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Approximation of Optimal Transport problems with marginal

moments constraints

Aurélien Alfonsi Rafaël Coyaud Virginie Ehrlacher Damiano Lombardi

May 14, 2019

Abstract: Optimal Transport (OT) problems arise in a wide range of applications, from physics
to economics. Getting numerical approximate solution of these problems is a challenging issue of
practical importance. In this work, we investigate the relaxation of the OT problem when the marginal
constraints are replaced by some moment constraints. Using Tchakaloff’s theorem, we show that the
Moment Constrained Optimal Transport problem (MCOT) is achieved by a finite discrete measure.
Interestingly, for multimarginal OT problems, the number of points weighted by this measure scales
linearly with the number of marginal laws, which is encouraging to bypass the curse of dimension. This
approximation method is also relevant for Martingale OT problems. We show the convergence of the
MCOT problem toward the corresponding OT problem. In some fundamental cases, we obtain rates
of convergence in O(1/n) or O(1/n2) where n is the number of moments, which illustrates the role of
the moment functions. Last, we present algorithms exploiting the fact that the MCOT is reached by
a finite discrete measure and provide numerical examples of approximations.

1 Introduction

The aim of this paper is to investigate a new direction to approximate optimal transport problems [36,
31]. Such problems arise in a variety of application fields ranging from economy [21, 14] to quantum
chemistry [16] or machine learning [29] for instance. The simplest prototypical example of optimal
transport problem is the two-marginal Kantorovich problem, which reads as follows: for some d ∈ N∗,
let µ and ν be two probability measures on Rd and consider the optimization problem

inf

∫
Rd×Rd

c(x, y) dπ(x, y) (1.0.1)

where c is a non-negative lower semi-continuous cost function defined on Rd × Rd and where the
infimum runs on the set of probability measures π on Rd × Rd with marginal laws µ and ν.

The most straightforward approach for the resolution of problems of the form (1.0.1) consists in
introducing discretizations of the state spaces, which are fixed a priori. More precisely, N points
x1, · · · , xN ∈ Rd are chosen a priori and fixed, marginal laws µ and ν are approximated by discrete
measures of the form µ ≈

∑N
i=1 µiδxi and ν ≈

∑N
i=1 νiδxi with some non-negative coefficients µi and

νi for 1 ≤ i ≤ N . An optimal measure π minimizing (1.0.1) is then approximated by a discrete
measure π ≈

∑
1≤i,j≤N πijδxi,xj where the non-negative coefficients (πij)1≤i,j≤N ∈ RN2

+ are solution to
the optimization problem

inf
∑

1≤i,j≤N
πijc(x

i, xj) (1.0.2)

and satisfy the following discrete marginal constraints:

∀1 ≤ i, j ≤ N,
N∑
j=1

πij = µi and

N∑
i=1

πij = νj ,

1
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which boils down to a classical linear programming problem, which becomes computationally pro-
hibitive when N is large.

Several numerical methods have already been proposed in the literature for the resolution of optimal
transport problems at a lower computational cost. Most of them rely on an a priori discretization of
the state spaces as presented above. One of the most successful approach consists in minimizing a
regularized cost involving the Kullback-Leibler divergence (or relative entropy) via iterative Bregman
projections: the so-called Sinkhorn algorithm [11, 28, 34]. Let us also mention other approaches such as
the auction algorithm [13], numerical methods based on Laguerre cells [22], multiscale algorithms [27,
32] and augmented Lagrangian methods using the Benamou-Brenier dynamic formulation [9, 10].

In this work, we are also interested in studying multi-marginal and martingale-constrained optimal
transport problems.

Multimarginal optimal transport problems arise in a wide variety of contexts [36, 31], like for
instance the computation of Wasserstein barycenters [1] or the approximation of the correlation energy
for strongly correlated systems in quantum chemistry [33, 15, 16]. Such problems read as follows: let
M ∈ N∗ and µ1, · · · , µM be M probability measures on Rd and consider the optimization problem

inf

∫
(Rd)M

c(x1, · · · , xM ) dπ(x1, · · · , xM ) (1.0.3)

where c is a lower semi-continuous cost function defined on (Rd)M and where the infimum runs on the
set of probability measures π on (Rd)M with marginal laws given by µ1, · · · , µM . Approximations of
such multi-marginal problems on discrete state spaces can be introduced in a similar way to (1.0.2),
leading to a linear programming problem of size NM . For large values of M , such discretized problems
become intractable numerically. The most successful method up to now for solving such problems,
which avoids this curse of dimensionality, is based on an entropic regularization together with the
Sinkhorn algorithm [11, 28].

Constrained martingale transport arise in problems related to finance [7]. Few numerical methods
have been proposed so far for the resolution of such problems. In [2, 3], algorithms using sampling
techniques preserving the convex order is proposed, which enables then to use linear programming
solvers. Algorithms making use of an entropy regularization and the Sinkhorn algorithm have been
studied in [17, 23].

In this paper, we consider an alternative direction to approximate optimal transport problems, with
a view to the design of numerical schemes. In this approach, the state space is not discretized, but the
approximation consists in relaxing the marginal laws constraints (or the martingale constraint) of the
original problem into a finite number of moment constraints against some well-chosen test functions.
More precisely, in the case of Problem (1.0.1), let us introduce some real-valued bounded functions
φ1, · · · , φN defined on Rd, which are called hereafter test functions, and consider the approximate
optimal transport problem, called hereafter the Moment Constrained Optimal Transport (MCOT)
problem:

inf

∫
Rd×Rd

c(x, y) dπ(x, y)

where the infimum runs over the set of probability measures π on Rd×Rd satisfying for all 1 ≤ i, j ≤ N ,∫
Rd×Rd

φi(x) dπ(x, y) =

∫
Rd
φi(x) dµ(x) and

∫
Rd×Rd

φj(y) dπ(x, y) =

∫
Rd
φj(y) dν(y).

The aim of this paper is to study the properties of this alternative approximation of optimal transport
problems, and its generalization for multi-marginal and martingale-constrained optimal transport
problems. A remarkable feature of this approximation is that it circumvents the curse of dimensionality
with respect to the number of marginal laws in the case of multimarginal optimal transport problems.
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Note that in the martingale constrained case, our method enables to consider the original formulation
of the financial problem that has moment constraints (see for instance Example 2.6 of [24]), which is
not the case of the previous methods.

Our first contribution in this paper is to characterize some minimizers of the MCOT problem.
Thanks to the Tchakaloff theorem, we prove that, under suitable assumptions, there exists at least
one minimizer which is a discrete measure charging a finite number of points. Interestingly, in the
multi-marginal case, the number of charged points scales at most linearly in the number of marginals.
In the particular case of problems issued from quantum chemistry applications, due to the inherent
symmetries of the system, the number of charged points is independent from the number of marginals,
and only scales linearly with the number of imposed moments. This formulation of the multimarginal
optimal transport problem thus does not suffer from the curse of dimensionality. The result ob-
tained in the quantum chemistry case is close in spirit to the one of [20] where the authors studied a
multimarginal Kantorovich problem with Coulomb cost on finite state spaces.

These considerations motivate us to consider a new family of algorithms for the resolution of
multi-marginal and martingale constrained optimal transport problems, in which an optimal measure
is approximated by a discrete measure charging a relatively low number of points. The points and
weights of this discrete measure are then optimized in order to satisfy a finite number of moment
constraints and to minimize the cost of the original optimal transport problem.

Of course, another interesting issue consists in determining how the choice of the particular test
functions influences the quality of the approximation with respect to the exact optimal transport
problem. In this paper, we prove interesting one-dimensional results in this direction. More precisely,
for piecewise affine test functions defined on a compact interval, and for the two-marginal optimal
transport problems involved in the computation of the W2 or the W1 distance between two sufficiently
regular measures, the convergence of the approximate optimal cost with respect to the optimal cost
scales like O

(
1
N2

)
where N is the number of test functions. These results indicate that the choice of

appropriate test functions has an influence on the rate of convergence of the approximate problem to
the exact problem. Besides, there is very few results, up to our knowledge, concerning the speed of
convergence of approximations of optimal transport problems. The study of these rates of convergence
for more general set of test functions and of optimal transport problems is an interesting issue which
is left for future research.

The article is organized as follows. Some preliminaries, including the Tchakaloff theorem, are
recalled in Section 2. In Section 3, we introduce the approximate MCOT problem and prove under
suitable assumptions that one of its minimizers reads as a discrete measure whose number of charged
points is estimated depending on the number of moment constraints and on the nature of the optimal
transport problem considered. Under additional assumptions, we prove that the MCOT problem
converges to the exact optimal transport problem as the number of test functions grows in Section 4.
Rates of convergence of the approximate problem to the exact problem depending on the choice of
test functions are proved in Section 5. Finally, algorithms which exploits the particular structure of
the MCOT problem are proposed in Section 6 and tested on some numerical examples.

2 Preliminaries

2.1 Presentation of the problem and notation

We begin this section by recalling the classical form of the 2-marginal optimal transport (OT) problem,
which will be the prototypical problem considered in this paper, and introduce the notation used in
the sequel.

Let dx, dy ∈ N∗. We assume that X ⊂ Rdx (resp. Y ⊂ Rdy) is a Gδ-set, i.e. a countable intersection
of open sets. This property ensures by Alexandroff’s lemma (see e.g. [4], p. 88) that X (resp. Y) is a
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Polish space for a metric which is equivalent to the original one on Rdx (resp. Rdy). In particular, X
can either be a closed or an open set of Rdx .

Let µ ∈ P(X ) and ν ∈ P(Y) and let us define

Π(µ, ν) :=

{
π ∈ P(X × Y) :

∫
X

dπ(x, y) = dν(y),

∫
Y

dπ(x, y) = dµ(x)

}
,

the set of probability couplings between µ and ν. We consider a non-negative cost function c : X×Y →
R+∪{+∞}, which we assume to be lower semi-continuous (l.s.c.). The Kantorovich optimal transport
(OT) problem with the two marginal laws µ and ν associated to the cost function c is the following
minimization problem:

I = inf

{∫
X×Y

c(x, y)dπ(x, y) : π ∈ Π(µ, ν)

}
. (2.1.1)

Under our assumptions, it is known (see e.g. Theorem 1.7 in [31]) that there exists π∗ ∈ Π(µ, ν) such
that I =

∫
X×Y c(x, y)dπ∗(x, y). Problem (2.1.1) will be referred hereafter as the exact OT problem,

with respect to the approximate problem which we define hereafter.

The aim of this paper is to study a relaxation of Problem (2.1.1) with a view to the design of
numerical schemes to approximate the exact OT problem. More precisely, the approximate problem
considered in this paper consists in relaxing the marginal constraints into a finite number of moments
constraints. Let M,N ∈ N∗ and (φm)1≤m≤M ⊂ L1(X , µ;R) (respectively (ψn)1≤n≤N ⊂ L1(Y, ν;R))
measurable real-valued functions that are integrable with respect to µ (resp. ν). The functions
(φm)1≤m≤M and (ψn)1≤n≤N will be called test functions hereafter. We define for such families of
functions

Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N ) :=

{
π ∈ P(X × Y) : (2.1.2)

∀1 ≤ m ≤M, 1 ≤ n ≤ N,
∫
X×Y

|φm(x)|+ |ψn(y)|dπ(x, y) <∞,∫
X×Y

φm(x)dπ(x, y) =

∫
X
φm(x)dµ(x),

∫
X×Y

ψn(y)dπ(x, y) =

∫
X
ψn(y)dµ(x)

}
,

which is the set of probability measures on X ×Y that have the same moments as µ and ν for the test
functions. We are then interested in the moment constrained optimal transport (MCOT) problem,
which we defined as the following minimization problem :

IM,N = inf

{∫
X×Y

c(x, y)dπ(x, y) : π ∈ Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N )

}
. (2.1.3)

Since Π(µ, ν) ⊂ Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N ), we clearly have IM,N ≤ I. In this paper, we are
interested in the following question.

• Is the MCOT problem attained by some probability measure π∗ ∈ Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N )?

• Under which assumptions does it hold: IM,N →M,N→+∞ I? Can the speed of convergence be
estimated?

For simplicity, we will assume that M = N in the whole paper and we will denote for 1 ≤ m,n ≤ N :

µm :=

∫
X
φmdµ and νn :=

∫
Y
ψndν. (2.1.4)

For all x ∈ X (respectively for all y ∈ Y), we define φ(x) := (φ1(x), ..., φN (x)) ∈ RN (respectively
ψ(y) := (ψ1(y), ..., ψN (y)) ∈ RN ) and Φ(x) := (1, φ(x)) ∈ RN+1 (respectively Ψ(y) := (1, ψ(y)) ∈
RN+1).
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2.2 Tchakaloff’s theorem

In this section, we present a corollary of the Tchakaloff theorem which is the backbone of our results
concerning the existence of a minimizer to the MCOT problem. A general version of the Tchakaloff
theorem has been proved by Bayer and Teichmann [5] and Bisgaard [12]. The next proposition is
rather an immediate consequence of Tchakaloff’s theorem, see Corollary 2 in [5]. We recall first that

Proposition 2.1. Let π be a measure on Rd concentrated on a Borel set A ∈ F , i.e. π(Rd \ A) = 0.
Let N0 ∈ N∗ and Λ : Rd → RN0 a Borel measurable map. Assume that the first moments of Λ#π
exist, i.e. ∫

RN0

‖u‖dΛ#π(u) =

∫
Rd
‖Λ(z)‖dπ(z) <∞,

where ‖ · ‖ denotes the Euclidean norm of RN0. Then, there exist an integer 1 ≤ K ≤ N0, points
z1, ..., zK ∈ A and weights p1, ..., pK > 0 such that

∀1 ≤ i ≤ N0,

∫
Rd

Λi(z)dπ(z) =

K∑
k=1

pkΛi(zk),

where Λi denotes the i-th component of Λ.

We recall here that Λ#π is the push-forward of π through Λ, and is defined as Λ#π(A) =
π(Λ−1(A)) for any Borel set A ⊂ RN0 . Let us note here that even if π is a probability measure,
we may have

∑K
k=1 pk 6= 1. In the sequel, we will apply this proposition to functions Λ such that the

constant 1 is a coordinate of Λ, which will ensure
∑K

k=1 pk = 1.
Last, let us remark that the number of points K needed may be significantly different from N0.

Lemma A.1 gives, for any N ∈ N∗, an example with N0 = 2N + 1 and K = N + 1.

2.3 An admissibility property

A natural requirement for the MCOT Problem (2.1.3) to have a sense is to assume that it has finite
value. This is precisely our definition of admissibility.

Definition 2.1 (Admissibility). Let µ ∈ P(X ), ν ∈ P(Y) and a l.s.c. cost function c : X × Y →
R+ ∪ {∞}. Then, a set of test functions ((φm)1≤m≤N , (ψn)1≤n≤N ) ∈ L1(X , µ;R)N × L1(Y, ν;R)N is
said to be admissible for (µ, ν, c) if

∃γ ∈ Π(µ, ν; (φm)1≤m≤M , (ψn)1≤n≤N ),

∫
X×Y

c(x, y)dγ(x, y) <∞. (2.3.1)

Thanks to Tchakaloff’s theorem, the admissibility can be checked on finite probability measure as
stated in the next Lemma.

Lemma 2.2. Let µ ∈ P(X ), ν ∈ P(Y) and c : X × Y → R+ ∪ {+∞} a l.s.c. function. A set
((φm)1≤m≤N , (ψn)1≤n≤N ) ∈ L1(X , µ;R)N × L1(Y, ν;R)N is admissible for (µ, ν, c) if, and only if,
there exist weights w1, . . . , w2N+1 ≥ 0 and points (x1, y1), . . . , (x2N+1, y2N+1) ∈ X × Y such that

2N+1∑
k=1

wkδ(xk,yk) ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N ) and
2N+1∑
k=1

wkc(xk, yk) <∞.

