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ABSTRACT
We have investigated the toroidal analogue of ellipsoidal shells of matter, which are of great
significance in Astrophysics. The exact formula for the gravitational potential �(R, Z) of a shell
with a circular section at the pole of toroidal coordinates is first established. It depends on the
mass of the shell, its main radius and axial ratio e (i.e. core-to-main radius ratio), and involves
the product of the complete elliptic integrals of the first and second kinds. Next, we show that
successive partial derivatives ∂n+m�/∂Rn∂Zm are also accessible by analytical means at that
singular point, thereby enabling the expansion of the interior potential as a bivariate series.
Then, we have generated approximations at orders 0, 1, 2, and 3, corresponding to increasing
accuracy. Numerical experiments confirm the great reliability of the approach, in particular
for small-to-moderate axial ratios (e2 � 0.1 typically). In contrast with the ellipsoidal case
(Newton’s theorem), the potential is not uniform inside the shell cavity as a consequence of
the curvature. We explain how to construct the interior potential of toroidal shells with a thick
edge (i.e. tubes), and how a core stratification can be accounted for. This is a new step towards
the full description of the gravitating potential and forces of tori and rings. Applications also
concern electrically charged systems, and thus go beyond the context of gravitation.

Key words: gravitation – methods: analytical – methods: numerical.

1 IN T RO D U C T I O N

As elementary constituents of any model of slowly rotating star,
thin homoeoids, i.e. infinitely thin ellipsoidal shells, are of major
mathematical importance in Astrophysics (e.g. Binney & Tremaine
1987). They are equipotential surfaces, as revealed already by
Newton’s findings (Kellogg 1929). In addition, the net force inside
any solid ellipsoid (made of self-similar homoeoids), perpendicular
to its main axis, happens to be linear with the cylindrical radius
R, exactly as the centrifugal force does. As a consequence, any
homogenous ellipsoid in rigid rotation around its main axis is a
natural figure of equilibrium, as formulated by Maclaurin in the
18th century (Chandrasekhar 1969).

In this article, we investigate the toroidal analogue of thin
ellipsoidal homoeoids. While tori, discs, and rings are commonly
observed over a vast range of scales in the Universe (around
planets, thin and thick discs around forming and evolved stars,
in galaxies), this topic has received almost no attention yet.
Besides the physics of gravitation, various domains of science are
concerned by toroidal structures: electrostatics (Andrews 2006),
plasma physics (Evangelidis 1981; Throumoulopoulos & Tasso
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2000), nuclear physics (Wong 1972), nano-structure physics, and
biology (Kuyucak, Hoyles & Chung 1998).

The determination of gravitational attraction is a complex techni-
cal task, especially for toroids (see e.g. Cohl et al. 2000; Bannikova,
Vakulik & Shulga 2011; Kondratyev & Trubitsyna 2016; Majic
2018). Here, we focus on the potential in the cavity of a homo-
geneous toroidal shell with a circular main radius and a circular
core section. It is shown that not only the potential but all the partial
derivatives can be expressed in terms of products of elliptic integrals
of the first and second kinds at the pole of toroidal coordinates. As
a consequence of this exceptional property, the interior potential
can be expanded as a bivariate series of R and Z, similar to the
classical Taylor expansion. We derive the leading terms and show
the performance of this approach, which is particularly good for
shells with a small axial ratio e. We find that the interior potential
is roughly linear with the cylindrical radius and weakly sensitive to
the altitude Z, in contrast with ellipsoidal homoeoids.

The article is organized as follows. In Section 2, we remind the
potential of a massive loop and show why the pole of toroidal
coordinates plays a special role for the toroidal shell with a circular
core section. The exact formula for the potential at the pole is
established in Section 3. The corresponding acceleration is derived
in Section 4. We then generate a two-term expansion of the potential
around the pole and valid in the shell cavity. This is the aim of
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Figure 1. The massive circular loop (blue). Its radius is a and its centre is
at (0, z). The potential at r is given by equation (1); see also Fig. 2.

Figure 2. Gravitational potential � of the massive loop as obtained from
equation (1). The radius of the loop is a and it is positioned at z = 0 (blue
dot); see also Fig. 1. The potential diverges when R → a and Z → z.

Section 5. We illustrate the method for a shell having an axial
ratio of e = 0.1. In this case, the interior potential is precise up to
four digits. We show in Section 6 how to proceed to next orders.
Two additional terms are explicitly derived. The performance of
the expansion versus e ∈ [0, 1] is discussed in Section 7. A short
driver program is given in appendix. In Section 8, we determine the
potential at the surface of the shell and consider the case of shells
with a thick edge. We also propose an empirical law for the exterior
potential, which is reliable for e2 � 1. The last section is devoted
to a large discussion about the implementation of the formula, and
in particular the gain with respect to a pure numerical treatment.
We remind the importance of analytical solutions to understand the
physics of systems hosting a massive (self-gravitating) torus. We
end with a few remarks and perspectives.

2 LO O P P OT E N T I A L A N D T H E PO L E

2.1 The massive loop

We consider a massive circular loop of matter with radius a and
mass 2πaλ, as shown in Fig. 1. The gravitational potential of this
system is accessible at any point r of space by integration of the
Green function 1/|r − r ′| over the polar angle φ. In cylindrical
coordinates (R, Z), the formula is (e.g. Kellogg 1929; Durand 1953)

�(R,Z) = −2Gλ

√
a

R
kK(k), (1)

where

K(k) =
∫ π

2

0

dx√
1 − k2 sin2 x

(2)

Figure 3. Nominal configuration (half-plane Z > 0 only) leading to a
constant value of the modulus k in equation (3). This situation is achieved
for all points (a, z) belonging to the circle C (blue line) and for (R, Z) = (Rp,
0), which is precisely the pole (red dot) of the toroidal coordinates.

is the complete elliptic integral of the first kind,

k = 2
√

aR√
(a + R)2 + (Z − z)2

∈ [0, 1], (3)

is the modulus, and z is the altitude of the loop. This form assumes
that the loop axis is confounded with the Z-axis. The potential is
displayed versus R and Z in Fig. 2. It is logarithmically singular as R
→ a and Z → z (i.e. k → 1) since K(k) → ln 4

k′ (Byrd & Friedman

1954; Fukushima 2016), where k′ = √
1 − k2 is the complementary

modulus.
Any axially symmetrical system can be built by assembling

co-axial loops, and the total potential is obtained by summing
in equation (1) over the given distribution. We easily understand
that the presence of the special function renders the accounting
process (be discrete or continuous) somewhat cumbersome. Hence,
a question arises: Are there conditions and configurations under
which the modulus k would be a constant in equation (1)? If we
rewrite equation (3) in the following form:[

a − R

(
1 + k′2

k2

)]2

+ (z − Z)2 =
(

2Rk′

k2

)2

, (4)

we see that points (a, z) basically belong to a circle, denoted by C.
The centre C(Rc, Zc) of this circle is at{

Rc = R 1+k′2
k2 ,

Zc = Z,
(5)

and its radius is

b = R
2k′

k2
. (6)

It is shown in Fig. 3. We conclude that k is constant alongC, provided
R/Rc and Z/Rc are fixed. We will see below which point of space
is concerned. By varying k in the allowed range, one gets a series
of circles that are not concentric and do not have the same radius.
For k = 0, both Rc and b are infinite, and the circle is tangent to the
vertical axis at the origin. Conversely, for k = 1, the circle has null
radius and (R, Z) coincides with the centre C.

