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Abstract 
Several approaches have been used to simulate liquid jet atomization phenomena. Usually a modeling strategy is 
assumed for liquid jet morphology, interface capturing methods are used for primary atomization while dispersed 
methods such as Lagrangian particle-tracking approach may be used to model the final spray. Despite recent 
developments in numerical methods and computer performance, complete simulation of atomization and spray 
remains inaccessible for practical applications (e.g. Diesel/Gasoline injectors, Feedstock atomization on FCC riser 
reactors, among others). Therefore, an enhanced Euler-Lagrange Spray Atomization (ELSA) approach to the 
well-established LES turbulence model merged with an interface density equation for subgrid scales is introduced. 
Moreover, the method has been adapted for unstructured mesh within OpenFOAM framework. Furthermore, a 
coupling with Lagrangian particle tracking has been performed. Several validation stages are being tested by 
comparing experimental data (i.e. ECN Spray injectors) and DNS results against the proposed model. Finally, an 
industrial application case using a FCC injector® demonstrates the suitability of this novel model, based on good 
quantitative and qualitative agreement with experiments and DNS simulations. 
 
Introduction 
Fluid Catalytic Cracking (FCC) is a process where the crude oil is transformed into Gasoline, olefins and 
distillates. In this process, the liquid oil feed is atomized through a set of injectors connected circumferentially to a 
riser. Moreover, the oil droplets are vaporized and cracked within the riser upon contacting hot gases and 
catalyst, respectively [1]. The main goal in an injector design is to produce small size droplets in order to ensure 
quick vaporization and intimate contact with the catalyst [2].  
 
Most studies have assumed instant vaporization and uniform catalyst/oil ratio at the bottom of riser cross-
sectional area, based on the assumption that the cracking time scale is much longer than the time scale of 
interface transport in the feed injection zone [3, 4]. Some studies considered the vaporization rate of the liquid oil 
using two approaches, namely homogeneous and heterogeneous mode, in which both methods set the limits for 
the actual vaporization time [5]. When it comes to FCC riser modeling many researchers have focused on the 
upper and middle zone of the riser and just a few researchers on nozzles and feed atomization zone [6], mainly 
due to the high constraints using multidimensional models with chemical reactions, vaporization, and atomization 
within an industrial scale. Theologos [7] studied atomization effects on reactor performance and found that 
smaller droplets produce higher vaporization rates. Therefore, the need for a deeper understanding of the physics 
and atomization mechanisms involved within a FCC injector coupled with the feed injection zone urged to be 
tackled. The aim of this project is to numerically model the oil-steam mixing inside the FCC injector.   
 
Material and methods 
The objective of this work is to extend LES-ELSA method [8] into a general purpose solver within OpenFOAM® 
framework. A postulated transport equation of the interface density is implemented to describe the subgrid spray 
formation from interface wrinkling, ligament breakup, sheets to the breakup droplets. The interface capturing 
method is based on the transport of a liquid volume fraction (i.e.��). Accordingly, an additional compressive term 
is added to the equation to treat sharpened  �� gradients. In LES, a subgrid- scale (SGS) model accounts for the 
dynamics of the unresolved scales of motion which induces a subgrid scale (i.e.�����) that is not compatible with 

the numerical procedure used to capture the interface. The advantages of the proposed method is to disable the 
compressive term when ����� becomes important (i.e. when the interface fluctuations become significant at 

subgrid-scale). Two criterions are used to switch from interface capturing method to subgrid-scale or vice versa, 
based on Interface Resolution Quality (i.e. ��	, which is derived from the transport equation of the interface 
density, ELSA algorithm).  
 



ILASS – Europe 2016, 4-7 Sep. 2016, Brighton, UK 

2 

 

In order to upgrade LES-ELSA method a coupling with Lagrangian particle was performed. Lagrangian particles 
are created when liquid structures become droplets. The diameter and the number of particle are determined via 
liquid volume fraction and via the interface density equation. The Eulerian model has been linked to the 
Lagrangian phase using the liquid turbulent diffusion flux closure. 
 