In particular, if c is finite valued (i.e. c : X×Y → R+), any set of test functions ((φm)1≤m≤N , (ψn)1≤n≤N ) ∈
L1(X , µ;R)N × L1(Y, ν;R)N is admissible for (µ, ν, c) in the sense of Definition 2.1.
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Proof. Let Λ : X × Y → R2N+1 be defined by Λm(x, y) = φm(x) and Λm+N (x, y) = ψm(y) for m ∈
{1, . . . , N}, Λ2N+1(x, y) = 1. Let A = {(x, y) ∈ X × Y : c(x, y) = +∞}. Since the set of test function
is admissible, there exists γ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N ) such that

∫
X×Y c(x, y)dγ(x, y) <∞. In

particular, γ(A) = 0. We can thus apply Proposition 2.1, which gives the implication. The reciprocal
result is obvious.

Last, when c is finite valued (A = ∅), any γ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N ) satisfies γ(A) = 0
and the claim follows by using again Proposition 2.1.

3 Existence of discrete minimizers for MCOT problems

3.1 General case

When Definition 2.1 is satisfied, in order to have the existence of a minimizer for the MCOT problem,
we make two further assumptions.

• We assume that the test function are continuous.

• We add to the MCOT problem (2.1.3) a moment inequality constraint.

The additional moment constraint will ensure the tightness of a minimizing sequence satisfying the
moment equality and inequality constraints, while the continuity of the test functions will ensure that
any limit satisfies the moment constraints. Our main result is stated in Theorem 3.1 thereafter.

Theorem 3.1. Let µ ∈ P(X ), ν ∈ P(Y) and c : X × Y → R+ ∪ {+∞} a l.s.c. function. Let Σµ ⊂
X ,Σν ⊂ Y be Borel sets such that µ(Σµ) = ν(Σν) = 1. Let N ∈ N∗ and let ((φm)1≤m≤N , (ψn)1≤n≤N ) ∈
L1(X , µ;R)N × L1(Y, ν;R)N be an admissible set of test functions for (µ, ν, c) in the sense of Defini-
tion 2.1. We assume that

1. For all n ∈ {1, . . . , N}, the functions φn and ψn are continuous.

2. There exist θµ : R+ → R+ and θν : R+ → R+ two non-negative non-decreasing continuous
functions such that θµ(r) −→

r→+∞
+∞ and θν(r) −→

r→+∞
+∞, and such that there exist C > 0 and

0 < s < 1 such that for all 1 ≤ n ≤ N , and all (x, y) ∈ X × Y,

|φn(x)| ≤ C(1 + θµ(|x|))s and |ψn(y)| ≤ C(1 + θν(|y|))s. (3.1.1)

For all A > 0, let us introduce

INA = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )∫
X×Y (θµ(|x|)+θν(|y|))dπ(x,y)≤A

∫
X×Y

c(x, y)dπ(x, y). (3.1.2)

Then, there exists A0 > 0 such that for all A ≥ A0, INA is finite and is a minimum. Moreover, for all

A ≥ A0, there exists a minimizer πNA for the problem (3.1.2) such that πNA =
∑K

k=1 pkδxk,yk , for some
0 < K ≤ 2N + 2, with pk ≥ 0, xk ∈ Σµ and yk ∈ Σν for all 1 ≤ k ≤ K.

Remark 3.1. When I defined by (2.1.1) is finite and

A′0 =

∫
X
θµ(|x|)dµ(x) +

∫
Y
θν(|y|)dν(y) <∞,

we have for all A ≥ A′0, INA ≤ I <∞.
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Remark 3.2. When the functions φm and ψn are bounded continuous (which holds automatically
when X and Y are compact), Assumption (3.1.1) is obviously satisfied. Besides, when X and Y are
compact sets, we can then take C = max1≤n≤N (max(‖φn‖∞, ‖ψn‖∞)) and θµ = θν = 0, and therefore
we get for all A > 0, INA = IN with

INA = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∫
X×Y

c(x, y)dπ(x, y).

Proof of Theorem 3.1. Let us introduce the function

Λ :


X × Y → R2N+2

(x, y) 7→


φ(x)
ψ(y)

1
c(x, y)

 (3.1.3)

and let us denote by Λi the ith component of Λ for all 1 ≤ i ≤ 2N + 2. By assumption there exists
γ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N ) such that

∫
X×Y c(x, y)dγ(x, y) < ∞. We apply Proposition 2.1

with N0 = 2N + 2 and get that there exist K ∈ {1, . . . , 2N + 2}, x1, ..., xK ∈ X , y1, ..., yK ∈ Y and
weights w1, ..., wK ∈ R∗+ such that

∫
X×Y

Λ(x, y)dγ(x, y) =

K∑
k=1

wkΛ(xk, yk). (3.1.4)

Denoting by γ̃ :=
∑K

k=1wkδxk,yk , we have that∫
X×Y

(θµ(|x|) + θν(|y|)) dγ̃(x, y) <∞.

We thus get that, for all A ≥ A0 :=
∫
X×Y(θµ(|x|) + θν(|y|))dγ̃(x, y), INA is finite, since we have

γ̃ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N ).

Let us now assume that A ≥ A0 and let us prove that this infimum is a minimum. Let (πl)l∈N
be a minimizing sequence for the minimization problem (3.1.2). We first prove the tightness of this
sequence. For M1,M2 > 0, let us introduce the compact sets

K1 = {x ∈ X , s.t. |x| ≤M1} , K2 = {y ∈ Y, s.t. |y| ≤M2} .

Then, we have

πl((K1 ×K2)c) =

∫
X×Y

1(x,y)6∈K1×K2
dπl(x, y) ≤

∫
X×Y

1x 6∈K1 + 1y 6∈K2dπl(x, y)

≤
∫
X×Y

θµ(|x|)
θµ(M1)

+
θν(|y|)
θν(M2)

dπl(x, y) ≤ A

min(M1,M2)
,

which implies the tightness of the sequence (πl)l∈N. We can thus extract a subsequence that weakly
converges. For notational simplicity, we still denote (πl)l∈N this subsequence, and there exists π∞ ∈
P(X × Y) such that πl −−−⇀

l→∞
π∞.

By Skorokhod’s representation theorem (see e.g. Theorem 4.30 [26]), there exists a probability
space (Ω,F ,P) and random variables (Xl, Yl)l∈N∪{∞} on this probability space such that (Xl, Yl) is
distributed according to πl and (Xl, Yl) → (X∞, Y∞), P-a.s. From supl∈N E[θµ(|Xl|) + θν(|Yl|)] ≤ A
and (3.1.1), we deduce that the families (φm(Xl))l∈N and (ψn(Xl))l∈N uniformly integrable. Therefore,
we get from the continuity of φm and ψn that E[φm(X∞)] = liml→∞ E[φm(Xl)] = µm and E[ψn(X∞)] =
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liml→∞ E[ψn(Xl)] = νn (see e.g. Lemma 4.11 [26]). Fatou’s lemma also gives E[θµ(|X∞|)+θν(|Y∞|)] ≤
A, which shows that π∞ satisfies the constraints of Problem (3.1.2) and thus

INA ≤
∫
X×Y

c(x, y)dπ∞(x, y).

We now show the converse inequality. Since c is l.s.c, lim inf l→∞ c(Xl, Yl) ≥ c(X∞, Y∞), P−a.s.
and Fatou’s lemma yields that

lim inf
l→∞

E [c(Xl, Yl)] ≥ E [c(X∞, Y∞)] . (3.1.5)

As (πl)l∈N is a minimizing sequence associated to problem 3.1.2, it holds that E [c(Xl, Yl)] −−−→
l→∞

INA .

Then, by using (3.1.5), one gets

INA ≥ E
[
c(X̃∞, Ỹ∞)

]
=

∫
X×Y

c(x, y)dπ∞(x, y).

Thus, π∞ is a minimizer of Problem (3.1.2).
Last, we apply Proposition 2.1 to the measure π∞ and the application Λ defined in (3.1.3) and get

the existence of πNA .

Example 3.1 below shows that the MCOT problem may not be a minimum if we remove the
constraint

∫
X×Y(θµ(|x|) + θν(|y|))dπ(x, y) ≤ A.

Example 3.1. Let

c :

{
R× R → R+

(x, y) 7→ (x− y)2 + ϕ(|x|) + ϕ(|y|),

where for r ∈ R+, ϕ(r) = 10≤r≤1r + 11<re
1−r. Let us consider the problem

I = inf
π∈P(R×R)∫
R xdπ(x,y)=1∫
R ydπ(x,y)=1

{∫
R×R

c(x, y)dπ(x, y)

}
.

The sequence defined for l ∈ N∗ by πl =
(
1− 1

l

)
δ(0,0) + 1

l δ(l,l) is a minimizing sequence since∫
R×R xdπl(x, y) =

∫
R×R ydπl(x, y) = 1, c ≥ 0 and∫

R×R
c(x, y)dπl(x, y) =

2

l
e1−l −−−→

l→∞
0.

Hence, I = 0. Now, since ϕ(r) > 0 for r > 0, the only probability measure π ∈ P(R×R) such that∫
cdπ = 0 is δ(0,0). Since this probability measure does not satisfy the constraints (

∫
R×R xdδ(0,0)(x, y) =∫

R×R ydδ(0,0)(x, y) = 0), this shows that I is not a minimum.

Let us also note here that the test functions (φm)1≤m≤N and (ψn)1≤n≤N are needed to be continuous
to guarantee the existence of a minimum in Theorem 3.1 as Example 3.2 shows.

Example 3.2. Let X = Y = [0, 1], dν(x) =
(

1
21(0, 1

2
)(x) + 3

21( 1
2
,1)(x)

)
dx, dµ(x) = dx and c(x, y) =

(y − x)2. Let N = 4, φ1 = 1[0, 1
4

], φm = 1(m−1
4
,m
4

] for 2 ≤ m ≤ 4 and ψm = φm for 1 ≤ m ≤ 4, so that

µ1 = µ2 = µ3 = µ4 =
1

4
, ν1 = ν2 =

1

8
and ν3 = ν4 =

3

8
.

For l ∈ N, l > 4, let

γl =
1

8
δ 1

8
, 1
8

+
1

8
δ 1

4
− 1
l
, 1
4

+ 1
l

+
1

4
δ 1

2
− 1
l
, 1
2

+ 1
l

+
1

8
δ 5

8
, 5
8

+
1

8
δ 3

4
− 1
l
, 3
4

+ 1
l

+
1

4
δ 7

8
, 7
8
. (3.1.6)
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For all l > 4, γl satisfies the constraints of the MCOT problem, and∫ 1

0

∫ 1

0
|x− y|2dγl(x, y) =

(
1

8
+

1

4
+

1

8

)
4

l2
=

2

l2
−−−−→
l→+∞

0.

Thus, the infimum value of the associated MCOT problem is 0. Now, let π ∈ P(X × Y) be such that∫
cdπ = 0. We have π({(x, y) ∈ X × Y : y = x}) = 1 and thus

∀m,
∫
X×Y

φm(x) dπ(x, y) =

∫
X×Y

φm(y) dπ(x, y).

Therefore, we cannot have the left hand side equal to µm and the right hand side equal to νm, which
shows that there does not exist any minimizer to the MCOT problem.

3.2 Compactly supported test functions

An alternative statement of Theorem 3.1 that avoids to impose the constraint
∫
X×Y(θµ(|x|)+θν(|y|))dπ(x, y) ≤

A can be obtained under stronger assumptions on the test functions and the cost. In all Subsection 3.2,
we consider the case

X = Rdx and Y = Rdy ,

for some dx, dy ∈ N∗, and assume that the cost c is continuous and satisfies:

∀x ∈ X , c(x, y) −→
|y|→+∞

+∞, ∀y ∈ Y, c(x, y) −→
|x|→+∞

+∞, (3.2.1)

∃(xn) ∈ XN, (yn) ∈ YN, |xn| → +∞, |yn| → +∞ and c(xn, yn) = 0. (3.2.2)

This condition is satisfied for example when dx = dy and c(x, y) = H(|x − y|), with H continuous
satisfyingH(0) = 0 andH(r) →

r→+∞
+∞. We assume also that the test functions φm, ψn, 1 ≤ m,n ≤ N

are continuous with compact support, and define their compact support as follows

SX := {x ∈ X , ∃1 ≤ m ≤ N, φm(x) 6= 0},
SY := {y ∈ Y, ∃1 ≤ n ≤ N, ψn(y) 6= 0}.

Let M = maxx,y∈SX×SY c(x, y) and let us define

S̃X = {x ∈ X : ∃y ∈ SY , c(x, y) ≤M + 1} (3.2.3)

S̃Y = {y ∈ Y : ∃x ∈ SX , c(x, y) ≤M + 1} (3.2.4)

together with

K =
(
SX × S̃Y

)
∪
(
S̃X × SY

)
.

It can be easily seen that S̃X (resp. S̃Y) is a compact set that contains SX (resp. SY), and thus the
set K is compact. Then, from (3.2.2), we take an arbitrary point (x̄, ȳ) /∈ K such that c(x̄, ȳ) = 0, and
we define

K̄ = K ∪ {(x̄, ȳ)}. (3.2.5)

Lemma 3.2. Let K ∈ N∗, and for all 1 ≤ k ≤ K, xk ∈ X , yk ∈ Y, pk ≥ 0 such that
∑K

k=1 pk = 1. If

γ =
∑K

k=1 pkδxk,yk ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N ) then there exist K points (x̃k, ỹk) ∈ K̄ for 1 ≤
k ≤ K such that the discrete probability measure γ̃ =

∑K
k=1 pkδx̃k,ỹk ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N )

and
K∑
k=1

pkc(x̃k, ỹk) =

∫
X×Y

c(x, y)dγ̃(x, y) ≤
∫
X×Y

c(x, y)dγ(x, y) =

K∑
k=1

pkc(xk, yk).
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Proof. Consider a measure γ =
∑K

k=1 pkδxk,yk satisfying the assumptions of Lemma 3.2. We construct

γ̃ =
∑K

k=1 pkδx̃k,ỹk using the following procedure.

Case 1: If (xk, yk) ∈ K, then we define (x̃k, ỹk) = (xk, yk).

Case 2: If xk /∈ SX and yk /∈ SY , then we define (x̃k, ỹk) = (x̄, ȳ).

Case 3: Let us suppose xk ∈ SX and yk /∈ S̃Y (the case yk ∈ SY and xk 6∈ S̃X is treated symmetrically).
By definition of S̃Y , it holds that

∀x ∈ SX , c(x, yk) > M + 1.

In particular, we have c(xk, yk) > M + 1. Let y∗ ∈ SY . Then,

c(xk, y
∗) ≤ max

x,y∈SX×SY
c(x, y) = M

Let yλ := (1−λ)y∗+λyk for λ ∈ [0, 1]. As c is continuous, there exists λ∗ such that c(xk, yλ∗) =
2M+1

2 . Then, yλ∗ /∈ SY because 2M+1
2 > M , and yλ∗ ∈ S̃Y . Then, we define (x̃k, ỹk) = (xk, yλ∗).

This construction preserves the points in the supports SX and SY , and the points outside the supports
are replaced by other points outside the supports. Thus, we have

∀1 ≤ m ≤ N,
K∑
k=1

pkφm(x̃k) =
N∑
k=1

pkφm(xk)

∀1 ≤ n ≤ N,
K∑
k=1

pkψn(ỹk) =
N∑
k=1

pkψn(yk),

and the moment constraints are satisfied by γ̃. In addition, it is clear that the cost does not change
in Case 1 and is lowered in Cases 2 and 3.

Proposition 3.3. Let us assume that X = Rdx, Y = Rdy and c : Rdx × Rdy → R+ is continuous and
satisfies (3.2.1), (3.2.2).

Let us assume that for all 1 ≤ m,n ≤ N , φm and ψn are compactly supported real-valued continuous
functions defined on Rd. Then, there exists at least one minimizer to the minimization problem

IN = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∫
X×Y

c(x, y)dπ(x, y). (3.2.6)

Moreover, there exists K ∈ N such that K ≤ 2N + 2, and for all 1 ≤ k ≤ K, (xk, yk) ∈ K̄, pk ≥ 0
such that

∑K
k=1 pk = 1 such that π̃ :=

∑K
k=1 pkδxk,yk is a minimum.

