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Numerous real-world systems can be modeled with Petri nets, which allow a combination of concurrency with synchronizations and conflicts. To alleviate the difficulty of checking their behaviour, a common approach consists in studying specific subclasses. In the converse problem of Petri net synthesis, a Petri net of some subclass has to be constructed efficiently from a given specification, typically from a labelled transition system describing the behaviour of the desired net. In this paper, we focus on a notorious subclass of persistent Petri nets, the weighted marked graphs (WMGs), also called generalised (or weighted) event (or marked) graphs or weighted T-nets. In such nets, edges have multiplicities (weights) and each place has at most one ingoing and one outgoing transition. Although extensively studied in previous works and benefiting from strong results, both their analysis and synthesis can be further investigated. To this end, we provide new conditions delineating more precisely their behaviour and give a dedicated synthesis procedure.

Introduction

Petri nets have proved useful to model numerous artificial and natural systems. Their weighted version allows weights on arcs, making possible the bulk consumption or production of tokens, hence a more compact representation of the systems.

Many fundamental properties of Petri nets are decidable, although often hard to check. Given a bounded Petri net, a naive analysis can be performed by constructing its finite reachability graph, whose size may be considerably larger than the net size. To avoid such a costly computation, subclasses are often considered, allowing to derive efficiently their behaviour from their structure only. This approach has led to various polynomial-time checking methods dedicated to several subclasses, the latter being defined by structural restrictions in many cases [START_REF] Desel | Free Choice Petri Nets[END_REF][START_REF] Teruel | Structure theory of Equal Conflict systems[END_REF][START_REF] Silva | Linear algebraic and linear programming techniques for the analysis of place/transition net systems[END_REF][START_REF] Hujsa | On liveness and reversibility of equal-conflict Petri nets[END_REF][START_REF] Hujsa | On liveness and deadlockability in subclasses of weighted Petri nets[END_REF].

In the domain of Petri net synthesis, a specification has to be implemented by a Petri net, meaning that the behaviour of the Petri net obtained must correspond exactly to the specification. Classical representations of such a specification encompass labelled transitions systems (lts for short), which are rooted directed graphs with labels on the arcs, and a synthesis procedure is meant to build a Petri net of a specific subclass whose reachability graph is isomorphic to a given lts.

Weighted marked graphs: applications and previous studies. In this paper, we focus on marked graphs with weights (also called generalised event graphs and weighted T-nets), a subclass of weighted Petri nets in which each place has at most one input and one output. They can model Synchronous DataFlow graphs [21], which have been fruitfully used to design and analyse many real systems such as embedded applications, notably Digital Signal Processing (DSP) applications [START_REF] Lee | Static scheduling of synchronous data flow programs for digital signal processing[END_REF][START_REF] Sriram | Embedded multiprocessors: scheduling and synchronization[END_REF][START_REF] Pino | A hierarchical multiprocessor scheduling framework for synchronous dataflow graphs[END_REF].

Various characterisations and polynomial-time sufficient conditions of structural and behavioural properties, notably of liveness, boundedness and reversibility, have been developed for this class [START_REF] Teruel | On weighted Tsystems[END_REF][START_REF] Marchetti | A sufficient condition for the liveness of Weighted Event Graphs[END_REF]. These nets are a special case of persistent systems, in which no transition firing can disable another transition.

Petri net synthesis: previous studies. Given a labelled transition system, previous works have proposed algorithms synthesizing a Petri net with an isomorphic reachability graph, sometimes aiming at a Petri net subclass [START_REF] Best | Synthesis of Bounded Choice-Free Petri Nets[END_REF][START_REF] Best | Bounded choice-free Petri net synthesis: Algorithmic issues[END_REF]. In the latter case, the objective is to delineate properties of the lts that are specific to the target subclass, so as to determine sufficient and necessary conditions for its synthesisability within the subclass. Ideally, such specific conditions should be easier to check than generic ones, for instance during a pre-synthesis phase.

Marked graphs, i.e. unit-weighted marked graphs, belong to the larger class of choice-free nets, in which each place has at most one output. Both classes benefit from dedicated synthesis algorithms that operate in polynomial time [START_REF] Best | Characterisation of the state spaces of live and bounded marked graph Petri nets[END_REF][START_REF] Best | State space axioms for T-systems[END_REF][START_REF] Best | Characterisation of the state spaces of marked graph Petri nets[END_REF][START_REF] Best | Synthesis of Bounded Choice-Free Petri Nets[END_REF][START_REF] Best | Bounded choice-free Petri net synthesis: Algorithmic issues[END_REF]. However, such methods do not yet exist for the intermediate class of marked graphs with arbitrary weights.

