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ABSTRACT
Automated vehicles are coming to our streets and into our air. These automated vehicles are not
acting as fully independent entities but are embedded into our social space and are affecting humans
with which they interact. Recent advances are looking at the direct cooperation of human and
machine in concrete interaction scenes such as steering a semi-automated drone or interacting with
an automated car as a pedestrian. What we do not understand yet, is the reaction of automated
systems on individuals that are casual bystanders of the automated systems. Cooperation and social
acceptance of the casual bystanders are crucial in many situations. Affects such as irritation, anxiety
or frustration may be easily invoked by the automated object. We need to anticipate effects on
bystanders and include this into the interaction design space.
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CCS CONCEPTS
• Human-centered computing → Interaction paradigms.

ACM Reference Format:
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INTRODUCTION

Figure 1: Person interacting with a drone
showing it to move sideways.

Figure 2: Person interacting with auto-
mated vehicles in a VR Simulation - inter-
acting with an automated vehicle to indi-
cate it should give way.

Understanding an automated vehicle is challenging and can cause negative side effects, such as
anxiety or frustration. Because today’s automated vehicles omit the human side of person-to-person
communication: when communicating with an automated vehicle, users and bystanders cannot rely
on established practices as in communicating with other individuals. While the automated vehicles
of today are being designed to work properly, robustly and safely, they do not yet act socially. Two
humans that can see each other, such as a pedestrian and a driver, still use many subtle cues to
cooperate and indicate each others intention. This may not be true for a full automated vehicle in
cooperation with a pedestrian, who may not understand it, not trust it, or just be surprised by the
automated vehicles’ behavior. Similarly, drones might distract or surprise bystanders and even cause
anxious behavior, as when a drone approaches a person that is not expecting it and cannot understand
the intention of the drone.
We propose that a systematic exploration of the design space is needed for automated vehicles.

This includes their appearance and actions to communicate intent to casual bystanders in everyday
situations and increase cooperative, prosocial behavior. We hypothesize that bystanders and affected
persons not only need to recognize the automated vehicle but clearly understand its intentions and
upcoming actions to increase social acceptability and successful cooperation.

STATE OF THE ART
The interaction between humans and drones is a field in its beginning. Nevertheless, drones are
more and more becoming automated (aerial) vehicles. We are convinced that the work on interaction
between other types of automated vehicles and pedestrians and other traffic participants will be
inspiring and supporting for the work on human-drone interaction. Research and industry are already
making first proposals and showcase concept studies of communicating with bystanders to inform
them and to keep them in the loop. In consequence it is timely and topical to conduct research on the
effect of (automated) drones on casual (human) bystanders.
Rothenbücher et al. [26] developed a Wizard-of-Oz technique for investigating the interaction

between automated vehicle and traffic participants (or bystanders) by hiding the actual driver (the
“Wizard”) of the car. They considered how pedestrians interacted with the car at crossings in the
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Stanford University Campus and found that most pedestrians were able to decide whether to cross
the road or not without explicit communication, but also that it remains relevant to acknowledge that
a pedestrian was noticed. However, this was a first experiment in a confined campus setting where
people are expectedly open to technological innovations and with less of a surprising effect than in
a narrow urban road scenario in Europe. Similarly, Petterson et al. [23, 24] report on explorations
of social situations between (seemingly) autonomous cars and pedestrians using similar techniques
where the actual driver was hidden behind a cover resembling a car seat (c.f., Habibovic et al. [14] ).
They uncovered two-fold, specific information needs: information the pedestrian may need from the
autonomous vehicle in certain situations, and vice versa. Chang et al. [8] equipped cars in Virtual
Reality (VR) with eyes to help pedestrians assessing if they were acknowledged. Their experiment
showed that pedestrians made quicker decisions and felt safer when they could see where the car
is “looking”. Mahadevan et al. [19] explored possible interfaces and designs for explicit vehicle-
pedestrian communication and tested them with an equipped car and a Segway. They could show that
explicit signals help pedestrians to make faster decisions. While reviewing, relevant literature shows
that research towards cues and signaling of automated vehicles exists, there are still no common
communication strategies or even standardized designs. Also, current research focuses on functional
traffic interaction such as crossing a road but does not necessarily investigate how cues need to be
designed for prosocial behavior and inclusion of effects on casual bystanders.
The social acceptability of drones as guidance vehicles for navigating persons with visual impair-