Proof. Let us consider a minimizing sequence (πl)l∈N for Problem (3.2.6). For all l ∈ N, we will
denote by γl a finite discrete measure which has the same cost and same moments than πl, with at
most 2N + 2 points, which exists thanks to Proposition 2.1, and the fact that the test functions are
compactly supported. Then, using Lemma 3.2, for all l ∈ N, one can define a measure γ̃l which satisfies
the moment constraints, has a support contained in the set K̄ defined in (3.2.5), and such that,∫

X×Y
c(x, y)dγ̃l(x, y) ≤

∫
X×Y

c(x, y)dγl(x, y).

Thus, (γ̃l)l∈N is a minimizing sequence. Besides, (γ̃l)l∈N is tight since the support of γ̃l is included in
the compact set K̄ for all l ∈ N. Then, following the same lines as in the proof of Theorem 3.1, one
can extract a weakly converging subsequence, the cost of the limit of which is equal to IN . The fact
that there exists a finite discrete measure charging at most K ≤ 2N + 2 points can be deduced from
Proposition 2.1, following the same lines as in the proof of Theorem 3.1.
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3.3 Multimarginal and martingale OT problem

In this section, two important extensions of the previous problem are introduced, the multimarginal
problem and the martingale problem. Alike Problem (3.1.2), several formulations and refinements can
be established. We only keep here the more general ones for conciseness.

3.3.1 Multimarginal problem

The propositions introduced until now for two marginal laws can be extended to an arbitrary (finite)
number of marginal laws. The proof can be straightforwardly adapted from the one of Theorem 3.1.
For all 1 ≤ i ≤M , we consider Xi = Rdi with di ∈ N∗ or more generally a Gδ-set Xi ⊂ Rdi . We consider
M probability measures µ1 ∈ P(X1), ..., µM ∈ P(XM ) and an l.s.c. cost function c : X1 × ...× XM →
R+ ∪ {∞}. We consider the following multimarginal optimal transport problem

I = inf
π∈Π(µ1,...,µM )

{∫
X1×...×XM

c(x1, ..., xM )dπ(x1, ..., xM )

}
, (3.3.1)

where Π(µ1, ..., µM ) = {π ∈ P(X1 × ...×XM ) s.t.∀1 ≤ i ≤M,
∫
Xi dπ = dµi}.

In order to build the moments constrained optimal transport problem, we introduce, for each
i, Ni ∈ N∗ test functions (φin)1≤n≤Ni ∈ L1(Xi, µi;R)Ni . We say that this set of test functions is
admissible for (µ1, . . . , µM , c) if there exists γ ∈ P(X1 × ...×XM ) such that

∀i ∈ {1, . . . ,M}, ∀n ∈ {1, . . . , Ni},
∫
X1×...×XM

φin(xi)dγ(x1, . . . , xM ) =

∫
Xi
φin(x)dµi(x)

and
∫
X1×...×XM c(x1, . . . , xM )dγ(x1, . . . , xM ) < ∞. We can now state the analogous of Theorem 3.1

for the multimarginal case.

Proposition 3.4. For i ∈ {1, . . . ,M}, let µi ∈ P(Xi) and Σµi ⊂ Xi a Borel set such that µi(Σµi) = 1.
We assume that c : X1 × ... × XM → R+ ∪ {∞} is a l.s.c. cost function, and that the set of test
functions φin ∈ L1(Xi, µi;R) for i ∈ {1, . . . ,M} and n ∈ {1, . . . , Ni} is admissible for (µ1, . . . , µM , c).
We make the following assumptions.

1. For all i and n, the function φin is continuous.

2. For all i, there exists θi : R+ → R+ a non-decreasing continuous function such that θi(r) →
r→+∞

+∞ and such that there exist C > 0 and 0 < s < 1 such that for all 1 ≤ n ≤ Ni, we have

∀x ∈ Xi, |φin(x)| ≤ C(1 + θi(|x|))s. (3.3.2)

We note N = (N1, . . . , NM ), X = X1 × · · · × XM and consider the following problem

INA = inf
π∈P(X )

∀i,n,
∫
X φ

i
n(xi)dπ(x1,...,xM )

=
∫
Xi
φin(x)dµi(x)∫

X
∑M
i=1 θi(|xi|)dπ(x1,...,xM )≤A

{∫
X
c(x1, ..., xM )dπ(x1, ...xM )

}
. (3.3.3)

Then, there exists A0 > 0 such that for all A ≥ A0, INA is finite and is a minimum. Moreover, for

all A ≥ A0, there exists a minimizer πNA for the problem (3.1.2) such that πNA =
∑K

k=1 pkδxk1 ,...,xkM
, for

some 0 < K ≤
∑M

i=1Ni + 2, with pk ≥ 0 and xki ∈ Σµi for all 1 ≤ i ≤M and 1 ≤ k ≤ K.

An interesting point to remark in Proposition 3.4 is that the number of weighted points of the
discrete measure πNA is linear with respect to the number of moment constraints. In particular, if we
take the same number of moments Ni = N for each marginal, the number of weighted points is equal
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to 2 + MN and thus grows linearly with respect to M . Since each points has dM coordinates, the
dimension of the discrete measure is in O(M2). For this reason, the development of algorithms for
minimizing πNA by using finite discrete measures may be a way to avoid the curse of dimensionality
when M is getting large.

We make here a specific focus on the multimarginal optimal transport problem which arises in
quantum chemistry applications [33, 16]. In this particular case, the multi-marginal optimal transport
of interest reads as (3.3.1), with X1 = · · · XM = R3, N1 = · · · = NM = N for some N ∈ N∗,
µ1 = · · · = µM = µ for some µ ∈ P(R3) and c is given by the Coulomb cost

c(x1, · · · , xM ) :=
∑

1≤i<j≤M

1

|xi − xj |
.

The integer M represents here the number of electrons in the system of interest. The inherent symme-
tries of the system yield interesting consequences on the MCOT problem (3.3.3), which are summarized
in the following proposition.

Proposition 3.5. Let M ∈ N∗, N ∈ N∗, µ ∈ P(X ) and Σµ ⊂ X a Borel set such that µ(Σµ) = 1.
We assume that c : XM → R+ ∪ {∞} is a symmetric l.s.c. cost function. More precisely, we denote
by SM the set of permutations of the set {1, · · · ,M} and assume that

∀σ ∈ SM , c(xσ(1), · · · , xσ(M)) = c(x1, · · · , xM ), for almost all x1, · · · , xM ∈ X .

For all 1 ≤ n ≤ N , let φn ∈ L1(X , µ;R). We define φin := φn for all 1 ≤ i ≤M and assume the set of
test functions φin for n ∈ {1, . . . , N} and i ∈ {1, · · · ,M} is admissible for (µ, . . . , µ, c). We make the
following assumptions.

1. For all n, the function φn is continuous.

2. There exists θ : R+ → R+ a non-decreasing continuous function such that θ(r) −→
r→+∞

+∞ and

such that there exist C > 0 and 0 < s < 1 such that for all 1 ≤ n ≤ N , we have

∀x ∈ X , |φn(x)| ≤ C(1 + θ(|x|))s. (3.3.4)

We consider the following problem

INA = inf
π∈P(XM )

∀n,i,
∫
XM φn(xi)dπ(x1,...,xM )

=
∫
X φn(x)dµ(x)∫

XM
∑M
i=1 θ(|xi|)dπ(x1,...,xM )≤A

{∫
X
c(x1, ..., xM )dπ(x1, ...xM )

}
. (3.3.5)

Then, it holds that

INA = inf
π∈P(XM )

∀n,
∫
XM ( 1

M

∑M
i=1 φn(xi))dπ(x1,...,xM )

=
∫
X φn(x)dµ(x)∫

XM
∑M
i=1 θ(|xi|)dπ(x1,...,xM )≤A

{∫
X
c(x1, ..., xM )dπ(x1, ...xM )

}
, (3.3.6)

and there exists A0 > 0 such that for all A ≥ A0, INA is finite and is a minimum. Moreover, for all

A ≥ A0, there exists a minimizer πNA for the problem (3.3.6) such that πNA =
∑K

k=1 pkδxk1 ,...,xkM
, for

some 0 < K ≤ N + 2, with pk ≥ 0 and xki ∈ Σµ for all 1 ≤ i ≤ M and 1 ≤ k ≤ K. Besides, the
symmetric measure

πNsym,A :=
1

M !

∑
σ∈SM

K∑
k=1

pkδxk
σ(1)

,...,xk
σ(M)

(3.3.7)

is a minimizer to (3.3.5) and (3.3.6).
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Proof. It is obvious that the right hand side of (3.3.6) is smaller than the right hand side of (3.3.5).
By using the same arguments as in the proof of Theorem 3.1, there exists A0 > 0 such that for all
A ≥ A0 the infimum of (3.3.6) is finite, is a minimum that is attained by some discrete probability
measure πNA =

∑K
k=1 pkδxk1 ,...,xkM

, for some 0 < K ≤ N + 2 with xki ∈ Σµ for all 1 ≤ i ≤ M and

1 ≤ k ≤ K. Then, since c is symmetric and the set of constraints is also symmetric, we get that πNsym,A

also realizes the minimum. Besides, it satisfies
∫
XM φn(xi)dπ

N
sym,A(x1, ..., xM ) =

∫
X φn(x)dµ(x) for all

n, i, which shows that it is also the minimizer of (3.3.5).

Proposition 3.5 is particularly interesting for the design of numerical schemes for the resolution
of multimarginal optimal transport problems with Coulomb cost arising in quantum chemistry ap-
plications. Indeed, the latter read as (3.3.5) and the number of charged points of the minimizer πNA
of (3.3.6) only scales at most like N + 2, and that the dimension of the optimal discrete measure is in
dM(N + 2). This result states that such formulation of the multimarginal optimal transport problem
does not suffer from the curse of dimensionality. Let us mention that this result is close in spirit to
the recent work [20], where multimarginal optimal transport problems with Coulomb cost are studied
on finite state spaces.

3.3.2 Martingale OT problem

In this paragraph, we assume X = Y = Rd with d ∈ N∗, and consider two probability measures
µ, ν ∈ P(Rd) such that ∫

Rd
|y|dν(y) <∞

and µ is lower than ν for the convex order, i.e.∫
Rd
ϕ(x)dµ(x) ≤

∫
Rd
ϕ(y)dν(y), (3.3.8)

for any convex function ϕ : Rd → R non-negative or integrable with respect to µ and ν. This latter
condition is equivalent, by Strassen’s theorem [35], to the existence of a martingale coupling between
µ and ν, i.e.

∃π ∈ Π(µ, ν), ∀x ∈ Rd,
∫
Rd
ydπ(x, y) = x.

The original martingale optimal transport consists then in the minimization problem

inf
π∈Π(µ,ν)

∀x∈Rd,
∫
Rd ydπ(x,y)=x

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
, (3.3.9)

with c : Rd × Rd → R+ ∪ {∞} being a l.s.c. cost function. This problem has recently got a great
attention in mathematical finance since the work of Beiglböck et al. [6], because it is related to the
calculation of model-independent option price bounds on an arbitrage free market.

We consider a set of test functions (φm)1≤m≤N ∈ L1(Rd, µ;R)N and (ψn)1≤n≤N ∈ L1(Rd, ν;R)N ,
and the following problem:

IN = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∀x∈Rd,
∫
Rd ydπ(x,y)=x

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
.

Suppose for simplicity that there exist some minimizer to this problem π∗. Then, by using The-
orem 5.1 in Beiglböck and Nutz [8] that is an extension of Tchakaloff’s theorem to the martin-
gale case, there exists a probability measure π̃∗ weighting at most (d + 2N + 2)2 points such that
π̃∗ ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N ),

∀x ∈ Rd,
∫
Rd
ydπ̃∗(x, y) = x
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and ∫
Rd×Rd

c(x, y)dπ̃∗(x, y) =

∫
Rd×Rd

c(x, y)dπ∗(x, y) = IN .

However, the minimization problem for IN still has the martingale constraints. To get a problem
that is similar to the MCOT, we then relax in addition the martingale constraint. This constraint is
equivalent to have ∫

Rd×Rd
f(x)(y − x)dπ(x, y) = 0,

for all bounded measurable functions f : Rd → R, and also for all function f : Rd → R such that∫
Rd |xf(x)|dµ(x) <∞. Then, it is natural to consider N ′ test functions χl : Rd → R, 1 ≤ l ≤ N ′, such

that ∫
Rd
|xχl(x)|dµ(x) <∞, (3.3.10)

and then to consider the following minimization problem

IN,N
′

= inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∀l,
∫
Rd×Rd yχl(x)dπ(x,y)=

∫
Rd xχl(x)dµ(x)

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
. (3.3.11)

We will say that the test functions (φm)1≤m≤N , (ψn)1≤n≤N and (χl)1≤l≤N ′ are admissible for the
martingale problem of (µ, ν, c) if IN,N

′
<∞. Similarly to Theorem 3.1, we get the following result.

Proposition 3.6. Let µ ∈ P(Rd), ν ∈ P(Rd) and c : Rd × Rd → R+ ∪ {+∞} a l.s.c. function.
Let Σµ,Σν ⊂ Rd be Borel sets such that µ(Σµ) = ν(Σν) = 1. Let N ∈ N∗ and let (φm)1≤m≤N ∈
L1(Rd, µ;R)N , (ψn)1≤n≤N ∈ L1(Rd, ν;R)N and (χl)1≤l≤N ′ satisfying (3.3.10) be an admissible set of
test functions for the martingale problem of (µ, ν, c). We make the following assumptions.

1. For all n ∈ {1, . . . , N}, l ∈ {1, . . . , N ′}, the functions φn, ψn and χl are continuous.

2. There exist θµ : R+ → R+ and θν : R+ → R+ two non-negative non-decreasing continuous
functions such that θµ(r) −→

r→+∞
+∞ and θν(r) −→

r→+∞
+∞, and such that there exist C > 0 and

0 < s < 1 such that for all 1 ≤ n ≤ N , 1 ≤ l ≤ N ′, and all (x, y) ∈ Rd × Rd,

|φn(x)|+ |ψn(y)|+ |yχl(x)| ≤ C(1 + θµ(|x|) + θν(|y|))s. (3.3.12)

For all A > 0, let us introduce

IN,N
′

A = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∀l,
∫
Rd×Rd yχl(x)dπ(x,y)=

∫
Rd xχl(x)dµ(x)∫

Rd×Rd (θµ(|x|)+θν(|y|))dπ(x,y)≤A

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
. (3.3.13)

Then, there exists A0 > 0 such that for all A ≥ A0, IN,N
′

A is finite and is a minimum. Moreover, for

all A ≥ A0, there exists a minimizer πN,N
′

A for Problem (3.3.13) such that πN,N
′

A =
∑K

k=1 pkδxk,yk , for
some 0 < K ≤ 2N +N ′ + 2, with pk ≥ 0, xk ∈ Σµ and yk ∈ Σν for all 1 ≤ k ≤ K.

The proof of Proposition 3.6 follows exactly the same line as the proof of Theorem 3.1, since the
relaxation of the martingale moment constraints only brings new moment constraints. Let us stress

that the minimizer πN,N
′

A does not satisfy in general the martingale constraint. Also, we do not impose
in Proposition 3.6 to have (3.3.8), i.e. µ smaller than ν for the convex order. In fact, the admissibility

condition already ensures that IN,N
′
< ∞ and thus, by using Proposition 2.1 that IN,N

′

A < ∞ for
A large enough. Nonetheless, if we assume in addition that µ smaller than ν for the convex order

and that I, the infimum of Problem 3.3.9, is finite, then we have IN,N
′

A < ∞ and IN,N
′

A ≤ I for
any A ≥

∫
Rd×Rd(θµ(|x|) + θν(|y|))dπ1(x, y), where π1 ∈ Π(µ, ν) is such that

∫
Rd ydπ1(x, y) = x and∫

Rd×Rd c(x, y)dπ1(x, y) ≤ I + 1.
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4 Convergence of the MCOT problem towards the OT problem

The aim of this section is to prove that when the number of test functions N → +∞, the minimizer of
the MCOT problem converges towards a minimizer of the OT problem, under appropriate assumptions
and up to the extraction of a subsequence.

4.1 Continuous test functions on unbounded domains

Let us consider two sequences of continuous real-valued test functions (φm)m∈N∗ and (ψn)n∈N∗ defined
on X (resp. Y) and make the following assumptions.

