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Abstract

This approach consists of representing the movement in the vicinity of a contact front by using a set of
degrees of freedom and reference spatial fields. The latter are built, once and for all, by a principal component
analysis of the velocity field (Karhunen-Loeve transform) and are hence tailored to provide the best possible
approximation of the velocity field close to the contact front. The intensity factors of these reference spatial
fields are hence a set of non-local variables which constitute the degrees of freedom of the problem. It is shown
that a very small number of them is required to accurately describe the mechanical problem. The so-called
“linear intensity factors” I characterize the elastic part of the field while the “complementary intensity factors”
Ic characterize partial slip within the contact area. 3D finite element analyses were conducted, first to build
the framework of this approximation, second to qualify its accuracy and finally to determine the non-linear
response of a contact in multiaxial fretting-fatigue conditions. Finally an incremental constitutive model
was developed to predict this non-linear response and was compared to the results of the finite elements
analyses. This non-local representation has the advantage of being independent of the geometry of the
contacting bodies. So, intensity factors can be used to predict the behavior of real-scale industrial assembly
using data obtained on laboratory test geometry.

Keywords: Fretting-fatigue, Crack analogue, Size effect

1. Introduction

Fretting-fatigue occurs in engineering assemblies
subjected to vibration loads. Micro-slip caused
by oscillating forces, between the contacting bod-
ies, leads to surface damage, crack initiation and
growth in fretting. Combined with bulk fatigue
loading, crack propagation up to fracture may
occur. Consequently, fretting-fatigue is a ma-
jor concern in safety-critical industries such as
aerospace [14]. Experimental test campaigns have
shown that this phenomenon has a significant detri-
mental effect on the material fatigue limit [10] by
initiating embryo cracks very early in life. One
of the major difficulties in dealing with the fret-
ting fatigue problem is the severe stress gradient
below the contact surface in the vicinity of the con-
tact edge. Local approaches used to predict the fa-
tigue life based on the stresses at the hot spots are

∗Corresponding author.

over-conservative for fretting-fatigue because they
do not account for the possibility of crack arrest
due to a strong stress gradient from the surface to
the bulk. Moreover, the crack initiation threshold is
not unique in terms of local quantities (Fig. 1) and
shows a strong dependency to the geometry [4, 6].
However, using the Theory of critical distance [18],
it is possible to predict crack arrest and conse-
quently to estimate fretting fatigue life and the gra-
dient effect with a good degree of accuracy [2, 4–
6, 17].

In spite of the good predictions of fretting-fatigue
threshold obtained using the Theory of critical dis-
tance, there are criticisms with respect to the use
of critical length as a material property [3]. Thus,
the transferability of results obtained on laboratory
samples (cylinder-plane contact) to industrial cases
(disk-blade interface), which are complex and 3D
geometry, is not guaranteed.

To overcome this problem, a non-local modeling
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Figure 1: Experimental crack initiation boundary for In-
conel 718 in plain fretting [1].

will be used. The model proposed hereunder is
an extension of the 2D modeling set up by Mon-
tebello [12]. This approach is based on two main
ideas: (i) a similarity between the mechanical fields
induced by the severe stress gradient extremely lo-
calized at the edge of the contact in fretting-fatigue
and the ones present around a crack or a notch [7–
9]; (ii) an original approach to describe mixed-
mode cyclic elastic-plastic behavior reasonably pre-
cise near the crack tip using a set of condensed vari-
ables [15, 16].

The goal of this paper is to propose a solution to
predict the velocity field close to the contact edge,
and it will be divided into three major parts.

In the first section, the description of the veloc-
ity field through non-local intensity factors origi-
nally made by Montebello [13] is developed and ex-
tended in 3D to take into account complex and non-
proportional tangential loading. In the second part,
a model, proposed through an incremental formula-
tion in order to use it with complex loading, to pre-
dict precisely the velocity field close to the contact
edge is presented. In the last part, the influence of
the Coulomb friction coefficient on the incremental
model is studied.