2.2 Link with toroidal coordinates

In axial symmetry, the toroidal coordinates (η, ζ ) are linked to the
cylindrical coordinates by⎧⎨
⎩

R = Rp
sinh η

cosh η−cos ζ
,

Z = Rp
sin ζ

cosh η−cos ζ
,

(7)
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Figure 4. Toroidal coordinates (η, ζ ) shown in the (R, Z) plane in the form
of contour lines. Lines of constant η (plain lines) are non-concentric circles.
The shell section is one of these (blue), i.e. η = ηc. The pole (or focal ring)
is at R = Rp (red). At that point, k is constant in equation (3) for any point
(a, z) ∈ C.

where Rp > 0 corresponds to the pole (or focal ring). This point,
which belongs to the radial axis, is singular in the sense that R → Rp

when η → ∞. By eliminating ζ in equation (5), we see that lines of
constant η are non-intersecting circles surrounding the pole. In terms
of cylindrical coordinates (a, z), the equation of a given circle is

(
a − Rp coth η

)2 + z2 =
(

Rp

sinh η

)2

, (8)

where (Rp coth η, 0) are the cylindrical coordinates of its centre
and Rp/sinh η is the radius. This is summarized in Fig. 4. A quick
inspection of equation (4) shows that equation (8) is nothing but
circle C (C,b) met above provided⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R ≡ Rp,

Z ≡ 0,

k2 = 2 sinh η

cosh η+sinh η
,

or coth η = 1+k′2
k2 .

(9)

In summary, the circle C (C,b) is a particular line of constant η,
whose value is denoted by ηc in the following (the region inside the
circle corresponds to η > ηc). We can therefore state that for any
loop with parameters (a, z) ∈ C, the modulus k is constant at the
pole of toroidal coordinates, and only at that point.

3 POT E N T I A L AT TH E P O L E

3.1 A new formula

We now consider a continuous concatenation of co-axial massive
loops, each with radius a and altitude z, such that (a, z) ∈ C. This
forms a toroidal shell with circular section and core radius b (see
again Figs 3 and 4). In cylindrical coordinates, the equation of C is
basically of the form{

a = Rc + b cos θ,

z = b sin θ,
(10)

Figure 5. Gravitational potential of the toroidal shell (in units of GM/Rc)
obtained by the direct estimate of the integral in equation (11). The R- and
Z-axes are in units of Rc. The normalized core radius (or axial ratio) is
b/Rc = 0.1, which corresponds to p ≈ 0.4264, kc ≈ 0.9987, and ηc ≈ 2.993.
Also shown are the shell section (blue line), its centre C (blue dot), and
associated pole (red dot); see also Figs 3 and 4.

where θ ∈ [0, 2π]. It follows from equation (1) that the total potential
of the shell is given by the integral

�(R, Z) = −2G

∫ 2π

0



√
a

R
kK(k)bdθ, (11)

where 
 is the surface density.1 If all loops have the same mass per
unit length, then 
 is a constant.

An example of direct numerical integration of equation (11) is
given in Fig. 5 for a homogeneous toroidal shell with an axial ratio
b/Rc = 0.1, which corresponds to ηc ∼ 2.993. As the quadrature
scheme, we use the trapezoidal rule with Nθ = 1025 equally spaced
nodes in θ (this set-up is not critical). The imprint of the shell surface
is clearly visible. In the exterior domain (i.e. η < ηc), the potential
decreases in absolute when one moves away from the shell (i.e.
η → 0). Inside the whole cavity (η > ηc), the potential gradually
increases with R. From the above statement (see Section 2), we see
that k (and then any function of k) can be taken out of the integral if
(R, Z) = (Rp, 0). So, equation (11) becomes

ψ(Rp, 0) = −2G
b√
Rp

kcK(kc)
∫ 2π

0



√
adθ,

≡ �p, (12)

where a is given by equation (10a) and k has been set to kc. We
see the remaining integral is analytical for a wide variety of angle-
dependent surface densities 
(θ ). The result is straightforward for
the homogeneous shell. We actually have∫ 2π

0

√
adθ = 2

√
Rc + b

∫ π

0

√
1 − p2 sin2 αdα,

= 4
√

Rp
E(p)√

p′ , (13)

where

p2 = 2e

1 + e
∈ [0, 1] (14)

is the ratio of the core diameter to the outer radius,

e = b

Rc
∈ [0, 1] (15)

1The integral bounds can be modified if, instead of a full circular section,
we consider an arc.
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is the axial ratio, p′ =
√

1 − p2 is the complementary modulus,
and

E(k) =
∫ π/2

0

√
1 − k2 sin2 xdx (16)

is the complete elliptic integral of the second kind. So, equation (12)
becomes

�p = −8G
bkcK(kc) E(p)√
p′ . (17)

We are not aware that this expression has already been reported in
the literature. Clearly, K corresponds to the main curvature (radius
Rc) while E is associated with the shell circular section (radius b).
Note that, when p → 0, e → 0 while Rp → Rc. In this case, the
shell tends to the loop, equation (17) matches equation (1) and its
mass converges to 2πλa. At the opposite, for p → 1, the shell has
infinite radius, mass, and potential.

3.2 Equivalent forms

From equations (5a), (6), (14), and (15), we see that p is linked to
kc through the following relations:

p = 2
√

k′
c

1 + k′
c

, (18)

and

p′ = 1 − k′
c

1 + k′
c

, (19)

meaning that equation (17) can take equivalent forms by considering
modulus transformations (see Appendix A). From equation (A1),
we can eliminate kc, and we find

�p = −16G
bK(p′)E(p). (20)

Since the mass of the toroidal shell is

M = 4π2
bRc, (21)

we can easily rewrite the potential as a function of GM/Rc (or even
GM/Rp). This is for instance

�p = −GM

Rc

4

π2
K

(√
1 − e

1 + e

)
E

(√
2e

1 + e

)
. (22)

If we can eliminate E(p) in equation (17) by using equation (A2),
we find

�p = −8G
bK(kc)
[
2E(k′

c) − kc
2K(k′

c)
]
. (23)

In order to anticipate a little bit, we introduce the four-vector

u(k) =

⎛
⎜⎜⎝

K(k)K(k′)
K(k)E(k′)
E(k)K(k′)
E(k)E(k′)

⎞
⎟⎟⎠, (24)

whose components are plotted versus k in Fig. 6. We see that
equation (23) reads

�p = −G
b f 00(kc) · u(kc), (25)

where

f 00(k) = 8

⎛
⎜⎜⎝

−k2

2
0
0

⎞
⎟⎟⎠. (26)

Figure 6. The four components of the basis vector u defined by equa-
tion (24) versus the modulus k.

