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Abstract. Numerous real-world systems can be modeled with Petri
nets, which allow a combination of concurrency with synchronizations
and conflicts. To alleviate the difficulty of checking their behaviour, a
common approach consists in studying specific subclasses. In the con-
verse problem of Petri net synthesis, a Petri net of some subclass has
to be constructed efficiently from a given specification, typically from a
labelled transition system describing the behaviour of the desired net.
In this paper, we focus on a notorious subclass of persistent Petri nets, the
weighted marked graphs (WMGs), also called generalised (or weighted)
event (or marked) graphs or weighted T-nets. In such nets, edges have
multiplicities (weights) and each place has at most one ingoing and one
outgoing transition. Although extensively studied in previous works and
benefiting from strong results, both their analysis and synthesis can be
further investigated. To this end, we provide new conditions delineating
more precisely their behaviour and give a dedicated synthesis procedure.

Keywords: Weighted Petri net, analysis, synthesis, marked graph, event graph.

1 Introduction

Petri nets have proved useful to model numerous artificial and natural systems.
Their weighted version allows weights on arcs, making possible the bulk con-
sumption or production of tokens, hence a more compact representation of the
systems.

Many fundamental properties of Petri nets are decidable, although often hard
to check. Given a bounded Petri net, a naive analysis can be performed by con-
structing its finite reachability graph, whose size may be considerably larger
than the net size. To avoid such a costly computation, subclasses are often con-
sidered, allowing to derive efficiently their behaviour from their structure only.
This approach has led to various polynomial-time checking methods dedicated
to several subclasses, the latter being defined by structural restrictions in many
cases [13, 28, 24, 17, 18].



In the domain of Petri net synthesis, a specification has to be implemented
by a Petri net, meaning that the behaviour of the Petri net obtained must
correspond exactly to the specification. Classical representations of such a spec-
ification encompass labelled transitions systems (lts for short), which are rooted
directed graphs with labels on the arcs, and a synthesis procedure is meant to
build a Petri net of a specific subclass whose reachability graph is isomorphic to
a given lts.

Weighted marked graphs: applications and previous studies. In this
paper, we focus on marked graphs with weights (also called generalised event
graphs and weighted T-nets), a subclass of weighted Petri nets in which each
place has at most one input and one output. They can model Synchronous
DataFlow graphs [21], which have been fruitfully used to design and analyse
many real systems such as embedded applications, notably Digital Signal Pro-
cessing (DSP) applications [20, 25, 23].

Various characterisations and polynomial-time sufficient conditions of struc-
tural and behavioural properties, notably of liveness, boundedness and reversibil-
ity, have been developed for this class [26, 22]. These nets are a special case of
persistent systems, in which no transition firing can disable another transition.

Petri net synthesis: previous studies. Given a labelled transition system,
previous works have proposed algorithms synthesizing a Petri net with an iso-
morphic reachability graph, sometimes aiming at a Petri net subclass [6, 9]. In
the latter case, the objective is to delineate properties of the lts that are specific
to the target subclass, so as to determine sufficient and necessary conditions for
its synthesisability within the subclass. Ideally, such specific conditions should
be easier to check than generic ones, for instance during a pre-synthesis phase.

Marked graphs, i.e. unit-weighted marked graphs, belong to the larger class
of choice-free nets, in which each place has at most one output. Both classes
benefit from dedicated synthesis algorithms that operate in polynomial time [2,
4, 8, 6, 9]. However, such methods do not yet exist for the intermediate class of
marked graphs with arbitrary weights.

Contributions. In this paper, we further investigate the class of weighted
marked graphs (WMGs). We delineate new properties of these nets and pro-
pose a synthesis procedure aiming at this subclass.

First, we provide new structural and behavioural properties of WMGs: we
give a comparison property on the sequences starting at the same state and
reaching another common state, we show that WMGs are necessarily backward
persistent, meaning that for all reachable states s1, s2, s3 such that s2[a〉s1 (i.e.
s1 is reached from s2 through the action with label a) and s3[b〉s1, there exists a
reachable state s4 with s4[b〉s2 and s4[a〉s3. We also develop conditions allowing
the existence of a feasible sequence corresponding to a given Parikh vector.

Then, we delineate necessary conditions for the WMG-solvability of an lts,
such as backward persistence and the existence of particular cycles. We show,
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with the help of a counter-example from another subclass, that these conditions
are not sufficient for a WMG solution to exist.

Finally, we devise a WMG-synthesis procedure, specialising previous meth-
ods that were designed for the larger class of choice-free nets.

Organisation of the paper. In Section 2, we introduce general definitions,
notations and properties. In Section 3, we recall some properties of persistent
Petri nets and provide new structural and behavioural results on WMGs, in-
cluding the proof of backward persistence. In Section 4, we describe a synthesis
procedure for WMGs. Section 5 presents our conclusion with perspectives.

2 Classical Definitions, Notations and Properties

In the following, we define formally Petri nets, labelled transitions systems and
related notions. We also recall classical properties of Petri nets in Proposition 1.

Petri nets, incidence matrices, pre- and post-sets. A (Petri) net is a tuple
N = (P, T,W ) such that P is a finite set of places, T is a finite set of transitions,
with P ∩T = ∅, and W is a weight function W : ((P ×T )∪ (T ×P ))→ N setting
the weights on the arcs. A marking of the net N is a mapping from P to N, i.e.
a member of NP , defining the number of tokens in each place of N .
A (Petri net) system is a tuple ζ = (N,M0) where N is a net and M0 is a
marking, often called initial marking. The incidence matrix C of N (and ζ) is
the integer place-transition matrix with components C(p, t) =W (t, p)−W (p, t),
for each place p and each transition t.
The post-set n• and pre-set •n of a node n ∈ P ∪ T are defined as n• = {n′ ∈
P ∪ T |W (n, n′)>0} and •n = {n′ ∈ P ∪ T |W (n′, n)>0}.

Firings and reachability in Petri nets. Consider a system ζ = (N,M0)
with N = (P, T,W ). A transition t is enabled at M0 (i.e. in ζ) if ∀p ∈ •t,
M0(p) ≥W (p, t), in which case t can occur at or be fired from M0. The firing of
t from M0 leads to the marking M = M0 + C[P, t] where C[P, t] is the column
of C associated to t: we note this as M0[t〉M .
A finite (firing) sequence σ of length n ≥ 0 on the set T , denoted by σ = t1 . . . tn
with t1 . . . tn ∈ T , is a mapping {1, . . . , n} → T . Infinite sequences are defined
similarly as mappings N \ {0} → T . A sequence σ of length n is enabled in
ζ if the successive states obtained, M0[t1〉M1 . . . [tn〉Mn, satisfy Mk−1[tk〉Mk,
∀k ∈ {1, . . . , n}, in which case Mn is said to be reachable from M0: we note this
as M0[σ〉Mn. If n = 0, σ is the empty sequence ε, implying M0[ε〉M0. The set of
markings reachable from M0 is noted [M0〉.
The reachability graph of ζ, noted RG(ζ), is the rooted directed graph (V,A, ι)
where V represents the set of vertices [M0〉, A is the set of arcs labelled with
transitions of T such that the arc M t−→M ′ belongs to A if and only if M [t〉M ′
and M ∈ [M0〉, and ι =M0 is the root.
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In Figure 1, a weighted system is pictured on the left. Its reachability graph
is pictured on the right, where vT denotes the transpose of vector v.