2. Modeling

2.1. Background

The interest of this approach is shown in Fig. 2
where the description of crack initiation boundaries
through non-local intensity factors shows a unique

threshold. Hence, the geometry and consequently
the gradient have no effect on these variables.
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Figure 2: Non-local crack initiation boundary for Inconel 718
in plain fretting [13].

In this part, the computation of the reference
fields and the associated intensity factors on a 3D
geometry (Fig. 3) will be explained.

Figure 3: Fretting-fatigue model.

2.2. Mechanical field partitioning
As cracks initiation under fretting fatigue load-

ing condition is located in the slip zone due to a
high shear stress close to the contact edge, a fine
mesh (5 to 10 µm) is required to capture the ve-
locity field with a relevant precision . To overcome
this time-consuming problem, the idea is to describe
the velocity field close to the contact edge (Fig. 4)
through a set of condensed variables.

Analogous to fracture mechanics, a local self-
similar geometry and a strong stress gradient makes
the spatial distribution of the mechanic fields im-
posed by the geometry while its intensity is deter-
mined by the macroscopic loads. Consequently, the
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field, in the coordinate system R′ attached to the
contact edge (see Fig. 4) where P is the position
coordinates vector, II ,III and IIII the elastic inten-
sity factors, IcII and IcIII the complementary inten-
sity factors and φI, φII, φIII, φcII and φcIII the asso-
ciated reference fields, can be expressed through a
sum of products between an intensity factor (time
dependent) and a reference field (geometry depen-
dent) :

v(P , t)R′ ' İI(t)φI(P ) + İII(t)φII
(P ) + İIII(t)φIII

(P )
︸ ︷︷ ︸

ve

+ İcII(t)φ
c

II
(P ) + İcIII(t)φ

c

III
(P )

︸ ︷︷ ︸
vc

(1)

The field is partitioned into two terms: the elastic
one ve represents the linear elastic response of the
structure; the complementary one vc describes the
non-linear contribution due to friction in the slip
zone. In turn, ve is separated into a symmetric,
antisymmetric and anti-planar part with respect to
the contact plane and vc is only separated into a
antisymmetric and anti-planar part.

The partition is done on the velocity field rather
than on the stress or displacement fields because
the velocity is an extensive variable that allows to
properly characterize the non-linear contribution of
the friction. The intensity factors represent the de-
grees of freedom of our approximated problem while
the reference fields form an orthonormal basis which
allows to describe quite well the problem with few
variables.
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Figure 4: Extraction area.

2.3. FE computation and post-processing
The FE simulation consists of an elastic quasi-

static computation performed by ABAQUS. To
model the contact, the Lagrange multipliers tech-
nique is chosen with a friction Coulomb law. Close
to the contact, a regular mesh with linear elastic
hexahedron elements is employed. The maximum
length of these elements is 20 µm in order to ensure
short computational time and a quite good conver-
gence with the analytical solution. Concerning the
loadings (Fig. 3), a constant normal load N and
cyclic tangential loads QII and QIII are applied at
the top of the pad to simulate fretting cycles.

The velocity field is obtained for each mesh node
and for all the simulation time step. However the
post-processing will be applied only in a circular
region Ω centered at the contact edge and in the
median plan of the geometry (Fig. 4).

With the crack analog hypothesis, the velocity
field at the contact edge is considered to be compa-
rable to the one at the crack tip.

To perform the partitioning of the linear veloc-
ity field (Eq. 2), the symmetric, antisymmetric and
anti-planar reference fields, analogous respectively
to mode I, mode II and mode III in LEFM, are
generated respectively by a variation of normal (N)
and tangential (QII, QIII) forces. Moreover, to sep-
arate the elastic response from the non-linear con-
tribution of the friction arising in the slip zone, the
linear field (φ∗) are determined during a situation
where all the contact surface is stuck.

ve(P , t) ' İI(t)φI(P ) + İII(t)φII
(P ) + İIII(t)φIII

(P )
(2)

The Karhunen-Loeve decomposition [11] is ap-
plied to separate the radial and angular dependence
of the reference fields.

