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ABSTRACT: 

One of the most serious issues with deciphering the evolution of organisms and 

their biogeochemical environments from the ancient rock record is the difficulty in 

obtaining well-preserved samples. Although not much can be done to avoid diagenetic 

and metamorphic alteration when they have occurred, alteration due to weathering can 

be avoided by working on drill core samples. This implies however that the amount of 

sample is limited, which may in turn restrain the number of possible chemical and 

isotopic analyses that can be performed. In order to save sample we show here that the 

chemical protocol used for the sulfur sulfide extraction (for later sulfur isotope analyses) 

is also suitable to decarbonate samples (for later organic carbon isotope analyses). In the 

case of carbonated rocks, both sulfur sulfide extraction and decarbonation require high 

amounts of sample so that coupling them may save a significant amount of sample and 

time. In addition it allows both organic carbon (TOC and δ
13

C) and sulfur isotope 
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composition measurements to be performed on the exact same powder, which is 

essential when trying to understand couplings between S and C cycles in heterogeneous 

samples. We thus tested the efficiency of the acidic chromium solution, commonly used 

to extract sulfur from sulfide, for sample decarbonation on various Archean rocks. Our 

results show that no significant carbon isotope fractionation is caused by this new 

decarbonation protocol, even for the samples with low organic carbon content. The 

chromium solution seems to be perfectly adapted for the analysis of organic matter in 

the ancient rock record, at least when the rock samples have experienced low 

greenschist facies metamorphism. Further tests will be needed to verify if this protocol 

can also be used for less mature organic matter. 

 

Keywords: carbon isotopes, decarbonation, limited sample, Precambrian 

 

HIGHLIGHTS: 

 One chemistry for both sulfur sulfide extraction and rock sample decarbonation 

 A new protocol that saves time and a significant amount of limited sample 

 Organic carbon and sulfur isotope composition analysis on the exact same powder 

 

1. INTRODUCTION 

As shown by Lowe and Tice (2007), vanishingly few Archean rock units have survived to the 

present (less than 10 %; Garrels and Mackenzie, 1971) and outcrops have been affected by 

modern oxidative weathering. This surficial weathering can modify both the mineralogy and 

chemistry of the ancient rock record and thus represents an issue when investigating paleo-

redox conditions and early traces of life (Hoashi et al., 2009, French et al., 2015). In order to 

recover relatively well-preserved rock samples from below the present weathering profile 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 3 

(below the groundwater table ~10-50 m) and to obtain continuous rock cores that retain soft 

or friable units that outcrop poorly at the surface, several scientific drilling programs have 

been carried out in Archean terrains in the past decade (Kaufman et al., 2007, Yamaguchi et 

al., 2009, Philippot et al., 2009). The recovered cores have been extensively analyzed to 

investigate conditions at the surface of the Archean Earth: the composition, temperature, and 

redox state of the Archean ocean and atmosphere; the volcanic and sedimentary processes that 

operated early in Earth history; and above all, to search for pristine morphological or 

chemical traces of early life (Mojzsis et al., 1996, Philippot et al., 2007, Schopf et al., 2007, 

Thomazo et al., 2009b, Bontognali et al., 2012). 

Since the first description of recognizable Archean microfossils a few decades ago (e.g. 

Dunlop et al., 1978, Buick et al., 1981), morphology-focused imaging techniques of fossil-

like objects (Brasier et al., 2002, Schopf et al., 2002, Lepot et al., 2008, Wacey et al., 2011) 

have failed to absolutely confirm their biogenic origin. This is mainly because several 

abiologic metamorphic and hydrothermal reactions have been identified that could produce 

kerogen-like polymers and graphite (e.g. Van Zuilen et al., 2002) and generate complex 

structures similar to microfossils (e.g. Garcia-Ruiz et al., 2003) and stromatolites (e.g. 

