
HAL Id: hal-02128426
https://hal.science/hal-02128426

Submitted on 23 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bibtex++ : toward higher-order bibtexing
Fabien Dagnat, Ronan Keryell, Laura Barrero Sastre, Emmanuel Donin de

Rosiere, Nicolas Torneri

To cite this version:
Fabien Dagnat, Ronan Keryell, Laura Barrero Sastre, Emmanuel Donin de Rosiere, Nicolas Torneri.
Bibtex++ : toward higher-order bibtexing. EuroTeX’2003 : 14th European TeX Conference, Jun
2003, Brest, France. �hal-02128426�

https://hal.science/hal-02128426
https://hal.archives-ouvertes.fr

BTEX++: Toward Higher-order BTEXing

Fabien Dagnat
Computer Science Lab, ENST Bretagne
CS 83818, F-29238 PLOUZANÉ CEDEX, France
Fabien.Dagnat@enst-bretagne.fr

http://perso-info.enst-bretagne.fr/~fdagnat/index.php

Ronan Keryell
Computer Science Lab, ENST Bretagne
CS 83818, F-29238 PLOUZANÉ CEDEX, France
rk@enstb.org

http://www.lit.enstb.org/~keryell

Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri
(Emmanuel.DoninDeRosiere|Nicolas.Torneri)@enst-bretagne.fr

Abstract

In the LATEX world, BTEX is a very widely used tool dealing with bibliographies. Unfortunately,
this tool has not evolved for the last 10 years and even if a few other bibliographical tools exist, it
seems interesting to develop a new tool with new features using modern programming standards.

The BTEX++ project began in 1999 and is written in Java for the portability and object ori-
ented aspects and offers new functionalities: for the expressiveness, the security model and native
Unicode character set support, BTEX++ styles are directly Java classes; for compatibility, it uses
advanced compiler techniques to translate plain old BTEX styles to new Java styles. Such a trans-
lated style can even set the development basis of a new native BTEX++ style to ease the style pro-
grammer’s life. The architecture is designed for extensibility and split into different components:
core, parsers (to be compatible with other bibliographical styles, sources or encoding schemes),
pretty printers (to generate bibliographies for other tools than LATEX), plugins. The plugin con-
cept is used to dynamically extend BTEX++ functionalities. For example, since (meta-)plugins
can load new plugins, new styles can be directly downloaded from the Internet.

Résumé

Dans le monde LATEX, BTEX est un outil répandu pour gérer les notices bibliographiques. Mal-
heureusement, cet outil n’a pas évolué ces dix dernières années. Même si d’autres outils bibliogra-
phiques existent, il semble intéressant de développer un nouvel outil, offrant de nouvelles fonction-
nalités et utilisant de nouveaux standards de programmation.

Le projet BTEX ++ a démarré en 1999 et il est écrit en Java pour des raisons de portabilité
et de fonctionnalités accrues dues aux aspects de programmation orientée objet. Il offre de nou-
velles fonctionnalités : BTEX ++ est une classe Java, pour son expressivité, le modèle de sécurité
et le support natif d’Unicode ; il contient un compilateur pour traduire les anciens styles BTEX
en Java, et ce code Java peut être à la base d’un style bibliographique BTEX ++ natif de ma-
nière à faciliter la vie du programmeur ; l’architecture a été conçue en vue de l’extensibilité : le
noyau, les parseurs (pour être compatible avec d’autres styles bibliographiques, d’autres sources ou
codages), les enjoliveurs de code (pour générer des bibliographies pour d’autres outils que LATEX),
les plug-ins ; le concept de plug-in est utilisé pour étendre BTEX ++ de manière dynamique.
Ainsi, puisque les (meta-)plug-ins peut à leur tour charger d’autres plug-ins, des nouveaux styles
peuvent être téléchargés sur Internet.

Introduction

A bibliography or list of references is a listing of all
sources from which you have taken information directly

(by literal quotation) or indirectly (through paraphrase),
or where you have used information or reproduced ma-
terial. These references are used to:

472 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

BTEX++: Toward Higher-order BTEXing

• clearly identify each document. So it provides some
identification elements to allow the reader to look
for these documents in library catalogues or any-
where else. In most cases, these identification el-
ements are normalized [17] (we often use the name
of the book, the author, the editor, . . .), but be-
cause of the digital revolution, there are more and
more document types (web pages for example) and
identification elements (e-mail, , . . .). So the
management of the references has become more and
more difficult;

• enable the reader to consult the sources you have
used with a minimum of effort. Thus we have to
indicate precisely where (on which page, the elec-
tronic location) or under which circumstances (per-
sonal interview, e-mail) you obtained the informa-
tion.
Unfortunately, creating a bibliography has always

been a headache for typographers: if the article talks
about “Larousse (2002)” as a book introducing meta-
middleware [20] and in the bibliography “Larousse
2002” is described instead as a French cookbook, there
has clearly been a problem somewhere. Another prob-
lem is that each journal has its own bibliography style,
so bibliographical management software has to allow the
user to create his own style and send it to other people.

Fortunately, BTEX [23] is a popular tool used by
the LATEX [21] community to generate bibliographical
notices in publications. If there are also many other tools
available [9], this one suits very well the LATEX philos-
ophy and is well integrated with it: the user describes
what she wants with a mark-up language without having
to dive into the deep layout details: the LATEX infrastruc-
ture will use some styles to typeset the presentation from
the high level content description.

The citation matter is stored in a database (a file
with a .bib extension) and BTEX picks from the .aux
file the needed information according to the citation
marks placed in the LATEX document (.tex file) by the
author. A typeset version of the bibliography is made by
BTEX to the .bbl file by using a .bst bibliography
style file. The work-flow is summed up in figure 1 [13].

There are a lot of bibliographical styles available
for BTEX targeted at many different scientific journals,
book styles, etc. The user needs only to select the de-
sired style and the bibliography notice is generated from
her common bibliographical reference database. There
are also a lot of such bibliographical reference databases
available on the Internet that can be used directly, such
as [22].

There are many tools targeted at easing the man-
agement of all these BTEX files: database tools, edi-
tors, . . . For example to write this article we used the
grand Emacs multi-platform text editor that has various

.bbl

.blg.dvi

.tex

LaTeX BibTeX.aux

.dvi

.tex

LaTeX

.bst.bib

F. 1: BTEX work flow.

modes to deal with a LATEX document in various cod-
ing systems: the great TEX mode [1] to deal with
many things in the LATEX source file, refTEX [7] to deal
with citations and cross-referencing, such as a bibliogra-
phy browse-and-pick mode, and some BTEX editing
modes.

A lot of BTEX record databases are also widely
available on the Internet through bibliographical servers
such as CiteSeer [22] and it is often easy to get some
BTEX records from few keywords.

Even though there is so much material available for
BTEX, BTEX is old, does not evolve anymore and has
many shortcomings according to modern tool standards:
the character encoding is constrained to an 8-bit 
variant, it is difficult to mix different languages on the
database side or on the document side, memory usage is
selected at compile time, style programming is done in
a language that is rather optimized for the implementa-
tion efficiency and not for the style programmer’s brain.
The tool lacks extensibility and such modern features as
network awareness.

This is why we began the BTEX++ project in
1999 as a way to extend the BTEX functionalities
without throwing away the BTEX compatibility, data-
bases and styles.

In this article we present first the basic functional-
ities in BTEX++ (§ ‘BTEX++ functionalities’), then
the software architecture in § ‘Software architecture of
BTEX++’ with some emphasis on our ir compiler
(§ ‘Software architecture of the ir  to J com-
piler’) and the plugin architecture (§ ‘Plugins and meta-
plugins’).

BTEX++ functionalities

The BTEX++ name has been chosen to assert a BTEX
compatibility with an improvement comparable to the
object-oriented add-on from the C to C++ languages.
The ordinary BTEX++ user does not have to embrace
the object oriented architecture of BTEX++, but this
is not the case for the style programmer (and of course
the BTEX++ programmers).