Note that we can expand the complete elliptic integrals as a function
of k in extreme regimes where k → 0 and k → 1. Then �p is only
a function of kc and ln k′

c.

4 AC C E L E R AT I O N AT TH E P O L E

We can make the same analysis for the gravitational acceleration.
Since the pole belongs to the R-axis, the vertical acceleration is zero
by symmetry. The formula for the radial acceleration caused by the
loop can be determined from equation (1). The classical form is
(Durand 1953; Huré 2005)

− ∂�

∂R
= Gλk

√
a

R3

[(
1 + a − R

2a

k2

k′2

)
E(k) − K(k)

]
. (27)

To get the acceleration due to the toroidal shell, we have to multiply
this expression by 
bdθ /λ, and to integrate over θ ∈ [0, 2π]. At the
pole, any function that depends only on k can be carried out of the
integral, which requires to set k = kc (see Section 2). We then find,
again assuming 
 constant,

− ∂�

∂R

∣∣∣∣
Rp

= G
kc√
Rp

3

[(
1 + k′

c
2

2k′
c

2

)
E(kc) − K(kc)

]
b

∫ √
adθ

− G
√
Rp

kc
3

2k′
c

2 E(kc)b
∫

dθ√
a

. (28)

The first integral has already been met; see equation (13). The
second one can be easily calculated. We find∫ 2π

0

dθ√
a

= 2√
Rc + a′

∫ π

0

dα√
1 − p2 sin2 α

,

= 4√
Rp

√
p′K(p) (29)

and so equation (28) becomes

− ∂�

∂R

∣∣∣∣
Rp

= 4Gkc
b

Rp

{[(
1 + k′

c
2

2k′
c

2

)
E(kc) − K(kc)

]
E(p)√

p′

− kc
2

2k′
c

2 E(kc)
√

p′K(p)

}
. (30)

By using equations (A2) and (A3), we can eliminate both K(p)
and E(p). The final expression then depends only on E and K
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Figure 7. Gravitational potential of the toroidal shell in units of GM/Rc at
the equatorial plane (black line), at R = Rf (red line) and at R = Rc (blue
dots). The axes are in units of Rc. The conditions are the same as for Fig. 5.

evaluated at kc and k′
c, and it can be put in a form similar as

equation (25), namely

∂�

∂R

∣∣∣∣
Rp

= −G
b

Rp
f 10(kc) · u(kc), (31)

where

f 10(k) = 4

k′2

⎛
⎜⎜⎝

k2k′2

−2k′2

−k2

1 + k′2

⎞
⎟⎟⎠. (32)

As done for the potential, we can write this term as a function of
the mass of the shell by using equation (21).

5 RO U T E TO T H E IN T E R I O R POT E N T I A L

There are three striking properties of � inside the cavity of the
toroidal shell where η ≥ ηc. First, the impact of variable Z is very
weak (almost not visible by eyes), especially if the core radius
is small. Secondly, � is an increasing function of R as already
mentioned. The gravitational acceleration is oriented towards the
origin of coordinates for R ≥ Rc − b. Thirdly, the variation of �

with R is very close to linear. Proofs are given in Fig. 7, which shows
� at the equatorial plane (i.e. for Z = 0), at R = Rp and at R = Rc for
the shell considered in Fig. 5. The contrast with the ellipsoidal shell
is therefore evident: the interior potential is not a constant but has
a small positive gradient with R due to the curvature around the Z-
axis (e.g. Kellogg 1929; Binney & Tremaine 1987). Actually, for an
observer standing at the inner edge of the shell and looking towards
the origin, matter is present at relatively short separations behind
(the outer edge) and in front (opposite inner and outer edges). In
contrast, at the outer edge, there is no matter behind and separations
are larger. The potential well is therefore deeper at the inner edge,
which is rather intuitive.

It is tempting to elaborate some kind of a fit. We could produce
sets of data by varying R/Rc, Z/Rc, and e, but it seems more powerful
to consider a bivariate series, resembling the Taylor series, i.e.

�(R,Z) = �p + (R − Rp)
∂�

∂R

∣∣∣∣
Rp

+ Z
∂�

∂Z

∣∣∣∣
Rp

+ 1

2
(R − Rp)2 ∂2�

∂R2

∣∣∣∣
Rp

+ (R − Rp)Z
∂2�

∂Z∂R

∣∣∣∣
Rp

+ . . . ., (33)

Figure 8. The decimal logarithm of the relative error between � estimated
by direct integration and �p (numbers at the top, from left to right, refer
to the min., max. and mean values, respectively). The shell is the same as
for Fig. 5, i.e. e = 0.1. The axes are in units of Rc. The computations are
restricted to the interior cavity where η ≥ ηc.

since the first terms have already been calculated. Any expan-
sion is, however, necessarily limited to the cavity and cannot
be valid in the whole physical space. Actually, � is continu-
ous but not differentiable at the surface of the shell. Besides,
the potential must satisfy the Laplace equation in the cavity,
namely

∂2�

∂R2
+ 1

R

∂�

∂R
+ ∂2�

∂Z2
= 0, (34)

which is a priori not automatic with the above form.

5.1 Zero-order approximation

We start with the crudest approximation, i.e.

�(R, Z) ≈ C0 = const., (35)

in which case equation (34) is trivially fulfilled. By constant, we
mean that the potential is uniform inside the cavity. Obviously, this
constant value is a function of the shell parameters 
, b, and kc (or
e). We then have C0 = �p. We have checked this approximation by
comparing �p to values (hereafter ‘reference values’) obtained by
the direct integration of equation (11); see Section 3. The conditions
are the same as for Fig. 5. Data have been produced in the cavity
only, which is easily done in toroidal coordinates by varying η

in the range [ηc, ∞] and ξ ∈ [0, 2π]. The logarithmic deviation
is shown in Fig. 8 as a function of R/Rc and Z/Rc. As expected,
the potential given by equation (35) is underestimated close to the
inner edge, and overestimated close to the outer edge. We see,
however, that the agreement is globally correct and even better
than expected. The mean relative deviation is ∼10−2.23, i.e. less
than 1 per cent. We see that the precision is nominal not only
around the pole but also along two directions |θ | ∼ π/2. If the core
radius is decreased, the acceleration also decreases, the interior
potential is flatter, and the approximation becomes even better
(see Section 7).
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Figure 9. The legend is the same as for Fig. 8, but the approximation is
given by equation (36).

5.2 First-order approximation (the curvature effect included)

In the absence of any variation in Z, the radial contribution must
vanish in equation (34), which means

�(R,Z) ≈ C0 + C1 ln R, (36)

where C0 and C1 are to be determined. In particular, at the pole, we
have{

�p = C0 + C1 ln Rp,

− ∂R�|Rp
= −C1

Rp
.