Numerical Model 
Atomization by definition is the process of converting a liquid form to a free gaseous atom. In other words, it is the 
transformation of a bulk liquid into a spray of liquid droplets in a surrounding gas or vacuum [9]. Three different 
zones can be easily defined as shown in figure 1. The first region near the tip of the injector is called primary 
atomization. In this area the liquid volume fraction is close to one and the liquid surface topology is very complex. 
Here the liquid sheets experience longitudinal instabilities based on liquid and gas interactions (Kelvin-Helmholtz 
instabilities) which disturb the plane sheet in a sinusoidal stream-wise oscillation mode. the secondary 
atomization begins downstream of the flow, where instabilities turn into three dimensions, and the sheet breaks 
into smaller liquid packs, ligaments and bag-like structures. This zone ends with the formation of a spray of 
droplets (Dispersed zone) [11].  
 

 
Figure 1.  Atomization zones. Source: [10] 

 
The ELSA model, which is devoted to describe atomization flows with high Weber and Reynolds values, has been 
adapted to account for both primary and secondary atomization zone by using an Euler approach. In this model 
the two phase flow is considered as single phase flow composed of two species, liquid and gas, with highly 
variable density [12, 13]. The dispersion of the liquid phase is calculated by a liquid volume fraction balance 
equation (��) using a pondered inclusion of a ‘turbulent diffusion liquid flux’ [10] and interface capturing method 
(ICM) used in OpenFOAM®, as shown in equation 1. Such ponderation is ruled by an arbitrary parameter (
�) 
which depends on the interface resolution scale. 
 

       (1) 
 
The interface capturing method consists in defining an artificial and supplementary velocity field, (
�), in the 
vicinity of the interface, in such a way that the local flow steepens the gradient of the volume fraction and the 
interface resolution is improved [14]. The turbulent diffusion flux represents the transport of the liquid volume 
fraction induced by velocity fluctuations as shown in equation 2 by analogy with Fick’s law. [15]  
 

������ =
�(�����.������	�	�����������)	

��� = ��
� !

�������
���         (2) 

 
Where ‘"#$’ is the Schmidt number. It is important to note that this approach is valid only in the absence of a 
mean slip velocity between the phases [13]. The arbitrary parameter (
�) was set zero when the interface is poor-
resolved (Secondary atomization) and set to one otherwise (Primary atomization) as shown in figure 2. Two 
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criterions have been used to properly set, 
�, based on the Interface Resolution Quality (i.e. ��	, which is derived 
from the transport equation of the interface density [10]).      
 

 
Figure 2.  Ponderation parameter (
�). Source [10] 

 
The breakup process and the polydisperse spray distribution are accounted through the quantity, Σ	&('�(), mean 
interfacial area per unit of volume, as shown in equation 3. 
 
�)	&
�* +

�������)	& 		
��� = �

��� ,
��
� !

�)	&
���- +

)	&
.� /1 − )	&

2∗4        (3) 

 
The first criterion to define the weighted parameter, 
�, is given by the ratio of the minimum (resolved) interface 

(
5,7	8�((��)

9 ) over the actual interface calculated from Σ	&  equation. It can be seen on figure 3-a, the higher the 

interface fluctuations, the lower ��	2, which means instabilities have turned into three dimensional effect and 
secondary atomization zone is considered. The second criterion is grid-dependant, especially if LES turbulence 
modelling is applied using as a cutoff width ∆,	cubit root of the grid cell volume. ��	;, is defined taking into 
account the curvature of the interface, k. Figure 3-b displays the relationship between interface radius and cell 
size. The higher the interface radius, the better resolution of the interface, thus 
� is set to zero.   
 

             
Figure 3.  a) Interface resolution quality, Σ	& . b) Interface resolution quality, ��	; (curvature resolution). Source: [10] 

 
In this work, the two phases are assumed at constant density, <, so that turbulent fluctuations of mixture density 
<= are only due to volume fraction, as displayed in equation 4. 
 
<= = <��(= + <>(1 − �(= )          (4) 
 
Finally the filtered unsteady Navier-Stokes equations are presented. Instead of time-averaging, LES uses a 
spatial filtering operation to separate the larger and smaller eddies [16]. In equation 6, the last term on RHS are 
the subgrid scale stresses, just like the Reynolds stresses in the RANS momentum equations that arise as a 
consequence of time-averaging.  
 