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 473

Fabien Dagnat, Ronan Keryell and Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri

BTEX compatibility Since BTEX is a very widely
used tool, compatibility with the old BTEX is a re-
quirement.

BTEX usage is simple; the first thing to do is to
create the database file (a file with a .bib extension) or
better to use an old one with at least the bibliographi-
cal references that are used in the article being produced
with LATEX. Each reference record has a type chosen
from the 13 possible default types (article, book, con-
ference, thesis, . . .) and is composed from various fields
such as its key (used to cite this reference from the LATEX
file), its title, its author(s), the publication year and so on
such as:

@BOOK{LaTeX:companion,

Author = {Michel Goossens

and Frank Mittelbach

and Alexander Samarin},

Publisher = {Addison-Wesley},

Title = {The \LaTeX{} Companion},

Year = 1994

}

This reference describes a book and can be cited with
the key LaTeX:companion. If there are several authors,
they are separated by an and. Plain LATEX can often be
put in most of the fields such as the \LaTeX{} in the pre-
vious Title. There are numerous kinds of fields (23)
available to be used to define a reference. According to
the reference type, a field can be mandatory or optional.
Other fields can be used for extensions or information
since they will be ignored by BTEX itself.

Once the reference file is created, the reference
must be inserted in the LATEX document. For this pur-
pose a \cite{〈key〉} command is put where a reference
to 〈key〉 is to be cited. Thus with the previous example
inserting in the text “\cite{LaTeX:companion}” will
appear as “[13]”.

One instructs LATEX to use a bibliography 〈style〉
with \bibliographystyle{〈style〉} and to insert the
bibliography somewhere in the document from the data-
base 〈bib-base〉.bib with a \bibliography{〈bib-base〉}

When run, BTEX picks in the 〈document〉.aux
file the needed information given by the citation marks
placed in the LATEX document (〈document〉.tex file) by
the author. A ready-to-typeset version of the bibliogra-
phy is made by BTEX to the 〈document〉.bbl file by us-
ing a 〈style〉.bst bibliography style file and the citation
matter found in the .bib file(s). Error and information
output goes to the 〈document〉.blg file. The work-flow
is summed up in figure 1 [13].

BTEX comes with some predefined styles but it
is also possible to program other styles, for example to
accept a url field to cite Internet information. All these
styles are defined in .bst files that are used by BTEX

FUNCTION {sort.format.names}

{ ’s :=

#1 ’nameptr :=

""

s num.names$ ’numnames :=

numnames ’namesleft :=

{ namesleft #0 > }

{ nameptr #1 >

{ " " * }

’skip$

if$

s

nameptr

"{vv{ } }{ll{ }}{ ff{ }}{ jj{ }}"

format.name$ ’t :=

nameptr numnames = t "others" = and

{ "et al" * }

{ t sortify * }

if$

nameptr #1 + ’nameptr :=

namesleft #1 - ’namesleft :=

}

while$

}

F. 2:  sample code.

to generate the bibliography according to the work flow
described in figure 1.

From the user point of view, these concepts are also
used in BTEX++ texto with all the old BTEX styles
available too.

The style files are written in the  language.1
This is indeed an awful stack-based language rooted in
the sixties that was chosen for an easy implementation of
BTEX concepts: it is simple to parse and to execute on
a computer. The dark side is that the programming bur-
den is put afterwards on the style programmer.  code
looks like that in figure 2 and there are 1258 such lines
in the classical alpha.bst. . .

It is clear that building a new style from scratch is
a tour de force and often basic programmers will change
only few details. Fortunately there are many styles avail-
able already that can fit most needs, and there are also
some custom style generators [5].

Extensions to BTEX A basic extension is to be able to
deal with encodings other than plain  andmore gen-
erally to be multilingual. Since BTEX can sort the bib-
liography, a localized sort according to the document lan-
guage is to be introduced.

1. According to its author, this language has no name in fact.
But for the clearness of this article we call it “”.

474 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

BTEX++: Toward Higher-order BTEXing

A tool designed today could hardly escape the net-
worked world, so BTEX++ must have a way to access
world-wide on-line bibliographical databases through
the Internet.

The  language in BTEX lacks some expres-
siveness and a new language should be designed instead
of trying to extend the old one. Some modern features
should be added to allow scalability and extensions, for
example by using an object oriented language. But we
also want compatibility with the old BTEX styles that
are written in , so this is rather tricky.

Besides, BTEX targets only LATEX; BTEX++
could also target other typesetting tools or other bibli-
ographical database concepts.

But since BTEX++ is still a work in progress as a
general bibliographical workbench, there are many new
functionalities that are not yet implemented or even not
envisioned yet.

Style programming in BTEX++ If we have to define a
new language for BTEX++ it should be a clearer lan-
guage than .

A good candidate is to choose a domain specific lan-
guage (). From a programmer point of view it is
yet another (less) cryptic language to learn that is still
cumbersome. The expressiveness may not suit everyone’s
needs, and we may extend the language later to fit some
usages.

On the other side, if we want a language as expres-
sive as any another computer language, why not use such
a language? If we choose an object oriented language, all
the domain specific aspects could be seamlessly hidden in
objects dealing with all the bibliographical stuff.

Since in BTEX++ there is no particular perfor-
mance requirement, this solution is acceptable.

The next question is to select an implementation
language. We want BTEX++ to be portable, pro-
grammed in a clean language from a syntax and object
point of view that can deal with big programs. The lan-
guage should come with a lot of standard libraries to deal
with all the modern programming ways (Unicode, Inter-
net, . . .), and widespread enough to avoid the yet another
weird-language to learn syndrome.

Of course there is no one-stop answer and we cannot
escape some trade-offs. From our point of view, J has
been considered as a good candidate.

The BTEX++ core is thus directly written in J
for expressiveness and simplicity. All the generic li-
brary functions and classes to deal with bibliographies in
BTEX++ have been rewritten in J too. BTEX++
can run on every machine for which we have a run-time
and a compiler.

For internationalization, Unicode is natively ac-
cepted in J, we inherit all the J locale stuff and

even specialized collators for international sorting so im-
portant in BTEX.

Of course choosing a language different than the
original  language does not solve at all the BTEX
compatibility issue. This one can be solved by im-
plementing BTEX as an add-on in BTEX++, which
would remove a lot of interest in BTEX++, or add a
translation process from  to the new programming
style in BTEX++.

This last approach is more challenging but far more
interesting since the translated old  styles can be used
as the basis of new style developments. This translation
process is more deeply described in § ‘Software architec-
ture of the ir  to J compiler’.

Extending BTEX++ further: plug-ins and meta-plug-ins
Extensions in the old BTEX to deal with new concepts
are quite difficult to develop since code must be added
directly in the BTEX source.

In a modern tool, it is mandatory to use a more in-
cremental and tractable approach even for an inexperi-
enced user by allowing loadable add-ons or plugins in-
stead of needing to dig into the code to change its behav-
ior. A plugin is a piece of code (a module) that can be
added to BTEX++ to increase its functionality without
having to change the native BTEX++ infrastructure.

Plugins should be able to modify any BTEX++ be-
havior without corrupting the original design. Of course
there is compromise to be found between expressiveness
and complexity.

We present further the kind of extension one can ex-
pect with the plugin concept applied to different parts
of BTEX++ (described later in § ‘Overview of the
BTEX++ architecture’).

Parsers A natural extension needs to regard the in-
put syntax that BTEX++ can accept. New parsers can
be written and used to change any information source into
some internal abstract representations of the tool.

The bibliographical source could be changed to di-
rectly use the CiteSeer database [22] through the Inter-
net, use some  database or any other bibliographical
database tool instead or in addition to the old .bib syn-
tax database.

