protected by copyright. All rights reserved.

Figure 1 :

 1 Figure 1: Location and background of Juan de Nova platform. A) Location of study area

Figure 2 :

 2 Figure 2: A) Correlation between strontium, as measured in quantitative XRF, and aragonite,

Figure 3 :

 3 Figure 3: A) High-resolution LIDAR bathymetry and topography of Juan de Nova island and

Figure 4 :

 4 Figure 4: Sedimentology of core MOZ4-CS09. A) Core properties, including lithology, colourimetry (light/dark value) and core photos, gamma density (g/cm 3 ), grain size (µm) measurements, and benthic δ 18 O isotopic values (per mil VPDB) and position of samples

Figure 6 :

 6 Figure 6: Thin sections of sediments adjacent to proposed unconformities. All sections
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This article is protected by copyright. All rights reserved. Figure 8: Relationship between sea level and the area available for optimal carbonate productivity, defined here as water depths of 20 m or less. Values rounded to nearest km 2 .

Figure 9: Comparison of the aragonite records of 13 global localities with that of Juan de Nova. Aragonite curves redrafted from publications listed in table, except for E and M, where only aragonite mass accumulation rates have been published and aragonite content was backcalculated. Each record is presented on its originally published age model; conversion of original low-resolution raster data into the form shown here may introduce additional error. This compilation should therefore not be used to analyse the exact timing and magnitude of aragonite content changes in detail, but is instead meant to illustrate larger-scale trends.

Table Captions

Table 1: Tie points used to constrain core chronology. 
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Error on the age of the pointers (ky)
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