�?&	�@���
�* + �?&	�����	�@���

��� = �A̅
��� +

�
��� ,C

��@���
���- +

�.D�
��� ,         	EFG = 
H
I����� − 
H&
I& = −C�>� ,�	�@���

��� +
�	�����
��D - +

(
J EFF . KFG (SGS Stresses) (5) 

 
These stresses are modelled using Smagorinsky-Lilly SGS model which are taken to be proportional to the local 
rate of strain of the resolved flow. The Smagorinsky-Lilly model builds on Prandtl’s mixing length model, and 
assumes that we can define a dynamic SGS viscosity, C�>�, which can be described in terms of one length scale 

∆, and one velocity scale and it is related to the kinematic SGS viscosity L�>�. As in the length mixing model, the 

velocity scale is expressed as the product of the length scale and the average strain rate of the resolved flow, 
∆. |�̅| [16], Thus, the SGS viscosity is evaluated as follows: 

a) b) 
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 C�>� = <(
�>�∆)5|�̅|          (6)   

 
It is worth mention that the previous variables such as liquid volume fraction, �, and the mean interface area per 
unit of volume Σ	& , were filtered as well, and the previous approach was implemented. 
 
Results and discussion 
 
Validation 
Before proceeding and applying LES-ELSA-Lagrange model to the FCC oil injector is necessary first to validate 
the algorithm by means of the experimental dataset developed by the ECN Group (Engine Combustion Network). 
Specifications of the injector are detailed in figure 4-a. In this work the injector chamber was chosen and meshed 
using OpenFOAM®’s utility, BlockMesh. The mesh consists of 1.4 million un-structured hexahedral cells, as 
shown in figure 4-b and figure 4-c.  
 

 
Figure 4.  a) ECN injector geometry and dimensions. b) Mesh view at inlet plane of the injector. c) 3-D Mesh of the injection 

chamber. Source: [10] 
 

Table 1 displays the liquid properties used to simulate the atomization process within the ECN injector chamber. 
In order to reach convergence and hence, get time-independent results, the liquid was allowed to cross four times 
the injector chamber completely in the axial direction. 

 
Table 1.  Liquid properties. Source [10] 

 Symbols Value 

Liquid Density <� (NO.'�J) 803 
Liquid Viscosity C�(NO. 	'�(P�() 3,2x10�UJ 

Surface Tension σ (V.'�() 2,54x	10�U5 
 

Once the results reach convergence, the liquid volume fraction is plotted on plane slice and as iso-surface 
coloured by velocity as displayed in figure 5-a, and figure 5-b, respectively. It can be seen on both pictures the 
difference between the resolved scale near the exit of the injector (inlet of the injector chamber) and the poorly-
resolved scales downstream of the flow where the subgrid fluctuations become important. At the inlet there is a 
clear definition of the interface, thanks to the interface capturing method. On the other hand, downstream of the 
flow, the turbulent diffusion liquid flux dominates, and it is perceived the beginning of the mixing of the phases as 
the liquid volume fraction decreases. For validation purpose, two radial planes were located at 500 and 1500 
microns from the inlet of the injector tip as displayed in figure 5-c, in order to calculate the surface liquid velocity, 
(
F|2), as it moves away radially from the centerline of the injector. 

 

 
Figure 5.  a) Liquid volume fraction. b) Iso-Surface of 0.5 liquid volume fraction coloured by Velocity. c) Radial probe planes 

located in longitudinal axis (source [17]).   

a) b) c) 

a) b) 

c) 



ILASS – Europe 2016, 4-7 Sep. 2016, Brighton, UK 

5 

 

 
Figure 6 exhibits the comparison of the averaged surface liquid velocity, (
F|2), on the two radial planes 
highlighted above, from Experiments, DNS, New DNS, and ELSA-LES + Lagrange equation for droplets velocity. 
Firstly the difference between DNS and New DNS is based on how the convective term is solved in the volume 
fraction and momentum equations. Since the latter relies on the mixture density (equation 4), the momentum 
equation can be recast, so the exact convective term can also appear, plus additional terms. This convective term 
is treated differently for DNS cases. On the contrary, New DNS solves consistently [18]. Secondly the 
experimental results were taken using kind of PTV measurements, based on the structure detected techniques. 
Those velocities cannot be captured by the PTV instrument within the liquid jet core, as shown in Figure 5-c, and 
figures 6-a/6-b. Consequently in the absence of experimental dataset from the centerline of the liquid jet until 100-
120 µm, New DNS results were used. Figure 6 displays good agreement between New DNS and Experiments 
from 100 to 200 µm (figure 6-a) and from 200 to 400 µm (figure 6-b), which set the limits of New DNS validated 
results. Comparison above upper limits fails to predict dispersed zone flow field mainly due to unsufficient mesh 
refinement using New DNS. Therefore the available validation range is increased from the centerline up to 700 
µm approximately by combining both Experimental and New DNS results. Quantitatively speaking on one hand, 
figure 6-a clearly exhibits the differences from the centerline of the liquid jet up to 100 µm radially, between the 
results from ELSA’s and New DNS. On the other hand, beyond 100 µm (200 µm, figure 6-b), ELSA tends to 
underestimate the liquid velocity as compared to New DNS and Experimental results. Such logical results arrive 
from the formation of tiny droplets beyond 100-200 µm, thus un-resolved scales become relevant as we move 
outward radially. ELSA-LES + Lagrange model accounts properly for the droplets formation in the dispersed spray 
zone until certain extent. However, the results presented so far are not conclusive, and they need further 
research. It is believed when droplets are created, there is a relative velocity between the phases at the interface, 
instead of an independent flow field for each phase.  