The input selection, normally read from the .aux
file to pick \cite information, could be extended to deal
with OpenOffice, DB or Word documents.

Prettyprinters Since BTEX++ can be seen as a pa-
rameterized compiler that deals with some internal bib-
liographical representations, it could be nice to target
other output formats than LATEX such as an OpenOffice,
DB or Word document syntax or to automat-
ically internationalize a style from one language to an-
other.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 475

Fabien Dagnat, Ronan Keryell and Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri

In an easier way, BTEX++ could be used to trans-
late a .bib file to another bibliography database for-
mat or apply some basic manipulations on bibliographical
databases (sorting, merging, . . .).

Style transformation More generally, adding some
features to already existing styles is useful to revive some
of the old-fashioned styles; for instance, adding new url

records to old styles written before the Internet wave.
To make a bibliographical database or a researcher

publication list [19] available on the Internet it could be
useful to be able to fetch, close to the typeset biblio-
graphical notice, the .bib record itself that was used to
generate the notice if someone wants to cite it in her ar-
ticle. This could be done in any style by using an appro-
priate plugin.

Metaplugins Whereas BTEX did not evolve for
many years, BTEX++ should rapidly evolve according
present programming and Internet standards. A natural
way is to use mobile code concepts in BTEX++, code
that can also be downloaded by a plugin itself. Since it is
a plugin that can fetch from the network other plugins it
has been nicknamed ‘meta-plugin’ in BTEX++.

One can embrace various future uses of this concept.
First, to write this paper we could have picked all

the BTEX++ bibliographical style from the TUGboat
web site.

On the BTEX++ web site we could have a page
referencing all the bibliographical databases available on
the Internet. A plugin associated with this page could
download other plugins to deal with each database we are
interested in.

If a new typesetting tool is introduced, its au-
thor could provide on her site some plugin material for
BTEX++ to be compatible with that new tool. The
BTEX++ user would only provide to the meta-plugin
the plugin address.

We will see in § ‘Security model’ how to circumvent
the obvious security issues related to this kind of mobile
code in the wild.

Plugin syntax To remain close to the existing LATEX
and BTEX interaction syntax we do not add new
LATEX macros but rely on the current ones, merely
adding special keywords inside the \bibliography and
\bibliographystyle macros.

Of course plugins can also be included from the
BTEX++ invocation line or with another mechanism to
suit other input formats than LATEX.

To avoid conflicts with other tools that could also
use this kind of extensions, a naming space beginning with
:bibtexpp is used.

For example if a user from the computer science
community wants to directly use citations from the Cite-
Seer database [22], this will be chosen with
\bibliography{:bibtexpp:plugin:citeseer}

If a user wants to add a plugin style to automatically
add the output of a url attribute if any from the database
at the end of the typeset bibliography item, the following
will have to be added
\bibliographystyle{:bibtexpp:plugin:

add-attribute:url}

or more generally to add the output of some specific at-
tributes description and summary

\bibliographystyle{:bibtexpp:plugin:

add-attribute:list:description,summary}

or all the attributes with
\bibliographystyle{:bibtexpp:plugin:

add-attribute:all}

Plugins themselves can be downloaded from the de-
fault BTEX++ network repository defined in its code
with, for example
\bibliographystyle{:bibtexpp:plugin:meta:

beautiful-bib}

of from any other place by defining a  such as
\bibliographystyle{:bibtexpp:plugin:meta:

URI:http://nice.bib.org/beautiful-bib}

If the BTEX++ installation is a little bit old, some
plugins may be absent from the local distribution but
present in the BTEX++ Internet repository. To be able
to compile documents without choking, BTEX++ can
be used in an automatic metaplugin way where any lack-
ing plugin will be retrieved from the repository.

If other plugins have been registered on the naming
global BTEX++ directory but reside on other servers,
a proxy-plugin will be downloaded to download later the
real plugin code from its server.

Naming clashes should be avoided either with the
current LATEX best practice for package names or by using
a hierarchical naming space mimicking Java class naming
space or  names.

Indeed a plugin call can be defined equally well in
either the \bibliography or \bibliographystyle
macros, but according to the plugin role, one may be
more logical than the other.

The basic compatibility with LATEX and BTEX
is based on the fact that some macros with this syntax
will only generate warning in BTEX without stopping
the LATEX compilation. Of course, the bibliography of
the document will be lacking or at least incorrect, a user
without BTEX++ will be able to have an approximation
of the document.

More expressiveness can be used with new macros,
defined in a new package bibtexpp, if this compatibility
is not mandatory.

Of course, a parser plugin can itself define a new
plugin definition or parameter syntax to deal with other

476 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

BTEX++: Toward Higher-order BTEXing

.dvi

.tex

LaTeX .aux

.doc

... ...

.dvi

.tex
Style

front−end

Bibliography

front−end

.bst.bib .xml

core

BibTeX++ Back−end

pretty−printer

Document

front−end

.blg

.db .db

.doc

.bbl LaTeX

F. 3: BTEX++ work-flow.

input languages such as with DB or Word doc-
uments.

Software architecture of BTEX++

Overview of the BTEX++ architecture In BTEX++
we are specially interested in the software architecture
point of view since the project began first with the chal-
lenging idea of compiling the  language into some-
thing newer and more expressive.

The principal elements of this architecture are
closely related to the BTEX++ data-flow, and are
summed up in figure 3.

To be more generic and more scalable, output is
handled by prettyprinters of internal representations,
and input is read by parsers that build a common inter-
nal representation. In this way, we have only to define a
new prettyprinter or parser to deal with a new format,
without having to change the BTEX++ internals.

The parsers are made with Sable [12], a compiler
compiler for Jwritten in J. Unlike other compiler
compilers (such as J Cup, for example [14]), we do
not need a specific library to use the generated compiler.
So users only need J to execute BTEX++.
• The  parser which tries to obtain the name of
the style, database filenames, and information about
languages used in the LATEX file.

• The  parser which converts databases to a list of
J objects.

• The  parser which transforms a style file into a
syntax tree.

• The  compiler. It takes this syntax tree and
makes a J style file from it. It also tries to cor-
rect some common errors in  files and optimize
the output code.
BTEX++ core The core deals with all the basic

BTEX++ infrastructure, from bibliographical concepts

to house-keeping and the data structures used by various
abstract internal representations.

All the BTEX functionalities that can be used by
the various bibliographical style are implemented in a
core library.

Bibliography back-end This relatively simple part
outputs the internal style execution into a file usable by
the typesetting tool to be used. Right now, a .bbl file
to be used by LATEX is generated but by changing this
prettyprinter other output could be generated for an-
other tool.

Document front-end It is organized according to a
strategy pattern to be able to deal with various document
formats.

Right now a Sable parser has been written to deal
with LATEX only.

Bibliographical database front-end This front-end
also follows a strategy pattern to cope with various data-
base formats.

A Sable parser has been written now to read only
BTEX bibliographical database in the .bib format.

Caching BTEX++ styles BTEX++ styles can be
stored on the computer running it, as with BTEX, but
can also be retrieved from the network or translated from
an old BTEX  style.

If the first access method is quite fast, the two other
ways may be deadly slow compared to it. This is why
a cache architecture has been added in the BTEX++
style pipe to avoid fetching again and again a remote
BTEX++ style or translating a style from BTEX for-
mat on every BTEX++ run.

Software architecture of the ir  to J compiler
Now we consider the ir compiler for translating 
to J. See figure 4.

The BTEX stack-based input language BTEX++
.bst files use a stack-based language: it is a type of lan-

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 477

Fabien Dagnat, Ronan Keryell and Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri

.bst

Core

Java compiler

.class Cache

.javabst compiler

F. 4: Compilation work-flow.

guage where you push the data to manipulate on a stack.
Also, functions store their results on this stack. The syn-
tax uses a reverse polish notation (also called postfix no-
tation). For example, to compute 2 + 3, you first push
2 and 3 on the stack and then call the add operator, so
you have to write something like this: 2 3 +.