ments has been explored by Avila Soto et al. [1]. They investigated both, the (visually impaired) user’s
perspective, and the perspective of (sighted) casual bystanders, and note that knowledge about the
purpose, functioning, and benefits of the guidance drone are relevant for social acceptability. However,
they did not elaborate on autonomous behavior of the drone and on how the drone interface might
communicate its intent. Communication of usage purpose and intention has been explored in the
area of body-worn cameras [18]. In this context, design strategies including physicality, signaling,
as well as transfer of control have been explored to create a sense of situational awareness for the
bystander, and justification on the device user’s side. The authors also explored how bystanders can
take over control by using gestures to explicitly express consent (Opt-in) or disapproval (Opt-out)
with being recorded by a body-worn camera [17]. Similar technologies could be used for drones when
people might want to use explicit consent to be recorded or not.
In our own previous work, we have been designing and evaluating multimodal interfaces that

form the foundation for communicating information about upcoming tasks and objects in pervasive
spaces by multimodal cues. We systematically explored different sensor modalities in pervasive user
interfaces: light-based interfaces [20], projection-based interfaces [4], auditory interfaces [16], and
haptics and vibro-tactile interfaces [5, 25, 27]. Formany years now, we explored assistance systemswith
increasing levels of automation. We studied the effect of multimodal cueing for situation awareness
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and spatial awareness in supervisory tasks [10] and attention shifting to other work tasks [21]. We
studied how wearable technology can give feedback on biosignals using visual, audio, and haptic
modalities [11]. We have been designing multimodal cues for take over in highly automated driving [2]
and priming individual with information about the upcoming task after taking over [3]. In recent
work, we investigated how we can shift attention in larger cyber-physical system and environments
to (automated) objects that are currently out of view [13, 28].
To date, research on human-drone interaction has aimed to communicate the intent of a drone,

such as using LEDs around a quadcopter to communicate direction [30] or modifying the drone’s
flight path, using techniques such as arcing, to communicate directional intent [29]. We find that
several works that looked at the adequacy of multimodal interaction with drones [6], or how drones
might convey information about themselves. As one example, Cauchard et al. [7] modified the flight
path of the drone to communicate the drone’s emotions. However, none of this work investigated the
automation level of the drone and how it could handover control to passersby or provide the option to
listen to their command. As with autonomous cars, the technology’s current level of automation for a
task is not conveyed to passersby. It is crucial for the autonomous vehicles to become more transparent
so that they can be accepted into our environments. In order to explore concepts and interaction
designs, this research can be inspired by different levels of simulation of automated situations which
enables us to obtain higher levels of mundane realism [23], to evaluate designs for interaction with
automated vehicles in different traffic scenarios.

PROSOCIAL BEHAVIORS IN HUMAN-AUTONOMOUS VEHICLE COMMUNICATION
So far, research and industry has shown interesting prototypes and design concepts of such displays
outside the vehicle. However, commercial products coming with a standard set of communication
patterns have not been developed. Here, the industry has not yet demonstrated a clear understanding
of a cooperative and understanding interaction between automated vehicles and individual bystanders.
To better understand the impact of the role of bystanders for the design of automated (aerial) vehicles
for acceptance and cooperation of automated vehicles with casual bystanders we need to understand
how an automated (aerial) vehicle and its goals can be recognized and understood. We need to design
for prosocial behavior with the automated vehicle and how cues and signals of the automated vehicles
can support cooperative behavior and communication with bystanders. We identify three core aspects
of that form the basis for a successful interaction between an automated vehicle and bystander(s):