 

 
Figure 6.  Left, liquid velocity located 250 microns from the inlet. Right, liquid velocity located 1500 microns from the inlet.  

 
Application 
As stated above, FCC risers involved complex physics, such atomization, vaporization and chemical reactions. In 
this work, we study the atomization process within a FCC injector as displayed in figure 7-a.  
 

                 
Figure 7.  a) FCC injector geometry. b) FCC injector model and boundary conditions. 

 
 

a) b) 
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Figure 8.  a) 3D mesh of the FCC injector. b) Inner cells for the FCC injector model 

 

In figure 7-b it can be seen the boundary conditions applied to the FCC injector model, hence making it suitable 
for ELSA algorithm based on high Reynolds and Weber numbers. The mesh was done with an open-source 
library for mesh generation implemented within OpenFOAM® framework, named cfMesh. The library supports 
generation of meshes of arbitrary cell types, and the currently implemented workflows generate Cartesian type of 
polyhedral in both 2D and 3D space, tetrahedral and arbitrary polyhedral [19] as exhibited in figure 8-a. In figure 
8-b, it is shown the unstructured hexahedral mesh with inflation layers adjacent to the wall, with a total of 5 million 
cells.  
 
Firstly to evaluate the mesh and get quickly robust and computationally less expensive results than LES, a time-
averaging of the governing equations of the Eulerian solver in ELSA was used. Figure 9-a shows, the results of 
gradients in the Stream-wise direction of the axial velocity which reveals wall-bounded effects in the phase mixing 
zone, with high gradients near the wall. Phenomena never encountered in ECN injectors. Based on the fact, the 
FCC injector model was meshed using the same height of the first cell adjacent to wall, in figure 9-b exposes the 
values of Y+, which indicates that highest velocities in the FCC injector are located near the wall, therefore 
requiring a more accurate turbulence model with a better mesh quality (sensitivity analysis) 

 

      
Figure 9. a) Gradients in the Stream-wise direction of the axial velocity. b) yPlus. 

 
Figure 10-a illustrates the liquid volume fraction using an improved mesh and ELSA-LES model without the 
interface capturing method. The two-phase flow within the FCC injector demonstrates that there is a liquid core 
flow and annulus gas flow compressed by the latter inside the injector. This concentric behavior pushes the gas to 
wall, hence increasing its stream-wise velocity near the wall. Figure 10-b shows the velocity profile in the 
transverse cross-section which verifies the highest velocities near the wall.    
 

 
Figure 10.  a) Liquid Volume Fraction. b) Velocity profile in the ‘A’ transverse cross-section. 

 
Conclusions 
An enhanced ELSA-LES model implemented within OpenFOAM® framework was presented. The liquid interface 
capturing method has been handled a long with the turbulent diffusion liquid flux by a pondered parameter, 
�, 
which depends on the interface resolution and curvature of the interface. Moreover, a Lagrangian approach was 
studied to account for the spray atomization zone, where droplets are created. Validation has been carried out 

b) 

A 

A 

a) 

a) b) 

a) b) 
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based on experimental dataset and DNS simulation. Results have not yet been conclusive due to certain 
parameter sensitivity when it comes to creating droplets. Authors strongly advise further research in the spray 
zone as the one being held in our facilities. Having modelled FCC injectors, it has been demonstrated the wall-
bounded turbulent effects on the two-phase flow, where the highest velocities are located near the wall, thus 
increasing the phase mixing.   
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Nomenclature 
C�>� Dynamic SGS viscosity [Pa s]  

< Density [NO/'J] 
∆ Cutoff width [m] 
S Strain rate [1/s] 
EFG Sub-grid-scale stresses [Pa] 


 Velocity [m/s] 
Z Pressure [Pa] 
Sch Schmidt number  
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