Grotzinger and Rothman, 1996). In view of these uncertainties and controversies, it is now 

recognized that studies of early life and associated environmental conditions depend on the 

multiplication of structural, isotopic and chemical tracers. Particularly, sulfur and carbon 

isotopes have been traditionally used to decipher ancient biogeochemical cycles (e.g., review 

in Thomazo et al., 2009, Farquhar et al., 2010). Indeed, C and S isotopes retain records of 

microbial metabolisms where secondary processes such as metamorphism and weathering 

have obliterated or erased evidence for early life such as microfossils or other biogenic 

remains.  
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A prerequisite for measuring carbon isotopes of organic material in rocks (and sediments) is 

to eliminate carbonates which are widely occurring in various forms, i.e. mainly ankerite, 

dolomite and siderite in Archean rocks, since the isotopic value of the carbon atom of the 

carbonate would otherwise bias the isotopic signal. In the past, several methods dissolving 

carbonates by acid-treatment, thereby eliminating the carbonate carbon as carbon dioxide, 

have been described (Froehlich, 1980, Weliky et al., 1983, Hedges and Stern, 1984), the most 

commonly used being 10 % HCl followed by rinsing with deionized water (Schubert and 

Nielsen, 2000). In parallel, sulfur extraction for isotopic analysis of sulfides and sulfates is 

generally performed with a succession of different acidic attacks on sample powder. 

Therefore, sample preparation for either bulk C or S isotopic analyses is time consuming and 

requires important and independent quantities of sample, which are limited when working on 

drill core samples. 

In this study, we tested the chemistry used for sulfur extraction and based on acidic chromium 

reduction for decarbonation of sample powders in order to save both time and sample and 

most importantly to perform bulk organic carbon and sulfur isotope measurements in the 

exact same samples. To our knowledge, this chemistry has never been used for simple 

decarbonation, and our objective here is thus to test if it is suitable for the determination of the 

Total Organic Carbone (TOC) content and carbon isotope compositions (δ
13

Corg). Ader et al. 

(2009) showed that the even standard decarbonation might lead to an increase by up to 1.4 ‰ 

in δ
13

Corg values especially for samples with low amount of organic carbon and without 

changing significantly the TOC contents. Given the hotter (around 190 °C) conditions of the 

acidic chromium chemistry compared to a standard decarbonation procedure, one may be 

concerned by its effects on the TOC and δ
13

Corg values. In order to investigate such effects we 

compared the results obtained after the acidic chromium chemistry and the standard 
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decarbonation on a selection of Precambrian rock samples with representatively low TOC 

contents (< 1 wt%). 

 

2. SAMPLES 

The samples studied here have been selected among some of the oldest best-preserved 

Archean rocks in the world. They stem from the Mapepe and Mendon formations on the 

Kaapvaal Craton (South Africa) and the Tumbiana and Kazput formations on the Pilbara 

Craton (Western Australia). These units, which have been deposited between 3.24 and 2.32 

Ga, present various lithologies representative of the Archean eon. Geological details have 

been published in previous studies (Philippot et al., 2009, 2012, Thomazo et al., 2009, 

Martindale et al., 2015), and a short summary of pertinent information is given here. The 

selected rock samples present low TOC contents between 0.01 % and 0.40 % and a broad 

range of carbonate concentrations between 0.07 % and 63.80 %, which are representative of 

the Archean rock record. 

 

2.1. Mapepe and Mendon Formations 

Mendon and Mapepe formations belong to the Barberton Greenstone Belt (South Africa), 

which consists of a succession of Archean supracrustal rocks surrounded and intruded by 

granitoids (Viljoen and Viljoen, 1969). The Mendon Formation is mainly composed of 

ultramafic volcanics, interpreted to reflect large mantle plume magmatic activity (Lowe, 

1994), alternated with bedded black cherts, probably recording deep-water sedimentation 

during times of magmatic quiescence (Hofmann and Harris, 2008). Radiometric age 

constraints on the tuffaceous band from the underlying Kromberg Formation provide a lower 

age limit of 3334±3 Ma (Byerly et al., 1996). The unconformably overlying Mapepe 

Formation records shallow-water terrigenous and volcanoclastic sediments, interbedded with 
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bedded barite deposits. Zircon ages constrain the Mapepe Formation between 3259±3 and 

3226±3 Ma (Kröner et al., 1991, Byerly et al., 1996). Both formations experienced only low 

greenschist facies regional metamorphism with a maximum temperature of 300 °C (Knauth 

and Lowe, 2003, Tice et al., 2004) together with some deformation. 