Some stack-based languages We may cite as stack-
based programming languages:
• Forth, used in many fields, especially embedded
control applications;

• PostScript, used primarily in typesetting and other
display purposes. Because the majority of Post-
Script code is written by programs, it can also be
regarded as an intermediate language;

•  (reverse polish ), the language of the -48
calculator. It is a run-time type-checked language
with mathematical data types (it is on a calculator)
and has a Forth-like syntax;

• the BTEX style () language, the stack-based
language used for processing BTEX databases.
Although stack-based languages are sometimes used

as programming languages, they are more popular as
intermediate languages for compilers and as machine-
independent executable program representations. As in-
termediate languages may be listed:
• the  -code used in the  system, an oper-
ating system well-known for its Pascal compiler. -
code was either interpreted or compiled to native
code. We can find today -code compilers for more
recent systems;

• the Smalltalk-80 bytecode is the intermediate lan-
guage of the Smalltalk-80 system.

Some other stack-based languages target several machines
as machine-independent languages, notably:
• the J bytecode output from compiling a J file.
It can be used on every system supported by J
because it will be interpreted by the  (J Vir-
tual Machine).

Unfortunately computers are mainly register ma-
chines2 and it is not easy to implement directly and ef-
ficiently a stack-based language. That is another reason
why stack-based languages are not frequently used. To-
day, there are 3 ways to execute a stack-based language
on register machines, via:
• an interpreter. The execution is dynamic but very
slow;

• a compiler that statically transforms the code into
target one;

• a source-to-source translator to convert stack-based
code into a high-level language that is then compiled
for the target. It allows the code to be executed on
many different systems if the high-level language is
well-known and widely used.
 language A style file for BTEX is a program

that formats the reference list in a certain way. For exam-
ple, a style file can sort the reference list in alphabetical
order using the author names, and italicize titles.

The  language [23] is a domain-specific language
using ten commands to manipulate language objects (con-
stants, variables, functions, the stack and the entry refer-
ence list). A string constant is between double-quotes like
"abcd efgh" and an integer constant is preceded by an
like #23. There are also three different types of vari-
ables:
• global variables, declared by INTEGERS or STRINGS
commands;

• entry variables, which can be strings or integers,
with a value assigned for each entry of the list;

• fields, which are read-only strings. They represent
information from the curent reference item, so each
one has a value for every entry.
Among the 10  commands available, here are

some of the more interesting ones:
• ENTRY declares the fields (in the bibliography data-
bases) and the entry variables. crossref is a field
which is automatically declared (used for cross ref-
erencing) and sort.key$ is an entry variable (used
for sorting references), also automatically declared;

• ITERATE executes a single function for each entry in
the reference list. These calls are made in the list’s
current order;

• READ reads the database file and assigns to fields
their value for each entry;

• REVERSE performs the same action as ITERATE but
in reverse order;

• SORT sorts the reference list in alphabetical order
according to sort.key$.

2. There is probably no other popular architecture since the
Transputer [16].

478 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

BTEX++: Toward Higher-order BTEXing

All these commands support defining the structure
of a style file. But with them, we can not manipulate
variables. This is why 37 built-in functions have been
declared in BTEX, from integer and string computa-
tions to control-flow operation (if$, while$, . . .) and
the write$ which writes the top string item into the
.bbl file (the BTEX output). With all these built-in
functions and commands some other new useful and more
complex functions can be designed such as:
FUNCTION {and}

{ ’skip$

{ pop$ #0 }

if$

}

This function calculates the “logical and” between two
numbers: if the first element on the stack is greater than
0 (meaning “true”), skip$ is executed so this function
returns the second element on the stack. Else, pop$ #0

is executed which puts 0 on the stack. We can see that,
even with this over-simplified example, it is not very easy
to understand the  language:
• we are not accustomed to postfix stack notation;
• the number and the type of input and output vari-
ables are implicit;

• we have to read all the control structure in reverse
order.
This explains why only a few people are able to pro-

gram a new style in this language. So for BTEX++, we
will have to create a more expressive style language. But
because of the need for compatiblity with BTEX, we’ll
have to transform this stack-based language into a stan-
dard one. So we will see how to remove the stack in a
stack-based language.

Stack removing in stack-based languages A number of
techniques have been proposed in the literature for this
type of translation.

Source-to-source translator There are only a few
source to source translators for stack-based language. The
most famous research on this was done in [10, 11] where
Forth code was translated into C in order to increase the
portability of Forth applications. Ideally, to use a Forth
application on a special system, one should develop a spe-
cial interpreter. However, if one transforms the Forth
into C first, the program can be used on every system
where a C compiler is available. Furthermore, no deep
optimization of the translator is needed since the C com-
piler will optimize the output code.

Practically all the other source to source translators
for stack-based language are J decompilers like kraka-
toa [24] or mocha [25] which try to transform J byte-
code back into J. With this, the idea is to get back
the program sources from compiled files. Nevertheless,
all these translators use the same algorithm and special

C variables Stack
x1 տ
x0 Top of the stack
p0 տ
p1 Top of the stack
p2 upon function entry

F. 5: Stack mapping to C variables.

optimizations for J and  (J Virtual Machine)
bytecode.

In [11] the f2c Forth to C translator described uses
several steps to convert Forth code to C language. The
first is to split the code into its functions which will be
processed independently. Then, f2c counts the number
of input and output parameters for each function. The
next step is to convert the elements on the stack into C’s
local variables, as shown in figure 5.

In that figure, p0, p1, . . . represent the entry vari-
ables of each function and x0, x1, . . . are used like local
variables. This scheme ensures that stack items that are
not affected by an operation do not have to be copied
around between local variables.

Then f2c converts each Forth primitive into a C se-
quence. For example, if the top of the stack resides in
x1, the translation of + will look like:
{

Cell n1=x1;

Cell n2=x0;

Cell n;

n = n1+n2;

x0=n;

}

/* top of the stack now: x0 */

This sequence is very long, but a good C compiler can
compile it to only one instruction (sometimes, it can con-
vert several sequences into one instruction). So the trans-
lation process always works like this:
• all the useful elements are declared as C local vari-
ables and are initialized;

• the C code for the Forth primitive is generated;
• the result variables are copied back to the stack.
f2c has also to convert all the control structures.

Since Forth allows the creation of arbitrary control struc-
tures, it is easiest to convert them into C goto instruc-
tions and labels.

This translation mechanism must know the height
of the stack everywhere in the Forth code, but it is not
always possible. Sometimes the stack depth is unknown.
For example, the instruction ?DUP 0= IF means that if
the top of the stack is 0, replace it with the previous ele-
ment on the stack, else we delete the element. So in this

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 479

Fabien Dagnat, Ronan Keryell and Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri

case, f2c has to create a stack in C and use it throughout
the whole function.

Compiler Source-to-source translators are not the
only software which remove the stack in a stack-based
language. Stack-based compilers do the same thing, but
they convert this language into a low level one (often into
mnemonic instructions). So their algorithms may be use-
ful for BTEX++.

 [10] is a framework for compiling Forth
code. It tries to produce fast and efficient code, so it
needs to use some optimization techniques and interpro-
cedural register allocation to eliminate nearly all stack ac-
cesses because they slow down the execution of the pro-
gram.  compiles all of Forth, including unknown
stack heights.

 uses several steps to compile Forth code.
The first step is to split the code into basic blocks. A ba-
sic block is a set of instructions which contains only simple
primitives like literals, constants, variables, operators and
stack manipulation instructions. So a basic block does not
contain any branch or jump: all primitives are executed
sequentially. Then  builds a data flow graph of this
basic block.