Let us first assume that there exist continuous non-decreasing non-negative functions θµ : R+ → R+

and θν : R+ → R+ such that

θµ(|x|) −−−−−→
|x|→+∞

+∞ and θν(|y|) −−−−−→
|y|→+∞

+∞ (4.1.1)

and ∫
X
θµ(|x|)dµ(x) <∞ and

∫
Y
θν(|y|)dν(y) <∞. (4.1.2)

In the sequel, we set

A0 :=

∫
X
θµ(|x|)dµ(x) +

∫
Y
θν(|y|)dν(y). (4.1.3)

We assume moreover that there exist (sµm)m∈N∗ , (s
ν
n)n∈N∗ ∈ (0, 1)N

∗
and (Cµm)m∈N∗ , (C

ν
n)n∈N∗ ∈ (R∗+)N

∗

such that

∀m ∈ N∗, ∀x ∈ X , |φm(x)| ≤ Cµm(1 + θµ(|x|))s
µ
m , (4.1.4)

∀n ∈ N∗, ∀y ∈ Y, |ψn(y)| ≤ Cνn(1 + θν(|y|))sνn . (4.1.5)

Last, we assume that the probability measures µ and ν are fully characterized by their moments:

∀η ∈ P(X ),

(
∀m ∈ N∗,

∫
X
φm(x)dη(x) = µm

)
=⇒ η = µ, (4.1.6)

∀η ∈ P(Y),

(
∀n ∈ N∗,

∫
Y
ψn(x)dη(x) = νn

)
=⇒ η = ν. (4.1.7)

We consider the optimal cost for the OT problem (2.1.1) that we restate here for convenience

I = inf
π∈Π(µ,ν)

{∫
X×Y

c(x, y)dπ(x, y)

}
, (4.1.8)

and for all N ∈ N∗, we define the N th MCOT problem,

INA0
= min

π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )∫
X×Y (θµ(|x|)+θν(|y|))dπ(x,y)≤A0

{∫
X×Y

c(x, y)dπ(x, y)

}
. (4.1.9)

Theorem 4.1. Let µ ∈ P(X ) and ν ∈ P(Y) satisfying (4.1.2) for some continuous non-decreasing
functions θµ : R+ → R+ and θν : R+ → R+ satisfying (4.1.1). Let c : X × Y → R+ ∪ {+∞} a l.s.c.
function. Let (φm)m∈N∗ ⊂ L1(X , µ;R) and (ψn)n∈N∗ ⊂ L1(Y, ν;R) be continuous functions satisfying
(4.1.4), (4.1.5), (4.1.6) and (4.1.7) Let us finally assume that I, defined by (4.1.8) is finite.

Then, for all N ∈ N∗, there exist at least one minimizer for Problem (4.1.9) and

INA0
−→

N→+∞
I.

Besides, from every sequence (πN )N∈N∗ such that for all N , πN ∈ P(X×Y) is a minimizer for (4.1.9),
one can extract a subsequence which converges towards a minimizer π∞ ∈ P(X×Y) to problem (4.1.8).
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Proof. From Theorem 3.1 and Remark 3.1, We know that there exists at least one minimizer πN ∈
P(X × Y) to (4.1.9). Since we have

∀N,
∫
X×Y

(θµ(|x|) + θν(|y|))dπN (x, y) ≤ A0,

and (4.1.1), we get that the sequence (πN )N∈N∗ is tight. Thus, up to the extraction of a subsequence,
still denoted (πN )N∈N∗ for the sake of simplicity, there exists a measure π∞ ∈ P(X × Y) such that
πN −−−−⇀

N→∞
π∞. With the same argument as in the proof of Theorem 3.1, we get that for all m,n ∈ N∗,∫

X×Y
φm(x)dπ∞(x, y) = µm and

∫
X×Y

ψn(x)dπ∞(x, y) = νn.

Then, Properties (4.1.6) and (4.1.7) give π∞ ∈ Π(µ, ν). Therefore,∫
X×Y

c(x, y)dπ∞(x, y) ≥ I. (4.1.10)

We now establish that
∫
X×Y c(x, y)dπ∞(x, y) ≤ I which concludes the proof. The Skorokhod rep-

resentation theorem states that there exist a space (Ω,F ,P) and random variables (XN , YN )N∈N∪{∞}
such that (XN , YN ) is distributed according to πN and (XN , YN )→ (X̃, Ỹ ) P-a.s.

Furthermore, as c is l.s.c,

lim inf
N→∞

c(XN , YN ) ≥ c(X∞, Y∞), P−a.s.

and by Fatou’s lemma we get lim infN→∞ E (c(XN , YN )) ≥ E (c(X∞, Y∞)), i.e.

lim inf
N→∞

∫
X×Y

c(x, y)dπN (x, y) ≥
∫
X×Y

c(x, y)dπ∞(x, y), (4.1.11)

Furthermore, note that (IN )N∈N is a non-decreasing sequence and that for all N ∈ N∗, IN ≤ I.
Thus, there exists I∞ ≤ I such that IN −−−−→

N→∞
I∞. Recall that

lim inf
N→∞

∫
X×Y

c(x, y)dπN (x, y) = lim
N→∞

∫
X×Y

c(x, y)dπN (x, y) = I∞,

then (4.1.11) implies,

I ≥ I∞ ≥
∫
X×Y

c(x, y)dπ∞(x, y). (4.1.12)

Using equations (4.1.10) and (4.1.12), one gets∫
X×Y

c(x, y)dπ∞(x, y) = I and I∞ = I.

Thus, as π∞ ∈ Π(µ, ν), π∞ ∈ arg minπ∈Π(µ,ν)

{∫
X×Y c(x, y)dπ(x, y)

}
, and IN −−−−→

N→∞
I.

4.2 Bounded test functions on compact sets

We now assume that X and Y are compact subsets of Rdx and Rdy . We state a result analogous to
Theorem 4.1 that holds without the additional moment constraint and for possibly discontinuous test
functions. We consider two sequences of bounded measurable real-valued test functions (φm)m∈N∗ ⊂
L∞(X ) and (ψn)n∈N∗ ⊂ L∞(Y) that satisfy

∀f ∈ C0(X ), inf
vN∈Span{φm, 1≤m≤N}

‖f − vN‖∞ −→
N→+∞

0 (4.2.1)
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and
∀f ∈ C0(Y), inf

vN∈Span{ψn, 1≤n≤N}
‖f − vN‖∞ −→

N→+∞
0. (4.2.2)

It is easy then to see that the properties (4.1.6) and (4.1.7) are satisfied for any µ ∈ P(X ) and
ν ∈ P(Y). For any N ≥ 1, we consider the following MCOT problem:

IN = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

{∫
X×Y

c(x, y)dπ(x, y)

}
. (4.2.3)

Proposition 4.2. Let us assume that X and Y are compact sets and let µ ∈ P(X ) and ν ∈ P(Y).
Let (φm)m∈N∗ ⊂ L∞(X ) and (ψn)n∈N∗ ⊂ L∞(Y) satisfying (4.2.1) and (4.2.2). Let us assume that
I < +∞. Then, it holds that IN ≤ I and

IN −−−−→
N→∞

I.

Moreover, from every sequence (πN )N∈N such that for all N ∈ N∗, πN ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N )
satisfies ∫

X×Y
c(x, y) dπN (x, y) ≤ IN + εN , (4.2.4)

with εN −→
n→+∞

0, one can extract a subsequence which converges towards a measure π∞ ∈ P(X × Y)

which is a minimizer to Problem (4.1.8).

Remark 4.1. From Proposition 2.1, there exists 0 ≤ KN ≤ 2N + 2, x1, · · · , xKN ∈ X , y1, · · · , yKN ∈
Y and w1, · · · , wKN ≥ 0 such that γN :=

∑KN
k=1wkδ(xk,yk) ∈ Π(µ, ν; (φm)1≤m≤N , (ψn)1≤n≤N ) and∫

X×Y
c(x, y) dγN (x, y) =

∫
X×Y

c(x, y) dπN (x, y) ≤ IN + εN . (4.2.5)

In other words, any sequence (πN )N∈N∗ satisfying the assumptions of Proposition 4.2 can be chosen
as a discrete measure charging at most 2N + 2 points.

Proof of Proposition 4.2. Since X and Y are compact, the sequence (πN ) is tight and we can assume,
up to the extraction of a subsequence, that it weakly converges to π∞. For N ∈ N∗ ∪ {∞}, we denote
the marginal laws of πN respectively by dµN (x) :=

∫
Y dπN (x, y) and dνN (y) :=

∫
X dπN (x, y). For

f ∈ C0(X ), it holds that ∫
X
fdµN −−−−→

N→∞

∫
X
fdµ∞.

Let ε > 0. Using the density condition (4.2.1), one can find M ∈ N∗ and λ1, ..., λM ∈ R such that

supx∈X

∣∣∣f(x)−
∑M

i=1 λiφi(x)
∣∣∣ ≤ ε. Thus,∣∣∣∣∣

∫
X
fdµ−

M∑
i=1

λiµi

∣∣∣∣∣ ≤ ε (4.2.6)

and for K > M ,
∣∣∣∫X fdµK −

∑M
i=1 λi

∫
X φidµ

K
∣∣∣ ≤ ε, i.e.∣∣∣∣∣

∫
X
fdµK −

M∑
i=1

λiµi

∣∣∣∣∣ ≤ ε. (4.2.7)

Then, (4.2.6) and (4.2.7) imply that
∣∣∫
X fdµK −

∫
X fdµ

∣∣ ≤ 2ε, and taking K →∞ leads to∣∣∣∣∫
X
fdµ∞ −

∫
X
fdµ

∣∣∣∣ ≤ 2ε. (4.2.8)
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As (4.2.8) holds for any ε > 0, one gets that for any f ∈ C0(X ),∫
X
fdµ∞ =

∫
X
fdµ,

which yields that µ∞ = µ. Similarly, it holds that ν∞ = ν. Therefore, π∞ ∈ Π(µ, ν) and∫
X×Y

c(x, y)dπ∞(x, y) ≥ I. (4.2.9)

Now, we use the same arguments as in the proof of Proposition 4.1 to get
∫
X×Y c(x, y)dπ∞(x, y) ≤ I,

which gives the result.

4.3 Convergence for Martingale Optimal Transport problems

In this subsection, we study the convergence of IN,N
′

A defined by (3.3.11) when the number of test
functions for the martingale condition N ′ → +∞ towards the following minimization problem:

IN,mgA = inf
π∈Π(µ,ν;(φm)1≤m≤N ,(ψn)1≤n≤N )

∀x∈Rd,
∫
Rd ydπ(x,y)=x∫

X×Y (θµ(|x|)+θν(|y|))dπ(x,y)≤A0

{∫
Rd×Rd

c(x, y)dπ(x, y)

}
. (4.3.1)

This convergence is particularly interesting for the practical application in finance: the marginal laws
µ, ν are in general not observed and market data only provide some moments. For d = 1, market data
give the prices of European put (or call) options that corresponds to φm(x) = (Km−x)+ and ψn(y) =
(K ′m − y)+. Let us assume for simplicity zero interest rates. Then, by taking θµ(|x|) = θν(|x|) = |x|,
we have from the martingale assumption

∫
X×Y(|x| + |y|)dπ(x, y) = 2S0, where S0 > 0 is the current

price of the underlying asset. Then, a natural choice would be to take A0 = 2S0. Therefore, the
convergence stated in Proposition 4.3 gives a way to approximate option price bounds by taking into
account that only some moments are known, while the few existing numerical methods for Martingale
Optimal Transport in the literature assume that the marginal laws are known [2, 3, 23].

Proposition 4.3. Let µ ∈ P(Rd) lower than ν ∈ P(Rd) for the convex order and c : Rd × Rd →
R+ ∪ {+∞} a l.s.c. function. We assume |x| ≤ θµ(|x|), |y| ≤ θν(|y|) and suppose A0 < ∞ with A0

defined by (4.1.3). We assume that the test functions (χl, l ∈ N∗) are bounded and such that for any
function f : Rd → R continuous with compact support, we have

inf
g∈Span{χl, 1≤l≤N ′}

‖f − g‖∞ −→
N ′→+∞

0. (4.3.2)

Let the assumptions of Proposition 3.6 hold for any N ′ ≥ 1. Then, we have IN,N
′

A0
−→

N ′→+∞
IN,mgA0

<∞.

Proof. Since A0 < ∞, any martingale coupling between µ and ν satisfies the constraints of IN,N
′

A0
.

By using Tchakaloff’s theorem and the fact that c is finite-valued, we get that IN,N
′

A0
is finite for

any N ′ and is attained by a measure denoted by πN
′

according to Proposition 3.6. Similarly, using
Tchakaloff’s theorem for the martingale case, Theorem 5.1 [8], we get that IN,mgA0

< ∞. Note that

from the inclusion of the constraints, we clearly have I
N,N ′1
A0

≤ I
N,N ′2
A0

≤ IN,mgA0
for N ′1 ≤ N ′2. We can

then repeat the arguments in the proof of Theorem 4.1 to get that (πN
′
) is tight and any limit π∞ of

a weakly converging subsequence satisfies IN,mgA0
=
∫
Rd×Rd c(x, y)dπ∞(x, y).

The only thing to prove is that
∫
Rd×Rd(y − x)f(x)dπ∞(x, y) = 0 for any function f : Rd → R

continuous with compact support. Let ε > 0. By assumption, there exists M ∈ N∗ and λ1, . . . , λM ∈ R
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such that supx∈Rd |f(x)−
∑M

l=1 λlχl(x)| ≤ ε. Therefore, for N ′ ≥M , we have∣∣∣∣∫
Rd×Rd

f(x)(y − x)dπN
′
(x, y)

∣∣∣∣ =

∣∣∣∣∣
∫
Rd×Rd

(
f(x)−

M∑
l=1

λlχl(x)

)
(y − x)dπN

′
(x, y)

∣∣∣∣∣
≤ ε

∫
Rd×Rd

|y − x|dπN ′(x, y) ≤ εA0,

by using the triangle inequality and the fact that |x| ≤ θµ(|x|), |y| ≤ θν(|y|). We conclude then easily
letting N ′ →∞.

Let us mention that we can obtain using similar arguments that IN,mgA0
and IN,N

′

A0
converge towards

(3.3.9) as N and N ′ go to infinity.

5 Rates of convergence for particular sets of test functions

Throughout this section, we assume that

X = Y = [0, 1]

and for all N ∈ N∗, we define the intervals

TN1 =

[
0,

1

N

]
, ∀2 ≤ m ≤ N, TNm =

(
m− 1

N
,
m

N

]
. (5.0.1)

We investigate in this section the rate of convergence of IN defined by (4.2.3) towards I defined
by (4.1.8), when the test functions are piecewise constant (resp. piecewise linear) on TNm . We obtain,
under suitable assumptions a convergence rate of O(1/N) (resp. O(1/N2)). This shows, as one may
expect, the importance of the choice of test functions to approximate the Optimal Transport problem.

5.1 Piecewise constant test functions on compact sets

In this section, we assume that the cost function c : [0, 1]2 → R+ is Lipschitz:

|c(x, y)− c(x′, y′)| ≤ K max(|x− x′|, |y − y′|). (5.1.1)

We define, for π ∈ P([0, 1]2), I(π) =
∫
X×Y c(x, y)dπ(x, y) and

I = inf
π∈Π(µ,ν)

I(π). (5.1.2)

We introduce the piecewise constant test functions

∀N ≥ 1, 1 ≤ m ≤ N, φNm = 1TNm ,

and consider the MCOT problem:

IN = inf
π∈Π(µ,ν;(φNm)1≤m≤N ,(φ

N
n )1≤n≤N )

{∫
[0,1]2

c(x, y)dπ(x, y)

}
. (5.1.3)

Then, Proposition 5.1 establishes the rate of convergence of the sequence (IN )N∈N∗ to I as N increases.
problem N increases.

Proposition 5.1. Let µ, ν ∈ P([0, 1]) and c : [0, 1]2 → R+ a Lipschitz function with Lipschitz constant
K > 0. Then, for all N ∈ N∗,

IN ≤ I ≤ IN +
K

N
. (5.1.4)
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Remark 5.1. Let us note that we are not exactly in the framework of Section 4, since the test functions
depends on N . However, we have

Span
{
φNm, 1 ≤ m ≤ N

}
⊂ Span

{
φ2N
m , 1 ≤ m ≤ 2N

}
and thus Proposition 4.2 gives for any L ∈ N∗,

IL2k −→
k→+∞

I.