Contributions. In this paper, we further investigate the class of weighted marked graphs (WMGs). We delineate new properties of these nets and propose a synthesis procedure aiming at this subclass.

First, we provide new structural and behavioural properties of WMGs: we give a comparison property on the sequences starting at the same state and reaching another common state, we show that WMGs are necessarily backward persistent, meaning that for all reachable states s 1 , s 2 , s 3 such that s 2 [a s 1 (i.e. s 1 is reached from s 2 through the action with label a) and s 3 [b s 1 , there exists a reachable state s 4 with s 4 [b s 2 and s 4 [a s 3 . We also develop conditions allowing the existence of a feasible sequence corresponding to a given Parikh vector.

Then, we delineate necessary conditions for the WMG-solvability of an lts, such as backward persistence and the existence of particular cycles. We show, with the help of a counter-example from another subclass, that these conditions are not sufficient for a WMG solution to exist.

Finally, we devise a WMG-synthesis procedure, specialising previous methods that were designed for the larger class of choice-free nets.

Organisation of the paper. In Section 2, we introduce general definitions, notations and properties. In Section 3, we recall some properties of persistent Petri nets and provide new structural and behavioural results on WMGs, including the proof of backward persistence. In Section 4, we describe a synthesis procedure for WMGs. Section 5 presents our conclusion with perspectives.

Classical Definitions, Notations and Properties

In the following, we define formally Petri nets, labelled transitions systems and related notions. We also recall classical properties of Petri nets in Proposition 1.

Petri nets, incidence matrices, pre-and post-sets. A (Petri) net is a tuple N = (P, T, W ) such that P is a finite set of places, T is a finite set of transitions, with P ∩ T = ∅, and W is a weight function W : ((P × T ) ∪ (T × P )) → N setting the weights on the arcs. A marking of the net N is a mapping from P to N, i.e. a member of N P , defining the number of tokens in each place of N . A (Petri net) system is a tuple ζ = (N, M 0 ) where N is a net and M 0 is a marking, often called initial marking. The incidence matrix C of N (and ζ) is the integer place-transition matrix with components C(p, t) = W (t, p) -W (p, t), for each place p and each transition t. The post-set n • and pre-set • n of a node n ∈ P ∪ T are defined as n

• = {n ∈ P ∪ T | W (n, n )>0} and • n = {n ∈ P ∪ T | W (n , n)>0}.
Firings and reachability in Petri nets. Consider a system ζ = (N, M 0 ) with N = (P, T, W ). A transition t is enabled at M 0 (i.e. in ζ) if ∀p ∈ • t, M 0 (p) ≥ W (p, t), in which case t can occur at or be fired from M 0 . The firing of t from M 0 leads to the marking M = M 0 + C[P, t] where C[P, t] is the column of C associated to t: we note this as M 0 [t M . A finite (firing) sequence σ of length n ≥ 0 on the set T , denoted by σ = t 1 . . . t n with t 1 . . . t n ∈ T , is a mapping {1, . . . , n} → T . Infinite sequences are defined similarly as mappings

N \ {0} → T . A sequence σ of length n is enabled in ζ if the successive states obtained, M 0 [t 1 M 1 . . . [t n M n , satisfy M k-1 [t k M k , ∀k ∈ {1, . . . , n}, in which case M n is said to be reachable from M 0 : we note this as M 0 [σ M n . If n = 0, σ is the empty sequence , implying M 0 [ M 0 . The set of markings reachable from M 0 is noted [M 0 .
The reachability graph of ζ, noted RG(ζ), is the rooted directed graph (V, A, ι) where V represents the set of vertices [M 0 , A is the set of arcs labelled with transitions of T such that the arc M t -→ M belongs to A if and only if M [t M and M ∈ [M 0 , and ι = M 0 is the root.

In Figure 1, a weighted system is pictured on the left. Its reachability graph is pictured on the right, where v T denotes the transpose of vector v.