The samples analyzed in the present work were collected from a weathering-free drill core 

recovered by the Barberton Barite Drilling Project (BBDP; Philippot et al., 2009, 2012) at the 

so-called “barite syncline” locality. They have been selected as representative of the different 

lithologies forming the Mendon and Mapepe formations and include one basaltic komatiite 

and three carbonaceous black cherts from Mendon, together with two bedded barites, two 

ferruginous cherts, and four silicified terrigenous and volcanoclastic sediments from Mapepe 

(see Philippot et al., 2012 for more details). Except for black cherts, the other lithologies 

present low organic carbon content, as deduced from a petrographic observation. Quartz, 

green chlorite, Fe-Mg-carbonate, barite and pyrite represent the main mineral assemblage. 

 

2.2. Tumbiana Formation 

The Tumbiana Formation belongs to the Hamersley Basin (Western Australia), which 

presents a well-preserved succession of volcanic and sedimentary rocks deposited between 

2.77 and 2.41 Ga on the granitoid-greenstone basement of the Pilbara Craton (Thorne and 

Trendall, 2001). This formation consists of large-scale cross-bedded calcareous sandstone, 

stromatolitic and fenestrate carbonate, and micaceous sandstone interlayered with volcanic 

siltstone (Thorne and Trendall, 2001, Thomazo et al., 2009). The Tumbiana Formation was 

deposited at 2724±5 Ma, as indicated by zircon U-Pb dating (Blake et al., 2004), either in a 

shallow marine or lacustrine environment associated with influx of riverine freshwater 

derived from the continents (Buick, 1992, Thorne and Trendall, 2001, Bolhar and Van 

Kranendonk, 2007). The regional metamorphic temperature has been estimated < 300 °C 
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using metamorphic mineral assemblages and the degree of organization of organic matter 

(Lepot et al., 2008). 

The samples have been collected in the Pilbara Drilling Project (PDP1) diamond drill core, 

which recovered the upper section of the Tumbiana Formation at Meentheena. These include: 

one siltstone, one laminated mudstone and two homogeneous mudstones. In all samples, 

organic matter is homogeneously disseminated. Quartz, green chlorite, carbonate (mainly 

calcite) and pyrite represent the main mineral assemblage throughout the drill core. The 

δ
13

Corg values of the Tumbiana samples studied here were previously determined by Thomazo 

et al. (2009). 

 

2.3. Kazput Formation 

The Kazput Formation consists of subtidal stromatolites, grainstones, and micrites deposited 

on a mixed carbonate-siliciclastic shelf and is lying within the upper part of Turee Creek 

Group in the southern Pilbara region of Western Australia (Martindale et al., 2015). The 

Turee Creek Group is though to be a continuous stratigraphic sedimentary section hosting 

both the Great Oxidation Event and possibly two Huronian glaciations (Van Kranendonk et 

al., 2015, Van Kranendonk and Mazumder, 2015). Geochronological constraints for the Turee 

Creek Group are provided by the 2449±3 Ma Woongarra Rhyolite at the top of the underlying 

Hamersley Group (Barley et al., 1997) and by the 2209±15 Ma Cheela Spring Basalt of the 

unconformably overlying lower Wyloo Group (Martin et al., 1998).  

The samples selected for this study come from the Turee Creek Drilling Project #3 (TCDP3) 

drill core and consist of four carbonated mudstones and one quartzite with low organic carbon 

content (as deduced from a petrographic observation) and mainly composed of quartz, 

carbonate, chlorite and pyrites. 
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3. METHODS 

Twenty-one rock samples were powdered to <100 µm using a ring and puck mill. For 

fourteen samples, one single powder has been homogenized, processed using either the 

standard or the acid chromium method and analyzed for organic carbon content and isotope 

composition (Table 1). For seven additional samples, different initial powders have been used 

for the two different decarbonation techniques (Table 2). 

 

3.1. Standard sample decarbonation 

This method is a common procedure widely used to remove various carbonates such as 

calcite, andesite, dolomite and siderite (e.g. Bernasconi et al., 1997, Wu et al., 1999, Lorrain 

et al., 2003, Thomazo et al., 2009). Sample powders (about 200 mg) were reacted with excess 

HCl (6 N) at room temperature in glass beakers during one night. After removing the 

supernatant, samples were acidified again with HCl (6 N) at 80 °C and agitated during two 

hours: this is to guarantee full sample decarbonation. After decantation, the residues were 

rinsed with deionized distilled water until neutral, centrifuged, and dried at 60 °C overnight. 

During this step, acid-volatile sulfur (AVS) such as FeS or ZnS would react and release H2S, 

some being potentially re-oxidized into insoluble elemental sulfur (Rice et al., 1993). Pyrite 

would however remain. 

