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Abstract

The thermal conductivity of a glass can be obtained by first-principles molecular dynamics provided we exploit a
methodology that has been termed the approach-to-equilibrium molecular dynamics (AEMD) [1] [2, Chap. 8]. In
the present work, we investigate the occurrence of size effects by comparing the thermal conductivity of two g-GeTe4

atomic models of different sizes. This issue is far from being trivial since, in principle, size effects are not expected to
occur in disordered systems beyond a few interatomic distances. For this reason, it is important to search unambiguous
pieces of evidence substantiating this point. The first system of length L = 18 Å contains 185 atoms. By duplicating
it along one direction we form the second system, that contains 370 atoms and features a double length L = 36 Å and
an identical cross section. The thermal conductivity increases by a factor 3 from L = 18 to 36 Å, thereby approaching
the experimental value. Our investigation exemplifies the crucial role of the system size to take full advantage of the
AEMD methodology and bring the calculated values in better agreement with experiments.
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1. Introduction1

Molecular dynamics (MD) simulations are widely2

used to obtain the thermal conductivity of bulk systems,3

nanostructures and interfaces [3, 1, 4, 5, 6, 7]. In the lit-4

erature, the forces between atoms are described by clas-5

sical force fields with few exceptions. This is due to6

the need of extended MD trajectories to determine the7

thermal conductivity and obtain a fully converged auto-8

correlation function in the Green-Kubo approach [8], or9

to reach the steady state in the direct method [3]. How-10

ever, it is highly desirable to go beyond the use of classi-11

cal force fields, in particular in the case of glasses, since12

for disordered structures the use of quantitative models13

has found to be crucial [9, 10, 11]. This is specifically14

relevant for the class of chalcogenide glasses, for which15

empirical potentials often fail to quantitatively describe16

their structure and chemical interactions [12]. Recently17

[13], we have demonstrated that it is possible to de-18

termine the thermal conductivity of a glass, g-GeTe4,19
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from a density functional (DFT) based first-principles20

MD (FPMD). The calculations have been performed by21

applying a methodology that we recently developed, the22

approach-to-equilibrium MD (AEMD) [1] [2, Chap. 8].23

In this methodology, a transient regime is created and24

exploited to calculate the thermal conductivity in a way25

that proved to be faster and more effective than conven-26

tional approaches.27

Past experience of application of the AEMD method-28

ology provided evidence of the sensitivity to the system29

size of thermal conductivities obtained by AEMD. In30

particular, it has been shown that in crystalline Si (cSi),31

the thermal conductivity changes with the length of the32

system even up to 1.2 µm. This length dependence is33

intimately related [14] to the existence of long phonon34

free paths in cSi (larger than 10 µm) [15] [16]. In a35

disordered material like g-GeTe4, the free paths of heat36

carriers are expected to be very short. At low temper-37

ature (T ≈ 130 K), a mean free path (MFP) of 4-5 Å38

has been measured by Zhang et al. [17]. However, it39

is known that the maximum heat carrier free paths can40

be considerably larger than the average value extracted41

from the thermal conductivity using the kinetic theory.42
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It is therefore desirable to ascertain whether or not the43

thermal conductivity of g-GeTe4 features a length de-44

pendence. This is exactly the objective of the present45

work. As a byproduct, one would like to understand46

whether the underestimate thermal conductivity found47

in [13] with a system of 185 atoms can be at least par-48

tially overcome by resorting to a longer system in the49

direction of the heat flux.50

The article is organized as follows. In a first section,51

the two atomic models of g-GeTe4 and the MD method-52

ology are presented. In a second section, the MD tra-53

jectories are analyzed, and the thermal conductivity of54

the two systems are extracted and discussed. Then, we55

critically analyze our results before drawing a final set56

of conclusions.57

2. Method58

The atomic model of g-GeTe4 has been obtained by59

Car-Parrinello molecular dynamics (CPMD) [18] using60

the CPMD code 1. This model yields structure factors61

and pair correlation functions in very good agreement62

with measurements [10]. In our first implementation of63

AEMD to the case of g-GeTe4 [13] the cubic simulation64

box contained N = 185 atoms with a side L =18 Å.65

Here the cubic box is doubled in the direction of thermal66

transfer to form a rectangular box containing N = 37067

atoms, with a length L = 36 Å and a cross section S =68

18 × 18 Å2 (Fig. 1).69

Figure 1: The atomic models containing respectively 185 and 370
atoms.