Petri net subclasses. N is plain if no arc weight exceeds 1; choice-free (CF for short) [START_REF] Crespi-Reghizzi | A decidability theorem for a class of vector-addition systems[END_REF][START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF] (also called place-output-nonbranching in [START_REF] Best | Synthesis and reengineering of persistent systems[END_REF]) if ∀p ∈ P , |p • | ≤ 1; fork-attribution (FA) [START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF] if it is CF and, in addition, ∀t ∈ T , | • t| ≤ 1; a weighted marked graph (WMG, also called weighted T-system in [START_REF] Teruel | On weighted Tsystems[END_REF]) if it is CF and, in addition, ∀p ∈ P , | • p| ≤ 1. A WMG is pictured on the left of Figure 1. Wellstudied subclasses encompass marked graphs [START_REF] Commoner | Marked directed graphs[END_REF], which are plain and fulfill |p • | = 1 and | • p| = 1 for each place p, and T-systems [START_REF] Desel | Free Choice Petri Nets[END_REF], which are plain and fulfill These notions are illustrated on the lts on the right of Figure 2, which is isomorphic to the reachability graph of the WMG in Figure 1; it is thus WMG-solvable.

|p • | ≤ 1 and | • p| ≤ 1 for each place p. p3 p4 p1 p2 2 1 4 3 1 1 2 3 t1 t2 t3 (0, 1, 4, 0) T (0, 0, 4, 3) T (2, 1, 0, 0) T (1, 1, 2, 0) T (2, 0, 0, 3) T (1, 0, 2, 3) T t2 t1 t3 t1 t1 t3 t1 t3
Two lts TS 1 = (S 1 , → 1 , T, s 01 ) and TS 2 = (S 2 , → 2 , T, s 02 ) are isomorphic if there is a bijection β : S 1 → S 2 with β(s 01 ) = s 02 and (s, t, s ) ∈→ 1 ⇔ (β(s), t, β(s )) ∈→ 2 , for all s, s ∈ S 1 .

Vectors, semiflows and cycles. The support of a vector is the set of the indices of its non-null components. Consider any net N = (P, T, W ) with its incidence matrix C. A T-vector is an element of N T ; it is called prime if the greatest common divisor of its components is one (i.e. its components do not have a common non-unit factor). A T-semiflow ν of the net is a non-null T-vector whose components are only non-negative integers (i.e. ν 0) and such that C • ν = 0. A T-semiflow is called minimal when it is prime and its support is not a proper superset of the support of any other T-semiflow [START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF]. The Parikh vector P(σ) of a finite sequence σ of transitions is a T-vector counting the number of occurrences of each transition in σ, and the support of σ is the support of its Parikh vector, i.e. supp(σ) = supp(P(σ)) = {t ∈ T | P(σ)(t) > 0}. A (non-empty) cycle around a marking M is a non-empty sequence σ such that M [σ M ; the Parikh vector of a non-empty cycle is a T-semiflow and a non-empty cycle is called prime if its Parikh vector is prime.

Further notions. Consider a lts TS = (S, →, T, ι). For all states s, s ∈ S, a sequence s[σ s is called a cycle, or more precisely a cycle at (or around) state s, if s = s . A non-empty cycle s[σ s is called small if there is no non-empty cycle s [σ s in TS with P(σ ) P(σ). A two-way uniform chain of TS is a couple

({s i ∈ S|i ∈ Z, ∀i, j ∈ Z : i = j ⇒ s i = s j }, σ ∈ T + ) such that ∀i ∈ Z, s i [σ s i+1 ,
where T + is the set of non-empty sequences on T .

In Figure 2, a two-way uniform chain is depicted on the left; on the right, the lts is finite, hence has no two-way uniform chain. The lts TS is:

-totally reachable if S = [ι ;
reversible if ι ∈ [s for each state s ∈ [ι , meaning the strong connectedness of this lts when it is totally reachable; weakly periodic if for each couple ({s i ∈ S|i ∈ N}, σ ∈ T + ) such that ∀i ∈ N s i [σ s i+1 (where σ is a non-empty sequence of labels), either s i = s j ∀i, j ∈ N, or i = j ⇒ s i = s j ∀i, j ∈ N; strongly cycle consistent if for every sequence s[α s , the existence of cycles Figure 2 illustrates some of these notions. All notions defined for labelled transition systems apply to Petri nets through their reachability graphs. For example, a Petri net is reversible if its reachability graph is isomorphic to a reversible lts, meaning that the initial marking is reachable from every reachable marking.