 

3.2. Combined sulfur sulfide extraction and sample decarbonation  

The acidic CrCl2 solution is extensively used for the extraction of reduced inorganic sulfur 

compounds in different types of geological samples, including modern sediments and ancient 

shales (Canfield et al., 1986, Fossing and Jorgensen, 1989), acid-sulfate soils (Sullivan et al., 

2000, Burton et al., 2008), and basaltic glasses (Labidi et al., 2012). It was first designed by 

Traube and Passarge (1916) for the reduction of (non-sulfur bearing) complex organic 
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compounds (e.g. maleic, fumaric or cinnamic acids; Holmquist, 1969). This chemistry was 

first introduced to the geochemical community by Zhabina and Volkov (1978), and later 

improved by Canfield et al. (1986) and Gröger et al. (2009) for sulfur extraction. Gröger et al. 

(2009, p. 21) have shown that CrCl2 solution typically yields 99±1 % for both pyrite and 

elemental sulfur. In contrast, simple organic molecules are hardly reduced, with very low 

yields < 0.2 % (Gröger et al., 2009, p. 24). For more complex organic molecules, polysulfur 

bonds could be broken by the CrCl2 solution. However, organic sulfur, to be quantitatively 

reduced, requires the use of Raney-nickel catalyst (e.g. Oduro et al., 2011).  

Originally, the CrCl2 solution was prepared and injected using a so-called Jones reductor, 

which is somewhat complex and time-consuming (i.e. a glass-column packed with granulated 

Zn amalgamated for a few minutes with an acidic 2 % mercuric nitrate solution and washed 

with three column volumes of 0.5 N HCl; Zhabina and Volkov, 1978, Canfield et al., 1986, 

Tuttle et al., 1986, Fossing and Jorgensen, 1989). As mostly done worldwide, we prepared our 

CrCl2 solution daily using a much simpler procedure, where chromic chloride hexahydrate 

associated with granulated Zn is acidified with HCl 0.6 N under continuous flow of N2. On 

reduction, the chromium solution changes from green to blue, reflecting the valence change 

from chromic (III) to chromous (II) ion.  

Sulfur extraction is undertaken adding 20 mL of freshly prepared CrCl2 solution (2.1 N) and 

10 mL of concentrated HCl (6 N) to ~1g of sample powder in the digestion flask at ~100 °C. 

As long as N2-gas bubbles through the solution, we did not face any sample powder 

aggregation that would prevent full decarbonation. In these hot, reducing and acidic 

conditions, reduced sulfur species (S
0
 and S

2-
) are quantitatively decomposed into H2S 

(sulfate remains stable). Then, the released H2S is transferred with a stream of N2 from the 

reaction flask to the sulfide trap filled with AgNO3 (0.3 M) where it reacts to precipitate Ag2S 

(Trap 2 in Figure 1). A trap filled with distilled H2O (Trap 1 in Figure 1) is intercalated in the 
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transfer between to reaction flask and the Trap 2 to clean the gas from any acid vapors that 

have not been stopped by the condenser. Approximately one hour is needed until completion 

of the H2S transfer, as confirmed by the fact that no additional Ag2S would precipitate if the 

AgNO3 trap was changed. At the end of the reaction the sample powder residue, which has 

been decarbonated by the hot acidic CrCl2 solution, is rinsed with deionized distilled water 

until neutral, centrifuged, and then dried at 60 °C overnight. 

For sulfur isotope analysis, we generally estimate the sulfur content of the sample (with 

petrographic observations) to calculate the suitable quantity of initial powder needed to obtain 

~ 4 mg of Ag2S. However, for samples with low organic carbon content, at least 1 g of initial 

powder is necessary to analyze organic carbon compositions. This can be an issue for samples 

with high sulfur content, for which the chemical extraction with ~ 1g of powder releases large 

amounts of H2S. In this case, the standard 10 mL of AgNO3 quickly reaches the saturation and 

to prevent any H2S loss, the volume of AgNO3 has to be multiplied by 5. It produces large 

quantities of Ag2S potentially heterogeneous that must be carefully homogenized before 

sulfur isotope analysis. 