φ∗(P )→ φ∗(r, θ) = f∗(r)g∗(θ) (3)

The comparison (Fig. 5-6) between the analytic
solution from LEFM [19] for mode III (Eq. 4) and
the anti-planar reference field computed show a
good correlation and validate the crack tip analogy.

uIIIz = KIII︸︷︷︸
IIII

4(1 + ν)

E

√
r

2π︸ ︷︷ ︸
f(r)

(
−cos

(
θ

2

))

︸ ︷︷ ︸
g(θ)

(4)

The intensity factors are computed by projecting
the velocity field v to the reference field φ∗ :
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Figure 5: Comparison between radial evolution of φIII and
the displacement field at the crack tip (Mode III).
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Figure 6: Comparison between angular evolution of φIII and
the displacement field at the crack tip (Mode III).

İ∗(t) =

∫
Ω
v · φ∗∫

Ω
φ∗ · φ∗

(5)

The Karhunen-Loeve decomposition is performed
once again on the complementary field (Eq.6) to
separate the field in a sum of two products (one
for each tangential direction) between two functions
depending separately on time and space (Eq.7).

vc(P , t) = v(P , t)− ve(P , t) (6)

vc(P , t) ' İcII(t)φcII(P ) + İcIII(t)φ
c

III
(P ) (7)

The radial evolution of φcIII (Fig. 7) show an ex-
ponential decrease which get along with the self-
similar geometry hypothesis and confirms the very
localized effect of the friction in the partial slip

regime. The discontinuity due to the slip is shown
in Fig. 8 by a displacement discontinuity between
the two faces of the contact (θ = 0 and θ = 2π).
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Figure 7: Radial evolution of φcIII.
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Figure 8: Angular evolution of φcIII.

2.4. Quality of the assumption

Once the reference fields and the intensity factors
are identified, the final approximation of the veloc-
ity field is obtained (Eq. 1) and the elastic (Eq. 8)
and total (Eq. 9) errors of the approximation are
defined.

ξel =

√∫
Ω

(v − ve)2

√∫
Ω

(v)2
(8)

ξtot =

√∫
Ω

(v − ve − vc)2

√∫
Ω

(v)2
(9)
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The error evolution during a proportional fret-
ting cycle (Fig. 9) show the elastic error is low only
when all the contact is stuck. However, with the
introduction of the non-linear terms in the approx-
imation, the error remains low during the whole
cycle.
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Figure 9: Error evolution introduced by the approximation
during a proportional fretting cycle.

It is worth noting that the maximum value of the
error is stable regardless of the direction of the tan-
gential proportional loading (Fig. 10) and remains
low for non-proportional loading (Fig. 11).
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Figure 10: Influence of the loading direction on the maxi-
mum error during a proportional fretting cycle.

This approximation of v presented is well suited
for complex loadings. The spatial reference fields

0

5

10

15

E
rr
o
r
-
%

Elastic error
Total error
Model error

0 2 4 6

−3

0

3

Time

L
o
ad

in
g

III
IIII

Figure 11: Error evolution introduced by the approximation
during a non-proportional fretting cycle (square).

depend exclusively on the local geometry and are
suitable for all types of complex loadings.

2.5. Perspective

The evolution the non-linear intensity factors
compared to the linear ones shows a curve anal-
ogous to a stress-strain curve observed in plasticity
(Fig. 12). Moreover, simulation shows (Fig. 13),
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Figure 12: Evolution of the intensity factors during a fretting
cycle.

that different loading paths with the same loading
amplitude in terms of intensity factors I produce
a very different response in terms of partial slip.
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Both the sliding direction and its intensity Ic are
path dependent.
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Figure 13: Influence of the loading path.