s 1 [β 1 s 1 , s 2 [β 2 s 2 , . . . , s n [β n s n and of numbers k 1 , k 2 , . . . , k n ∈ Q such that P(α) = n i=1 k i • P(β i ) implies that s = s ; -deterministic if,
. . . s-2 s-1 s0 s1 s2 . . . σ σ σ σ s5 s0 s1 s3 s2 s4 t2 t1 t3 t1 t1 t3 t1 t3
Fig. 2. On the left, a two-way uniform chain based on σ. On the right, a labelled transition system with states {s0, s1, s2, s3, s4, s5}, labels {t1, t2, t3} and initial state ι = s0. It is isomorphic to the reachability graph of Figure 1. The label t2 is enabled at s0 and t3 is backward enabled at s0. The state s1 is reachable from s0 through the execution of t2. Denote by σ the sequence t2t3t1t1. Then, the Parikh vector of σ is P(σ) = (2, 1, 1) and its support is supp(σ) = {t1, t2, t3}. Since s0[σ s0, σ is a cycle around state s0. This lts is totally reachable, weakly periodic, fully deterministic and fully backward deterministic, strongly cycle consistent, persistent, backward persistent and reversible.

The following proposition recalls properties satisfied by every Petri net system and presented in [START_REF] Best | Synthesis and reengineering of persistent systems[END_REF].

Proposition 1 (Classical properties of Petri nets [START_REF] Best | Synthesis and reengineering of persistent systems[END_REF]). If ζ = (N, M 0 ), where N = (P, T, W ), is a Petri net system, then RG(ζ) is totally reachable, weakly periodic, fully deterministic, fully backward deterministic, and strongly cycle consistent. Moreover it has no two-way uniform chain over the set S = N P of all the possible markings for N , meaning that no couple

({M i ∈ N P |i ∈ Z\{0}, ∀i, j ∈ Z : i = j ⇒ s i = s j }, σ ∈ T + ) exists such that ∀i ∈ Z, M i [σ M i+1 .

Properties of WMGs and Larger Persistent Classes

In this section, we investigate the structure and behaviour of WMGs. For that purpose, we first recall notions and results relevant to persistent systems in Subsection 3.1. Then, in Subsection 3.2, for the class of WMGs, we show a property of the sequences sharing the same starting state and the same ending state, and we prove backward persistence. Finally, in Subsection 3.3, we propose conditions for the existence of feasible sequences corresponding to a given Tvector in WMGs.

Previous Results and Notions Related to Persistence

In addition to the general properties of Petri nets mentioned in Proposition 1, we recall results and notions useful to the study of persistent systems.

The next result is dedicated to WMGs and extracted from [START_REF] Teruel | On weighted Tsystems[END_REF][START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF].

Proposition 2 (Minimal T-semiflow and cycles in WMGs [START_REF] Teruel | On weighted Tsystems[END_REF][START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF]).

Consider a connected WMG net N . If N has a T-semiflow ν then there exists a unique minimal (hence prime) one π, which satisfies: supp(π) = T and ν = k • π for some integer k > 0. Moreover, for any marking M 0 , writing ζ = (N, M 0 ), if RG(ζ) contains some non-empty cycle, then the Parikh vector of each small cycle of RG(ζ) equals π.

The next notion of residues is useful to the study of persistent systems.

Definition 1 (Residues). Let T be a set of labels and τ, σ ∈ T * two sequences over this set. The (left) residue of τ with respect to σ, denoted by τ -• σ, arises from cancelling successively in τ the leftmost occurrences of all symbols from σ, read from left to right. Inductively:

τ -• ε = τ ; τ -• t = τ if t / ∈ supp(τ ); τ -• t is the sequence obtained by erasing the leftmost t in τ if t ∈ supp(τ ); and τ -• (tσ) = (τ -• t)-• σ. For example, acbcacbc-• abbcb = cacc and abbcb-• acbcacbc = b.
We deduce the next property of residues.

Lemma 1 (Disjoint support of residues). For any two sequences τ and σ, the residues

δ 1 = τ -• σ and δ 2 = σ-• τ have disjoint supports: supp(δ 1 )∩supp(δ 2 ) = ∅. Consequently, δ 1 -• δ 2 = δ 1 and δ 2 -• δ 1 = δ 2 .
Proof. For any label t, P(τ

)(t) = P(σ)(t) ⇒ P(δ 1 )(t) = P(δ 2 )(t) = 0, P(τ )(t) > P(σ)(t) ⇒ P(δ 2 )(t) = 0 and P(τ )(t) < P(σ)(t) ⇒ P(δ 1 )(t) = 0. In all cases, t ∈ supp(δ 1 ) ∩ supp(δ 2 ).
Kellers's theorem is based on residues and applies to persistent lts.