Petri net subclasses. N is plain if no arc weight exceeds 1; choice-free (CF for
short) [11, 27] (also called place-output-nonbranching in [5]) if ∀p ∈ P , |p•| ≤ 1;
fork-attribution (FA) [27] if it is CF and, in addition, ∀t ∈ T , |•t| ≤ 1; a weighted
marked graph (WMG, also called weighted T-system in [26]) if it is CF and, in
addition, ∀p ∈ P , |•p| ≤ 1. A WMG is pictured on the left of Figure 1. Well-
studied subclasses encompass marked graphs [10], which are plain and fulfill
|p•| = 1 and |•p| = 1 for each place p, and T-systems [13], which are plain and
fulfill |p•| ≤ 1 and |•p| ≤ 1 for each place p.

p3 p4

p1 p2

2 1

4 3

1 1

2 3

t1

t2
t3

(0, 1, 4, 0)T

(0, 0, 4, 3)T

(2, 1, 0, 0)T

(1, 1, 2, 0)T

(2, 0, 0, 3)T (1, 0, 2, 3)T

t2

t1

t3 t1

t1

t3

t1 t3

Fig. 1. A WMG system ζ and its reachability graph RG(ζ) are pictured respectively
on the left and on the right. The initial marking is boxed in RG(ζ).

Lts and their relationship with Petri nets. A labelled transition system
with initial state, abbreviated lts, is a quadruple TS = (S,→, T, ι) where S is
the set of states, T is the set of labels, →⊆ (S×T ×S) is the transition relation,
and ι ∈ S is the initial state.
A label t is enabled at s ∈ S if ∃s′ ∈ S : (s, t, s′) ∈→, written s[t〉 or s[t〉s′, in
which case s′ is reachable from s through the execution of t. We denote by s•
the set {s′|∃t ∈ T, s[t〉s′}.
A label t is backward enabled at s if ∃s′ ∈ S : (s′, t, s) ∈→, written [t〉s or s′[t〉s. A
(firing) sequence σ of length n ≥ 0 on the set of labels T , denoted by σ = t1 . . . tn
with t1 . . . tn ∈ T , is enabled at some state s0 if the successive states obtained,
s0[t1〉s1 . . . [tn〉sn, satisfy sk−1[tik〉sk, ∀k ∈ {1, . . . , n}: we note s0[σ〉sn. Simi-
larly, other notions and notations, related to sequences and reachability in Petri
nets, extend readily to labelled transition systems by replacing markings with
states.
The reachability graph RG(ζ) of a system ζ = (N,M0) can be represented by
the labelled transition system TS = (S,→, T, ι) if an isomorphism γ : S → [M0〉
exists such that γ(ι) =M0 and (s, t, s′) ∈→⇔ γ(s)[t〉γ(s′) for all s, s′ ∈ S. If an
lts TS is isomorphic to the reachability graph of a Petri net system ζ, we say
that ζ solves TS , and that it WMG-solves TS if N is a WMG.
These notions are illustrated on the lts on the right of Figure 2, which is isomor-
phic to the reachability graph of the WMG in Figure 1; it is thus WMG-solvable.
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Two lts TS 1 = (S1,→1, T, s01) and TS 2 = (S2,→2, T, s02) are isomorphic
if there is a bijection β : S1 → S2 with β(s01) = s02 and (s, t, s′) ∈→1⇔
(β(s), t, β(s′)) ∈→2, for all s, s′ ∈ S1.

Vectors, semiflows and cycles. The support of a vector is the set of the indices
of its non-null components. Consider any net N = (P, T,W ) with its incidence
matrix C. A T-vector is an element of NT ; it is called prime if the greatest com-
mon divisor of its components is one (i.e. its components do not have a common
non-unit factor). A T-semiflow ν of the net is a non-null T-vector whose com-
ponents are only non-negative integers (i.e. ν 	 0) and such that C · ν = 0. A
T-semiflow is called minimal when it is prime and its support is not a proper
superset of the support of any other T-semiflow [27].
The Parikh vector P(σ) of a finite sequence σ of transitions is a T-vector count-
ing the number of occurrences of each transition in σ, and the support of σ is the
support of its Parikh vector, i.e. supp(σ) = supp(P(σ)) = {t ∈ T | P(σ)(t) > 0}.
A (non-empty) cycle around a marking M is a non-empty sequence σ such that
M [σ〉M ; the Parikh vector of a non-empty cycle is a T-semiflow and a non-empty
cycle is called prime if its Parikh vector is prime.

Further notions. Consider a lts TS = (S,→, T, ι). For all states s, s′ ∈ S, a
sequence s[σ〉s′ is called a cycle, or more precisely a cycle at (or around) state s,
if s = s′. A non-empty cycle s[σ〉s is called small if there is no non-empty cycle
s′[σ′〉s′ in TS with P(σ′) � P(σ). A two-way uniform chain of TS is a couple
({si ∈ S|i ∈ Z,∀i, j ∈ Z : i 6= j ⇒ si 6= sj}, σ ∈ T+) such that ∀i ∈ Z, si[σ〉si+1,
where T+ is the set of non-empty sequences on T .

In Figure 2, a two-way uniform chain is depicted on the left; on the right,
the lts is finite, hence has no two-way uniform chain. The lts TS is:

– totally reachable if S = [ι〉;
– reversible if ι ∈ [s〉 for each state s ∈ [ι〉, meaning the strong connectedness

of this lts when it is totally reachable;
– weakly periodic if for each couple ({si ∈ S|i ∈ N}, σ ∈ T+) such that ∀i ∈ N
si[σ〉si+1 (where σ is a non-empty sequence of labels), either si = sj ∀i, j ∈
N, or i 6= j ⇒ si 6= sj ∀i, j ∈ N;

– strongly cycle consistent if for every sequence s[α〉s′, the existence of cycles
s1[β1〉s1, s2[β2〉s2, . . . , sn[βn〉sn and of numbers k1, k2, . . . , kn ∈ Q such that
P(α) =

∑n
i=1 ki ·P(βi) implies that s = s′;

– deterministic if, for all states s, s′, s′′ ∈ S and labels t, t′ ∈ T such that
s[t〉s′ ∧ s[t〉s′′, necessarily s′ = s′′; it is fully deterministic if for all sequences
σ and σ′ such that P(σ) = P(σ′), we have, for all states s, s′, s′′ ∈ S:
s[σ〉s′ ∧ s[σ′〉s′′ ⇒ s′ = s′′;

– backward deterministic if, for all states s, s′, s′′ ∈ S and labels t, t′ ∈ T such
that s′[t〉s ∧ s′′[t〉s, necessarily s′ = s′′; it is fully backward deterministic if,
for all sequences σ and σ′ such that P(σ) = P(σ′), we have, for all states
s, s′, s′′ ∈ S: s′[σ〉s ∧ s′′[σ′〉s⇒ s′ = s′′;
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– persistent if for all states s, s′, s′′ ∈ S and labels t′, t′′ ∈ T such that s[t′〉s′
and s[t′′〉s′′ with t′ 6= t′′, there exists a state s′′′ ∈ S such that s′[t′′〉s′′′
and s′′[t′〉s′′′; it is backward persistent if for all states s, s′, s′′ ∈ S and labels
t′, t′′ ∈ T such that s′[t′〉s and s′′[t′′〉s with t′ 6= t′′, there exists a state
s′′′ ∈ S such that s′′′[t′′〉s′ and s′′′[t′〉s′′.