Situational Awareness (SA)
One aspect is the Situation Awareness of the automated vehicle by the bystander. We are following
Endsley’s well established notion of Situation Awareness [9], in which SA comprises the perception of
the objects in the environment, understanding their behaviour and the individuals’ projection of future
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states and events. We propose that the following questions need to be answered to understand which
cues and signals issued by the automated vehicle are good prerequisites to increase the situation
awareness of the vehicle:

• How to make the bystander aware of the automated (aerial) vehicle?
• How to allow the bystander to identify whether a present automated (aerial) vehicle is affecting
her/him?

• How can one tell what the automated (aerial) vehicle does and for what purpose and by whom?

Affordance
Based on the longstanding knowledge from the field of human computer interaction, we know that
interaction is more successful and satisfying if the object of interaction offers affordance on how to
interact with it [22]. As an attribute of interaction design, an affordance is a feature that is offered
to the user, what the interaction design provides or furnishes [12]. We want to understand what
kind of physical (real) affordance, cognitive (perceived) affordance, and functional affordance [15] the
automated vehicle can offer to the bystander, such that it easily reveals its functions and actions. With
such an affordance concept, the bystander can understand if and how they may be able to interact
with the automated (aerial) vehicle such as allowing it to come closer or to stop.

• Do the automated (aerial) vehicle’s features help the bystander to understand what it does/and
provides?

• Does the automated (aerial) vehicle reveal if it is ready to receive inputs and if a bystander may
interact with it?

• Does the automated (aerial) vehicle offer functions to interact with it?

Conversation
The interaction with an automated vehicle might not be a one-shot or uni-directional interaction, but
rather an actual negotiation between an individual and an automated (aerial) vehicle. For example, in
the case of a car, the determination of who will go first and decide that the individual may interfere
and signal a decision (c.f., Figure 2). In the case of a drone, the person may want to tell the drone that
they do not want to appear in recorded footage, provide instructions for guidance and navigation
aids, or acknowledge receipt of a delivery.

• How does the automated (aerial) vehicle get into a conversation with a bystander?
• How can the bystander ask and get explanations on the intentions and actions of an automated
(aerial) vehicle?

• How to interact with the automated (aerial) vehicle such as asking it to come closer?

http://hdi.famnit.upr.si


Understanding the Socio-Technical Impact of Automated (Aerial) Vehicles... iHDI ’19, May 5, 2019, Glasgow, Scotland, UK, http://hdi.famnit.upr.si

Key Factors
We hypothesize that are three key factors that are core to such communication aspects for moving
automated vehicles, such as cars and drones, as described above. These core factors, that we envision
to be addressed by future research are:

(1) Physicality. The device itself may have a form, shape and (aesthetic) appearance that is self-
explaining its functions and potential actions. What role does the shape of the device play
for the acceptance of the automated devices’ actions? Can the intended function already be
encoded in the appearance?

(2) Signaling. Beyond the actual appearance, the device can use integrated and added displays to
signal its behavior to the bystander. It needs to be further investigated what and how should it
signal with visual and auditory displays?

(3) Movements. As the automated vehicle is moving, it is in demand to better understand how to
express cooperative behavior with movements. How should such vehicles approach a person to
express intent of communication?

CONCLUSION
HCI research with autonomous devices is still in its early stages. Autonomous cars are increasingly
being studied and have an obvious widespread reach as we saw companies like Uber using autonomous
taxis driving passengers from 2016 to 2018. On the other hand, drones are just reaching the point
of technological maturity for them to interact with people. We posit that the research done in
autonomous devices can be designed with similar methodologies for cars and drones. In particular,
we show the importance of including methodologies taking in consideration passerby and not only
designated users. This will be crucial for the technology to become acceptable to all.
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