The linear intensity factors are directly linked to
the macroscopic loading so, they can be computed
with a coarse mesh FE simulation. The prediction
of the non-linear intensity factors (which needs fine
mesh) thanks to the linear ones leads to a good ap-
proximation of the velocity field close to the contact
edge even with rough mesh making this procedure
interesting for industrial simulations.

3. Incremental model

The prediction of the non-linear intensity fac-
tor Ic will be made through an incremental ap-
proach to be easy to use for complex loading (vari-
able amplitude, non-proportional). The first step is
determining the yield surface which represents the
boundary between the stick and partial slip domain.

3.1. Observations

When the loading remains inside the yield sur-
face, all the contact is stuck. Consequently, İ

c
is

equal to zero and the two errors defined in sec-
tion 2.4 are equal. Once partial slip happens, the
two errors will diverge and will allow to set up a cri-
terion for determining the yield surface boundary:

ξel − ξtot = 1% (10)

To identify the size and the shape of the yield
surface, three steps will be done:

• an initial loading to have partial slip;

• a small unloading to go back to a full elastic
behavior and have all the contact stick;

• a final loading to determine the value of I when
partial slip happens in the direction consid-
ered.

Fig. 14 shows the different directions considered
and the ellipse obtained. The repetition of the pro-
cedure for different initial loadings show the evo-
lution of the yield surface (Fig. 15). It is worth
noting that the size of the surface remains constant
whereas its center move. By analogy with the plas-
ticity, a kinematic hardening is present.
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Figure 14: Shape of the stick domain.
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Figure 15: Evolution of the stick domain.

Concerning the sliding direction, Fig. 16 shows
three particular directions : the normal to surface,
the loading and the sliding direction (which is char-
acterized by dIc, analogous to the plastic flow) as
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function of the loading direction. It is important to
notice that the sliding do not appear in the same
direction as the loading but it seems linked to the
normal of the yield surface. By analogy with the
plasticity, a normal plastic flow is present.
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Figure 16: Sliding direction.

3.2. Modeling

To model this non-linear behavior, a bilinear
kinematic hardening law is chosen to provide a sim-
ple model along with a good precision. At first ap-
proximation, the yield surface identify above will
be considered circular.

A first yield surface is defined to determine the
transition between stick and partial slip:

f1 =
∣∣∣∣I − IX1

∣∣∣∣− Iy1 ≤ 0 (11)

A second is defined (Iy1 < Iy2 ) to have a better
prediction for the high tangential amplitude:

f2 =
∣∣∣∣I − IX2

∣∣∣∣− Iy2 ≤ 0 (12)

When f1 < 0 all the contact is stick, dIc = 0.
If f1 = 0, partial slip happens. The total sliding

is defined by two terms, one for each surface:

dIcmodel = dIc1 + dIc2 (13)

The first sliding rate with the direction normal to
the yield surface is equal to:

dIc1 = λ̇1n1 with n1 =
∂f1

∂I
(14)
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Figure 17: Sliding prediction during a proportional fretting
cycle.

And the displacement of the first yield surface cen-
ter is defined:

dIX1 = H1 · Ic1 (15)

To avoid interpenetration between the two surfaces,
a second sliding rate is specified with a flow vector
normal to the surface at the contact point.

dIc2 = λ̇2ncontact (16)

And the displacement of the second yield surface
center is defined:

dIX2 = H2 · Ic2 (17)

3.3. Error estimation

The hardening coefficients H∗ and the surface ra-
dius Iy∗ are fit by the gradient descent method to
minimize the error on a constant amplitude simu-
lation. It is good to notice the value of Iy1 found
with the optimization process is close to the one
obtained with the simulation using the partial slip
criteria (Eq. 10). The model is able to predict the
evolution of Ic during a fretting cycle with a pro-
portional tangential loading (Fig. 17).