Figure 2 illustrates some of these notions. All notions defined for labelled transi-
tion systems apply to Petri nets through their reachability graphs. For example,
a Petri net is reversible if its reachability graph is isomorphic to a reversible lts,
meaning that the initial marking is reachable from every reachable marking.

. . .
s−2 s−1 s0 s1 s2

. . .σ σ σ σ
s5

s0

s1

s3

s2
s4

t2

t1

t3 t1

t1
t3

t1
t3

Fig. 2. On the left, a two-way uniform chain based on σ. On the right, a labelled
transition system with states {s0, s1, s2, s3, s4, s5}, labels {t1, t2, t3} and initial state
ι = s0. It is isomorphic to the reachability graph of Figure 1. The label t2 is enabled
at s0 and t3 is backward enabled at s0. The state s1 is reachable from s0 through the
execution of t2. Denote by σ the sequence t2t3t1t1. Then, the Parikh vector of σ is
P(σ) = (2, 1, 1) and its support is supp(σ) = {t1, t2, t3}. Since s0[σ〉s0, σ is a cycle
around state s0. This lts is totally reachable, weakly periodic, fully deterministic and
fully backward deterministic, strongly cycle consistent, persistent, backward persistent
and reversible.

The following proposition recalls properties satisfied by every Petri net sys-
tem and presented in [5].

Proposition 1 (Classical properties of Petri nets [5]). If ζ = (N,M0),
where N = (P, T,W ), is a Petri net system, then RG(ζ) is totally reachable,
weakly periodic, fully deterministic, fully backward deterministic, and strongly
cycle consistent. Moreover it has no two-way uniform chain over the set S = NP

of all the possible markings for N , meaning that no couple ({Mi ∈ NP |i ∈
Z\{0},∀i, j ∈ Z : i 6= j ⇒ si 6= sj}, σ ∈ T+) exists such that ∀i ∈ Z,Mi[σ〉Mi+1.

3 Properties of WMGs and Larger Persistent Classes

In this section, we investigate the structure and behaviour of WMGs. For that
purpose, we first recall notions and results relevant to persistent systems in
Subsection 3.1. Then, in Subsection 3.2, for the class of WMGs, we show a
property of the sequences sharing the same starting state and the same ending
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state, and we prove backward persistence. Finally, in Subsection 3.3, we propose
conditions for the existence of feasible sequences corresponding to a given T-
vector in WMGs.

3.1 Previous Results and Notions Related to Persistence

In addition to the general properties of Petri nets mentioned in Proposition 1,
we recall results and notions useful to the study of persistent systems.

The next result is dedicated to WMGs and extracted from [26, 27].

Proposition 2 (Minimal T-semiflow and cycles in WMGs [26, 27]).
Consider a connected WMG net N . If N has a T-semiflow ν then there exists a
unique minimal (hence prime) one π, which satisfies: supp(π) = T and ν = k ·π
for some integer k > 0. Moreover, for any marking M0, writing ζ = (N,M0),
if RG(ζ) contains some non-empty cycle, then the Parikh vector of each small
cycle of RG(ζ) equals π.

The next notion of residues is useful to the study of persistent systems.

Definition 1 (Residues). Let T be a set of labels and τ, σ ∈ T ∗ two sequences
over this set. The (left) residue of τ with respect to σ, denoted by τ−• σ, arises
from cancelling successively in τ the leftmost occurrences of all symbols from
σ, read from left to right. Inductively: τ−• ε = τ ; τ−• t = τ if t /∈ supp(τ);
τ−• t is the sequence obtained by erasing the leftmost t in τ if t ∈ supp(τ); and
τ−•(tσ) = (τ−•t)−•σ. For example, acbcacbc−•abbcb = cacc and abbcb−•acbcacbc = b.

We deduce the next property of residues.

Lemma 1 (Disjoint support of residues). For any two sequences τ and σ,
the residues δ1 = τ−•σ and δ2 = σ−•τ have disjoint supports: supp(δ1)∩supp(δ2) =
∅. Consequently, δ1−• δ2 = δ1 and δ2−• δ1 = δ2.

Proof. For any label t, P(τ)(t) = P(σ)(t)⇒ P(δ1)(t) = P(δ2)(t) = 0, P(τ)(t) >
P(σ)(t) ⇒ P(δ2)(t) = 0 and P(τ)(t) < P(σ)(t) ⇒ P(δ1)(t) = 0. In all cases,
t 6∈ supp(δ1) ∩ supp(δ2). ut

Kellers’s theorem is based on residues and applies to persistent lts.

Theorem 1 (Keller [19]). Let (S,→, T, ι) be a deterministic, persistent lts. Let
τ and σ be two label sequences enabled at some state s. Then τ(σ−•τ) and σ(τ−•σ)
are both enabled at s and lead to the same state.

Applying Theorem 1, we obtain the next result directly.

Proposition 3 (Persistence and determinism). Let TS be a persistent lts.
If TS is also deterministic, then it is fully deterministic.
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3.2 Equivalent Sequences and Backward Persistence

In the following, we provide new properties on the reachability graph of WMGs.
Since non-connected nets can be studied by analysing each connected component
separately, we restrict our attention to connected nets.

For the class of WMGs, we first provide in Lemma 2 a property of the se-
quences starting from a same state s and leading to the same state s′. Then, we
prove the backward persistence of WMGs in Theorem 2. To achieve it, we need
to define the reverse of a net and of a firing sequence.

Definition 2 (Reverse nets and sequences). The reverse of a net N , de-
noted by −N , is obtained from N by reversing all the arcs while keeping the
weights. We denote by σ−1 the sequence σ followed in reverse order. For exam-
ple, if σ = t1t2t2t3, then σ−1 = t3t2t2t1.

The set of WMGs is closed under reverse, contrarily to the set of CF nets.
Lemma 2 highlights strong similarities in the reachability graph between two

sequences sharing the same starting state and the same destination state. The
proof makes use of reverse sequences feasible in reverse WMGs.