Theorem 1 (Keller [19]). Let (S, →, T, ι) be a deterministic, persistent lts. Let τ and σ be two label sequences enabled at some state s. Then τ (σ-• τ ) and σ(τ -• σ) are both enabled at s and lead to the same state.

Applying Theorem 1, we obtain the next result directly.

Proposition 3 (Persistence and determinism). Let TS be a persistent lts. If TS is also deterministic, then it is fully deterministic.

Equivalent Sequences and Backward Persistence

In the following, we provide new properties on the reachability graph of WMGs. Since non-connected nets can be studied by analysing each connected component separately, we restrict our attention to connected nets.

For the class of WMGs, we first provide in Lemma 2 a property of the sequences starting from a same state s and leading to the same state s . Then, we prove the backward persistence of WMGs in Theorem 2. To achieve it, we need to define the reverse of a net and of a firing sequence.

Definition 2 (Reverse nets and sequences). The reverse of a net N , denoted by -N , is obtained from N by reversing all the arcs while keeping the weights. We denote by σ -1 the sequence σ followed in reverse order. For example, if

σ = t 1 t 2 t 2 t 3 , then σ -1 = t 3 t 2 t 2 t 1 .
The set of WMGs is closed under reverse, contrarily to the set of CF nets. Lemma 2 highlights strong similarities in the reachability graph between two sequences sharing the same starting state and the same destination state. The proof makes use of reverse sequences feasible in reverse WMGs.

Lemma 2 (Equivalent sequences in WMGs). Let N be a connected WMG. Assume the existence of markings M, M 1 and sequences σ, σ such that M [σ M 1 and M [σ M 1 . If N has no T-semiflow, then P(σ) = P(σ ). Otherwise, either P(σ) = P(σ ), or there exists an integer k > 0 such that P(σ) = P(σ ) + k.π or P(σ) + k.π = P(σ ), where π is the unique minimal T-semiflow of N .

Proof. Let us assume that P(σ) = P(σ ). We show in the following that N has necessarily a T-semiflow in this case, proving the first claim by contraposition. Since N is a WMG, it is persistent. Defining τ = σ-• σ and τ = σ -• σ, applying Keller's theorem (Theorem 1), we have for some marking M 2 that M 1 [τ M 2 and M 1 [τ M 2 . By Lemma 1, τ and τ have disjoint supports, τ -• τ = τ and τ -• τ = τ . Thus, applying Keller's theorem, a marking M 3 is reached from M 2 by firing τ or τ . Iterating this process up to any positive integer i, some marking

M i+1 is reached from M i with M i [τ M i+1 and M i [τ M i+1 . Now, in the reverse net -N , which is also a WMG, since M 2 [(τ ) -1 M 1 and M 2 [(τ ) -1 M 1 , still with disjoint supports, we can construct markings M 0 , M -1 , . . . such that ∀i ∈ Z, M i [(τ ) -1 M i-1 and M i [(τ ) -1 M i-1 , i.e. also M i-1 [τ M i and M i-1 [τ M i . If all M i '
s are (pairwisely) different, this leads to a two-way uniform chain for the system (N, M 1 ), contradicting Proposition 1. Consequently, for some i, j ∈ Z with i = j, we have M i = M j , and since σ, σ are different, they are not both empty and τ , τ cannot be both empty. Thus, N has a T-semiflow, proving the first claim of the lemma.

For the second claim, either P(σ) = P(σ ) or P(σ) = P(σ ). Consider the latter case: from the first part of the proof, taking the same notation, there is a positive integer n such that τ n and τ n are cycles appearing in the reachability graph of the system (N, M ). Since the supports of τ and τ are not both empty, Proposition 2 applies: there is a unique minimal T-semiflow π, whose support is T , and integers k, k ≥ 0 exist such that P(τ n ) = k • π and P(τ n ) = k • π, where k > 0 or k > 0. Since the supports of τ and τ are disjoint and the support of any cycle is T , then either k = 0, τ = , τ is a cycle and P(σ) P(σ ), or k = 0, τ = , τ is a cycle and P(σ ) P(σ). Thus, either P(σ) = P(σ ) + P(τ ) = P(σ ) + q.π for an integer q > 0 or P(σ ) = P(σ) + P(τ ) = P(σ) + q.π for an integer q > 0. Hence the claim.