After that, it converts the Forth primitives into
mnemonic instructions and transforms all stack items into
unlimited pseudo-registers. So all stack accesses within a
basic block have been eliminated and the  (Directed
Acyclic Graph) is now an instruction . Then an in-
struction scheduler orders the nodes of the instruction
, i.e., it transforms the  into a list. This list is
optimized to reduce register dependencies between in-
structions.

Now, we have a set of mnemonic blocks, but we have
to connect them with control structures. Control flow
splits (IF, WHILE and UNTIL) are easy to transform but
control flow joins (ENDIF and BEGIN) are a little harder
because the corresponding stack items of the joining ba-
sic blocks usually do not reside in the same register. So
 needs to move some values around to have the
same structure.

In order to have faster output code, three good reg-
ister allocation algorithms are proposed: graph coloring
register allocation [2], hierarchical graph coloring [3],
and interprocedural allocators [4].

Another stack elimination in a compiler can be
found in J compilers. Today, faster and faster exe-
cution is needed for J applications. Better J per-
formance can be achieved by Just-In-Time () com-
pilers which translate the stack-based  bytecode into
register-based machine code. One crucial problem in
J  compilation is how to map and allocate stack
entries and local variables into registers efficiently and
quickly so as to improve the J performance.

LaTTe [28] is a J  compiler that performs

fast and efficient register mapping and allocation for
 machines. LaTTe converts J bytecode (a
stack-based language) to  assembler. It uses severals
steps for this:
• first, LaTTe identifies all control join points and
subroutines in the J bytecode, via a depth-first
traversal, in order to build a control flow graph
();

• then, it converts this bytecode into a  of pseudo
 instructions with symbolic registers;

• optionally, some traditional optimizations are per-
formed;

• in the fourth step, LaTTe performs a fast register
allocation, generating a  of real  instruc-
tions.

• finally, the graph is converted into a list of  in-
structions.
To transform the stack into registers, LaTTe uses

symbolic pseudo- registers whose names are com-
posed of three parts:
• the first character indicates the type: a for an ad-
dress (or object reference), i for an integer, f for a
float, l for a long and d for a double;

• the second character indicates the location: s for
operand stack, l for local variable and t for tempo-
rary variables used by LaTTe ;

• the remaining number distinguishes the symbolic
registers.

For example, il2 represents the second local integer reg-
ister. At the end of the algorithm, LaTTe transforms
these pseudo-registers into real ones with two passes for
each extended basic block:
• the backward sweep algorithm is a post-order tra-
versal which collects information on the preferred
destination registers for instructions;

• the forward sweep algorithm is a depth-first traver-
sal which performs the real register allocation using
that information.

Sometimes, we need to move some registers in order to
reconcile register allocation at region join points because
LaTTe uses these two algorithms on each extended basic
block independently. So two blocks may not use the same
register for the same item on the stack.

Globally, this method is very efficient: the output
code of LaTTe is on average two times faster than the
S , and this speed comes particularly from the reg-
ister allocation algorithm.

Compiling BTEX  styles to BTEX++ J
styles The transformation of a typeless stack-based lan-
guage into an object-based one is something quite un-
usual, and a bit complex. We planned a classical com-
piler architecture divided into several steps as shown in
figure 6:

480 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

BTEX++: Toward Higher-order BTEXing

.bst .java

Parser
Lexer Translator

Tree Pretty
PrinterOptimizer

JAVAJAVA ASTbst AST

Optimized AST

JAVA

F. 6: ir architecture.

• first, we use the  parser to convert a  file
into a  abstract syntax tree () with a Sable
grammar;

• then, in the tree translator the   is trans-
formed to a J-like  :

– useful information from the tree is gathered,
like function names, global variables, . . . Func-
tions are analyzed to decide if the stack can be
removed and if so what is the number of input-
output parameters;

– unlike , J is a type-based language, so
we need to know the type of every variable
in the non-stack-based session. But in some
cases, it is very difficult to find this type, so if
we cannot determine it, we use instead a Cell
object: an object that can store both an integer
and a string;

– with this data, the   is translated into a
J  ;

• later, the J  tree is optimized with some clas-
sical transformations such as constant propagation,
dependencies reduction, transformation of integer
into boolean in the condition block, dead code elim-
ination, peephole optimizations, . . . ;

• at last, a J file is written by the prettyprinter and
the new J BTEX++ style can be compiled and
used.
Globally, some  code like

FUNCTION {or}

{ { pop$ #1 }

’skip$

if$

}

will be converted into J as
public int or(int i0 , int i1)

{

if(i1 > 0)

{

i0 = 1;

}

return(i0);

}

For most users and style designers, since the second block
of code has been optimized for human comprehension, it

should be easier to modify an existing style as a develop-
ment basis of a new native BTEX++ style.

Furthermore, because there are more J pro-
grammers than  ones, new arbitrary and complex
styles will be easier to create with BTEX++ than with
BTEX. If a simple interpreter had been designed in-
stead of a translator, this would not have been possible.

More information on the  to J compilation
can be found in [8] but 2 phases are detailed here.

J translation First, information about functions
is searched for in the  . For each function, we
try to obtain the name of the function, the number of in-
put and output parameters and the possibility of remov-
ing the stack in this function (unfortunately this is not al-
ways possible).

Then the type of the arguments of all functions
are inferred with type propagation from hints found in
the program outside the stack, such as typed constants
(a string or an integer), typed global variables, and use
of BTEX functions with well-known entry or return
types. The propagation is recursively done for all the
home-made functions. Propagation is done in both di-
rections in a use-def or def-use way to deal with typed
entries or output. Some further abstractions are used to
follow the dependency graph even if there are stack ma-
nipulation operations in the code such as duplicate$,
pop$ or swap$.

When it is not possible to infer the type, it indicates
that we will have to use a polymorphic Cell object which
can store either a string or an integer.

Next the body of the functions and their stacks are
analyzed to determine how many J local variables we
will have to use, and their types.

With all this information, the  code is translated
to J functions where we can remove the stack by us-
ing local variables instead of stack items when possible,
or generate J functions with a J stack when stack
removal is not possible. Variables are named accordingly
to figure 7. If the type has been inferred, the native J
types String or int are used instead of our polymorphic
type Cell.

If stack removal is not possible in a given function,
the stack architecture is kept, but with a J . The
generated code looks like this:
public void format_bdate()

{

stack.push(year);

stack.push(BuiltIn.empty(

stack.pop().getString()));

if(stack.pop().getInt() > 0)

{

stack.push("there’s no year in ");

stack.push(BuiltIn.cite(bib));

stack.push(stack.pop().getString()

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 481

Fabien Dagnat, Ronan Keryell and Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri

c5 | i5 | s5

c3 | i3 | s3

c2 | i2 | s2

c1 | i1 | s1

c4 | i4 | s4

c0 | i0 | s0

Stack

Top of the stack

Deepest element

in the function

JAVA local variables

Top of the stack

upon function

entry

Number of input

parameters

F. 7: Variable notations in ir.

+stack.pop().getString());

System.err.println("Warning : "

+stack.pop()

.getString()

+".");

}

else

{

stack.push(year);

}

}

If a function with a stack is called by another function,
the latter will have a stack too.

Calls to any of the 37 built-in functions of BTEX
are translated to direct J code when possible (such as
for +) or to calls to equivalent functions in the BTEX++
library.

For example, the translation of this  function:
FUNCTION {format.lastchecked}

{ lastchecked empty$

{ "" }

{ inbrackets "cited " lastchecked * }

if$

}

will be (without optimizations)
public String format_lastchecked()

{

String s0 , s1;

int i0;

s0 = lastchecked;

i0 = BuiltIn.empty(s0);

if(i0 > 0)

{

s0 = "";

}

else

{

inbrackets();

s0 = "cited ";

s1 = lastchecked;

s0 = s0 + s1;

}

return(s0);

}

We can see the call to the empty function and the trans-
lation of the *  concatenation operator to the + J
concatenation.