Lemma 2 (Equivalent sequences in WMGs). Let N be a connected WMG.
Assume the existence of markings M,M1 and sequences σ, σ′ such that M [σ〉M1

and M [σ′〉M1. If N has no T-semiflow, then P(σ) = P(σ′). Otherwise, either
P(σ) = P(σ′), or there exists an integer k > 0 such that P(σ) = P(σ′) + k.π or
P(σ) + k.π = P(σ′), where π is the unique minimal T-semiflow of N .

Proof. Let us assume that P(σ) 6= P(σ′). We show in the following that N has
necessarily a T-semiflow in this case, proving the first claim by contraposition.
Since N is a WMG, it is persistent. Defining τ = σ−•σ′ and τ ′ = σ′−•σ, applying
Keller’s theorem (Theorem 1), we have for some marking M2 that M1[τ〉M2

and M1[τ
′〉M2. By Lemma 1, τ and τ ′ have disjoint supports, τ−• τ ′ = τ and

τ ′−• τ = τ ′. Thus, applying Keller’s theorem, a marking M3 is reached from M2

by firing τ or τ ′. Iterating this process up to any positive integer i, some marking
Mi+1 is reached from Mi with Mi[τ〉Mi+1 and Mi[τ

′〉Mi+1.
Now, in the reverse net −N , which is also a WMG, since M2[(τ)

−1〉M1 and
M2[(τ

′)−1〉M1, still with disjoint supports, we can construct markingsM0,M−1,
. . . such that ∀i ∈ Z, Mi[(τ)

−1〉Mi−1 and Mi[(τ
′)−1〉 Mi−1, i.e. also Mi−1[τ〉Mi

and Mi−1[τ
′〉Mi. If all Mi’s are (pairwisely) different, this leads to a two-way

uniform chain for the system (N,M1), contradicting Proposition 1. Consequently,
for some i, j ∈ Z with i 6= j, we haveMi =Mj , and since σ, σ′ are different, they
are not both empty and τ , τ ′ cannot be both empty. Thus, N has a T-semiflow,
proving the first claim of the lemma.

For the second claim, either P(σ) = P(σ′) or P(σ) 6= P(σ′). Consider the
latter case: from the first part of the proof, taking the same notation, there is a
positive integer n such that τn and τ ′n are cycles appearing in the reachability
graph of the system (N,M). Since the supports of τ and τ ′ are not both empty,
Proposition 2 applies: there is a unique minimal T-semiflow π, whose support is
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T , and integers k, k′ ≥ 0 exist such that P(τn) = k ·π and P(τ ′n) = k′ ·π, where
k > 0 or k′ > 0. Since the supports of τ and τ ′ are disjoint and the support of
any cycle is T , then either k′ = 0, τ ′ = ε, τ is a cycle and P(σ) 	 P(σ′), or k = 0,
τ = ε, τ ′ is a cycle and P(σ′) 	 P(σ). Thus, either P(σ) = P(σ′) + P(τ) =
P(σ′) + q.π for an integer q > 0 or P(σ′) = P(σ) + P(τ ′) = P(σ) + q.π for an
integer q > 0. Hence the claim. ut

In [26], in the proof of Theorem 4.8, it is mentioned that each WMG is
backward persistent without a proof, basing on the fact that the reverse of a
WMG is still a WMG, hence a persistent net. However, this property needs to
be proved carefully: since M1[a〉M and M2[b〉M , Keller’s theorem implies the
existence of a marking M ′ reachable from (−N,M1) and (−N,M2), such that
M ′[a〉M2 and M ′[b〉M1 in the original system; however, the reachability of M ′
in the original system, under the assumption of reachability for M1 and M2, is
not obvious. In the following, we show it is indeed the case.

Theorem 2 (Backward persistence of WMGs). In a connected WMG sys-
tem ζ = (N,M0), let us assume that markings M1, M2, M are reachable and
that, for two different labels a and b, M1[a〉M and M2[b〉M . Then, a marking
M ′ is reachable in ζ such that M ′[a〉M2 and M ′[b〉M1.

Proof. Let us write N = (P, T,W ) and introduce two sequences σ1 and σ2
enabled in ζ such that M0[σ1〉M1 and M0[σ2〉M2. From the previous remarks,
we know that M ′ is reachable in the reverse system (−N,M1), hence belongs to
NP . It remains to show that M ′ ∈ [ζ〉.

From Lemma 2, either P(σ1a) = P(σ2b) or, without loss of generality,
P(σ1a) = P(σ2b) + k · π, where π is the unique minimal T-semiflow of N , with
support T . Then, in either case, b occurs at least once in σ1. For the reverse
net −N , we haveM1[σ

−1
1 〉M0, and from Keller’s theorem, we haveM1[b〉M ′ and

M2[a〉M ′; we also have M0[b−•σ−11 〉M ′′ and M ′[σ
−1
1 −
• b〉M ′′. Since b occurs in σ1,

hence also in σ−11 , b−• σ−11 = ε and M ′′ = M0. Going back to ζ, we deduce that
M0[(σ

−1
1 −
• b)−1〉M ′, thus M ′ is reachable in ζ. ut

M0

M1

M2

M ′ M

σ1

σ2

a

ba

b

M ′′

M0

M1

M2

M ′ M

σ−1
1

σ−1
1 −
• b

a

ba

b

b−• σ−1
1 = ε

M0

M1

M2

M ′ M

σ1

σ2

a

ba

b
σ

Fig. 3. Illustration of the proof of Theorem 2: the initial assumptions are depicted on
the left, the sequences in the reverse system (−N,M) are depicted in the middle, where
the sequence leading to M ′′ from M0 equals ε, implying that M ′′ =M0. In the original
system, we deduce the reachability of M ′ from M0 on the right, with σ = (σ−1

1 −
• b)−1.
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Theorem 2 becomes wrong for FA systems, thus also for CF systems. Indeed,
a non-backward persistent FA system is provided in Figure 4.

p1

p2 p3

2

t1

t2 t3

(0, 2, 0)T (1, 1, 0)T

(2, 0, 0)T

(0, 1, 1)T

(1, 0, 1)T
t2

t2

t1

t3 t2

t3

Fig. 4. A Fork-Attribution (FA) system on the left and its reachability graph on the
right, where the initial marking is boxed. The FA system is not backward persistent,
since the marking (1, 1, 0)T can be reached from two predecessors by firing t2 and t3
respectively from the initial marking and from (0, 1, 1)T , but the initial marking has
no predecessor.

3.3 Fireability of T-vectors in WMGs

In this subsection, we develop conditions for the existence of enabled sequences
corresponding to given Parikh vectors. For that purpose, we borrow some vo-
cabulary from [26, 28] as follows: for a net with incidence matrix C, we say that
a marking M is potentially reachable from a marking M0 if a T-vector ν exists
such that M = M0 + C · ν. If, additionally, a sequence σ is feasible in (N,M0)
such that P(σ) = ν, we say that ν is fireable (or feasible, or realisable) at M0.