(37)

Since �p and − ∂R�|Rp
are known (see Sections 3 and 4), this set of

equations is easily solved for C0 and C1, making equation (36) fully
operational. We have compared this new approximation to reference
values under the same conditions as above. Fig. 9 displays the
decimal logarithm of the relative error. We notice that the precision
is improved by more than two orders of magnitude, with a mean
deviation of ∼10−4.70. It is nominal around the pole, as well as
in four directions |θ | ∼ π/4 and 3π/4. Note that the quasi-linear
behaviour of � in the cavity is especially marked for shells with
a small axial ratio. This is explained by expanding ln R around Rp,
which gives

� ≈ �p + C1
R − Rp

Rp
. (38)

6 N E X T O R D E R S

6.1 Second-order approximation

The variation of � inside the cavity is much more complex, with a
sensitivity to variable Z (in fact, to Z2 due to equatorial symmetry).
If we allow for quadratic contributions, the vacuum solution is of
the form

�(R,Z) ≈ C0 + C1 ln R + C2

(
R2 − 2Z2

)
, (39)

where C0, C1, and C2 are three quantities to be determined.2 At the
pole, we have{

�p = C0 + C1 ln Rp + C2Rp
2,

− ∂R�|Rp
= −C1

Rp
− 2C2Rp,

(40)

and we see that a third equation is needed to fix C2. This is done
by calculating the vertical gradient of the vertical acceleration,
namely

4C2 = − ∂2ψ

∂Z2

∣∣∣∣
Rp

. (41)

Alternatively, we could also consider ∂2
R2� (since � is harmonic,

derivatives with respect to Z and R are linked together; see below).
We then reiterate the procedure described in Sections 3 and 4. The
vertical acceleration due to the circular loop is given by (Durand
1953; Huré 2005)

− ∂ψ

∂Z
= Gλ(z − Z)

2
√

aR3

k3E(k)

k′2 , (42)

and so the second derivative writes

− ∂2ψ

∂Z2
= Gλ

2
√

aR3

{
−k3E(k)

k′2 + (z − Z)
∂

∂k

[
k3E(k)

k′2

]
∂k

∂Z

}
.

(43)

From equation (3), we find

(z − Z)
∂k

∂Z
= (z − Z)2 k3

4aR
. (44)

Besides, from equation (B1) of Appendix B, we get

∂

∂k

[
k3E(k)

k′2

]
= k2

k′4 L(k), (45)

where we have defined

L(k) = 2(1 + k′2)E(k) − k′2K(k), (46)

for convenience. To get ∂2
Z2� for the toroidal shell, we just have to

multiply equation (43) by 
bdθ /λ and to integrate over θ . In this
process, a and z are still given by equation (10). The complexity
of the calculus is apparent since, at the pole, k is a constant (see
Section 2). Only terms with a and z are therefore retained in the
integral, and we set k = kc. We then have

− ∂2ψ

∂Z2

∣∣∣∣
Rp

= Gb

2
√

Rp
3

{
−kc

3E(kc)

k′
c

2

∫

dθ√

a

+ b2

4Rp

kc
5

k′
c

4 L(k)
∫


 sin2 θdθ

a
√

a

}
, (47)

where the term sin 2θ comes from (z − Z)2, evaluated at the pole.
The first integral has already been employed above, and the second
one is analytical, namely∫ 2π

0

sin2 θdθ

a
√

a
= 8

√
Rc + a′3

∫ π

0

cos2 α sin2 αdα√
1 − p2 sin2 α

3

= 16√
Rp

3

√
p′3

p4

[
(1 + p′2)K(p) − 2E(p)

]
. (48)

After some algebra and tedious calculus, we find

− ∂2ψ

∂Z2

∣∣∣∣
Rp

= 2Gbkc
3

Rp
2k′

c
2

{
−E(kc)

√
p′K(p)

+ kc
2

4k′
c

2√p′ L(kc)
[
(1 + p′2)K(p) − 2E(p)

]}
, (49)

which leads to C2 from equation (41), and subsequently to C0 and
C1 from equation (40). As done before, we can express K(p) and
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Figure 10. The legend is the same as for Fig. 8, but the approximation is
given by equation (39).

E(p) as functions of K(k′
c) and E(k′

c), and put the result in the form
of a scalar product. The final formula is

∂2ψ

∂Z2

∣∣∣∣
Rp

= −G
b

Rp
2 f 02(kc) · u(kc), (50)

where

f 02(k) = 2
k4

k′4

⎛
⎜⎜⎝

−k′2

k′2

2 + k′2

−2 − 2k′2

⎞
⎟⎟⎠, (51)

while u is given by equation (24). Again, this derivative can be
expressed as a function of the mass of the shell and Rc or Rp. From
equations (31), (34), and (49), we deduce

∂2ψ

∂R2

∣∣∣∣
Rp

= −G
b

Rp
2 f 20(kc) · u(kc), (52)

where

f 20(k) = −f 02(k) − f 10(k). (53)

Fig. 10 displays the decimal logarithm of the relative error
between equation (39) and reference values. The numerical set-up is
unchanged. We see that the deviation is now reduced by almost two
orders of magnitude, with a mean value of ∼10−6.47. The precision
is nominal in the vicinity of the pole, as well as in now six directions
|θ | ∼ π/6, 3π/6, and 4π/6.

6.2 Third-order approximation

We can in principle continue the process up to the desired order, say
N + 1 ≥ 2. The expansion is then supplemented with a new set of
terms

C2N

(
R2N +

N∑
i=1

αi,N−iR
2N−2iZ2i

)
, (54)

where the coefficients αi, N − i are found from equation (34), and
the leading quantity C2N is determined from a Nth-order partial
derivative of the potential evaluated at the pole, which can be put

into the form

∂n+m�

∂RnZm

∣∣∣∣
Rp

= − G
b

Rp
n+m f nm(kc) · u(kc), (55)

where N + 1 = m + n, where m ≥ 0, n ≥ 0, and f nm(k) is a
four-vector whose components are rational functions of k. This is
the most tricky part of the method. Here are the results for N = 2.
Including quadratic terms, the vacuum potential has the form

ψ(R, Z) ≈ C0 + C1 ln R + C2

(
R2 − 2Z2

)
+C4

(
R4 − 8R2Z2 + 8

3
Z4

)
, (56)

where there are now four unknowns involved. At the pole, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�p = C0 + C1 ln Rp + C2Rp
2 + C4Rp

4

− ∂R�|Rp
= −C1

Rp
− 2C2Rp − 4C4Rp

3,

− ∂2ψ

∂Z2

∣∣∣
Rp

= 4C2 + 16C4Rp
2 ,

(57)

which can be solved if we can add a new equation. We see that C4

is accessible from a cross-derivative, namely

− 32C4Rp = ∂3ψ

∂R∂Z2

∣∣∣∣
Rp

, (58)

which can be calculated from equation (43). We actually have

− ∂3ψ

∂R∂Z2
= 3Gλ

4
√

aR5

k3E(k)

k′2 − Gλ

2
√

aR3

∂

∂k

[
k3E(k)

k′2

]
∂k

∂R

− 5Gλξ 2

16
√

a3R7

k5

k′4 L(k) + Gλξ 2

8
√

a3R5

∂

∂k

[
k5L(k)

k′4

]
∂k

∂R
.