 

3.3. TOC and organic carbon isotope analysis 

TOC content and δ
13

Corg values were measured for carbonate-free residues obtained by both 

the standard and the new decarbonation method with a Flash EA1112 elemental analyzer 

coupled to a Thermo Finnigan DELTA plus XP isotope ratio mass spectrometer interfaced 

with a ConFlo IV interface at the stable isotope laboratory of the Institut de Physique du 

Globe de Paris (IPGP, Paris, France). Our results were normalized using three internal 

standards and an internal standard with 5 different amounts was used to estimate the 

concentration of C (wt%). Reproducibility of replicated standards is ± 0.1 ‰ for δ
13

C (1). 

The δ
13

C value of internal standards was determined using a classic sealed tube combustion 
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method (i.e. Dumas combustion) and isotope measurement on a Delta+XP mass spectrometer 

in Dual Inlet mode (see Ader et al., 1998 for a detailed description of the method). They are 

calibrated against the NBS-21 international standard and reported with the conventional δ 

notation relative to the V-PDB (Vienna Pee Dee Belemnite) standard. Reproducibility of the 

δ
13

Corg and TOC measurements based on at least triplicate measurements of the samples is 

usually better than ±0.4 ‰ and ±0.01 wt%, respectively (1σ; Tables 1 and 2). 

 

4. RESULTS & DISCUSSION 

TOC content and organic carbon isotope compositions for the 21 decarbonated samples from 

BBDP (South Africa), TCDP3 and PDP1 (Western Australia) drill cores are reported in 

Tables 1 and 2. All the decarbonated samples present low TOC content between 0.008±0.001 

and 0.87±0.04 wt% and cover a large range of δ
13

Corg between -57.3±0.1 and -15.8±0.5 ‰. 

Values measured by the two methods are in a range characteristic for organic material in 

Archean rocks (δ
13

Corg = -26 ± 7 ‰ in average; e.g. Schidlowski, 2001 and reference therein). 

Average reproducibility (1σ), estimated from replicate measurements of TOC and δ
13

Corg after 

the acidic chromium decarbonation, is similar to that obtained after the standard method with 

±0.014 wt% and ±0.41 ‰ against 0.010 wt% and 0.33 ‰ respectively, suggesting that no 

carbon addition (from reactant) or incomplete decarbonation occurred. In order to 

demonstrate that no carbon isotope fractionation is caused by the acidic chromium chemical 

protocol for decarbonation, we compared the results obtained after standard and acidic 

chromium decarbonation on the same powder and on different powders from the same 

samples (Figure 2).  

First, starting from the same initial aliquot, we obtained similar results for both TOC and 

δ
13

Corg values (δ
13

CCr versus δ
13

CStd slope of 0.994 with R
2
=0.995; Figure 2), suggesting that 

the new chemical protocol for decarbonation does not induce significant carbon isotope 
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fractionation (Figures 2 and 3). Carbon-richest samples (TOC ≥ 0.3 wt%) show no 

significant difference in δ
13

Corg with δ
13

CCr - δ
13

CStd ≤ ±0.08 ‰, whereas carbon-poor samples 

(TOC ≤ 0.1 wt%) sometimes display differences reaching +1.2 ‰. No correlation between the 

carbonate content and the difference of carbon isotopic values has been observed (Figure 3), 

further confirming that decarbonation was complete. However, Ader et al. (2009) already 

observed similar deviations in δ
13

Corg after successive standard decarbonation of samples with 

low TOC content <1 % (i.e. δ
13

Corg increased by 0.74±0.5 ‰). Even though these variations 

are very small compared to the range of δ
13

Corg observed, they are still significant compared 

to the external reproducibility and should be taken into account in future studies regardless of 

the method used. We also duplicated one sample of mudstone from the Tumbiana Formation 

previously analyzed by Thomazo et al. (2009). The good reproducibility of ±0.06 ‰ for 

δ
13

Corg and ±0.02 % for TOC values estimated between the two studies (1σ; Figure 2) allows 

us to validate the new protocol implemented.  

Secondly, we observed less consistency between δ
13

Corg and TOC measurements obtained on 

different powders from the same sample, with differences between δ
13

CCr and δ
13

CStd varying 

from -7 to +4 ‰ and differences in TOC from -0.01 to +0.2 wt% (grey dots in Figure 2). 