Lemma 3 (Realisable T-vectors in WMGs). Let N = (P, T,W ) be a WMG
with incidence matrix C. LetM be a marking and ν ∈ NT be a T-vector such that
M+C ·ν ≥ 0. Let T1 be the support of ν, P1 = •T1∩T •1 , σ′ a transition sequence
such that ν ≤ P(σ′), and M ′ be a marking such that ∀p ∈ P1 : M ′(p) = M(p).
Then, if M ′[σ′〉, there is a firing sequence M [σ〉 such that P(σ) = ν.

Proof. By induction on the size of ν. If ν = 0, the property is clearly true.
Otherwise, let t be the first transition of T1 occurring in σ′, i.e. σ′ = σ′1tσ

′
2 with

ν(ti) = 0 for each ti in σ′1.
Assume that ¬M [t〉, then for some p ∈ •t,M(p) < W (p, t). SinceM+C ·ν≥0,

there is t′ ∈ •p, t′ 6= t, such that t′ ∈ T1, and t′ is unique in •p since N is a WMG.
This contradicts the fact that M ′[σ′1t〉 since t′ does not occur in σ′1. Hence, we
assume that M [t〉M1 and M ′[σ′1〉M ′′[t〉M ′1[σ′2〉.

Since the net is a WMG, the only transitions able to modify the places in P1

are in T1. Thus, we have M(p) = M ′(p) = M ′′(p) and M1(p) = M ′1(p) for each
p ∈ P1 (no transition of T1 belongs to σ′1). Let us denote by δt the T-vector with
value 1 for t, 0 elsewhere.

Hence, the induction hypothesis applies to ν−δt ≤ P(σ′2) from the markings
M1 andM ′1, and there is a firing sequenceM1[σ1〉 with P(σ1) = ν−δt. Thus, the
sequence σ = tσ1 with Parikh vector ν is enabled at M . The lemma results. ut
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Instantiating Lemma 3 with M =M ′, we deduce the next corollary.

Corollary 1 (Potential reachability in WMGs). Let N = (P, T,W ) be a
WMG with incidence matrix C. Let M be any marking and ν ∈ NT be a T-vector
such that M ′ =M+C ·ν ≥ 0. Let σ be a transition sequence such that ν ≤ P(σ).
Then, if M [σ〉, there is a firing sequence M [σ′〉M ′ such that P(σ′) = ν.

Lemma 3 and Corollary 1 are not valid in the class of FA systems. Indeed,
denoting by C the incidence matrix of the system in Figure 4, by M0 its initial
marking (0, 2, 0)T and by ν the T-vector (1, 1, 1)T , we have: M0 = M0 + C · ν,
and the sequence σ = t2t2t1t3 is enabled at M0, with P(σ) ≥ ν. However, there
is no initially feasible sequence whose Parikh vector equals ν.

We present next the notion of a maximal execution vector in order to obtain
Theorem 3 on potentially reachable markings below.

Definition 3 (Maximal execution vector in WMGs). Let ζ be a WMG
system whose set of transitions is T . We denote by maxexζ : T → N ∪ {∞} the
extended T-vector satisfying: ∀t ∈ T , maxexζ(t) is the maximal number of times
t may be executed in firing sequences of ζ, allowing the case maxexζ(t) =∞.

Theorem 3 (Potential reachability in WMGs, revised). Let ζ = (N,M0)
be a WMG with incidence matrix C. Let ν ∈ NT be a T-vector such that M =
M0 + C · ν ≥ 0. Let maxexζ be the maximal execution vector of ζ. Then, there
exists a firing sequence M0[σ〉M with P(σ) = ν if and only if ν ≤ maxexζ .

Proof. Suppose that M0[σ〉M with P(σ) = ν. Since σ can be fired at M0, we
deduce, from the definition of maxexζ , that ∀t ∈ T , maxexζ(t) ≥ P(σ)(t), thus
ν ≤ maxexζ .

Conversely, suppose that ν ≤ maxexζ . Then, for each t ∈ T , since ν(t) ≤
maxexζ(t), there is a finite firing sequence M0[σt〉 such that ν(t) ≤ P(σt)(t). By
persistence and Keller’s theorem (applied |T | − 1 times), there is a finite firing
sequence M0[σ

′〉 such that ∀t ∈ T : P(σt)(t) ≤ P(σ′)(t), hence ν ≤ P(σ′) and
Corollary 1 applies. ut

In this section, we delineated several properties on the reachability graph
of WMGs. In the next section, we exploit some of these conditions, notably
persistence and backward persistence, to synthesise a WMG from a given lts,
when possible.

4 Synthesis of Connected, Bounded, Weakly Live WMGs

In the domain of Petri net synthesis from labelled transition systems, the aim is
to build a Petri net system whose reachability graph is isomorphic to a given lts,
when it exists. Usually, one has to check first some necessary structural properties
of the lts. In some rare cases, such conditions have been proven sufficient for
ensuring the existence of a solution (sometimes a unique minimal one) in the class
considered and for driving the synthesis process [2, 4]. However, in most cases,

11



the known synthesis methods need a combination of such necessary conditions
with other computational checks and constructions [1, 3, 5, 7, 6, 9].

In this section, we focus on finite, totally reachable and weakly live lts, the
latter property meaning that each label of T occurs at least once in the lts. We
build a procedure synthesising a connected WMG solving such lts when possible.

First, in Subsection 4.1, we highlight necessary conditions of WMG-solvability,
notably persistence, backward persistence and the existence of specific cycles. We
also build a counter-example showing that these conditions, when satisfied, are
not sufficient to ensure WMG-solvability.

Then, in Subsection 4.2, we highlight constraints induced by each place and
we delineate two subsets of the lts states that are particularly relevant to WMG-
synthesis. By focusing the analysis on these states, the number of checking steps
is potentially reduced.

Finally, in Subsections 4.3 and 4.4, we define systems of constraints for two
kinds of lts shapes: the cyclic case, i.e. when the lts is strongly connected (hence
reversible), and the acyclic case, i.e. when the lts does not contain any cycle.
We show these two cases to contain all the lts being solvable by a connected,
bounded and weakly live WMG. Also, the number of constraints is reduced by
checking only the relevant states defined in Subsection 4.2. When these systems
have a solution, we obtain a WMG solving the lts. To extend this method to
all the WMG-solvable lts, the decomposition technique developed in [14–16] to
factorise a lts into prime factors, i.e. factors that cannot be further factorised
and hence should correspond to connected nets, can finally be exploited.

4.1 Necessary Conditions for Solvability with Connected WMGs

For a synthesis into a connected WMG to succeed, the given lts must satisfy the
conditions of Proposition 1, the properties described in Proposition 2, as well as
persistence and backward persistence, as proved in Theorem 2. The boundedness
of the WMG obtained stems from the finiteness of the lts. We capture part of
these conditions with the next notation b and c and explain the relationship
between the existence of a cycle in the lts and property c.