(59)

From equation (3), we get

∂k

∂R
= k3

4R

(
1 + k′2

k2
− R

a

)
, (60)

and we find (see also Appendix B)

∂

∂k

[
k5L(k)

k′4

]
= k4

k′6 [4(1 + k′2)L(k) − 9k′2E(k)], (61)

with the help of equations (B1) and (B2). At the pole, we set R =
Rp, Z = 0, and k = kc. We see that two integrals involving 1/

√
a3

and z2/
√

a5 appear. Still assuming 
 = const., we have∫ 2π

0

dθ

a
√

a
= 2

√
Rc + a′3

∫ π

0

dα√
1 − p2 sin2 α

3 ,

= 4√
Rp

3

E(p)√
p′ , (62)

and∫ 2π

0

sin2 θdθ

a2
√

a
= 8

√
Rc + a′5

∫ π

0

cos2 α sin2 αdα√
1 − p2 sin2 α

5

= 16
√

p′5√
Rp

5

1

3p4p′2
[
E(p)(1 + p′2) − 2p′2K(p)

]
,

(63)

respectively. So, the right-hand side of equation (58) is

∂3ψ

∂R∂Z2

∣∣∣∣
Rp

= −G
b

Rp
3 f 12(kc) · u(kc) , (64)
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Figure 11. The legend is the same as for Fig. 8, but the approximation is
given by equation (56).

Figure 12. Mean deviations between the direct numerical integration of
equation (11) and the four approximations versus the axial ratio e of the
shell: zero-order is for equation (35), first-order for equation (36), second-
order for equation (39), and third-order for equation (56).

where we have applied, as above, modulus transformations, and

f 12(k) = 2k4

3k′6

⎛
⎜⎜⎝

k′2(−4 + 3k′2 − 2k′4)
k′2(4 − k′2 + 4k′4)

8 − 7k′2 − 2k′4 + 4k′6

(1 + k′2)(−8 + 11k′2 − 8k′4)

⎞
⎟⎟⎠. (65)

The third-order approximation is then ready to be used since C0,
C1, C2, and C4 are found from equations (57) and (58). The reader
can find in Appendix C a short driver program written in Fortran
90 to compute � from equation (56). The comparison of this new
approximation with direct numerical integration is shown in Fig. 11.
The conditions are the same as above. The precision is increased
compared to second-order, by two more digits typically. In the
cavity, the mean deviation is now ∼10−8.00. The pattern is similar:
the smallest deviations are found around the pole and along eight
directions defined by |θ | ∼ π/8, 3π/8, 5π/8, and 7π/8.

7 EF F E C T O F T H E SH E L L A X I A L R AT I O

Examples given above concern a toroidal shell with e = 0.1 (i.e. kc

≈ 0.9987). It is interesting to see how all these expansions behave

when varying the axial ratio. We repeated the computations for
the full range, i.e. e ∈ ]0, 1[. For each parameter, potential values
inside the cavity have been generated by direct computation of equa-
tion (11), and for the four approximations, i.e. from equation (36)
for order 0, equation (36) for order 1, equation (39) for order 2,
and equation (56) for order 3. The logs. of the relative differences,
i.e. log |��/�|, have been averaged. The results are displayed in
Fig. 12. Unsurprisingly, none of the approximations is really reliable
for the largest values of e. We remind that, when b → Rc, the inner
edge of the shell is close to the origin, while its outer edge tends to
infinity, and curvature effects are important at short radii. In fact, the
interior potential shows a complex, saddle-type structure. In con-
trast, as soon as e � 0.3, the four approximations are very efficient.
Accuracy increases as the shell section gradually decreases. The
sensitivity (i.e. slope) depends on the order too. We find

〈log

∣∣∣∣��

�

∣∣∣∣〉 ∼

⎧⎪⎪⎨
⎪⎪⎩

−1.41 + 0.89 log e at order 0,

−3.03 + 1.81 log e at order 1,

−3.79 + 2.77 log e at order 2,

−4.28 + 3.86 log e at order 3.

(66)

8 BY-PRODUCTS

8.1 Potential at the surface of the shell

Potential values on the shell (i.e. along the circle C) can be
estimated from any approximation derived above since the potential
is continuous inside the cavity. These values can be used for instance
as approximate (but accurate) Dirichlet boundary conditions for
solving the Poisson equation. There are different equivalent options,
depending on the variable selected to describe the section of the
shell, mainly R(Z), Z(R), θ , or η, which can even be converted into
k from equation (9c). If we use cylindrical variables, then Z(R)2 =
b2 − (R − Rc)2 and so we get

�C ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 at order 0,

C0 + C1 ln R at order 1,

C0 + C1 ln R + C2(3R2 + 2R2
c − 2b2 − 4RR0)

at order 2,

C0 + C1 ln R + 35
3 C4R

4 − 80
3 C4RcR

3

+ (24C4R
2
c − 40

3 C4b
2 + 3C2

)
R2

+ (− 32
3 C4R

3
c + 32

3 b2Rc − 4C2Rc

)
R

+ 8
3 C4(R4

c − 2C2
1R

2
c )

at order 3 ,

(67)

where R ∈ [Rc − b, Rc + b]. Fig. 13 shows the results obtained
at orders 1–3 (order 0 is too crude to be retained). We see that the
linear approximation given by equation (38) is quite acceptable. By
varying e, we notice that the potential becomes flatter and flatter
along C, and in the whole cavity as well. This is expected because,
as e → 0, curvature effects become less and less pronounced. The
shell becomes, locally, similar to a hollow filament, for which the
interior potential is a constant by virtue of the Gauss theorem.

8.2 Shells with a thick edge, i.e. tubes

If we concatenate coaxial toroidal shells having the same main
radius Rc but a different core radius b ∈ [bin, bout], then one gets a
toroidal shell with thick edge, i.e. a tube. This system is depicted
in Fig. 14. Each shell has its own pole. It follows that there is no
pole for the tube (otherwise, this would imply that b/Rc is constant
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5664 J.-M. Huré et al.

Figure 13. Gravitational potential �C in units of GM/Rc along the section
of the shell as estimated from the linear approximation, i.e. equation (38),
and from equations (67b–d).

Figure 14. The shell with a thick edge (i.e. the tube) is defined by an
internal toroidal shell with radius bin and an external shell with radius bout.
Each shell has its own pole, resulting in a continuum of poles (red).

Figure 15. The legend is the same as for Fig. 5 but here the shell has a
thick edge with bin/Rc = 0.05 and bout/Rc = 0.1; see also Fig. 14. The two
limiting sections are drawn (blue lines) as well as the common centre (blue
dot) and the continuum of poles (red dots).

for each constitutive shell). The total potential is obtained from
equation (11) by integration over b, i.e.