To estimate more precisely the error, the com-
plementary velocity field vmodelc predicted by the
model (Eq. 18) and the error associated (Eq. 19)
are defined.

vmodelc = İc
model

II (t)φc
II

(P ) + İc
model

III (t)φc
III

(18)

7



ξmodel =

√∫
Ω

(v − ve − vmodelc )2

√∫
Ω

(v)2
(19)

3.3.1. Variable loading amplitude
During a cycle with variable amplitude,

the model gives similar result to the simula-
tion (Fig. 18.a). Thanks to the second sur-
face (Eq. 12), the model is able to describe
precisely the low and high amplitudes. With
regard to the error on the velocity field (Fig. 19),
it appears that the complementary field predicted
by the model permit to reduce the error, not as
much as the complementary field issue from the
simulation but to a reasonable level.

3.3.2. Non proportional loading
Concerning non-proportional loadings, the am-

plitudes predicted are overestimated but the slid-
ing direction is coherent (Fig. 20). Moreover, the
total error on the velocity field remains low (Fig. 11)
and influence of the loading path on the slid-
ing, observed by the simulations, is well described
(Fig. 13).

4. Friction effect

The model presented above works for a constant
normal load, complex tangential amplitude and a
constant Coulomb coefficient. However, in contact
fatigue, surface are damaged because of the fric-
tion. Consequently, the Coulomb coefficient evolves
during a fretting-fatigue test. In this part, the in-
fluence on the model of the non-local Coulomb co-
efficient [12] (which is directly proportional to the
local coefficient) will be studied.

4.1. Stick domain evolution

The Coulomb law determines the limit between
stick and slip conditions, hence the evolution of the
yield surface in function of Coulomb coefficient is
shown in Fig. 21. The size of the stick contact sur-
face is determined by two methods: (i) by simula-
tion using the protocol presented in the section 3.1;
(ii) by optimization procedure using gradient de-
scent method to minimize the error.

It is worth noticing that the evolution of the sur-
face radius versus the non-local Coulomb coefficient
is linear and directly proportional to its variation.

4.2. Model evolution

Using the same hardening coefficients H∗ (iden-
tified with a Coulomb coefficient µ = 0.8) and the
same ratio between the two yield surfaces Iy1/Iy2 ,
Fig. 18 shows that a modification of the non-local
Coulomb coefficient can be taken into account only
with a variation of the yield surface radius. More-
over, if there are some difference between model and
simulation (Fig. 18.c), the error on the total field
remains low (Fig. 22 ).

5. Discussion and conclusion

A novel approach to predict the local velocity
field of a fretting case, based on a fracture mechanic
analogy, has been shown. Once the reference field
is identified for a specific geometry, it is possible to
predict the velocity field close to the contact edge
thanks to the non-local intensity factors using only
the macroscopic loadings. The geometric and gradi-
ent effects are included in the reference fields so the
use of criteria and laws based on non-local intensity
factors are not geometry dependent. Consequently,
they can be identified on laboratory tests and easily
transferred to industrial structure.

The future works will focus on coupling the non-
local description of the velocity field with crack ini-
tiation and propagation criteria. The intensity fac-
tors will be used as input for the criterion in order
to predict when initiation and propagation occur
for complex and non-proportional loadings. More-
over, the displacement of the contact edge and the
damage accumulation should be taken into account
to study normal load variations and all kinds of
complex loadings. To complete this work, fretting
tests under non-proportional and variable ampli-
tude loadings could be performed to validate results
obtained by simulation.

Friction can also be a way of improvement. In-
deed, only a Coulomb law with a constant co-
efficient is considered. However, in contact fa-
tigue, surface will be damaged. Consequently the
Coulomb coefficient can evolve over the cycles.
Moreover, under partial slip condition, the damage
is very localized in the slip zone hence the Coulomb
coefficient is not only time dependent but also space
dependent. To be more precise concerning the fric-
tion, a Coulomb coefficient space and time depen-
dent should be used. However, it can be also inter-
esting to investigate different friction laws dedicate
to fretting problem to study how the law can be

8
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translated in terms of non-local quantities and how
our model can be modified.
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