The  control flow operators if$ and while$ are
replaced by their J counterparts.

After these four passes, we have a J  but this
code is not optimized at all, so we need to clarify it a lit-
tle.

J optimization We decided to use several types
of independent optimizations in order to provide a final
optimization which is fully customizable by the user. We
do not need very complex optimizations, because the aim
of this is to increase legibility, rather than speed execu-
tion. Another reason for using simple optimizations is
that the input code was written by human programmers
in a not very understandable language, so they tried to
write this code cleanly.

We use eight different functions for this:
• an if optimizer simply removes all the empty then
or else blocks found in a plain  code;

• a copy and constant propagation function removes
most of the variables generated, instead of stack us-
age. This increases the quality of the next phase,
dead code elimination;

• a dead code elimination function is associated with
the propagation optimization to remove many use-
less definitions, because it deletes all write after
write dependencies;

• a boolean translator: since in the  language
there is no boolean type, this optimization tries
to transform integer to boolean in if and while

conditions. For example, it will transform if(

BuiltIn.equal(i1 , i2) > 0) to if(i1

== i2);
• other small optimizations such as peep-hole opti-
mization and poor-man partial evaluation: for ex-
ample, transforming a1=a0+0; into a1=a0; or
"some"+"thing" into "something", and so on.
These optimizations only try to increase the read-
ability of the J code.
After these optimizations we get somewhat cleaner

code, such as this from a previous example:
public String format_lastchecked()

{

String s0;

if(BuiltIn.empty(lastchecked) > 0)

{

482 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

BTEX++: Toward Higher-order BTEXing

s0 = "";

}

else

{

inbrackets();

s0 = "cited " + lastchecked;

}

return(s0);

}

If we look at another function from plain.bst:
FUNCTION {new.sentence}

{ output.state after.block =

’skip$

{ output.state before.all =

’skip$

{ after.sentence ’output.state := }

if$

}

if$

}

This is translated to rather long J code:
public void new_sentence()

{

int i0 , i1;

i0 = output_state;

i1 = after_block;

i0 = BuiltIn.equal(i1 , i0);

if(i0 > 0)

{

}

else

{

i0 = output_state;

i1 = before_all;

i0 = BuiltIn.equal(i1 , i0);

if(i0 > 0)

{

}

else

{

i0 = after_sentence;

output_state = i0;

}

}

}

but the optimizations downsize it to a more understand-
able function:
public void new_sentence()

{

if(output_state != after_block)

{

if(output_state != before_all)

{

output_state = after_sentence;

}

}

}

We can see in this example many different optimizations
at work:
• all empty then blocks have been removed;
• all global variables have been propagated: the code
i0 = after_sentence; output_state = i0;

has been transformed into
output_state = after_sentence;

We no longer use any local variables;
• some built-in functions have been converted to bool-
ean operators: the BuiltIn.equal(i1 , i0)

> 0 is now a simple i1 > i0.
So we can see here that all these transformations are

pretty efficient. Indeed, the optimized function is much
more readable that the non-optimized one.

Plugins and meta-plugins
Plugins architecture The strategy pattern used is

based on hook mechanisms such as that used in the Emacs
editor. In the original design, many hook points are cho-
sen to enable users to insert calls to their own functions.

From a software engineering point of view, it is
close to aspect programming, but in a restrictive way
since all the points that can be modified are defined in
advance. We think this approach is more tractable but if
some features are not easy to implement with the exist-
ing hooks, more can be added since BTEX++ is also an
evolving open source program.

Lots of hook objects can be used to replace objects
in the current architecture, thus modifying the global be-
havior, as in the following examples.

Some other specialization frameworks remain to
be studied further in this context to fit future exten-
sions, such as direct subclassing of BTEX++ classes, as-
pect programming, and reflection and introspection on
BTEX++ classes. The main issue is that code complex-
ity remains manageable and security is not endangered.

Parsers The management of the various inputs is
dealt with by parsers crafted to each input format. They
rely heavily on the Sable parser generator [12] to
speed up retargeting of BTEX++ to a new data format.

New parsers can be loaded as plugins in BTEX++
when requested by the user.

Prettyprinters Writing plugins to output new .bib

database files does not cause any trouble since it is a sim-
ple prettyprinter that outputs the internal database rep-
resentation.

But automatically translating the BTEX++ output
into another language or targeting a new typesetting sys-
tem is far more challenging. Basically, BTEX++ is a tool
able to run BTEX++ native code or BTEX code in

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 483

Fabien Dagnat, Ronan Keryell and Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri

an improved way, but is not able to abstract the seman-
tics of what a piece of BTEX code itself really does (of
course; in fact, this is an intractable issue from theoret-
ical computer science). BTEX++ has no idea that it is
outputting an author name or a conference name: it is ex-
ecuting a J procedure with a side effect that outputs
a string.

Thus, we can only rely on some heuristics to deal
with the prettyprinter parameterization, such as recog-
nizing a .bib text output and translating it.

Since it is not possible to understand the BTEX++
style it is not possible to modify it for retargeting the
LATEX output to another typesetting format. Instead, one
can translate the LATEX output item to another format.
This is simple to do since generally bibliography styles do
not generate complex TEX programs, but only text with
some simple LATEXmark-up tags. On the other hand, the
key information, being directly managed by BTEX and
BTEX++, can be dealt with by the plugin and output
in the correct format.

Modifying the output of the bibliography style with
a plugin is harder, since one should access the type of the
data. For example if one wants to write a plugin to mod-
ify any existing style to display the dates in a numerical
form instead of a textual one, say by replacing via reg-
ular expression mechanisms all occurrences of “Novem-
ber” with “11”, one needs to apply this translation pro-
cess only on the date field which we are .. . not aware of!
And what would happen if an author is named “Novem-
ber”?

This kind of problem is similar to automatic trans-
lation of buggy pre-year-2000 programs that cannot deal
with years after 1999 to cleaner programs that can deal
with them. Automatic transformations must be applied
only on code that certainly deals with dates and not other
numerical computations.

An interesting approach could be to type the out-
put text with the data attribute used to build this text
through BTEX++, in order to approximate the data
dependence graph with a slicing approach [26] (that is,
to extract from the style code only the minimal code
needed to generate the value of a given variable) stati-
cally during the BTEX compilation process or by stat-
ically analyzing the J BTEX++ style. In this way it
could be easy to determine that a given part of the text is
a textual representation of the year, the author names, or
the title, and use this information to translate these texts
in a representation without \bibitem and so on, suitable
for other typesetting tools. The typeset output for LATEX
could thus be retargeted easily since we would now have
in the output what is an author name, what is a surname,
what is a conference title, etc.

Since we only want to know what input fields are in-
volved on a given output field, we can use dynamic de-

pendence graph reconstruction. Since BTEX++ is pro-
grammed in an object oriented language, overloading of
the data type class to embed this on-the-fly dependence
graph construction could be easy. At the BTEX++ out-
put procedure, for each character, the input fields used to
compute its value is known.

This is similar for example to the tainting concept
of variables used in the Perl language for security reasons,
to know if a variable value has been computed by using a
value given by the user, or not. If yes, and that variable
is used to execute a privileged operation, the program-
mer may refuse to execute such a dangerous thing by us-
ing tainted mode.

The automatic internationalization process uses the
same approach to translate the output text from one lan-
guage to another. But if we have existing bibliography
styles, say, for l languages and we want to be able to trans-
late every language to any other, we need to write l(l−1)
translators, which is cumbersome. Instead, if we intro-
duce a kind of “esperanto” intermediate abstract repre-
sentation, we only need to write l translators to this inter-
mediate form and then l prettyprinters to each language.