The atomic structure of the two systems is identical,70

as evidenced by the comparison of the total pair corre-71

lation functions g(r) (Fig. 2).72

The details of the CPMD calculations are as fol-73

lows. The Becke, Lee, Yang and Parr (BLYP) [19,74

20] exchange-correlation functional is used, with a75

norm-conserving pseudo-potentials [21] describing the76

valence-core interaction. Long-range dispersion forces77

1See http://www.cpmd.org, copyright 2000-2017 jointly by IBM
Corporation and by Max Planck Institute, Stuttgart.
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Figure 2: Pair correlation function g(r) for the system of length
L = 18Å containing 185 atoms and the system of length L = 36Å
containing 370 atoms. The number of first neighbors as obtained from
the integration of the first peak is equal to 3.8 in both cases.

are considered by following the formula by Grimme78

[22, 10]. Thermostats are applied to the fictitious elec-79

tronic degrees of freedom by following the Blöchl and80

Parrinello guidelines [23].81

For each of the systems under study, the atomic struc-82

ture is equilibrated during 4 to 30 ps at the target tem-83

perature of Tt= 130 K since the MFPs are measured to84

be the lowest around this temperature [17]. The AEMD85

methodology is then applied to establish a thermal tran-86

sient. The simulation box is divided into two sub-parts87

along the y-direction, these bound to be the cold and hot88

parts. To this aim, two distinct Nosé-Hoover [24, 25]89

thermostats are applied to the blocks, with a tempera-90

ture difference ∆T0. Fig. 3 shows the time evolution91

of the temperature of the hot and the cold blocks in this92

phase 1 of AEMD for ∆T0 = 200 K. The temperature93

gap establishes in a few ps and it is stabilized by the94

application of the two thermostats along a time interval95

lasting 25 ps. Then, the thermostats are switched off96

to allow for the phase 2 of AEMD to begin. As a con-97

sequence, the temperature of the hot (cold) block de-98

creases (increases). The equilibrium temperature of 13099

K is reached faster for the smaller system (Fig. 3).100

3. Results101

The temperature difference during phase 2 of AEMD102

shown in Fig. 4 follows an exponential decay as ex-103

emplified by the linear variation on the semi-log graph.104

The decay time τ is extracted by a suitable fit.105

We exploit the relationship between the decay time106

and thermal conductivity derived from the heat equation107
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Figure 3: Time evolution of the hot block (red line) and cold block
(blue line) during the two AEMD phases. Upper graph: L = 36 Å.
Lower graph: L = 18 Å.

 100

 0  2  4  6  8  10  12

∆T
 (

K
)

Time (ps)

L=18 Å 

L=36 Å 

L=18 Å 

L=36 Å 

L=18 Å 

L=36 Å 

L=18 Å 

L=36 Å 

L=18 Å 

L=36 Å 

L=18 Å 

L=36 Å 

L=18 Å 

L=36 Å 

MD
τ=4.0ps
τ=7.0ps

Figure 4: Time evolution of the temperature difference in phase 2 for
the two systems and adjustment by a decaying exponential (the decay
time is mentioned in label).

[1]:108

κ =
L2

4π2

CV .ρ

τ
(1)109

where ρ = N/L3 is the number density. The specific110

heat CV = 3kB(0.78±0.02) is calculated from the energy111

fluctuations in a {NVT } run at 130 K [26].112

The thermal conductivity is plotted as a function of113

the system length in Fig. 5. For each size, the param-114

eters of the simulation (like the initial temperature dif-115

ference or the duration of phase 1) are varied in order to116

ascertain their impact on the thermal conductivity. The117

thermal conductivity varies without any clear cut depen-118

dence on the different parameters. The variations are119

taken as the statistical error on κ. The calculations result120

in averaged thermal conductivity equal to 0.013 ± 0.003121

W m−1 K−1 for L = 18 Å and 0.044 ± 0.001 W m−1 K−1
122

for L = 36 Å. Therefore, the thermal conductivity fea-123

tures a length dependence, and increases by a factor of124

3 from L = 18 to 36 Å. We recall that the experimental125

value obtained using a parallel temperature conductance126

technique is 0.14 W m−1 K−1 [17]. This technique is re-127

portedly leading to an overestimate by 20-25 % of the128

thermal conductivity compared to a laser flash measure-129

ment [17]. This latest experimental framework is closer130

to our simulation methodology, and our experimental131

point of comparison is therefore a thermal conductivity132

of ≈ 0.1 W m−1 K−1.133

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  1  2  3  4  5

T
he

rm
al

 c
on

du
ct

iv
ity

 (
W

 m
−

1  K
−

1 )