Properties b and c. For any lts TS = (S,→, T, ι), we denote by:

– b the property: TS is finite, weakly periodic, deterministic and backward
deterministic, persistent and backward persistent, totally reachable;

– c the property: TS is strongly connected, all its small cycles have the same
prime Parikh vector π with support T , and P(α) is a multiple of π for each
cycle α.

Let us consider the case in which the finite lts contains a cycle. Then, the
(finite) reachability graph of any connected and bounded WMG solving this lts
contains a cycle. Thus, from Proposition 2, the cycle contains all transitions. By
Corollary 4 in [27], the system is live, and by backward persistence, it is also
reversible, implying the strong connectedness of the reachability graph. Conse-
quently, we have to consider only two cases: the given lts is either acyclic or is
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strongly connected, the second case being considered in property c.

Without loss of generality, we assume in the sequel that the lts considered are
weakly live. The next lemma presents relationships between properties relevant
to the synthesis.

Lemma 4 (Determinism, reversibility, cycle consistence). Let us con-
sider a weakly live lts TS = (S,→, T, ι).
1) If TS satisfies b, it also satisfies the full determinism and full backward de-
terminism.
2) If TS satisfies b and is acyclic, all the sequences between any two states have
the same Parikh vector.
3) If TS satisfies b and contains a small prime cycle with support T and Parikh
vector π, then TS satisfies property c, there is a small prime cycle around each
state, each arc belongs to a small prime cycle, TS satisfies the strong cycle con-
sistence; also, for any two states s1 and s2, there is a sequence from s1 to s2
whose Parikh vector δ is not greater than nor equal to π, and each other sequence
σ from s1 to s2 satisfies P(σ) = P(δ) + k · π for a non-negative integer k.

Proof. 1) Full determinism and full backward determinism arise directly from
determinism and backward determinism and from persistence and backward per-
sistence, with the aid of Proposition 3 applied to TS and to its reverse version.

2) If the lts is acyclic, satisfies b and, for some s ∈ S and s′ ∈ [s〉, we have
s[α〉s′ as well as s[β〉s′ with P(α) 6= P(β), and α−• β or β−• α is non-empty
(both of them may be non-empty). Then, as in the proof of Lemma 2, with
the aid of Keller’s theorem and of Lemma 1, we can build a uniform chain
s′[α−• β〉s1[α−• β〉s2 · · · and s′[β−• α〉s1[β−• α〉s2 · · · . Since the lts is finite, there
must exist positive integers i and j such that i < j and si = sj , forming a
non-empty cycle, hence a contradiction with the acyclicity.

3) In the rest of the proof, we suppose that the lts satisfies b and contains a
small prime cycle α around some state s ∈ S with support T . Determinism and
persistence imply that cycles can be pushed forward Parikh-equivalently, i.e.: if
s[α〉s∧s[t〉s′, then s′[α′〉s′ for some α′ with P(α′) = P(α) (applying Keller’s the-
orem). Symmetrically, backward determinism and backward persistence imply
that cycles can be pushed backward Parikh-equivalently.

Now, consider any non-empty cycle β around some state s′ in TS . Both cycles
α and β can be pushed backward Parikh-equivalently to the initial state ι (since
s and s′ are reachable from ι by total reachability). Using Keller’s theorem,
both support-disjoint sequences α−•β and β−•α are feasible at ι and lead to some
marking s0. Since (α−•β)n and (β−•α)n are feasible at ι for every positive integer
n while the lts is finite, there exists a positive integer m such that (α−• β)m
and (β−• α)m are cycles. Since the lts is also weakly periodic, deterministic and
backward deterministic, both α−• β and β−• α are cycles. Since α, β 6= ε and
supp(α) = T , we have P(α−• β) � P(α). Hence, if α−• β 6= ε, it forms a smaller
cycle, contradicting the fact that α is already a small cycle. Thus, necessarily,
α−• β = ε, implying that P(β) ≥ P(α). Suppose that P(β) is not a multiple
of P(α). Denote by k the largest integer such that P(β) ≥ k · P(α) and β′ =

13



β−• αk 6= ε. Necessarily, P(α) 6≥ P(β′) and P(β′) 6≥ P(α), implying that P(α) 	
P(α−•β′) 	 0, where α−•β′ is a cycle, contradicting the fact that α is a small cycle.
We deduce that P(β), as well as each other Parikh vector of each non-empty
cycle of the lts, is a multiple of P(α) = π.

Hence, from total reachability and persistence, there is a small prime cycle
(with Parikh vector π) around the initial state, as well as around any state.

Since there is a small cycle with support T around each state, by Keller’s
theorem each arc can be extended into a cycle: s[t〉s′ implies there is a sequence
s′[γ〉s with P(tγ) = π. As a consequence, TS is reversible, thus strongly con-
nected.

For any cycle s[β〉s, from the above, we have that P(β) = k · π for some
integer k ≥ 0. Now, if a sequence s[γ〉s′ is such that k1 ·P(γ) = k2 · π for some
positive integers k1, k2, since π is prime k1 must divide k2; let us denote by k′
the integer k2/k1. We have P(γ) = k′ · π so that by full determinism s = s′,
hence the strong cycle consistence.

Consider a sequence s[α〉s′ in TS . Suppose that P(α) ≥ π. Since there is
a small cycle γ with Parikh vector π around s, we build a shorter sequence by
applying Keller’s theorem as follows: α−•γ is fireable at s and leads to s′. We can
build such shorter sequences until we get a sequence s[α′〉s′ with P(α′) 6≥ π and
P(α) = P(α′) + k · π for some integer k > 0. If we start from another sequence
s[β〉s′, we get similarly s[β′〉s′ with P(β′) 6≥ π, and P(β) = P(β′) + h · π for a
non-negative integer h. If P(β′) 6= P(α′), then we have two cases.

In the first case, one of them is greater than the other one, without loss of
generality P(β′) ≥ P(α′), in which case, with Keller’s theorem, we can construct
from s′ the cycle β′−• α′ with P(β′−• α′) 6≥ P(π) a contradiction with the fact
that the Parikh vector of every cycle of TS is a multiple of π (with support T ).

In the second case, β′−• α′ and α′−• β′ are both non-empty with disjoint sup-
ports, their support containing at least one null component. In this second case,
we construct from s1 = s′ a chain s1[σ〉s2[σ〉s3 · · · , with σ = β′−•α′ as well as for
σ = α′−• β′. Since the lts is finite, we must have si = sj for some i < j, hence a
cycle with Parikh vector n · π = (j − i) ·P(σ) for some positive integer n, which
is incompatible with the fact that the support of π is T and the support of σ
does not contain all transitions.