Another way for classical  crude code translation
would be to use pattern matching to translate common
piece of code. Of course, since no semantics recognition
can be used, this method is not very adaptable.

Code transformation It is interesting to have a code
transformation engine in BTEX++ to allow plugins to
modify the behavior of other styles, and implement
other features.

Transformations could be done at different levels
in BTEX++, on the  internal representation or the
J BTEX++ style more generally, or more conserva-
tively on the input data structures.

The code transformation itself could use the hook
mechanisms already present in the code, or an aspect pro-
gramming tier in the BTEX++ infrastructure. A low
level approach could be to allow plugins to modify the
code (for example, adding at the end of the output rou-
tine a call to a new procedure that will output a new field)
by using J reflection and introspection.

Of course, from the security point of view this
should be very carefully controlled to avoid plugin mal-
ware rewriting security checking in BTEX++. But this
can also be enforced by the underlying J security
model, which we turn to now.

Security model In a tool such as this, where code can
be downloaded by foreign documents automatically and
transparently from alien servers, security sounds a little
scary. It could be easy to design BTEX++ viruses.

Hopefully, BTEX++ is written in J, which im-
plements a sensible security model controlling in a cen-
tralized way the execution of arbitrary code [18] at a

484 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

BTEX++: Toward Higher-order BTEXing

very fine level.
We use this mechanism that has been tailored to al-

low secure execution of programs retrieved from the In-
ternet (applets) in web browsers in a similar way.

It is used in BTEX++ to avoid plugin code access-
ing sensitive local resources, modifying the security in-
frastructure of BTEX++, and other obvious concerns.

At installation, the policy file contains
grant {

permission java.util.PropertyPermission

"bib_max", "read,write";

};

grant codeBase "file:${bib_lib}" {

permission java.io.FilePermission

"<<ALL FILES>>", "read,write,execute";

permission java.util.PropertyPermission

"bib_cache", "read";

permission java.util.PropertyPermission

"bib_lib", "read";

permission java.util.PropertyPermission

"java.class.path", "read";

};

All classes except those inside the BTEX++ library
(thus, plugins and styles) can only access one environment
variable: bib_max. It is the maximum length of a string
in a style.

Performance results With the power of modern comput-
ers compared with the older computers at the beginning
of BTEX, we may think that compiling a bibliography
must be quite fast and not significant in the composing
time.

But although the original BTEX is quite simple
and fast, BTEX++ is noticeably more complex with its
compiler engine and various optimization phases. One
could ask if it is still fast enough.

Some tests were made on a Athlon  2000+ 
with 512  of  with j2re (Java 2 Runtime Envi-
ronment) version 1.4.1 for L. The BTEX++ pro-
grams were compiled by the S javac with the -O op-
tion to optimize the code.

Besides the performance evaluation, the compati-
bility of ir with BTEX styles has been investigated
by compiling all 152 styles in the MiKTEX distribution.
This allowed us to find and correct some bugs in our soft-
ware, as well as some bugs in old BTEX styles.

The execution time and the size of the styles be-
tween the optimized version of ir and BTEX++
and the normal one is compared in figure 8. We can see
with the ir execution time that it is two times slower
to generate optimized J style file than non-optimized
one. Nevertheless, the compilation of a .bst style file
to a J class file remains quite fast, by considering the

0

100

200

300

400

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟✟✟

✟
✟✟
✟✟

187

BiSTrO execution

375

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟✟✟

✟

✟
✟✟
✟✟

304

javac compilation

297

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟✟✟
✟

✟
✟✟
✟✟

129

Bibliography creation

133

Seconds

✟
✟✟✟
✟✟ Without the -O option With the -O option

F. 8: Total execution time of the BTEX++
components on 152 styles.

0

10

20

30

40

50

60

70

80

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟✟✟

✟
✟✟
✟✟

68

.java file

53

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟✟✟
✟

✟
✟✟
✟✟

32.2

.class file

27 26.7

.bst file

ko

✟
✟✟✟
✟✟ Non-optimized file Optimized file

F. 9: Mean size of some style formats.

ir execution time plus the javac execution time to
generate the class file: only 3.2 seconds on average per
.bst file without any optimization and 4.4 seconds with
all the optimizations. Furthermore, since we use a cache
mechanism to compile a new  file to J only once,
this compilation time is spent only the first time we use
a  style: all subsequent executions of BTEX++ with
the old BTEX style will skip the compilation phase and
thus run faster.

The execution of BTEX++ is far slower than the
original BTEX (that runs in about 0.04 second on a
small example), but this is not disturbing for a normal
user because he just has to compile the .bst file once
(the 3.2 seconds above), and next time the creation of
the .bbl file will only take 0.8 second.

Finally, the optimizations are not very useful for a
standard BTEX++ user: it increases the compilation
time but does not decrease the execution time.

Nevertheless they are useful for style designers. In-
deed we have already seen that there are two ways of cre-
ating a new style, by modifying an existing one or by cre-
ating a new one from scratch. For both, it is easier with
BTEX++ than with BTEX because the J language

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 485

Fabien Dagnat, Ronan Keryell and Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri

is far more expressive, higher level and comprehensible
than the  language.

In order to help developers who want to reuse an
old style, they can ask ir to optimize its output code.
Nevertheless, as we have just seen, these optimizations
do not decrease the execution time of the bibliography
generation, mainly because the J compiler also opti-
mizes the code when we compile it. So these optimiza-
tions are mainly useful for a style designer as a reverse-
engineering framework.

We can see in the histogram in figure 9 that these
optimizations decrease the size of the .java style file by
22% and the size of the .class file by 16%. So they re-
duce the length of the code at least (it is usually easier to
understand shorter code), but also increases its legibility
as we have seen in the optimization code examples.

We can also note that the optimized .class files
has almost the same size as the original .bst files. But
since these class files were automatically generated we
can imagine that hand-made BTEX++ style files will be
smaller than BTEX ones, so they will be more easily
downloadable and sharable.

Related work

There are many other open tools available to deal with
bibliographies [6], but to our knowledge none tackles
both extensibility and BTEX compatibility.

Nevertheless some are closely related to our project,
such as MlBTEX and Bibulus.

MlBTEX MlBTEX [15] is a multilingual version of
BTEX rewritten in C. The database files and behavior
remain mostly compatible with BTEX with small ex-
tensions.

The cited article introduces in a well documented
way the domain and issues related with bibliography in-
ternationalization and typography.

The main point ofMlBTEX is the introduction of
language switches inside the bibliography items to be able
to choose the most correct translation given by the author
according to the current language, such as different notes
or different transliterations of an author name.

Some other fields, such as the dates and so on, are
also naturally translated.

Some extensions are planned, such as using Unicode
and a localized sort, but extensibility relies on adding fea-
tures in the code.

Bibulus Another tool tackles multilingual bibliographies
with an extensible framework, but without a BTEX
compatibility for styles: Bibulus [27].

As with BTEX++ written in Java, Bibulus is writ-
ten in a language that can deal natively with Unicode:
Perl. This allows dealing with all the world’s languages.

Since collators are also available, sorting can be done ac-
cording to the requested language.

The input database format uses  but a tool has
been written to translate BTEX’s native .bib files to
the Bibulus format. The format is typed more strongly,
to ease further internationalization. For example the
gender of the author is defined to allow for grammatical
variation in some languages.

Although Bibulus is right now targeted at the LATEX
environment, other input or output formats could easily
be added.

Some style parameters can be written directly in the
source document to change the behavior and new items
can be added to a citation to override or specialize some
points of the bibliography for this particular document,
or to add an annotation in the current context and lan-
guage.3

The extensibility is based on two methods. First, as
in BTEX++, there are many hooks to enable the style
programmer to modify the standard behavior of Bibulus,
such as rewriting things in the parser and so on. Next,
since Perl is also an object oriented language, the style
programmer can override some methods of Bibulus ob-
jects.