Before proving Proposition 5.1, we state a result that bounds the distance between an MCOT
optimizer and the minimizer of the OT problem (5.1.2). We define that for p ≥ 1, the Wp-Wasserstein
distance between η1, η2 ∈ P(Rd) as W p

p (η1, η2) = infπ∈Π(η1,η2)

∫
Rd×Rd ‖x1−x2‖ppdπ(x1, x2), i.e. we take

the ‖‖p-norm for Wp.

Proposition 5.2. Let p > 1. Let µ ∈ P([0, 1]). If µN ∈ P([0, 1]) is such that
∫ 1

0 φ
N
m(x)dµN (x) =∫ 1

0 φ
N
m(x)dµ(x) for all m ∈ {1, . . . , N}, then

Wp(µ, µ
N ) ≤ 1

N
.

Let us assume besides that the cost function satisfies c(x, y) = H(y − x) with H : R → R+ strictly
convex. There exists then a unique minimizer of (5.1.2) that we denote π∗.
Let πN ∈ Π(µ, ν; (φNm)1≤m≤N , (φ

N
n )1≤n≤N ), µN and νN the marginal laws of πN and assume that∫

[0,1]2
c(x, y)dπN (x, y) = min

π∈Π(µN ,νN )

∫
[0,1]2

c(x, y)dπ(x, y).

Then, we have Wp(π
N , π∗) ≤ 21/p

N , where Wp is defined using the ‖‖p norm on R2.

Proof. For η ∈ P(R), we define F−1
η (u) = inf{x ∈ R : η((−∞, x]) ≥ u}, that coincides with the usual

inverse when Fη is increasing. Let p > 1. By Theorem 2.9 [31], we have

W p
p (µ, µN ) =

∫ 1

0
|F−1
µ (u)− F−1

µN
(u)|pdu

=

∫ Fµ(0)

0
|F−1
µ (u)− F−1

µN
(u)|pdu+

N∑
m=1

∫ Fµ(mN )

Fµ(m−1
N )
|F−1
µ (u)− F−1

µN
(u)|pdu.

If Fµ
(
m
N

)
= Fµ

(
m−1
N

)
, we clearly have

∫ Fµ(mN )
Fµ(m−1

N )
|F−1
µ (u) − F−1

µN
(u)|pdu = 0. Otherwise, we have

FµN
(
m−1
N

)
= Fµ

(
m−1
N

)
< Fµ

(
m
N

)
= FµN

(
m
N

)
, and therefore

∀u ∈
(
Fµ

(
m− 1

N

)
, Fµ

(m
N

))
, F−1

µ (u), F−1
µN

(u) ∈
[
m− 1

N
,
m

N

]
.

This gives |F−1
µ (u) − F−1

µN
(u)| ≤ 1/N . Since Fµ(0) = FµN (0), we get that F−1

µ (u) = F−1
µN

(u) = 0 for

u ∈ (0, Fµ (0)). We finally get W p
p (µ, µN ) ≤ N−p.

Now, let U ∼ U([0, 1]) be a uniform random variable on [0, 1]. Still by Theorem 2.9 [31], we have
(F−1

µ (U), F−1
ν (U)) ∼ π∗ and (F−1

µN
(U), F−1

νN
(U)) ∼ πN . This gives a coupling between π∗ and πN , and

thus

W p
p (πN , π∗) ≤ E[|F−1

µN
(U)− F−1

µ (U)|p] + E[|F−1
νN

(U)− F−1
ν (U)|p] ≤ 2

Np
.
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In order to prove Proposition 5.1, let us introduce the following auxiliary problem. For all N ∈ N∗,
let us define

Π̄N (µ, ν) :=

{
(π̄m,n)1≤m,n≤N | ∀1 ≤ m,n ≤ N, π̄m,n ≥ 0,

∀m,
N∑
n=1

π̄m,n = µ(TNm ), ∀n,
N∑
m=1

π̄m,n = ν(TNn )

}
and

JN := inf
π̄∈Π̄N (µ,ν)

N∑
m,n=1

c

(
m− 1

2

N
,
n− 1

2

N

)
π̄m,n. (5.1.5)

Let us introduce the following applications:

D : Π(µ, ν) → Π̄N (µ, ν)
π 7→ (π(TNm × TNn ))1≤m,n≤N

(5.1.6)

and
J : Π̄N (µ, ν) → R+

π̄ 7→
∑N

m,n=1 c
(
m− 1

2
N ,

n− 1
2

N

)
π̄m,n.

(5.1.7)

Lemma 5.3. Let N ∈ N∗. It holds that

∀π ∈ P([0, 1]), |I(π)− J(D(π))| ≤ K

2N
. (5.1.8)

Besides, we have

IN ≤ JN ≤ IN +
K

2N
. (5.1.9)

Proof of Lemma 5.3. Let π ∈ P([0, 1]2). Then, we write

I(π) =

∫
[0,1]2

c(x, y)dπ(x, y) =
N∑

m,n=1

∫
TNm×TNn

c(x, y)dπ(x, y)

=
N∑

m,n=1

c

(
m− 1

2

N
,
n− 1

2

N

)
Dmn(π)

+

N∑
m,n=1

∫
TNm×TNn

(
c(x, y)− c

(
m− 1

2

N
,
n− 1

2

N

))
dπ(x, y),

and get |I(π)− J(D(π))| ≤ K
2N since |c(x, y)− c

(
m− 1

2
N ,

n− 1
2

N

)
| ≤ K

2N for (x, y) ∈ TNm × TNn .

Let N ∈ N∗. For all π̄ ∈ Π̄(µ, ν), defining π :=
∑N

m,n=1 π̄mnδm− 1
2

N
,
n− 1

2
N

, one obtains that π ∈

P([0, 1]2), D(π) = π̄ and I(π) = J(π̄); this implies that IN ≤ JN .
Conversely, if π ∈ Π(µ, ν; (φNm)1≤m≤N , (φ

N
n )1≤n≤N ) is chosen to satisfy I(π) ≤ IN + ε for some

ε > 0, one gets JN ≤ J(D(π)) ≤ I(π) + K
2N = IN + K

2N + ε. Letting ε → 0 provides the wanted
result.

We also need the following auxiliary lemma.

Lemma 5.4. For all π̄ ∈ Π̄N (µ, ν), there exists π̄∗ ∈ Π(µ, ν) such that π̄ = D(π̄∗).
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Proof of Lemma 5.4. Let π̄ ∈ Π̄(µ, ν). We define π̄∗ by

dπ̄∗(x, y) = dµ(x)
N∑
m=1

1TNm (x)
N∑
n=1

π̄m,n∑N
n′=1 π̄m,n′

1TNn (y)dν(y)

ν(TNn )
.

Since
∑N

n′=1 π̄m,n′ = µ(TNm ) and
∑N

m=1 π̄m,n = ν(TNn ), we have

∫
X

dπ̄∗(x, y) =
N∑
m=1

µ(TNm )
N∑
n=1

π̄m,n
µ(TNm )

1TNn (y)dν(y)

ν(TNn )

=
N∑
n=1

(
N∑
m=1

π̄m,n

)
1TNn (y)dν(y)

ν(TNn )
=

N∑
n=1

1TNn (y)dν(y) = dν(y).

Also, we have
∫
Y dπ̄∗(x, y) = dµ(x)

∑N
m=1 1TNm (x)

∑N
n=1

π̄m,n∑N
n′=1 π̄m,n′

= dµ(x), which gives π̄∗ ∈ Π(µ, ν).

Last, we have ∫
TNm×TNn

dπ̄∗(x, y) = µ(TNm )
π̄m,n∑N

n′=1 π̄m,n′
= π̄m,n,

which precisely gives π̄ = D(π̄∗).

We are now in position to give the proof of Proposition 5.1.

Proof of Proposition 5.1. The inclusion Π(µ, ν; (φNm)1≤m≤N , (φ
N
n )1≤n≤N ) ⊂ Π(µ, ν) gives IN ≤ I.

Lemma 5.4 implies that for all π̄ ∈ Π̄N (µ, ν), there exists π̄∗ ∈ Π(µ, ν) such that D(π̄∗) = π̄, and
we get by Lemma 5.3 |J(π̄)− I(π̄∗)| ≤ K

2N . Let now π̄ ∈ Π̄N (µ, ν) such that J(π̄) ≤ JN + ε for some
ε > 0. Then one gets that JN + K

2N + ε ≥ I (π̄∗) ≥ I. Letting ε go to zero yields that

I ≤ JN +
K

2N
. (5.1.10)

Furthermore, Lemma 5.3 gives JN ≤ IN + K
N and thus I ≤ IN + K

N .

Remark 5.2. Proposition 5.1 can be easily extended to higher dimensions and in the multi-marginal
case. Let us assume that c : ([0, 1]d)M → R+ be such that

|c(x1, . . . , xM )− c(x′1, . . . , x′M )| ≤ K max
i∈{1,...,M}

‖xi − x′i‖∞.

For N ∈ N∗ and m ∈ {1, . . . , N}d =: EN , we consider the test function φNm(x) =
∏d
i=1 φ

N
mi(xi) for

x ∈ [0, 1]d. Then, with I = infπ∈Π(µ1,...,µM )

∫
([0,1]d)M c(x1, . . . , xM )dπ(x1, . . . , xM ) and

IN = inf
π:∀m,k,

∫
[0,1]d

φNm(x)dµk(x)=
∫
([0,1]d)M

φNm(xk)dπ(x1,...,xM )

{∫
([0,1]d)M

c(x1, . . . , xM )dπ(x1, . . . , xM )

}
,

we get similarly (it is straightforward to generalize Proposition 5.2 and we can extend the result of
Lemma 5.4 by induction on M)

IN ≤ I∗ ≤ IN +
K

N
.

Since the number of moments (i.e. of test functions) is MNd, we see that there is a curse of dimen-
sionality with respect to d, not with respect to M .
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5.2 Piecewise affine test functions in dimension 1 on a compact set

The test functions considered are discontinuous piecewise affine functions, identical on each space. For
all N ∈ N∗ and all 1 ≤ m ≤ N , let us define the following discontinuous piecewise affine functions

φNm,1(x) =

{
N
(
x− m−1

N

)
if x ∈ TNm ,

0 otherwise,

φNm,2(x) =

{
1−N

(
x− m−1

N

)
if x ∈ TNm ,

0 otherwise,

and for all i = 1, 2,

µNm,i :=

∫
X
φNm,i dµ and νNm,i :=

∫
Y
φNm,i dν.

Lemma 5.5. Let µ1, µ2 ∈ P([0, 1]). Let N ∈ N∗ and let us assume that for all 1 ≤ m ≤ N and
i = 1, 2, ∫

[0,1]
φNm,i(x)dµ1(x) =

∫
[0,1]

φNm,i(x)dµ2(x).

Then, denoting by F1 : [0, 1]→ [0, 1] (resp. F2 : [0, 1]→ [0, 1]) the cumulative distribution function
of µ1 (resp. µ2), one gets that

∀1 ≤ m ≤ N,
∫
TNm

F1(x)dx =

∫
TNm

F2(x)dx, (5.2.1)

and
∀1 ≤ m ≤ N, F1

(m
N

)
= F2

(m
N

)
. (5.2.2)

Proof. We have φm,1+φm,2 = 1TNm and thus, for 2 ≤ m ≤ N , F1

(
m
N

)
−F1

(
m−1
N

)
= F2

(
m
N

)
−F2

(
m−1
N

)
.

Since F1(1) = F2(1) = 1, this gives (5.2.2). Now, let l = 1, 2. An integration by parts yields for
1 ≤ m ≤ N ∫

[0,1]
φNm,1(x)dµl(x) =

∫ m
N

m−1
N

(x− m− 1

N
)dµl(x)

=
1

N
Fl

(m
N

)
−
∫ m

N

m−1
N

Fl(x)dx

Using (5.2.2), this gives (5.2.1).

Let us remark that we may have F1(0) 6= F2(0) under the assumptions of Lemma 5.5, since µ1 and
µ2 may charge differently 0.

Let us now explain with a rough calculation why considering these test functions may lead to a
convergence rate of O(1/N2) when c is C1 with a Lipschitz gradient. Let

IN = inf
π∈Π(µ,ν;(φNm,i),(φ

N
n,i))

{∫
X×Y

c(x, y)dπ(x, y)

}
. (5.2.3)

We have IN ≤ I and, for any π ∈ Π(µ, ν; (φNm,i), (φ
N
n,i)),

I(π) =
N∑

m,n=1

∫
TNm×TNn

c

(
m− 1

2

N
,
n− 1

2

N

)
+ ∂xc

(
m− 1

2

N
,
n− 1

2

N

)
(x−

m− 1
2

N
)

+ ∂yc

(
m− 1

2

N
,
n− 1

2

N

)
(y −

m− 1
2

N
)dxdy +O(1/N2)
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Thus, we have

I(π) =
N∑

m,n=1

(
c− 1

2
∂x −

1

2
∂y

)(
m− 1

2

N
,
n− 1

2

N

)
π1
mn (5.2.4)

+ ∂xc

(
m− 1

2

N
,
n− 1

2

N

)
π2
mn + ∂yc

(
m− 1

2

N
,
n− 1

2

N

)
π3
mn +O(1/N2),

with π1
mn = π(TNm × TNn ), Nπ2

mn =
∫
TNm×TNn

φNm,1(x)dπ(x, y) and Nπ3
mn =

∫
TNm×TNn

φNm,1(y)dπ(x, y).

We can thus consider the linear programming problem of minimizing the right-hand-side of (5.2.4)
under the constraints

∑
n π

1
mn = µNm,1 + µNm,2,

∑
m π

1
mn = νNm,1 + νNm,2,

∑
n π

2
mn = µNm,1/N ,

∑
m π

3
mn =

νNm,1/N and πimn ≥ 0. Suppose for simplicity that we can find an minimum (π∗,imn) to this discrete

problem. If we could find (similarly as Lemma 5.4) π∗ ∈ Π(µ, ν) such that π∗,1mn = π∗(TNm × TNn ),
Nπ∗,2mn =

∫
TNm×TNn

φNm,1(x)dπ∗(x, y) and Nπ∗,3mn =
∫
TNm×TNn

φNm,1(y)dπ∗(x, y), we would get then

I ≤ IN +O(1/N2).

Unfortunately, such kind of a result is not obvious. Besides, we see from this derivation that the
smoothness of the cost function plays an important role.

Let us recall that for p ≥ 1, the Wp-Wasserstein distance at the power p, W p
p (µ, ν), corresponds to

the cost function c(x, y) = |x− y|p. In the following, we prove convergence results with rate O(1/N2)
for c(x, y) = |x − y| and c(x, y) = |x − y|2. In the first case, the cost function is not smooth on the
diagonal, and we need to impose an extra condition on µ and ν to get this rate. We first state a first
result, which is already interesting, but will be not sufficient to prove the desired convergence. Its
proof is postponed in Appendix A.

Proposition 5.6. Let µ1, µ2 ∈ P([0, 1]) be two probability measures with cumulative distribution
functions F1 and F2, respectively, such that F1, F2 ∈ C2([0, 1]). Let us assume that for all 1 ≤ m ≤ N
and i = 1, 2, ∫

[0,1]
φNm,i(x)dµ1(x) =

∫
[0,1]

φNm,i(x)dµ2(x).

Then,

W1(µ1, µ2) ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N2
. (5.2.5)

In addition, let m1 := minu∈[0,1] F
′
1(u) and m2 = minu∈[0,1] F

′
2(u) and let us assume that m1 > 0 and

m2 > 0. Then, for all p > 1, it holds that

Wp(µ1, µ2) ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N2
(p!)