These sometimes strong but non-systematic offsets are particularly striking when compared to 

the results obtained when the two procedures are undertaken on the same powder. These 

results point to rock sample heterogeneity at the centimeter scale and illustrate the importance 

of working on unique powder aliquots in particular when studying relations between different 

isotopic tracers. Therefore, our results demonstrate that the chromium reducing chemistry can 

be used for decarbonation without significant effects on TOC and δ
13

Corg compared to the 

standard HCl decarbonation. This new protocol of decarbonation seems to be perfectly 

adapted for the analysis of organic matter in the ancient rock record that experienced at least 

low greenschist facies metamorphism.  
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For sedimentary rocks having been exposed to lower thermal conditions, it remains to be 

demonstrated if this protocol can also be safely used because the high temperatures of the acid 

attack might induce the breakdown of soluble organic molecules from the condensed organic 

matter, which may artificially decrease the TOC and modify δ
13

Corg. Likewise, modern 

sediments mostly contain immature organic matter and previous studies have already 

demonstrated that acidification, even at ambient temperature and lower acidity (down to 0.1 

M HCl) might have a significant effect on their δ
13

Corg values (from 0.12 to 1.77 ‰; Bunn et 

al., 1995, Jacob et al., 2005, Jaschinski et al., 2008, Brodie et al., 2011). In addition, it is 

highly unlikely that this chemistry, which is known to be a powerful reagent that can reduce 

some organic substrates, should be applicable for immature organic matter (see Hanson, 1974 

for review).  

 

5. CONCLUSIONS  

Our results suggest that the acidic chromium solution can be used to eliminate inorganic 

carbon without significantly influencing the chemical composition of organic matter in rock 

samples of lower greenschist metamorphic grade or higher. This method is not only less 

sample consuming but also less time-consuming and ensures that bulk organic carbon and 

sulfur isotope measurements are performed on the exact same samples. Nevertheless, given 

the effects of simple HCl acidification on the δ
13

Corg values of modern samples (Brodie et al., 

2011) as well as Neoproterozoic samples (Ader et al., 2009), we recommend that this new 

method should be tested before being applied to lower maturity samples. 
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FIGURE CAPTIONS 

 

Figure 1: Experimental set-up for sulfide sulfur extraction and sample powder decarbonation. 

The acid attack consist in 20 mL of CrCl2 solution and 10 mL of HCl (6 N). The solution with 

ground sample is kept at sub-boiling temperature (~ 100 °C) and a continuous flow of N2 is 

bubbling through it. At the end of the reaction, we recovered the extracted sulfide sulfur as 

Ag2S (in red) for sulfur isotope analyses and the residual decarbonated sample powder (in 

blue) for organic carbon analyses. 

 

Figure 2: Comparison of δ
13

Corg values (A) and TOC content (B) obtained after standard HCl 

decarbonation (Std) and reaction with acidic chromium solution for sulfur extraction (Cr). 

The black dots correspond to the analyses performed on the same initial aliquot whereas the 

grey dots correspond to the results obtained on different initial sample powders. The linear 

regression is associated with the black dots. Note the good agreement between the two 

techniques with R
2
 > 0.98 for both δ

13
Corg values and TOC contents. 

 

Figure 3: Variations of δ
13

C values (A) and TOC content (B) obtained by the two methods as 

a function of carbonate content of the samples. The analyses performed on the exact same 

aliquot (black dots) show small deviations for both TOC and δ
13

Corg values suggesting that the 

new chemical protocol for decarbonation does not induce significant carbon isotope 

fractionation. δ
13

Corg and TOC measurements are less consistent when obtained on different 

powders from the same sample (grey dots, δ
13

CCr-Std > ±1‰ and TOCCr-Std up to 0.2 wt%). 

 

ACCEPTED MANUSCRIPT



ACCEPTED M
ANUSCRIPT

 24 

Table 1: δ
13

Corg and TOC measured after standard and new decarbonation of same initial sample powders. Carbonate content and δ
13

Ccarb have 

also been determined on the same samples. Underlined italic values are from Thomazo et al. (2009).  