But since there is no security model in Perl beyond
tainted mode, it seems difficult to allow for secure exe-
cution of styles from the hostile world.

Conclusion

BTEX++ is an extendable tool dealing with the bibli-
ographical area of electronic documents. It aims at ex-
tending the well known BTEX in the LATEX world by
adding modern features such as Unicode document en-
coding, Internet capabilities, scalability to future usages,
and future tools through plugin mechanisms and at the
same time to remain compatible with plain old BTEX.

BTEX++ is a free software program written in
J, a clean portable object oriented language that na-
tively handles Unicode. Since it is written in J,
BTEX++ is ready to run on every J-enabled com-
puter, although the installation phase is still to be stream-
lined.

BTEX++ uses advanced compiler techniques in a
compiler (ir) for recycling “dusty deck”  and
 files. It translates a native BTEX style written in
the  stack language to a new BTEX++ style written
in J that can be extended further as a basis of a class
of new styles. Right now, BTEX++ has been tested on
L andWindows on all the BTEX styles found in
the teTEX and MiKTEX distribution. Indeed it allowed
us to find that some of these styles are incorrect.

3. This interesting idea could be realized in BTEX++ by writ-
ing a plugin.

486 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

BTEX++: Toward Higher-order BTEXing

The plugin architecture is still to be developed in
the current version with a general extension framework.

Other input front-ends and output back-ends are
still to be written for tools other than LATEX, such as
OpenOffice and DB. But once these plugins are
written we can reach the great bibliographical unifica-
tion: for example having a Word document with an
 bibliography database fetched from the Internet us-
ing a .bst BTEX style for a journal found on the In-
ternet.

The ir compiler that currently generates J
code for a J BTEX library could be retargeted to
other bibliographical tools such as Bibulus in Perl with
its own library.

Another usage of ir is to ease the development
of plain BTEX files. Since it can translate  code into
cleaner J code it can be seen as a reverse-engineering
tool for people more comfortable with J than .

A code transformation framework for automatic lo-
calization of an existing BTEX style is still to be stud-
ied, to understand the output from a given language to
another one.

From a computer science point of view, it is fasci-
nating to see how many interesting research questions are
to be solved in a tool as simple at first glance as a bibli-
ographical management system. But this must not move
us away from the typography domain with some issues
such as how to deal with complete mix of Latin, Arabic,
Chinese, . . . entries in the same bibliography, and so on.

Further information on BTEX++with its code can
be found at http://bibtex.enstb.org.

Thanks

The authors want to thank all the students that have
worked with them during their studies on the BTEX++
project through various internships in the Computer Sci-
ence Laboratory at r: Laurent C, Guil-
laume F, and Emmanuel V who pro-
grammed the first lines and the infrastructure with Nico-
las T during their first year internship ( 2 in
2000), Étienne  B, Martin B, Aude
J, Olivier M, Mathieu S and
Mohamed Firass S H who extended it
( 5 in 2001), and Sergio G P for the first
review of stack removal.

Bibliography

[1] Per Abrahamsen and David Kastrup. AUCTEX: An
integrated TEX/LATEX environment, 2004. http:
//www.gnu.org/software/auctex.

[2] Preston Briggs. Register allocation via graph col-
oring. Technical Report TR92-183, Rice Univer-
sity, 24, 1992.

[3] David Callahan and Brian Koblenz. Register al-
location via hierarchical graph coloring. In SIG-
PLAN 91 : Conference on Programming Language
Design and Implementation, pages 192–203, 1991.

[4] Fred C. Chow. Minimizing register usage penalty
at procedure calls. In SIGPLAN ’88 : Conference
on Programming Language Design and Implementa-
tion, pages 45–58, 1988.

[5] Patrick W. Daly. The custom-bib package.
Max-Planck-Institut für Aeronomie, 2004.
http://www.ctan.org/tex-archive/

macros/latex/contrib/custom-bib.
[6] Bruce D’Arcus and John J. Lee. Open standards and

software for bibliographies and cataloging, October
2003. http://wwwsearch.sourceforge.net/
bib/openbib.html.

[7] Carsten Dominik and Stephen Eglen. RefTEX —
Support for LATEX Labels, References and Cita-
tions with GNU Emacs, 2004. http://remote.

science.uva.nl/~dominik/Tools/reftex.
[8] Emmanuel Donin de Rosière. From

stack removing in stack-based languages
to BibTEX++. Diplôme d’étude appro-
fondie, ENSTBr, September 2003. http:

//www.lit.enstb.org/~keryell/eleves/

ENSTBr/2002-2003/DEA/Donin_de_Rosiere.
[9] Emmanuel Donin de Rosière. État de l’art

sur les logiciels de gestion de références bibli-
ographiques compatibles avec LATEX et sur la
suppression de la pile dans les langages à pile.
Étude bibliographique de diplôme d’étude ap-
profondie, ENSTBr, September 2003. http:

//www.lit.enstb.org/~keryell/eleves/

ENSTBr/2002-2003/EB/Donin_de_Rosiere.
[10] M. Anton Ertl. A new approach to Forth native

code generation. In EuroForth ’92, pages 73–78,
1992.

[11] M. Anton Ertl. Implementation of Stack-Based Lan-
guages on Register Machines. PhD thesis, Techni-
sche Universität Wien, 1996.

[12] Étienne Gagnon. SableCC, an object-oriented com-
piler framework. PhD thesis, School of Computer
Science, McGill University, Montreal, 1998.

[13] Michel Goossens, Frank Mittelbach, and Alexan-
der Samarin. The LATEX Companion. Addison-
Wesley, 1994.

[14] Scott E. Hudson. CUP User’s Manual. Georgia
Institute of Technology, March 1996.

[15] Jean-Michel Hufflen. European Bibliography
Styles and MlBibTEX. In EuroTEX 2003 (this vol-
ume), ENST Bretagne, France, June 2003.

[16] Inmos. The Transputer Databook, 1989.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 487

Fabien Dagnat, Ronan Keryell and Youssef Aoun, Laura Barrero Sastre, Emmanuel Donin de Rosière, Nicolas Torneri

[17] ISO. ISO R77: Référence bibliographiques : Élé-
ments essentiels, 1958.

[18] Java security, 2003. http://java.sun.com/

security.
[19] Ronan Keryell. Publication list, 2004.

http://www.lit.enstb.org/~keryell/

publications/biblio/html.
[20] Larousse. Le Petit Larousse Illustré, volume 1.

Larousse, 2002.
[21] LATEX — a document preparation system. http:

//www.latex-project.org, 2004.
[22] Steve Lawrence, C. Lee Giles, and Kurt Bollacker.

Citeseer, the NEC research institute scientific liter-
ature digital library, 2002. http://citeseer.

nj.nec.com.
[23] Oren Patashnik. BibTEXing, 1988.
[24] Todd A. Proebsting and Scott A. Watterson.

Krakatoa: Decompilation in Java (does bytecode
reveal source?). In Third USENIX Conf. Object-
Oriented Technologies and Systems (COOTS), pages
185–197, 1997.

[25] H.-P. V. Vliet. Mocha, Java bytecode decompiler,
2003. http://www.brouhaha.com/~eric/

computers/mocha.html.
[26] Mark Weiser. Program slicing. IEEE Transac-

tions on Software Engineering, 10(4):352–357, July
1984.

[27] Thomas Widmann. Bibulus— a Perl/XML re-
placement for BibTEX. In EuroTEX2003 (this vol-
ume), ENST Bretagne, France, June 2003.

[28] Byung-Sun Yang, Soo-Mook Moon, and Erik R.
Altman. LaTTe: A Java VM just-in-time compiler
with fast and efficient register allocation. In In-
ternational Conference on Parallel Architectures and
Compilation Techniques, pages 128–138, 1999.

488 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