1
p

(
5

2

(
1

m1
+

1

m2

)) p−1
p

. (5.2.6)

Remark 5.3. The result of Proposition 5.6 can be extended through the triangle inequality in order
to treat regular measures with different piecewise affine moments. Indeed, for p ≥ 1:

Wp(µ, ν) ≤Wp(µ, µ̃) +Wp(µ̃, ν̃) +Wp(ν̃, ν),

thus
|Wp(µ, ν)−Wp(µ̃, ν̃)| ≤Wp(µ, µ̃) +Wp(ν̃, ν). (5.2.7)

Thus, using Proposition 5.6, one gets that for µ, ν two measures with cumulative distribution functions
F and G, respectively, such that F,G ∈ C2([0, 1]) and µ̃, ν̃ two measures with cumulative distribution
functions F̃ and G̃, respectively, such that F̃ , G̃ ∈ C2([0, 1]); If µ and µ̃ (respectively ν and ν̃) have
the same 2N piecewise affine moments of step 1/N , then

|W1(µ, ν)−W1(µ̃, ν̃)| ≤ ‖F
′′‖∞ + ‖F̃ ′′‖∞ + ‖G′′‖∞ + ‖G̃′′‖∞

3N2
. (5.2.8)
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Besides, if mµ = minu∈[0,1] F
′(u), mµ̃ = minu∈[0,1] F̃

′(u), mν = minu∈[0,1]G
′(u) and mν̃ = minu∈[0,1] G̃

′(u),
are positive, one has for all p ∈ N∗,

|Wp(µ, ν)−Wp(µ̃, ν̃)|

≤ ‖F
′′‖∞ + ‖F̃ ′′‖∞

3N2

(
5

2

(
1

mµ
+

1

mµ̃

)) p−1
p

(p!)
1
p

+
‖G′′‖∞ + ‖G̃′′‖∞

3N2

(
5

2

(
1

mν
+

1

mν̃

)) p−1
p

(p!)
1
p . (5.2.9)

Unfortunately, Proposition 5.6 can not be extended to non-smooth measures, as Example 5.1 below
shows. However, the O(1/N2) convergence obtained in Remark 5.3 may stay true even for non-smooth
measures µ̃ and ν̃. This is important in our context to treat the case where µ̃ and ν̃ are not smooth
since the solution of the MCOT problem may typically be a discrete measure that match respectively
the moments of µ and ν. We tackle this issue for W1 and W2 in the two following paragraphs.

Example 5.1. In Proposition 5.6, if one of the measures (let us say µ̃) is not regular enough, then
the convergence in O(1/N2) may not be true, as shown thereafter.

We consider µ ∼ U([0, 1]) and

µ̃N =
1

N

N∑
i=1

δ 1
2N

+ i−1
N
.

Then, for all 1 ≤ m ≤ N , we have

F̃
(m
N

)
=
m

N
= F

(m
N

)
,

and ∫
TNm

F̃ =
m− 1

N2
+

1

2N

1

N
=

∫
TNm

F.

However, we have

W1(µ, µ̃N ) = N

∫ 1/N

0

∣∣∣∣u− 1

2N

∣∣∣∣ du = 2N

(
1

2N

)2 1

2
=

1

4N
.

5.2.1 Convergence speed for W1

Proposition 5.7. Let µ, ν, µ̃, ν̃ ∈ P([0, 1]). Let us assume that µ and ν are absolutely continuous with
respect to the Lebesgue measure and let us denote by ρµ and ρν their density probability functions. Let
us denote by Fµ, Fν , Fµ̃ and Fν̃ the cumulative distribution functions of µ, ν, µ̃ and ν̃ respectively.
Let N ∈ N∗. Let us assume that

∀1 ≤ m ≤ N,
∫
TNm

Fµ =

∫
TNm

Fµ̃ and

∫
TNm

Fν =

∫
TNm

Fν̃ . (5.2.10)

Let us assume in addition that the function Fµ − Fν changes sign at most Q times for some Q ∈ N.
More precisely, denoting by G := Fµ − Fν , we assume that there exist x0 = 0 < x1 < x2 < · · · < xQ <
xQ+1 = 1 ∈ [0, 1] such that for all 1 ≤ q ≤ Q+ 1,

∀x, y ∈ [xq−1, xq], G(x)G(y) ≥ 0, (5.2.11)

and for all 1 ≤ q ≤ Q,
∀x ∈ [xq−1, xq], ∀z ∈ [xq, xq+1], G(x)G(z) ≤ 0. (5.2.12)

Let us also assume that ρµ − ρν ∈ L∞([0, 1],dx;R). Then,

W1(µ, ν) ≤W1(µ̃, ν̃) + 2‖ρµ − ρν‖∞
Q

N2
. (5.2.13)
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The key thing to notice is that we only assume regularity on the measures µ, ν, not on µ̃, ν̃. The
assumption that Fµ − Fν changes sign at most Q times is related to the fact that c(x, y) = |x − y|
is not smooth on the diagonal: an optimal coupling is given by the inverse transform coupling, and
F−1
µ − F−1

ν changes sign at most Q times as well. Last, remarkably, we do not need for this result
to assume Fµ(m/N) = Fµ̃(m/N) and Fν(m/N) = Fν̃(m/N). Thus, it is sufficient to work with
continuous piecewise affine test functions.

More precisely, for all N ∈ N∗, let us define

∀x ∈ [0, 1], ψN1 (x) =

{
1−Nx if x ∈ TN1
0 elsewhere,

and for all 2 ≤ m ≤ N ,

ψNm(x) =


N
(
x− m−2

N

)
if x ∈ TNm−1

1−N
(
x− m−1

N

)
if x ∈ TNm

0 elsewhere.

We can check by integration by parts that
∫

[0,1] ψ
N
1 (x)dµ(x) = N

∫
TN1

Fµ(x)dx and
∫

[0,1] ψ
N
m(x)dµ(x) =

N
∫
TNm

Fµ(x)dx−N
∫
TNm−1

Fµ(x)dx for 2 ≤ m ≤ N . Therefore, we get

∀m ∈ {1, . . . , N},
∫

[0,1]
ψNm(x)dµ(x) =

∫
[0,1]

ψNm(x)dµ̃(x)

⇐⇒ ∀m ∈ {1, . . . , N},
∫
TNm

Fµ(x)dx =

∫
TNm

Fµ̃(x)dx. (5.2.14)

Last, let us remark that ψN1 = φN1,2 and ψNm = φNm−1,1−φNm,2 for 2 ≤ m ≤ N so that Span
{
ψNn , 1 ≤ n ≤ N

}
⊂

Span
{
φNn,1, φ

N
n,2, 1 ≤ n ≤ N

}
and

Π(µ, ν; (φNn,l), (φ
N
n,l)) ⊂ Π(µ, ν; (ψNn ), (ψNn )).

Corollary 5.8. Let µ, ν ∈ P([0, 1]). Let us assume that µ and ν are absolutely continuous with respect
to the Lebesgue measure and let us denote by ρµ and ρν their density probability functions. Let Fµ and
Fν be their cumulative distribution functions. For all N ∈ N∗, let us define

IN = inf
π∈Π(µ,ν;(ψNm)1≤m≤N ,(ψ

N
n )1≤n≤N )

{∫
[0,1]2

|x− y|dπ(x, y)

}
. (5.2.15)

There exists a minimizer for (5.2.15). Let us assume in addition that the function Fµ−Fν changes sign
at most Q times for some Q ∈ N (in the sense of Proposition 5.7) and that ρµ−ρν ∈ L∞([0, 1],dx;R).
Then,

IN ≤W1(µ, ν) ≤ IN + 2‖ρµ − ρν‖∞
Q

N2
(5.2.16)

In fact, looking at the proof of Proposition 5.7, it even is sufficient to assume that ρµ − ρν is
bounded on a neighborhood of the points at which Fµ−Fν changes sign. For simplicity of statements,
we have assumed in Proposition 5.7 and Corollary 5.8 that ρµ − ρν is bounded on [0, 1].

Proof of Corollary 5.8. From the inclusion Π(µ, ν; (ψNm)1≤m≤N , (ψ
N
n )1≤n≤N ) ⊂ Π(µ̃, ν̃), we clearly

have IN ≤ W1(µ, ν). Using Theorem 3.1 together with Remark 3.2, since the functions ψNm are
continuous on [0, 1] for all 1 ≤ m ≤ N , there exists πN ∈ Π(µ, ν; (ψNm)1≤m≤N , (ψ

N
n )1≤n≤N ) which is a

minimizer to Problem (5.2.15). Let us denote by µ̃ and ν̃ the marginal laws of πN . First, we remark
that

Π(µ, ν; (ψNm)1≤m≤N , (ψ
N
n )1≤n≤N ) = Π(µ̃, ν̃; (ψNm)1≤m≤N , (ψ

N
n )1≤n≤N ) ⊂ Π(µ̃, ν̃)
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and thus

IN =

∫ 1

0
|x− y|dπN (x, y) = min

π∈Π(µ̃,ν̃)

{∫ 1

0
|x− y|dπ(x, y)

}
= W1(µ̃, ν̃).

Besides, it holds that for all 1 ≤ m ≤ N ,∫
[0,1]

ψNm(x)dµ̃(x) =

∫
[0,1]

ψNm(x)dµ(x),

∫
[0,1]

ψNm(y)dν̃(y) =

∫
[0,1]

ψNm(y)dν(y),

and we therefore get (5.2.10) from (5.2.14). We can thus apply Proposition 5.7 and get the desired
result.

Proof of Proposition 5.7. Let 1 ≤ m ≤ N . If for all 1 ≤ q ≤ Q, xq /∈ TNm , then Fµ − Fν remains
non-negative or non-positive on TNm . Thus, using (5.2.10), it holds that∫

TNm

|Fµ − Fν | = ε

∫
TNm

(Fµ − Fν)

= ε

∫
TNm

(Fµ̃ − Fν̃) =

∣∣∣∣∣
∫
TNm

(Fµ̃ − Fν̃)

∣∣∣∣∣ ≤
∫
TNm

|Fµ̃ − Fν̃ | ,

where ε = 1 if Fµ − Fν ≥ 0 on TNm and ε = −1 if Fµ − Fν ≤ 0 on TNm . On the other hand, if there
exists 1 ≤ q ≤ Q, such that xq ∈ TNm , one gets∫

TNm

|Fµ − Fν | =
∫
TNm

(Fµ − Fν) + 2

∫
TNm

(Fµ − Fν)−

=

∫
TNm

(Fµ̃ − Fν̃) + 2

∫
TNm

(Fµ − Fν)−

≤
∫
TNm

|Fµ̃ − Fν̃ |+ 2

∫
TNm

(Fµ − Fν)−

≤
∫
TNm

|Fµ̃ − Fν̃ |+ 2‖ρµ − ρν‖∞
1

N2
,

since for x ∈ TNm , Fµ(x)− Fν(x) =
∫ x
xq
ρµ − ρν and |x− xq| ≤ 1/N .

Thus, as there are at most Q intervals of that last type, we get∫ 1

0
|Fµ − Fν | ≤

∫ 1

0
|Fµ̃ − Fν̃ |+ 2‖ρµ − ρν‖∞

Q

N2
,

i.e. W1(µ, ν) ≤W1(µ̃, ν̃) + 2‖ρµ − ρν‖∞ Q
N2 .

5.2.2 Convergence speed for W2

Proposition 5.9. Let µ, ν, µ̃, ν̃ ∈ P([0, 1]). Let us assume that µ(dx) = ρµ(x)dx and ν(dx) = ρν(x)dx
with ρµ, ρν ∈ L∞([0, 1],dx;R+). Let us denote by Fµ, Fν , Fµ̃ and Fν̃ the cumulative distribution
functions of µ, ν, µ̃ and ν̃ respectively. Let N ∈ N∗. Let us assume that

∀1 ≤ m ≤ N,Fµ
(m
N

)
= Fµ̃

(m
N

)
and Fν

(m
N

)
= Fν̃

(m
N

)
, (5.2.17)

∀1 ≤ m ≤ N,
∫
TNm

Fµ =

∫
TNm

Fµ̃ and

∫
TNm

Fν =

∫
TNm

Fν̃ . (5.2.18)

Then,

W 2
2 (µ, ν) ≤W 2

2 (µ̃, ν̃) +
7

3

‖ρµ‖∞ + ‖ρν‖∞
N2

. (5.2.19)
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This proposition plays the same role as Proposition 5.7 for W1. Again, the important point is
that no regularity assumption is made on µ̃ and ν̃. We note that we no longer have restriction on the
number of points where Fµ − Fν changes sign, which is related to the fact that c(x, y) = (x − y)2 is
smooth. Contrary to Proposition 5.7, we need here the condition (5.2.17).

Corollary 5.10. Let µ, ν ∈ P([0, 1]). Let us assume that µ(dx) = ρµ(x)dx and ν(dx) = ρν(x)dx with
ρµ, ρν ∈ L∞([0, 1],dx;R+). Let Fµ and Fν be their cumulative distribution functions. For all N ∈ N∗,
let us define

IN = inf
π∈Π(µ,ν;(φNm,l)1≤m≤N

1≤l≤2

,(φNm,l)1≤m≤N
1≤l≤2

)

{∫
[0,1]2

(x− y)2dπ(x, y)

}
. (5.2.20)

Then,

IN ≤W 2
2 (µ, ν) ≤ IN +

7

3

‖ρµ‖∞ + ‖ρν‖∞
N2

. (5.2.21)

We omit the proof of Corollary 5.10 since it follows the same line as the one of Corollary 5.8. The
only difference is that we do not know here if the infimum is a minimum and have to work for an
arbitrary ε > 0 with π ∈ Π(µ, ν; (φNm,l)1≤m≤N

1≤l≤2
, (φNm,l)1≤m≤N

1≤l≤2
) such that

∫
[0,1]2(x− y)2dπ(x, y) ≤ IN + ε.

Let us also mention here that we can use Proposition 5.2 to bound the distance between an MCOT
minimizer and an OT minimizer since φm,1 + φm,2 = 1TNm .

Proof of Proposition 5.9. From Lemma B.3 [25], we have

W 2
2 (µ, ν) =

∫ 1

0

∫ 1

0
1x<y([Fµ(x)− Fν(y)]+ + [Fν(x)− Fµ(y)]+)dxdy

=
N∑
k=1

N∑
l=k+1

∫
TNk

∫
TNl

([Fµ(x)− Fν(y)]+ + [Fν(x)− Fµ(y)]+)dxdy

+
N∑
k=1

∫
TNk

∫
TNk

1x<y([Fµ(x)− Fν(y)]+ + [Fν(x)− Fµ(y)]+)dxdy.

The two terms [Fµ(x)−Fν(y)]+ and [Fν(x)−Fµ(y)]+ can be analyzed in the same way by exchanging µ
and ν, and we focus on the first one. Thus, we consider for k ≤ l the term αkl :=

∫
TNk

∫
TNl

1x<y[Fµ(x)−
Fν(y)]+dxdy and denote α̃kl =

∫
TNk

∫
TNl

1x<y[Fµ̃(x)− Fν̃(y)]+dxdy.

• If Fµ(k/N) ≤ Fν((l − 1)/N), then from (5.2.17), we have also Fµ̃(k/N) ≤ Fν̃((l − 1)/N) (note that
if l = 1, Fν̃(0) ≥ 0 = Fν(0)). Thus, αkl = α̃kl = 0.
• If Fν(l/N) ≤ Fµ((k − 1)/N), then from (5.2.17), we have also Fν̃(l/N) ≤ Fµ̃((k − 1)/N), and
using (5.2.18) we get for k < l

αkl =

∫
TNk

∫
TNl

Fµ(x)− Fν(y)dxdy =

∫
TNk

∫
TNl

Fµ̃(x)− Fν̃(y)dxdy = α̃kl.

For k = l, we have by using (5.2.18) and Lemma A.1 for the inequality

αkk =

∫
TNk

(∫ x

k−1
N

Fµ −
∫ k

N

x
Fν

)
dx

=

∫
TNk

(∫ x

k−1
N

Fµ +

∫ x

k−1
N

Fν

)
dx− 1

N

∫
TNk

Fν

≤
∫
TNk

(∫ x

k−1
N

Fµ̃ +

∫ x

k−1
N

Fν̃

)
dx− 1

N

∫
TNk

Fν̃ +
‖ρµ‖∞ + ‖ρν‖∞

6N3

= α̃kk +
‖ρµ‖∞ + ‖ρν‖∞

6N3
.
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• We now consider the case where Fµ(k/N) > Fν((l − 1)/N) and Fν(l/N) > Fµ((k − 1)/N). We
can thus find x0 ∈ TNk and y0 ∈ TNl such that Fµ(x0) = Fν(y0). We then have ∀x ∈ TNk , y ∈
TNl , |Fµ(x)−Fν(y)| ≤ |Fµ(x)−Fµ(x0)|+ |Fν(y0)−Fν(y)| ≤ ‖ρµ‖∞|x− x0|+ ‖ρν‖∞|y− y0|, and thus
using that

∫
TNk
|x− x0|dx ≤ 1

2N2 ,

αkl ≤
‖ρµ‖∞ + ‖ρν‖∞

2N3
≤ α̃kl +

‖ρµ‖∞ + ‖ρν‖∞
2N3

.