Thus, we get a contradiction in both cases, implying that P(β′) = P(α′). We
deduce that for every sequence σ from s1 to s2, there exists a sequence δ 6≥ π
from s1 to s2 such that P(σ) = P(δ)+ k ·π for some non-negative integer k. ut

Insufficiency of the necessary conditions b and c for WMG-solvability.
In Figure 5, we provide an example of an FA system whose reachability graph
satisfies all conditions of properties b and c but is not WMG-solvable. We deduce
that these conditions, when satisfied by a given lts, are not sufficient for ensuring
the existence of a solution in the WMG subclass. Indeed, in Figure 5, each
possible attempt of a construction leads to a contradiction, as detailed next.

– Non-existence of a WMG solution with six places:
To obtain a WMG solution structured as on the right of Figure 5, the
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following sequences must be feasible at the initial marking M0:

t3t1 ⇒M0(p1) ≥ 3

t3t1t2t3t1t3t2t1 ⇒M0(p2) ≥ 3

t2t3t1t2 ⇒M0(p3) ≥ 9

t3t1t3t2t1t3t2t1t3t2t3 ⇒M0(p4) ≥ 9

t3t1t3 ⇒M0(p5) ≥ 6

t2t3t1t2t3t1t3t1t2 ⇒M0(p6) ≥ 12

The sequence σ = t2t3t1t3t1t3t2t1t3t3 is then feasible in such a constrained
WMG but is not enabled in the FA system ζ.

– Non-existence of a WMG solution with fewer places:
Since the previous WMG system with six places and its necessary marking
are too permissive, we deduce that the same contradicting sequence σ is also
feasible in all less constrained WMGs, typically obtained by removing some
places while retaining the necessary initial marking in the other places.

p1

p2

p3

42

3

3

3

t1

t2 t3 3

p1

3

p2

9

p3

9

p4
6

p5

12

p6

3 7
3 7

6

6

6

6

7 3

37

t1
t2 t3

Fig. 5. A Fork-Attribution (FA) system ζ is pictured on the left. Its minimal prime
T-semiflow π = (6, 3, 7) equals the Parikh vector of each small cycle of RG(ζ). The
latter is persistent and backward persistent, reversible, finite and fulfills properties
b and c. The most constrained WMG solution ζ′ whose reachability graph could be
isomorphic to RG(ζ) is depicted on the right: its weights are directly deduced from π
and, in each place, the given amount of tokens is necessary to enable the sequences of
RG(ζ). However, this necessary initial marking already enables a sequence that is not
feasible in ζ, namely σ = t2t3t1t3t1t3t2t1t3t3. Since every possible variant ζ′′ of ζ′ is
less constrained than ζ′, each such ζ′′ also enables σ. We deduce that no WMG solves
RG(ζ).

Checking the necessary conditions in a pre-synthesis phase. Since the
lts is finite, all the necessary properties for solvability can be checked in a naive
way. However, some algorithmic improvement can be achieved by considering an
adequate checking order. For instance, from Proposition 3, property b implies
full determinism and full backward determinism, whose checking is thus avoided.
In the next subsection, we exhibit subsets of states of the lts whose analysis is
sufficient to ensure some constraints, allowing to perform fewer operations.
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4.2 Constraints and Subsets of States Relevant to WMG-Synthesis

In the following, we describe some constraints that must be fulfilled in order to
synthesise a WMG. Also, we define two subsets of the states of the given lts
that are sufficient to check in order to fulfill several constraints over all states,
decreasing potentially the size of the systems of constraints to solve.

AWMG synthesis amounts to build places of the kind schematised in Figure 6.

ma,b

pa,b
a b

Wa Wb ma,∗

pa,∗
a

Wa m∗,b

p∗,b
b

Wb

Fig. 6. Possible types of places for the synthesis of a WMG (N,M0), with initial
marking ma,b =M0(pa,b), ma,∗ =M0(pa,∗) and m∗,b =M0(p∗,b).

Constraints related to places in the WMG. Note that a place pa,∗ is
equivalent to a place pa,b with Wb = 0, and a place p∗,b is equivalent to a place
pa,b with Wa = 0. In a place pa,b, we can always choose Wa and Wb relatively
prime without loss of generality, with an adequate initial markingM0. If a and b
are the same label, then we have a single transition and the place is equivalent to
either a place pa,∗, p∗,a or no place at all, depending on the sign of the difference
betweenWa andWb. In a place pa,∗, the initial markingM0(pa,∗) may always be
chosen as 0 and the weightWa as 1. In a place p∗,b, we must haveWb ≤M0(p∗,b)
(otherwise the lts would not be weakly live), and the weight Wb can always be
chosen as 1, with an adequate choice of the initial marking M0.

If T = ∅, TS is reduced to its initial state and the (minimal) solution is the
empty Petri net. If T = {a} is a singleton, either TS is acyclic, in the form of
a single chain, and the minimal solution is a place p∗,a, with an initial marking
deduced from the length of the chain, or it is a loop ι[a〉ι with a minimal solution
reduced to a transition a without any place. Hence, in the following, we assume
without loss of generality that |T | > 1. We shall also assume that the lts to be
synthesised satisfies property b and either acyclicity or c.

M0 is the marking corresponding to the initial state ι; consider any state s ∈
S with a shortest sequence from ι to s, meaning that no other sequence from ι to
s has a smaller Parikh vector. By Lemma 4 (point 2 or 3), such a sequence exists,
and all such sequences from ι to s share the same Parikh vector ∆s. The marking
corresponding to state s is given byMs(pa,b) =M0(pa,b)+∆s(a)·Wa−∆s(b)·Wb.
The next conditions are necessary and sufficient for allowing (and realising) a
synthesis, and are related to the classical regional approach [1]:

– The number of tokens in pa,b must remain non-negative at each reachable
marking described by a state in S.

– For each state s not allowing b, there must exist a place p such that Wb is
larger than Ms(p), where Ms is the marking associated to s.

– Any two different states s′, s′′ must be distinguished by a place p′ such that
Ms′(p

′) 6=Ms′′(p
′).
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In many cases, notably for CF and MG synthesis [3, 4, 9, 12], hence in this
study, the last constraint, called the separation property, arises from the other
two and from the assumptions on TS .

Two subsets of states relevant to the WMG-synthesis. The first two
constraints above are linked to two particular subsets of states of TS : for each
label x ∈ T , we define

OX (x) = {r ∈ S | r[t〉 ⇒ t = x} and NXX (x ) = {s ∈ S|¬s[x〉∧∀s′ ∈ s• : s′[x〉}.

For each state s in OX (x ) (the notation stemming from “Only X”), the only
arc starting at s, if any, is labelled x. Let us consider a place pa,b and a longest
sequence without a starting from some state s. This sequence is finite since the
lts is finite, and each cycle along the sequence, if any, has support T , hence
contains an a. Thus, we reach a state r either without successor (this may only
occur if the lts is acyclic) or with a single output a, hence in OX (a) in both
cases, and Ms(pa,b) ≥ Mr(pa,b). As a consequence, to check that all markings
of pa,b reachable from ι are non-negative, we only have to check the states in
OX (a): r ∈ OX (a)⇒Mr(pa,b) ≥ 0 and Ms(pa,b) ≥ 0.