�(R,Z) = −2G

∫ bout

bin

ρ(b)bdb

∫ 2π

0

√
a

R
kK(k)dθ, (68)

where ρ is the local mass density. Fig. 15 shows the potential (in

Figure 16. Gravitational potential at the equatorial plane for the loop, the
shell (e = 0.1), the tube (bin/Rc = 0.05 and bout/Rc = 0.1), and the solid
torus (bout/Rc = 0.1) in units of GM/Rc. The axis is in units of Rc.

units of GM/Rc) computed by direct integration2 for a homogeneous
tube with parameters bin/Rc = 0.05 and bout/Rc = 0.1. Fig. 16 is for
the equatorial plane only. The mass of the tube is

M = 2π2ρ(bout
2 − bin

2)Rc. (69)

We observe the rounded shape of the potential inside the tube. There
is no more jump in the derivative of the potential when crossing
the system boundaries, as expected for any three-dimensional
distribution. At short radii, the potential decreases with R. This
continues when passing through the outer shell at R = Rc − bout.
The minimum (i.e. the place where the acceleration is zero) is
reached inside matter, just before crossing the inner shell at R =
Rc − bin. Next, the potential increases with R in the cavity, and
again inside matter, and this is so up to infinity. Inside the internal
cavity, we notice the quasi-linear behaviour of � with R, which
is a consequence of what has been observed for the shell. This is
basically the expression of the superposition principle. The central
cavity is actually common to all shells the tube is made of. This
means that all the approximations presented in Sections 5 and 6 are
valid in this common cavity, i.e. for R ∈ [Rc − bin, Rc + bin].

How does it work? For instance, if we consider order 0, we have
from equation (35)

� ≈
∫ bout

bin

C0(b)
ρ(b)



db. (70)

It is important to realize that C0 = �p is a function of b, not only
through the prefactor −G
b, but also through kc. We see that ρ can
also depend on b if the core is stratified, and there is no difficulty
there. By using equation (20) and changing b = eRc for p from
equation (14), we obtain

� ≈ −16Gρ

∫ bout

bin

bK(p′)E(p)db

= −64GρR2
c

∫ pout

pin

p3K(p′)E(p)

(1 + p′2)3
dp , (71)

where pin and pout are found from equation (14), and ρ = const.
is assumed. This integral, which can also be written in terms of
kc or k′

c, has been found nowhere in the literature (however, see
Prudnikov et al. 1988; Wan 2012). It must therefore be estimated

2We have used the trapezoidal rule as the quadrature scheme both in θ as
before, and in b with Nb = 257 equally spaced nodes.
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numerically. If we consider order 1 for approximating �, then we
have from equation (36)

� ≈
∫ bout

bin

C0(b)
ρ(b)



db + ln R

∫ bout

bin

C1(b)
ρ(b)



db. (72)

There is no special difficulty to proceeding to next orders, which
has been checked. The results for the tube fully agree with what is
reported in Section 7 for the shell. Note that if we set bin → 0, then
the cavity gets smaller and smaller. The domain of validity of the
above formula gets shorter and shorter. For bin = 0, the cavity even
disappears and the tube becomes a solid torus. Only the potential at
Rc becomes accessible.

8.3 An empirical law for the exterior potential

The potential outside the cavity of the toroidal shell is not accessible
by the formula derived above but it is clearly needed. This would
ensure a full coverage of space, which is necessary for dynamical
studies (Šubr, Karas & Huré 2004; Bannikova, Vakulik & Sergeev
2012). We show in Fig. 16 the equatorial potential in units of GM/Rc

for the four systems considered in this article, i.e. the loop, the shell,
the tube, and the solid torus. We used the same radius Rc and the
same core radius bout/Rc = 0.1. Since the mass densities λ, 
, and
ρ have been set to unity, these systems have not the same mass.
We notice that, while interior potentials are very different, exterior
potentials superimpose with each other remarkably. This interesting
fact has been outlined in Bannikova et al. (2011). However, the graph
above can be misleading. The concordance of exterior potentials is
true for small axial ratios only and fails for e � 0.3 typically. So,
if the condition e2 � 1 is satisfied, the potential outside the cavity
of the toroidal shell is close to equation (1) when appropriately
scaled. When coupled to one of the approximations given in the
previous sections, one gets a full coverage of the physical space.
In summary, by using the first-order approximation for the interior
solution (higher orders can be considered instead), we have

�(R,Z)

−GM
Rc

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
π

√
Rc
R

k0K(k0),

with k2
0 = 4RRc

(R+Rc)2+Z2

η < ηc (outside the cavity),[
f 00(kc) + f 10(kc) ln R

Rp

]
· u(kc)

4π2

η > ηc (inside the cavity),

(73)

where M is given by equation (21) and k0 comes from equation (3)
with a = Rc and z = 0. A simple program is given in Appendix D
for equation (73).

Besides, the knowledge of the exterior potential would enable us
to determine the potential of the solid torus, which is composed of
the interior potential of a tube and the exterior potential of a smaller
solid torus, i.e.

∫ bout
0 . . . db′ = ∫ b

0 . . . db′ + ∫ bout
b . . . db′. From this

point of view, an interesting and probably more straightforward
option would be to use the contour integral as the starting point
(Ansorg, Kleinwächter & Meinel 2003; Huré, Trova & Hersant
2014). This question is open.

9 D ISCUSSION

9.1 About the implementation

In general, an analytical approach is more powerful than a fully
numerical treatment, mainly because one captures the sensitivity

of all the parameters involved on the resulting quantity. One has,
however, to make sure that the implementation is not too tricky,
and that the advantages in terms of precision and computing
time are real. This is especially true when dealing with special
functions and series as it is the case here. For instance, expanded
Green functions are very often used in potential theory but their
efficiency is not always satisfactory (Clement 1974; Huré et al.
2014).

We first notice that the differences between the four approxima-
tions are indeed minor. For a given value of the shell axial ratio
e, only four evaluations of complete elliptic integrals and a few
rational functions of k2 are needed to form �u and �fij , respectively.
These quantities, and subsequently the four constants C0, C1, C2,
and C4, can be computed once for all. The potential at a single
point (R, Z) of the cavity is then obtained by computing only a
few polynomials in R and Z in addition. The comparison with the
direct numerical integration is then straightforward. By using the
trapezoidal rule with Nθ + 1 equally spaced nodes, the number of
evaluations of K(k) amounts to Nθ (values at θ = 0 and θ = 2π
are identical). This quadrature scheme being second-order accurate
in the grid spacing 2π/Nθ , the absolute error is E ∼ 2π3/3N2

θ .
So, four different evaluations of the K(k) mean that Nθ = 4. The
corresponding error is therefore of the order of unity, i.e. much
larger than 1 per cent, which is the typical value obtained at order
0 (see Fig. 12 for e ≈ 0.01). In terms of equivalent error, we need
Nθ ∼

√
2π3/3E to reach a given error level E. This gives Nθ ∼ 45

for E = 0.01 and Nθ ∼ 450 for E = 0.0001 (for e ≈ 0.001). Since
the computing time is mainly governed by the determination of the
elliptic integrals, we see that the direct numerical integration is,
by orders of magnitudes, always inferior to the analytical approach,
which is what is observed in practice (see Appendix C for a possible
implementation).