For 1 ≤ k ≤ N , we note {lk, lk + 1, , . . . , lk + nk − 1} ⊂ {1, . . . , N} the set of l such that Fµ((k −
1)/N) < Fν(l/N) and Fµ(k/N) > Fν((l − 1)/N). We necessarily have lk+1 ≥ lk + nk − 1 since
Fν((lk + nk − 2)/N) < Fµ(k/N) < Fν(lk+1/N). Therefore, there is at most one element overlap

between two consecutive sets, and thus
∑N

k=1 nk ≤ 2N .
Combining all cases, and taking into account the contribution of the symmetric term [Fν(x) −

Fµ(y)]+ in the integral, we finally get

W 2
2 (µ, ν) ≤W 2

2 (µ̃, ν̃) + 2

(
N
‖ρµ‖∞ + ‖ρν‖∞

6N3
+ 2N

‖ρµ‖∞ + ‖ρν‖∞
2N3

)
,

which gives (5.2.19)

6 Numerical algorithms to approximate optimal transport problems

This section presents the implementation of two algorithms for the approximation of the Optimal
Transport cost. Both algorithms rely on Theorem 3.1, i.e. that the optimum of the MCOT problem
is attained by a finite discrete measure

∑2N+2
k=1 pkδ(xk,yk). The two algorithms corresponds to the

following choices:

1. piecewise constant test functions,

2. (regularized) piecewise linear test functions.

In the first case, the precise positions (xk, yk) are useless to satisfy the moment constraints: only
matters in which cell (xk, yk) belongs. Thus the optimization problem is essentially discrete on a
(large) finite space, for which Metropolis-Hastings algorithms are relevant. In the second case, we
implement a penalized gradient algorithm to optimize the positions (xk, yk) and the weights pk.

The goal of these numerical tests is only illustrative to see the potential relevance of this approach.
We do not claim that these algorithms are more efficient than other existing methods in the literature,
and the improvement of our algorithms is left for future research.

6.1 Metropolis-Hastings algorithm on a finite state space

We expose in the following the principles of the Metropolis-Hastings algorithm used to compute an
approximation of the OT cost. For simplicity, we do so in the case of two uni-dimensional marginal
laws. However, the algorithm principles can be adapted to solve a Multimarginal MCOT problem
with marginal laws defined on spaces of any finite dimension.

6.1.1 Description of the algorithm

For this algorithm, we consider the framework of Subsection 5.1, i.e. N piecewise constant functions
φNm = 1TNm , 1 ≤ m ≤ N . and the MCOT problem (5.1.3). As mentioned above, if (xk, yk) belongs

to the cell TNi × TNj , its position in this cell is useless regarding the moment constraints. We can
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therefore assume that the position minimizes the cost in this cell. For c(x, y) = |y− x|2, this amounts
to take

c (xk, yk) = c̃(i, j) with c̃(i, j) =


c
(
i
N ,

j+1
N

)
if i > j

c
(
i
N ,

j
N

)
if i = j

c
(
i+1
N , jN

)
if i < j.

We consider then 2N + 2 distinct cells TNik × T
N
jk

, k ∈ {1, . . . , 2N + 2}. The weights associated
to each cell is determined as the solution of the linear optimization of the cost associated under the
constraint that the weights satisfy the moments constraints:

(p1, ..., p2N+2) = arg min
pk≥0,

∑2N+2
k=1 pk=1

∀1≤m≤N,
∑2N+2
k=1 pk1ik=m=µm

∀1≤n≤N,
∑2N+2
k=1 pk1jk=n=νn

2N+2∑
k=1

pk c̃ (ik, jk) . (6.1.1)

Note that this set of constraints may be void. To start with an initial configuration (ik, jk)1≤k≤2N+2

that allows the existence of weights which satisfy the constraints, we use the inverse transform sampling
between the distributions given by (µk)1≤k≤N and (νk)1≤k≤N on {1, . . . , N}. This gives in fact the
optimal solution (pk, (ik, jk))1≤k≤2N+2 for (5.1.3) that satisfy thus in particular the constraints. Since
we want here to test the relevance of the Metropolis-Hastings algorithm in this framework, we do not
want to start from the optimal solution: thus, we consider a random permutation σ on {1, . . . , N} and
then the inverse transform sampling between the distributions given by (µk)1≤k≤N and (νσ(k))1≤k≤N
on {1, . . . , N}. This gives a configuration that satisfy the constraints and is not a priori optimal.

We now have to specify how the Markov chain defining the algorithm moves from one state
(ik, jk)1≤k≤2N+2 to another. We denote by N(ik, jk) = {(ik + 1, jk), (ik−1, jk), (ik, jk + 1), (ik, jk−1)}
the neighboring cells of (ik, jk) and

FN(ik, jk) = N(ik, jk) ∩ ({1, . . . , N}2 \ (∪k′ 6=k{(ik′ , jk′)}),

the neighboring cells that are free, i.e. that are not in the current configuration. We choose randomly
and uniformly a cell l ∈ {1, . . . , 2N + 2}. If FN(il, jl) = ∅, we pick randomly another one. This rejec-
tion method amounts to choose randomly and uniformly a cell l among those such that FN(il, jl) 6= ∅.
Then, we select (i′l, j

′
l) uniformly on FN(il, jl) and set (i′k, j

′
k) = (ik, jk) for k 6= l, and we accept the

new configuration (i′k, j
′
k)1≤k≤2N+2 only if it allows to satisfy the constraints and with an acceptance

ratio described in Algorithm 6.1. In practice, we run this Algorithm with K ≥ 2N + 2 cells, in order
to increase the chance that the new configuration is compatible with the constraints.

The state space of the Markov Chain describing Algorithm 6.1 is the set of K distinct elements of
{1, . . . , N}2. Note that we can go from any points (i, j) to (i′, j′) with at most 2N − 2 moves (a move
consists in adding or removing one to one of the coordinate). If we ignore the problem of satisfying the
constraints, we can therefore go from a configuration (ik, jk)1≤k≤2N+2 to another one (i′k, j

′
k)1≤k≤2N+2

with at most K(2N − 2) moves, which let think that the Doeblin condition may be satisfied. This
would ensure theoretically the convergence of the algorithm converges towards the infimum

inf
π∈Π(µ,ν;(φNm)1≤m≤N ,(φ

N
n )1≤n≤N )

∫ 1

0

∫ 1

0
c(x, y)dπ(x, y), (6.1.2)

and that the convergence is exponentially fast (see e.g. Section 2 of [18]).

6.1.2 Numerical examples

We tested the algorithm for the marginal laws with probability density functions

ρµ(x) = 3x2, ρν(y) = 2− 2y. (6.1.3)
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Algorithm 6.1 Metropolis-Hastings algorithm

Fix a temperature β ∈ R+ and take 2N + 2 ≤ K ≤ N2.
Initialize cells (ik, jk)1≤k≤K and compute the actual optimal cost cactual =

∑K
k=1 pk c̃ (ik, jk).

for a given number of steps do
Choose randomly a particle 1 ≤ l ≤ K such that FN(il, jl) 6= ∅.
Compute nactual = Card(FN(il, jl)) the number of free cells near (il, jl).
Choose randomly a new cell (i′l, j

′
l) in FN(il, jl).

if the configuration (i′k, j
′
k)1≤k≤2N+2 allows to satisfy the constraints then

Compute cnewpos the optimal cost associated to the configuration (i′k, j
′
k)1≤k≤2N+2.

Compute nnewpos, the number of free cells near (i′l, j
′
l) in the new configuration.

Move the particle l in (u, v) with probability min

(
1,
e−cnewpos/β

e−cactual/β
nactual

nnewpos

)
. This probability is

the acceptance ratio of the Metropolis-Hastings algorithm, as explained in Section 2.2 of [18].
Update the value of cactual to cnewpos if the move is accepted.

end if
end for
return the lowest cost encountered throughout the loop.

We consider a number of particles K = 3N + 2 in order at each step to have more freedom among the
configurations which satisfy the constraints. We present two minimizations:

• N = 20 and β = 0.000075

• N = 60 and β = 0.00002.

The evolution of the configurations through the iterations are represented for N = 20 and N = 60
in Figure 6.1.2 and 6.1.3. The darker the cell, the more weight it has. In green (Figures 6.1.2f and
6.1.3f) are represented the optimal configuration for the given number of moment constraints. The
convergence of the numerical cost for each minimization is represented in Figure 6.1.1. The pink line
represents the cost of the Optimal Transport problem we approximate, the dark blue line the one of
the cost of the current configuration and the light blue one the minimum numerical cost encountered
during the minimization. The green line is the cost of the optimal configuration for the given number
of moment constraints, that we aim to compute.

6.2 Gradient on a penalized functional

6.2.1 Principles

We make use of Theorem 3.1 by searching optima of the MCOT problem with N test functions on each
space by looking for an optimal probability measure which is finitely supported on at most 2N+2 points
(note that in the multimarginal case, we can look similarly for measures supported on DN+2 points).
This algorithm consists in penalizing moments constraints of the MCOT problem for N differentiable
test functions on each space ((φm)1≤m≤N and (ψn)1≤n≤N ) and then using a gradient-type algorithm
to compute the optimum.

For sake of simplicity, we consider the case of two marginal laws where the cost function c is
assumed to be differentiable. Let us write the position of the 2N + 2 particles by ((xk, yk))1≤k≤2N+2

and their weights by (pk)1≤k≤2N+2. Then, it is natural to consider the minimization of

2N+2∑
k=1

pkc(xk, yk) +
1

η

 N∑
m=1

(
2N+2∑
k=1

pkφm(xk)− µm

)2

+
N∑
n=1

(
2N+2∑
k=1

pkψn(yk)− νn

)2
 ,
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(a) N = 20 (b) N = 60

Figure 6.1.1: Cost convergence

(a) iteration 0 (b) iteration 2000 (c) iteration 4000

(d) iteration 6000 (e) iteration 10000 (f) optimal configuration

Figure 6.1.2: Convergence for two 1D marginal laws with 20 test functions on each set for a quadratic
cost
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(a) iteration 0 (b) iteration 3000 (c) iteration 10000

(d) iteration 60000 (e) iteration 100000 (f) optimal configuration

Figure 6.1.3: Convergence for two 1D marginal laws with 60 test functions on each set for a quadratic
cost
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for some small parameter η > 0 and under the constraints pk ≥ 0,
∑2N+2

k=1 pk = 1. To avoid the
handling of these latter constraints, we prefer to consider weights pk = eak∑2N+2

k=1 eak
for some ak ∈ R.

Since the positions (xk, yk) are not assumed to be different from each other, the previous minimization
problem is equivalent to minimize

F (x1, ..., x2N+2, y1, ..., y2N+2, a1, ..., a2N+2)

=

2N+2∑
k=1

eak∑2N+2
l=1 eal

c(xk, yk) +
1

η

 N∑
m=1

(
2N+2∑
k=1

eak∑2N+2
l=1 eal

φm(xk)− µm

)2

+
N∑
n=1

(
2N+2∑
k=1

eak∑2N+2
l=1 eal

ψn(yk)− νn

)2
 . (6.2.1)

For a fixed value of η > 0, we use a projected gradient algorithm (see e.g. Algorithm 1.3.16 of
[30]), to ensure that (xk, yk) ∈ [0, 1]2 for all k, together with a line search method. We implement
alternated gradient steps as follows: first, a gradient step is performed on the coefficients (ak)1≤k≤2N+2

with (xk, yk)1≤k≤2N+2 fixed; second, a gradient step is done on the positions (xk)1≤k≤2N+2 with the
other variables fixed; lastly, a gradient step is done on the positions (yk)1≤k≤2N+2 with the other
variables fixed. This procedure is repeated until the norm of the projected gradient is below some
error threshold. The convergence of this algorithm is ensured by Wolfe theorem (see Theorem 1.2.21
of [30]).

The example computations exposed thereafter use regularized continuous piecewise affine test
functions. Remark that we do not use discontinuous piecewise affine test functions, for which we have
rates of convergence for W1 and W2. We make this choice because the gradient algorithm that we
describe above has better numerical properties for continuously differentiable test functions.

In the MCOT formulation (2.1.3) with M = N , minimizers of MCOT problems are the same if we
consider test functions (φ̄m)1≤m≤N and (ψ̄m)1≤m≤N such that Span((φ̄m)1≤m≤N ) = Span((φm)1≤m≤N )
and Span((ψ̄m)1≤m≤N ) = Span((ψm)1≤m≤N ). However, in the penalized version of the problem (6.2.1),
the choice of the test functions has a strong impact on the convergence of the gradient algorithms.
It appears that considering positive part functions (which are convex functions) greatly improves the
efficiency of the procedure with respect to classical hat functions, even if both spans are identical.

Thus, for the numerical examples in 1D, we use the functions for ε > 0 and for all N ∈ N∗,

∀x ∈ [0, 1], ϕN0 (x) =


−
(
x− 1

N

)
if x− 1

N ≤ −ε
1
4ε

(
x− 1

N − ε
)2

if − ε ≤ x− 1
N ≤ ε

0 if x− 1
N ≥ ε,

(6.2.2)

and for all 1 ≤ m ≤ N ,

∀x ∈ [0, 1], ϕNm(x) =


0 if x− m−1

N ≤ −ε
1
4ε

(
x− m−1

N + ε
)2

if − ε ≤ x− m−1
N ≤ ε

x− m−1
N if x− m−1

N ≥ ε;
(6.2.3)

which are a regularization of the functions, for all N ∈ N∗, and 1 ≤ m ≤ N,(
· − 1

N

)−
and

(
· − m− 1

N

)+

.

The vector space spanned by the restriction to [0, 1] of these functions is the same as the one spanned
by the classical continuous piecewise affine functions (i.e. the functions ψNm introduced in Section
5.2.1).
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For the example in dimension 2, for N ∈ N∗, we use the following (N + 1)2 test functions defined
as follows: for all 1 ≤ m,n ≤ N and (x, y) ∈ [0, 1]2,

ϕNm,n(x, y) = ϕ2N
m+n−1

(
x+ y − ϕ̃Nm−n+1(x− y)− ϕ̃Nn−m+1(y − x)

2

)
(6.2.4)

where for all q ∈ Z,

∀x ∈ [0, 1], ϕ̃Nq (x) =

{
ϕNq (x) if 1 ≤ q ≤ N,
0 otherwise,

(6.2.5)

and

ϕN0,0(x, y) = ϕN1,1

(
1

N
− x, 1

N
− y
)
. (6.2.6)

For 1 ≤ m,n ≤ N , we set

ϕNm,0(x, y) = ϕNm,1

(
x,

1

N
− y
)

and ϕN0,n(x, y) = ϕN1,n

(
1

N
− x, y

)
. (6.2.7)

Those functions are a regularization of the functions GNm,n(x, y) =
(
min

(
x− m−1

N , y − n−1
N

))+
with 1 ≤

m,n ≤ N , GN0,0(x, y) =
(
min

(
1
N − x,

1
N − y

))+
, GN0,m(x, y) =

(
min

(
x− m−1

N , 1
N − y

))+
, GNn,0(x, y) =(

min
(

1
N − x, y −

n−1
N

))+
. The vector space spanned by the restriction to [0, 1]2 of these functions is

the same as the one spanned by the classical continuous piecewise affine functions associated to the
mesh illustrated in Figure 6.2.1.

Figure 6.2.1: Mesh of piecewise affine functions on [0, 1]2.