Length (nm)

∆T0=200K
∆T0=100K

∆T050K

Figure 5: Thermal conductivity as a function of the length and for 3
values of the initial difference in temperature between hot and cold
blocks (∆T0 = 200, 100 or 50 K) for atomic models containing re-
spectively 185 and 370 atoms.

4. Discussion134

There are several examples of length dependence135

of the thermal conductivity obtained using the AEMD136

methodology. In bulk silicon and germanium [1] [14],137

the thermal conductivity changes on the entire range of138

lengths studied, from tens of nanometers up to 1.2 µm.139

In α-quartz [14], the thermal conductivity varies up to ≈140

100 nm before reaching a plateau. In silicon nanowires141

[5], the thermal conductivity always reaches a plateau142

only after a length that increases with the nanowire di-143

ameter. In silicon membranes [27], the same behavior144

is observed, with the plateau obtained at shorter length145

in presence of holes. All these cases were studied using146

classical force fields.147

We have shown [14] that this behavior is due to the148

truncation at length L of the distribution of phonon149

mean free paths. In crystals, phonons encounter scatter-150

ing events that make their lifetime finite, or the distance151
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they cover finite. The average mean free paths Λph is152

estimated from the kinetic theory following:153

κ =
1
3

CVνΛph (2)154

ν being the sound velocity. Nevertheless, phonon mean155

free paths can be distributed up to a maximumΛmax con-156

siderably larger than Λph. For example in silicon, Λph =157

40 nm and Λmax > 10µm .158

In amorphous materials and glasses, heat carriers are159

not expected to cover long distances due to the disor-160

der of the atomic structure that could be seen schemati-161

cally as a distribution of defects beyond the first neigh-162

bor shell. Indeed, Zhang et al. [17] have estimated Λph163

to 4-5 Å from their measurements of the thermal con-164

ductivity of g-GeTe4. In amorphous silicon studied by165

classical force fields [14], the thermal conductivity does166

not exhibit any length dependence above 5 nm.167

The variation of thermal conductivity obtained in the168

present work, ranging from L = 18 to 36 Å could be169

due to the fact that L is still smaller than the maxi-170

mum phonon mean free path Λmax. This conjecture can171

only be validated by looking for the saturation in the172

calculated values of the thermal conductivity. This re-173

quires the calculation of the thermal conductivity on a174

third, even more extended system. It remains true that175

the present calculations have the pleasing effect of ap-176

proaching the AEMD value to the experimental coun-177

terpart. Also, it has to be observed that the size scaling178

of the CPMD method is prohibitive and by no means179

linear. For this reason, it might be of interest to resort to180

alternative schemes (as the so-called second generation181

CPMD [28]) in order to speed up the achievement of the182

planned calculation for a third, larger system size.183

5. Conclusion184

The thermal conductivity of a glass, g-GeTe4 has185

been calculated from first-principles molecular dynam-186

ics. In particular, the dependence on the system length187

has been the focus of the work, since the AEMD188

methodology has shown such a dependence in many189

other materials. Although the disordered nature of g-190

GeTe4 and an average phonon mean free paths mea-191

sured to 4-5 Å in the literature were in favor of an ab-192

sence of length dependence, we have obtained an in-193

crease by a factor 3 of the thermal conductivity when194

the cell length along the heat path changes from 18 to195

36 Å. This amounts to a calculated value much closer196

to experimental data. Therefore, it appears that such a197

length dependence has some physical origins that can198

be traced back to the existence of maximum mean free199

paths larger than the system size. Further investigations200

for even larger sizes will be instrumental to demon-201

strate that the combination of FPMD with the AEMD202

approach is able to provide fully size-converged, reli-203

able values for the thermal conductivity, at least in the204

case of a prototypical disordered system.205
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