For each state s in NXX (x ), x cannot be executed at s (hence the first two
letters NX of the notation), but in each next state s′, if any, x is enabled (hence
the last letter X of the notation). Let us assume that a place pa,b may be used to
exclude performing b at some state s (i.e. ¬s[b〉), meaningMs(pa,b) < Wb. If s′[t〉s
with ¬s′[b〉 (which implies t 6= b), then Ms(pa,b) ≥ Ms′(pa,b), so that the same
place pa,b disables b at s′. Moreover, the longest chains of states excluding to
perform b are necessarily finite since b occurs in any non-empty cycle; hence they
all end in states of NXX (b). As a consequence, in order to exclude performing
b when necessary, one only has to find, for each state r ∈ NXX (b), a place
pa,b such that Mr(pa,b) < Wb (while allowing all valid transitions, as expressed
through OX (a)). In some cases, a same place pa,b can be used for several states
in NXX (b).

In our case, for any label x, the states in NXX (x ) have a very special shape,
highlighted in the next lemma whose proof is illustrated in Figure 7.

Lemma 5 (Single outputs of the states in NXX ). Let TS = (S,→, T, ι) be
a lts satisfying property b. If x, a, b ∈ T , r ∈ NXX (x ), r[a〉 and r[b〉, then a = b.

Proof. Let us assume that r[a〉r1 and r[b〉s1 with a 6= b. Since r ∈ NXX (x ), we
have r1[x〉r2 and s1[x〉s2 for some states r2, s2. By persistence (and determinism),
we also have r1[b〉s, s1[a〉s, s[x〉s′, r2[b〉s′ and s2[a〉s′ for some s, s′. By backward
persistence, we then have s′′[a〉r2 and s′′[b〉s2 for some s′′, as well as s′′′[x〉s′′
and s′′′[b〉s1 for some s′′′. Finally, by backward determinism, s′′′ = r and r[x〉,
contradicting the fact that r ∈ NXX (x ). ut

If TS is acyclic, by persistence there is a unique (maximal) state without
successor; let us call it s∞; we then have s∞ ∈ ∩x∈TNXX (x ). If TS is cyclic,
there is no such state. In any case, we may have several states s and label a 6= x
in some NXX (x ) with s[ax〉.
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Fig. 7. Illustration of the proof of Lemma 5.

4.3 Computational Synthesis in the General Cyclic Case

Let TS = (S,→, T, ι) be a lts satisfying properties b and c, denoting by π
the unique minimal Parikh vector of small cycles, with support T . Each place
pa,b must satisfy Wa · π(a) = Wb · π(b), thus we can choose Wa = π(b) and
Wb = π(a) (or any proportional values3, in particular π(b)/ gcd(π(a), π(b)) and
π(a)/ gcd(π(a), π(b))), and the only parameter that still needs to be fixed is the
initial marking (plus the exact pairs a, b for which we need those places).

For each b ∈ T , we need such a place pa,b if there is a state s ∈ NXX (b)
such that s[ab〉 (otherwise, there is no way to enable a b after an a when b is
not directly enabled). We denote by pred(b) the set {a ∈ T |∃s ∈ NXX (b), s[ab〉}
and, for any a ∈ pred(b), NXX (a, b) = {s ∈ NXX (b)|s[ab〉}.

For each a, b ∈ T such that a ∈ pred(b), since Wa = π(b) and Wb = π(a),
we have to solve the following constraints (inM0, over the non-negative integers):{

∀s ∈ OX (a) :M0(pa,b) ≥ ∆s(b) · π(a)−∆s(a) · π(b)
∀s ∈ NXX (a, b) :M0(pa,b) < ∆s(b) · π(a)−∆s(a) · π(b) + π(a)

This amounts to first compute

M0(pa,b) = max
s∈OX (a)

{∆s(b) · π(a)−∆s(a) · π(b)}

and then to check that, for each s ∈ NXX (a, b),

M0(pa,b) < ∆s(b) · π(a)−∆s(a) · π(b) + π(a).

If each such system of constraints is solvable, we obtain a WMG solution of TS .
Otherwise, there is no solution and the reason is known.

4.4 Computational Synthesis in the General Acyclic Case

In the acyclic case, we may first apply the factorisation techniques of [14–16]
to check if the given lts is prime and thus has a chance to have a connected
3 This is the only way to define an adequate pa,b; in particular, there is no p∗,b or pa,∗.
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solution. The weights Wa and Wb around the place pa,b are not constrained by a
T-semiflow. Thus, we may need variants of such places (differing by the weights
Wa, Wb and the initial marking). We may also need places p∗,b and pa,∗; in
particular, a place p∗,b with Wb = 1 and M0 = ∆s∞(b) excludes executing b
at the final state s∞. Such a place may be redundant with other ones, but we
do not aim here at building an optimal solution: we focus on the existence of a
solution and on its construction.

In this acyclic case, the enabledness of labels is described by the first set of
constraints below, using again the sufficient condition stating that the markings
at states from OX (a) must be non-negative. The last constraint expresses that
the place is useful for excluding some transition from some state.

For each b ∈ T , a ∈ pred(b) and s ∈ NXX (a, b), we have to solve the following
constraints (in M0(pa,b),Wa,Wb ∈ N):{

∀s′ ∈ OX (a) :M0(pa,b) ≥ ∆s′(b) ·Wb −∆s′(a) ·Wa

M0(pa,b) < ∆s(b) ·Wb −∆s(a) ·Wa +Wb.

To solve such a system, we can first consider the system in Wa and Wb:

∀s′ ∈ OX (a) : ∆s(b) ·Wb −∆s(a) ·Wa +Wb > ∆s′(b) ·Wb −∆s′(a) ·Wa

i.e.: ∀s′ ∈ OX (a) : [∆s(b)−∆s′(b) + 1] ·Wb > [∆s(a)−∆s′(a)] ·Wa

and then check if there exists a solution satisfying:

∆s(b) ·Wb −∆s(a) ·Wa +Wb > 0.

If each such system of constraints is solvable, we obtain a WMG solution of
TS . Otherwise, no solution exists and we know the reason.

5 Conclusions and Perspectives

Weighted marked graphs (WMGs) form a well-known subclass of Petri nets
with numerous real-life applications. These nets have been extensively studied
in previous works, leading to strong theoretical results.

For this class, we obtained new structural and behavioural properties, such
as backward persistence. We also delineated necessary conditions that must be
fulfilled by a labelled transition system to be WMG-solvable. We showed that
these necessary conditions are not sufficient. Finally, we specialised the synthesis
procedures devised for choice-free nets in [3, 5, 7, 6, 9] to WMG nets.

A perspective is to develop additional properties of WMGs in order to en-
hance the pre-synthesis phase, allowing to discard non-solvable systems promptly.
Ideally, such properties would characterise the WMG-solvable labelled transition
systems in a purely structural way, in the spirit of the methods designed for plain
marked graphs and T-systems in [2, 4].
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