6.2.2 1D numerical example

Convergence of the algorithm We tested the algorithm for the marginal laws with densities

ρµ(x) = 3x2, ρν(y) = 2− 2y, (6.2.8)

the quadratic cost function c(x, y) = |y − x|2 and a fixed penalization coefficient. The exact optimal
transport map between µ (abscissa) and ν (ordinate) is represented by the red line on Figures 6.2.3
and 6.2.4. We present two minimizations:

• N = 10 and 1/η = 100

• N = 40 and 1/η = 25.



36

(a) N = 10 (b) N = 40

Figure 6.2.2: Cost in function of the number of iterations in the gradient algorithm

(a) iteration 0 (b) iteration 26 (c) iteration 301

Figure 6.2.3: Convergence with 10 test functions on each set for a quadratic cost

(a) iteration 0 (b) iteration 101 (c) iteration 501

Figure 6.2.4: Convergence with 40 test functions on each set for a quadratic cost
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Once each minimization process has converged, the cost for N = 10 is 0.17805 and the one for N = 40
is 0.17785. The evolution of the configurations through the iterations are represented for N = 10 and
N = 40 in Figure 6.2.3 and 6.2.4. The darker the particle (xk, yk), the larger its weight pk.

And the convergence of the numerical cost for each one in Figure 6.2.2 the pink line represents the
cost of the exact Optimal Transport problem that we approximate.

We note on these examples that the particles (xk, yk) tend to cluster in some places. This is due
to the fact that the cost function is convex and that the test functions are (up to the regularization)
locally linear.

6.2.3 2D numerical example

We consider two normal marginal laws in R2: µ ∼ N2(µ,Σµ) and ν ∼ N2(ν,Σν), with

mµ =

(
0
0

)
, Σµ =

(
1 0
0 1

)
, mν =

(
1
1

)
, Σν =

(
1 0.7

0.7 1

)
, (6.2.9)

and the quadratic cost function. In this case, it is known that the optimal cost is given by |mµ −
mν |2 + Tr(Σµ + Σν − 2(Σ

1/2
µ ΣνΣ

1/2
µ )1/2) and the optimal transport map is given by x 7→ mν +

Σ
−1/2
µ (Σ

1/2
µ ΣνΣ

1/2
µ )1/2Σ

−1/2
ν , see e.g. [19]. In Figures 6.2.5a and 6.2.6, the red density is µ’s one

and the blue one ν’s. We consider regularized piecewise linear test functions on [−4, 4]2 obtained by
rescaling the functions (6.2.4), (6.2.5), (6.2.6) and (6.2.7) on [0, 1]2.

We represent several iterations of the optimization for N = 36 and 1/η = 2 in Figure 6.2.6, where
the green arrows represent the transport map computed by the algorithm from µ (red) to ν (blue).
The greener the arrow, the more weight it has.

We represent the configuration of particles at convergence on Figure 6.2.5a where each particles
consists in a red dot linked to a blue dot. The bigger, the more mass it transports. The green
dots represent the location where the red dot would have been transported if the particle was on
the transport plan. The convergence of the cost is represented in Figure 6.2.5b where the pink line
represents the cost of the Optimal Transport problem we approximate.

(a) Transport map at convergence (b) Cost convergence

Figure 6.2.5: Cost convergence and approximation of the transport plan at convergence
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(a) iteration 50 (b) iteration 150 (c) iteration 1200

Figure 6.2.6: Convergence for two 2D marginal laws with 36 test functions on each set for a quadratic
cost

6.2.4 Martingale Optimal Transport numerical example

We tested the algorithm for the marginal laws µ and ν being respectively the uniform random variables
on [1

4 ,
3
4 ] and [0, 1], with the cost c(x, y) = |y − x|3. Note that

∫
|y − x|2dπ(x, y) =

∫
|y|2dν(y) −∫

|x|2dµ(x) = 1/16 for any martingale coupling π. By Jensen’s inequality, we have
∫
|y−x|3dπ(x, y) ≥

(1/16)3/2 = (1/4)3 and therefore dπ(x, y) = dµ(x)(1
2dδx+1/4 + 1

2dδx−1/4) is an optimal martingale
coupling and the equality condition in Jensen’s inequality shows that this is the unique optimal
martingale coupling.

The two lines y = x + 1/4 and y = x − 1/4 characterizing the optimal martingale coupling are
represented by the red lines on Figure 6.2.8. We have made one minimization with N = 10 and
1/η = 60, and N ′ = 10 continuous piecewise affine moment constraints for the martingale constraint,
see Problem (3.3.11). The evolution of the configurations through the iterations are represented in
Figure 6.2.8. The darker the particle (xk, yk), the larger the value of its weight pk. The convergence
of the numerical cost is illustrated in Figure 6.2.7, where the pink line represents the cost of the exact
martingale Optimal Transport problem we approximate.

Figure 6.2.7: Cost in function of the number of iterations in the gradient algorithm
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(a) iteration 0 (b) iteration 61 (c) iteration 601

Figure 6.2.8: Convergence with 10 test functions on each set for a quadratic cost

A Technical proofs of Section 5

Proof of Proposition 5.6.

Proof. Let us first prove (5.2.5). Lemma 5.5 implies that

∀1 ≤ m ≤ N,
∫
TNm

F1(x)dx =

∫
TNm

F2(x)dx (A.0.1)

and

∀1 ≤ k ≤ N, F1

(
k

N

)
= F2

(
k

N

)
. (A.0.2)

Then, using a Taylor expansion, as F1, F2 ∈ C2([0, 1]), it holds that for all 1 ≤ m ≤ N , all u ∈ TNm ,
and all l = 1, 2, ∣∣∣Fl(u)− Fl

(m
N

)
− F ′l

(m
N

)(
u− m

N

)∣∣∣ ≤ ‖F ′′l ‖∞
2

(
u− m

N

)2
. (A.0.3)

Integrating over TNm , one gets∣∣∣∣∣
∫
TNm

Fl(u)du− Fl
(m
N

) 1

N
+ F ′l

(m
N

) 1

2N2

∣∣∣∣∣ ≤ ‖F ′′l ‖∞6N3
.

This implies, using (A.0.1) and (A.0.2), that∣∣∣F ′1 (mN )− F ′2 (mN )∣∣∣ ≤ ‖F ′′1 ‖∞ + ‖F ′′2 ‖∞
3N

. (A.0.4)

Thus, using (A.0.3), for all l = 1, 2 and u ∈ TNm ,

Fl(u) = Fl

(m
N

)
+
(
u− m

N

)
F ′l

(m
N

)
+ ϕl(u),

where |ϕl(u)| ≤ ‖F
′′
l ‖∞
2

(
u− m

N

)2
. Then, using (A.0.4), one gets that for all u ∈ TNm ,

|F1(u)− F2(u)| ≤ ‖F ′′1 ‖∞ + ‖F ′′2 ‖∞
3N

(m
N
− u
)

+
‖F ′′1 ‖∞ + ‖F ′′2 ‖∞

2

(
u− m

N

)2
. (A.0.5)

Integrating over TNm yields that∫
TNm

|F1(u)− F2(u)|du ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N3
. (A.0.6)
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Using the fact that

W1(µ1, µ2) =

∫
[0,1]
|F1(u)− F2(u)|du =

N∑
m=1

∫
TNm

|F1(u)− F2(u)|du,

we obtain that

W1(µ1, µ2) ≤ ‖F
′′
1 ‖∞ + ‖F ′′2 ‖∞

3N2
.

Let us now prove (5.2.6). The main result needed is the expression of the Wasserstein distance in
term of the cumulative distribution functions (cdf) and not their inverse (see [25] Lemma B.3), which
holds for p > 1,

W p
p (F,G) = p(p− 1)

∫
R2

1{x<y}
(
[G(x)− F (y)]+ + [F (x)−G(y)]+

)
(y − x)p−2dxdy (A.0.7)

because the reasoning of the beginning of this proof introduced a control on the norm between the cdf
of the marginal law and the cdf of a marginal law satisfying the same moments.

Then, one can proceed with the following induction. Suppose that we know for p ∈ N∗ that

W p
p (µ, µ̃) ≤

(
‖F ′′‖∞ + ‖F̃ ′′‖∞

3N2

)p(
5

2

(
1

mµ
+

1

mµ̃

))p−1

p!, (A.0.8)

which holds for p = 1. Then,

W p+1
p+1 (µ, µ̃)

= (p+ 1)p

∫
R2

1{x<y}

([
F (x)− F̃ (y)

]+
+
[
F̃ (x)− F (y)

]+
)

(y − x)p−1dxdy

= (p+ 1)p

∫ 1

0

(∫ 1

x

([
F̃ (x)− F (y)

]+
+
[
F (x)− F̃ (y)

]+
)

(y − x)p−1dy

)
dx

= (p+ 1)p

∫ 1

0

(∫ 1

x

[
F (x)− F̃ (y)

]+
(y − x)p−1dy

+

∫ 1

x

[
F̃ (x)− F (y)

]+
(y − x)p−1dy

)
dx.

Let us treat the first term of the sum, as the second one can be treated symmetrically. If F (x) ≥ F̃ (x),
we can define yx = F̃−1 (F (x)) and because F̃ : [0, 1]→ [F̃ (0), 1] is continuous increasing, and we have∫ 1

x

[
F (x)− F̃ (y)

]+
(y − x)p−1dy =

∫ yx

x

(
F (x)− F̃ (y)

)
(y − x)p−1dy ≤ 1

p

∣∣∣F (x)− F̃ (x)
∣∣∣ (yx − x)p.

Thus, by using (A.0.3), we get∫ 1

0

∫ 1

x

[
F (x)− F̃ (y)

]+
(y − x)p−1dydx

≤ 1

p

∫ 1

0
1{F (x)≥F̃ (x)}

∣∣∣F (x)− F̃ (x)
∣∣∣ (yx − x)pdx

≤ 1

p

N∑
m=1

∫
TNm

1{F (x)≥F̃ (x)}

∣∣∣F (x)− F̃ (x)
∣∣∣ (yx − x)pdx

≤ 1

p

N∑
m=1

∫
TNm

(
‖F ′′‖∞ + ‖F̃ ′′‖∞

3N

(m
N
− x
)

+
‖F ′′‖∞ + ‖F̃ ′′‖∞

2

(
x− m

N

)2
)

1{F (x)≥F̃ (x)}(yx − x)pdx
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≤ 5

6p

‖F ′′‖∞ + ‖F̃ ′′‖∞
N2

∫ 1

0
1{F (x)≥F̃ (x)}(F̃

−1 (F (x))− F−1 (F (x)))pdx

≤ 5

6p

‖F ′′‖∞ + ‖F̃ ′′‖∞
N2

∫ 1

F (0)
1{u≥F̃ (F−1(u))}

(
F̃−1(u)− F−1(u)

)p du

F ′(F−1(u))

≤ 5

6p

‖F ′′‖∞ + ‖F̃ ′′‖∞
N2

1

minu∈[0,1] F ′(F−1(u))

∫ 1

0

∣∣∣F̃−1(u)− F−1(u)
∣∣∣p du,

where we used the formula bounding the difference between the cdf (A.0.5).
Therefore, as mµ > 0 and mµ̃ > 0, and using the symmetry of the the formula (A.0.7), one gets

W p+1
p+1 (µ, µ̃) ≤ 5(p+ 1)

2

‖F ′′‖∞ + ‖F̃ ′′‖∞
3N2

(
1

mµ
+

1

mµ̃

)
W p
p (µ, µ̃). (A.0.9)

Hence, using the induction hypothesis (A.0.8), we obtain that (A.0.8) holds for p+ 1, which gives the
claim.

Lemma A.1. Let µ ∈ P([0, 1]) and Fµ its cumulative distribution function. Let N ∈ N∗. Then, for
any 1 ≤ m ≤ N , we define xNm ∈ TNm by

xNm =
m

N
if Fµ

(m
N

)
= Fµ

(
m− 1

N

)
xNm =

∫
TNm

Fµ + m−1
N Fµ

(
m−1
N

)
− m

NFµ
(
m
N

)
Fµ
(
m
N

)
− Fµ

(
m−1
N

) if Fµ

(m
N

)
> Fµ

(
m− 1

N

)
,

and µ̂N = Fµ(0)δ0 +
∑N

m=1(Fµ
(
m
N

)
− Fµ

(
m−1
N

)
)δxm. Then, we have for all 1 ≤ m ≤ N ,

Fµ̂N
(m
N

)
= Fµ

(m
N

)
,

∫
TNm

Fµ̂N =

∫
TNm

Fµ, ∀x ∈ TNm ,
∫ x

m−1
N

Fµ ≥
∫ x

m−1
N

Fµ̂N .

Besides, if µ(dx) = ρµ(x)dx with a ρµ ∈ L∞([0, 1],dx;R+) and µ̃ ∈ P([0, 1]) is such that Fµ̃
(
m
N

)
=

Fµ
(
m
N

)
and

∫
TNm

Fµ̃ =
∫
TNm

Fµ, we have

∫
TNm

(∫ x

m−1
N

Fµ

)
dx ≤

∫
TNm

(∫ x

m−1
N

Fµ̃

)
dx+

‖ρµ‖∞
6N3

(A.0.10)

Proof. If Fµ
(
m
N

)
> Fµ

(
m−1
N

)
, we have

1

N
Fµ

(
m− 1

N

)
≤
∫
TNm

Fµ <
1

N
Fµ

(m
N

)
since Fµ is non-decreasing and right-continuous. Therefore, there is a unique xNm ∈ TNm such that(

xNm −
m− 1

N

)
Fµ

(
m− 1

N

)
+
(m
N
− xNm

)
Fµ

(m
N

)
=

∫
TNm

Fµ,

which is precisely the definition of xNm. By construction, we have Fµ̂N
(
m
N

)
= Fµ

(
m
N

)
and the previous

equation gives ∫
TNm

Fµ̂N =

∫ xNm

m−1
N

Fµ

(
m− 1

N

)
dx+

∫ m
N

xNm

Fµ

(m
N

)
dx =

∫
TNm

Fµ

when Fµ
(
m
N

)
> Fµ

(
m−1
N

)
(this identity is obvious if Fµ

(
m
N

)
= Fµ

(
m−1
N

)
). Last, since for x ∈ TNm ,

Fµ
(
m−1
N

)
≤ Fµ(x) ≤ Fµ

(
m
N

)
, we get that x 7→

∫ x
m−1
N

(Fµ − Fµ̂N ) is non-decreasing on [m−1
N , xNm],

non-increasing on [xNm,
m
N ] and vanishes for x ∈ {m−1

N , mN }: it is therefore non-negative on TNm .
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Now, let us assume that µ has a bounded density probability function ρµ. We have

x ∈
[
m− 1

N
, xNm

]
,

∫ x

m−1
N

(Fµ − Fµ̂N ) =

∫ x

m−1
N

∫ z

m−1
N

ρµ(u)dudz ≤ ‖ρµ‖∞
2

(x− m− 1

N
)2,

x ∈
[
xNm,

m

N

]
,

∫ x

m−1
N

(Fµ − Fµ̂N ) = −
∫ m

N

x
(Fµ − Fµ̂N )

=

∫ m
N

x

∫ m
N

z
ρµ(u)dudz ≤ ‖ρµ‖∞

2
(
m

N
− x)2,

and therefore∫
TNm

(∫ x

m−1
N

(Fµ − Fµ̂N )

)
dx ≤ ‖ρµ‖∞

6

[(
xNm −

m− 1

N

)3

+
(m
N
− xNm

)3
]
≤ ‖ρµ‖∞

6N3
. (A.0.11)

Now, we observe that we either have
∫
TNm

(∫ x
m−1
N

Fµ

)
dx ≤

∫
TNm

(∫ x
m−1
N

Fµ̃

)
dx or

∫
TNm

(∫ x
m−1
N

Fµ

)
dx ≥∫

TNm

(∫ x
m−1
N

Fµ̃

)
dx ≥

∫
TNm

(∫ x
m−1
N

Fµ̂N
)

dx. In the first case, the claim is obvious. In the second one,

we then have ∫
TNm

(∫ x

m−1
N

Fµ

)
dx ≤

∫
TNm

(∫ x

m−1
N

Fµ̃

)
+

∫
TNm

(∫ x

m−1
N

(Fµ − Fµ̂N )

)
,

and we get the result using (A.0.11).
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