Formation Lithology Sample 

Decarbonation by chromium solution Standard decarbonation Carbonate content 

δ
13

CCr  

(‰) 
1σ 

TOCCr 

(wt%) 
1σ 

δ
13

CStd 

(‰) 
1σ 

TOCStd 

(wt%) 
1σ 

δ
13

CCarb 

(‰) 
1σ %Carb  1σ 

Mapepe 
Ferruginous 

chert 
BBDP_52.72 -19.10 1.42 0.020 0.005 -19.31 0.78 0.019 0.001 0.65 0.02 33.10 1.65 

Mapepe Bedded barite BBDP_67.95 -26.09 0.39 0.009 0.002 -26.88 0.72 0.008 0.001 -1.51 0.00 0.250 0.003 

Mapepe 
Felsic 

volcanics 
BBDP_68.05 -23.66 0.22 0.015 0.001 -23.63 0.53 0.015 0.002 0.42 0.13 35.46 1.26 

Mapepe 
Felsic 

volcanics 
BBDP_68.42 -26.75 0.37 0.023 0.001 -26.50 0.15 0.025 0.003 1.10 0.06 32.61 0.26 

Mapepe Bedded barite BBDP_78.18 -27.56 0.05 0.031 0.002 -26.59 0.10 0.042 0.004 -6.01 0.16 0.070 0.001 

Mendon 
Laminated 

black chert 
BBDP_95.41 -30.14 0.08 0.356 0.005 -30.22 0.08 0.398 0.002 -3.82 0.01 0.50 0.02 

Mendon 
Laminated 

black chert 
BBDP_114.38 -31.26 0.17 0.85 0.02 -31.22 0.15 0.87 0.04 -7.03 0.04 8.13 0.02 

Mendon 
Laminated 

black chert 
BBDP_139.8 -28.29 0.20 0.30 0.01 -28.43 0.10 0.249 0.005 -4.28 0.18 14.40 0.55 

Turee Creek 
Laminated 

mudstone 
TCDP3_100.52 -27.49 0.70 0.095 0.029 -27.09 0.11 0.106 0.004 0.36 0.40 27.33 0.03 

Turee Creek 
Laminated 

mudstone 
TCDP3_135.16 -27.87 0.67 0.16 0.06 -27.06 0.08 0.111 0.004 -0.10 0.40 19.68 0.03 

Turee Creek Mudstone TCDP3_156.54 -29.04 0.51 0.136 0.036 -28.85 0.14 0.112 0.007 -5.55 0.40 9.56 0.03 

Turee Creek Mudstone TCDP3_164.36 -29.83 0.48 0.130 0.062 -29.72 0.26 0.100 0.005       

Turee Creek Quartzite TCDP3_183.7 -28.89 0.71 0.042 0.015 -27.68 0.25 0.012 0.001 -6.08 0.40 4.19 0.03 

Tumbiana 
Homogeneous 

mudstone 
PDP1_44.5 -55.82 0.24 0.433 0.006 -55.9 0.4 0.40 0.03 -7.7 0.4 25.80 0.03 
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Table 2: δ
13

Corg and TOC measured after standard and new decarbonation of different initial sample aliquots. Carbonate content and δ
13

Ccarb 

have also been determined on the same samples. 

Formation Lithology Sample 

Decarbonation by chromium solution Standard decarbonation Carbonate content 

δ
13

CCr  

(‰) 
1σ 

TOCCr 

(wt%) 
1σ 

δ
13

CStd 

(‰) 
1σ 

TOCStd 

(wt%) 
1σ 

δ
13

CCarb 

(‰) 
1σ %Carb  1σ 

Tumbiana 
Laminated 

mudstone 
PDP1_88.2 -57.26 0.08 0.410 0.001 -52.70 0.40 0.21 0.03 -1.10 0.40 51.20 0.03 

Tumbiana Siltstone PDP1_68.9C -51.55 0.10 0.290 0.002 -44.90 0.40 0.09 0.03 0.40 0.40 63.80 0.03 

Tumbiana 
Homogeneous 

mudstone 
PDP1_69.5 -49.84 0.27 0.135 0.002 -44.50 0.40 0.11 0.03 0.60 0.40 40.40 0.03 

Mapepe 
Ferruginous 

chert 
BBDP_39.75 -15.78 0.43 0.034 0.001 -18.46 0.16 0.026 0.001 -0.59 0.01 9.94 0.05 

Mapepe 
Felsic 

volcanics 
BBDP_45.99 -27.65 0.96 0.019 0.004 -31.53 0.31 0.015 0.000 -0.18 0.04 0.46 0.01 

Mapepe 
Felsic 

volcanics 
BBDP_56.66 -25.94 0.33 0.028 0.004 -30.22 0.41 0.038 0.002 0.67 0.18 19.84 0.43 

Mendon 
Altered 

komatiite 
BBDP_160.12 -28.50 0.31 0.077 0.024 -25.79 1.05 0.02 0.01 -1.06 0.06 15.64 0.54 
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