9.2 From shells to fluid tori

The results presented in this paper belong to the domain of classical
theoretical physics. The derivation of the (vacuum) gravitational
potential inside the geometrically thin massive shell, as discussed
in this paper, is a first step towards a complete solution for the
potential within the matter distribution of the fluid torus. This is
a longstanding and recurrent challenge in Astrophysics (Dyson
1893b,a; Vogt & Letelier 2009; Fukushima 2010; Bannikova et al.
2011), and in Electrostatics as well (Belevitch & Boersma 1983;
Hernandes & Assis 2004; Scharstein & Wilson 2005; Majic 2018).
The knowledge of the gravity field of toroidal systems is important
to derive the equilibrium structure, the shape of the surface, and their
time evolution. It is also fundamental to investigate the dynamics
of particles travelling around (e.g. Šubr et al. 2004; Šubr & Karas
2005). From this point of view, equation (73a), although empirical,
enables such a study.

Any analytical solution readily available can be useful as a test
bed for numerical approaches to more astrophysically realistic sys-
tems. Actually, we can envisage two types of objects where massive
toroidal configurations are relevant. Gravitating very massive tori
has been considered as a transient stage during the merger process
and the associated tidal disruption event of a neutron star in the
close binary system. The remnants can spread and form a toroidal
structure around the tidal radius, which eventually becomes partly
accreted on to the central body (presumably a black hole) and partly
expelled in the form of a jet or a massive outflow (e.g. Abramowicz,
Karas & Lanza 1998; Masuda, Nishida & Eriguchi 1998; Lee 2001).
Besides, gamma-rays and neutrinos have been proposed to originate
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from the short-lived dense torus (Woosley 1993; Janiuk 2014). At
much lower scales (a factor of 103–106 typically), the formation of
the Moon has probably involved a transient ring-like structure of gas,
dust, and pebbles after the early Earth has been impacted by a large
body (Lock & Stewart 2017). On length-scales larger by a factor
of 106–109, massive tori are believed to orbit supermassive black
holes (SMBHs) in active galactic nuclei (e.g. Goodman 2003; Karas,
Huré & Semerák 2004). Even though the total mass of the torus is
thought to be less than the central mass concentrated in SMBHs
in most observed systems, it has been clearly demonstrated that
self-gravity must play a significant role (Huré 2000; Collin & Zahn
2008).

9.3 Concluding remarks and perspectives

The article presents a novel contribution to the precise construction
of the gravitational potential in toroidal systems. Seen from different
angles, both the analytical approaches as well as the numerical
computations are rather heavy and the evaluations are always
cumbersome. It is thus very useful to develop alternative approaches
and simplified models based either on course grids in the numerics
or fitting formulas in the analytics; here we attempt to contribute
to the latter. We have shown that the potential and its successive
derivatives happen to be analytical at the pole of toroidal coordinates
for a toroidal shell with circular radius and circular section. On
these grounds, we have proposed a new kind of expansion for
the potential in the cavity of a shell. We have determined the
leading terms up to order 3. The corresponding approximations
are of great precision when compared to the direct numerical
integration. This is for instance eight-digit at order 3 for a shell with
an axial ratio of e = 0.1. Another major result concerns Newton’s
theorem for the ellipsoidal homoeoid, which cannot be transposed
to the toroidal case. The existence of the curvature (around the
z-axis) makes the potential well deeper at the inner edge of the
shell than at the outer edge. Matter is more concentrated at short
radii.

This work addresses new questions and requires further
developments. While the level of accuracy reached is already very
high with the third-order formula, there is a priori no limit in
including more terms in the expansion of the interior potential,
but an increasing effort is required to derive new partial derivatives
evaluated at the pole. It would be interesting to understand the spike
pattern that the error maps exhibit. This is probably the emergence of
modes in ξ related to the solution of the Laplace equation in toroidal
coordinates with variable separation (see Majic 2018). This point
remains to be clarified. Finally, this approach can be transposed
to the case of a toroidal current density relevant in astrophysical
and laboratory plasmas (Slaný et al. 2013). Actually, in the case of
axial symmetry, the vector potential A for the current loop is quite
similar to equation (1) (see Jackson 1998; Cohl & Tohline 1999).
This would give access to the poloidal component of the magnetic
field.
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Šubr L., Karas V., Huré J.-M., 2004, MNRAS, 354, 1177
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A P P E N D I X A : MO D U L U S T R A N S F O R M AT I O N S

From Gradshteyn & Ryzhik (2007), we have

(1 + k′)
2

K(k) = K
(

1 − k′

1 + k′

)
, (A1)

E

(
2
√

k′

1 + k′

)
= 1

1 + k′
[
2E(k′) − k2K(k′)

]
, (A2)

and

K

(
2
√

k′

1 + k′

)
= (1 + k′)K(k′). (A3)

APPENDIX B: D ERIVATIVES OF K AND E

From Gradshteyn & Ryzhik (2007), we have

dE(k)

dk
= E(k) − K(k)

k
, (B1)

and

dK(k)

dk
= 1

kk′2
[
E(k) − k′2K(k)

]
. (B2)

A P P E N D I X C : F9 0 P RO G R A M F O R TH E I N T E R I O R POT E N T I A L

Program F90drivercode
! ’’Interior potential of a toroidal shell from pole values’’
! Hure, Trova, Karas & Lesca (2019), MNRAS
! gfortran F90drivercode.f90; ./a.out
Implicit None
Integer,Parameter::SP=Kind(1.00E+00),DP=Kind(1.00D+00),QP = Kind(1.00Q + 00)
Integer,Parameter::AP = DP
Real(Kind=AP),Parameter::PI = ATAN(1. AP)∗4
Real(KIND=AP),Parameter::EPSMACH = Epsilon(0. AP)
Real(KIND = AP)::B,RC,MASS,RP ! core radius, main radius and mass of the shell, and posi-

tion of the pole
Real(KIND = AP)::KMODC,KMODC2,KPRIMC,KPRIMC2 ! various modulus
Real(KIND = AP)::R,Z,PSI ! cylindrical coordinates and potential value where it is esti-

mated
Real(KIND = AP)::PSIP,DPSIDRP,D2PSIDZ2P,D3PSIDZ2DRP ! partial derivatives of the poten-

tial at the pole
Real(KIND = AP)::C0,C1,C2,C4 ! coefficients of the expansion, Eq.(56)
Real(KIND = AP),Dimension(1:4)::UVECT ! components of the u-vector, Eq.
(\protect\ref{eq:VecB})
Real(KIND = AP),Dimension(1:4)::FVECT00,FVECT10,FVECT02,FVECT12
Real(KIND = AP)::ELLIPTICK,ELLIPTICKPRIM,ELLIPTICE,ELLIPTICEPRIM
! ? input parameters (properties of the shell)
B = 0.1 AP
RC = 1. AP
MASS = B∗RC∗PI∗∗2∗4
print∗,’’Mass of the shell’’,MASS
! statements
KPRIMC = (Sqrt(RC+B)-Sqrt(RC-B))/(Sqrt(RC+B) + Sqrt(RC-B))
KMODC2 = Sqrt((RC-B)∗(RC+B))/(Sqrt(RC+B) + Sqrt(RC-B))∗∗2∗4
KPRIMC2 = 1. AP-KMODC2
KMODC = Sqrt(KMODC2)
RP = RC∗KMODC2/(2. AP-KMODC2)
print∗,’’Radius of the pole’’,RP
! components of the u-vector, Eq.(\protect\ref{eq:VecB}) - values of K(k = KMODC), K(k’),
E(k) and E(k’) to be set !
UVECT(1:2) = ELLIPTICK∗(/ELLIPTICKPRIM,ELLIPTICEPRIM/)
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UVECT(3:4) = ELLIPTICE∗(/ELLIPTICKPRIM,ELLIPTICEPRIM/)
! components of the f ij-vectors,
Eq.(\protect\ref{eq:VecA00}), (32), (51) and (65)
FVECT00(1:4) = (/-KMODC2,2. AP,0. AP,0. AP/)∗8
FVECT10(1:4) = (/KMODC2∗KPRIMC2,-KPRIMC2∗2,-KMODC2,1. AP + KPRIMC2/)/KPRIMC2∗4
FVECT02(1:4) = (/-KPRIMC2,KPRIMC2,2. AP+KPRIMC2,-(1. AP + KPRIMC2)∗2/)∗(KMODC2/KPRIMC2)∗∗2
FVECT12(1:4) = (/KPRIMC2∗(-4. AP + KPRIMC2∗3-KPRIMC2∗∗2∗2),&
&KPRIMC2∗(4. AP-KPRIMC2 + KPRIMC2∗∗2∗4),8. AP-KPRIMC2∗7-KPRIMC2∗∗2∗2 + KPRIMC2∗∗3∗4,&
&(1. AP + KPRIMC2)∗(-8. AP + KPRIMC2∗11-KPRIMC2∗∗2∗8)/)∗KMODC2∗∗2/KPRIMC2∗∗3∗2/3
! ? values of R and Z where the potential is requested (must be inside the cavity!)
R = RP
Z = 0.
If ((R-RC)∗∗2 + Z∗∗2-B∗∗2<0. AP) Then
PSIP = -DOT PRODUCT(FVECT00,UVECT)∗B
DPSIDRP = -DOT PRODUCT(FVECT10,UVECT)∗B/RP
D2PSIDZ2P = -DOT PRODUCT(FVECT02,UVECT)∗B/RP∗∗2
D3PSIDZ2DRP = -DOT PRODUCT(FVECT12,UVECT)∗B/RP∗∗3
! order 3, Eq.(56); set C4=0 for order 2, and set C2=0 for order 1, and set C1 = 0 for or-

der 0
C4 = -D3PSIDZ2DRP/RP/32
C2 = (-D2PSIDZ2P-C4∗RP∗∗2∗16)/4
C1 = (DPSIDRP-C2∗RP∗2-C4∗RP∗∗3∗4)∗RP
C0 = PSIP-C1∗LOG(RP)-C2∗RP∗∗2-C4∗RP∗∗4
PSI = C0 + C1∗LOG(R) + C2∗(R∗∗2-Z∗∗2∗2) + C4∗(R∗∗4-R∗∗2∗Z∗∗2∗8 + Z∗∗4∗8/3)
Print ∗,’’Potential value (3rd-order)’’,PSI,PSI/MASS∗RC
Endif

A P P E N D I X D : F9 0 P RO G R A M F O R TH E I N T E R I O R A N D E X T E R I O R (E M P I R I C A L ) POTE N T I A L S

Program F90drivercode2
! ’’Interior potential of a toroidal shell from pole values’’
! Hure, Trova, Karas, & Lesca (2019), MNRAS
! gfortran F90drivercode2.f90; ./a.out
Implicit None
Integer,Parameter::SP=Kind(1.00E+00),DP=Kind(1.00D+00),QP = Kind(1.00Q + 00)
Integer,Parameter::AP = DP
Real(Kind=AP),Parameter::PI = ATAN(1. AP)∗4
Real(KIND=AP),Parameter::EPSMACH = Epsilon(0. AP)
Real(KIND = AP)::B,RC,MASS,RP ! core radius, main radius and mass of the shell, and posi-

tion of the pole
Real(KIND = AP)::KMODC,KMODC2,KPRIMC,KPRIMC2,K0 ! various modulus
Real(KIND = AP)::R,Z,PSI ! cylindrical coordinates and potential value where it is esti-

mated
Real(KIND = AP)::PSIP,DPSIDRP,D2PSIDZ2P,D3PSIDZ2DRP ! partial derivatives of the poten-

tial at the pole
Real(KIND = AP),Dimension(1:4)::UVECT ! components of the u-vector, Eq.(\protect\ref{eq:VecB})
Real(KIND = AP),Dimension(1:4)::FVECT00,FVECT10
Real(KIND = AP)::ELLIPTICK,ELLIPTICKPRIM,ELLIPTICE,ELLIPTICEPRIM
INTEGER::I,J
! ? input parameters (properties of the shell)
B = 0.1 AP
RC = 1. AP
MASS = B∗RC∗PI∗∗2∗4
print∗,’’Mass of the shell’’,MASS
! statments
KPRIMC = (Sqrt(RC+B)-Sqrt(RC-B))/(Sqrt(RC+B) + Sqrt(RC-B))
KMODC2 = Sqrt((RC-B)∗(RC+B))/(Sqrt(RC+B) + Sqrt(RC-B))∗∗2∗4
KPRIMC2 = 1. AP-KMODC2
KMODC = Sqrt(KMODC2)
RP = RC∗KMODC2/(2. AP-KMODC2)
print∗,’’Radius of the pole’’,RP
! components of the u-vector, Eq.(\protect\ref{eq:VecB}) - values of K(k = KMODC), K(k’),
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E(k) and E(k’) to be set !
UVECT(1:2) = ELLIPTICK∗(/ELLIPTICKPRIM,ELLIPTICEPRIM/)
UVECT(3:4) = ELLIPTICE∗(/ELLIPTICKPRIM,ELLIPTICEPRIM/)
! components of the f ij-vectors, Eq.(\protect\ref{eq:VecA00}), (32), (51) and (65)
FVECT00(1:4) = (/-KMODC2,2. AP,0. AP,0. AP/)∗8
FVECT10(1:4) = (/KMODC2∗KPRIMC2,-KPRIMC2∗2,-KMODC2,1. AP + KPRIMC2/)/KPRIMC2∗4
! 51x51 grid on [0,2]x[-1,1], for Eq.(73)
Do I = 0,50
R = 2. AP∗I/50
Do J = 0,50
Z = 2. AP∗J/50-1. AP
If ((R-RC)∗∗2 + Z∗∗2-B∗∗2<0. AP) Then
! Eq.(73b)
PSI = -MASS/RC∗Dot PRODUCT(FVECT00 + LOG(R/RP)∗FVECT10,UVECT)/PI∗∗2/4
Else
! Eq.(73a)
! value of K(k0) to be set !
K0 = Sqrt(R∗RC/((R + RC)∗∗2 + Z∗∗2))∗2
PSI = -MASS/Sqrt((R + RC)∗∗2 + Z∗∗2)∗ELLIPTICK/PI∗2
Endif
Print∗,R,Z,PSI
Enddo
Enddo

This paper has been typeset from a TEX/LATEX file prepared by the author.
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