In [START_REF] Teruel | On weighted Tsystems[END_REF], in the proof of Theorem 4.8, it is mentioned that each WMG is backward persistent without a proof, basing on the fact that the reverse of a WMG is still a WMG, hence a persistent net. However, this property needs to be proved carefully: since M 1 [a M and M 2 [b M , Keller's theorem implies the existence of a marking M reachable from (-N, M 1 ) and (-N, M 2 ), such that M [a M 2 and M [b M 1 in the original system; however, the reachability of M in the original system, under the assumption of reachability for M 1 and M 2 , is not obvious. In the following, we show it is indeed the case. 

• σ -1 1 M and M [σ -1 1 -• b M . Since b occurs in σ 1 , hence also in σ -1 1 , b-• σ -1 1 = and M = M 0 . Going back to ζ, we deduce that M 0 [(σ -1 1 -• b) -1 M , thus M is reachable in ζ. M0 M1 M2 M M σ1 σ2 a b a b M M0 M1 M2 M M σ -1 1 σ -1 1 -• b a b a b b-• σ -1 1 = M0 M1 M2 M M σ1 σ2 a b a b σ
Fig. 3. Illustration of the proof of Theorem 2: the initial assumptions are depicted on the left, the sequences in the reverse system (-N, M ) are depicted in the middle, where the sequence leading to M from M0 equals , implying that M = M0. In the original system, we deduce the reachability of M from M0 on the right, with σ = (σ -1

1 -• b) -1 .
Theorem 2 becomes wrong for FA systems, thus also for CF systems. Indeed, a non-backward persistent FA system is provided in Figure 4.

p1 p2 p3 2 t1 t2 t3 (0, 2, 0) T (1, 1, 0) T (2, 0, 0) T (0, 1, 1) T (1, 0, 1) T t2 t2 t1 t3 t2 t3 
Fig. 4. A Fork-Attribution (FA) system on the left and its reachability graph on the right, where the initial marking is boxed. The FA system is not backward persistent, since the marking (1, 1, 0) T can be reached from two predecessors by firing t2 and t3 respectively from the initial marking and from (0, 1, 1) T , but the initial marking has no predecessor.

Fireability of T-vectors in WMGs

In this subsection, we develop conditions for the existence of enabled sequences corresponding to given Parikh vectors. For that purpose, we borrow some vocabulary from [START_REF] Teruel | On weighted Tsystems[END_REF][START_REF] Teruel | Structure theory of Equal Conflict systems[END_REF] as follows: for a net with incidence matrix C, we say that a marking M is potentially reachable from a marking M 0 if a T-vector ν exists such that M = M 0 + C • ν. If, additionally, a sequence σ is feasible in (N, M 0 ) such that P(σ) = ν, we say that ν is fireable (or feasible, or realisable) at M 0 .

Lemma 3 (Realisable T-vectors in WMGs

). Let N = (P, T, W ) be a WMG with incidence matrix C. Let M be a marking and ν ∈ N T be a T-vector such that M + C • ν ≥ 0. Let T 1 be the support of ν, P 1 = • T 1 ∩ T • 1 , σ a transition sequence such that ν ≤ P(σ ), and M be a marking such that ∀p ∈ P 1 : M (p) = M (p). Then, if M [σ , there is a firing sequence M [σ such that P(σ) = ν.

Proof. By induction on the size of ν. If ν = 0, the property is clearly true. Otherwise, let t be the first transition of T 1 occurring in σ , i.e. σ = σ 1 tσ 2 with ν(t i ) = 0 for each t i in σ 1 .

Assume that ¬M [t , then for some p

∈ • t, M (p) < W (p, t). Since M +C•ν ≥ 0, there is t ∈ • p, t = t, such that t ∈ T 1 , and t is unique in • p since N is a WMG. This contradicts the fact that M [σ 1 t since t does not occur in σ 1 . Hence, we assume that M [t M 1 and M [σ 1 M [t M 1 [σ 2 .
Since the net is a WMG, the only transitions able to modify the places in P 1 are in T 1 . Thus, we have M (p) = M (p) = M (p) and M 1 (p) = M 1 (p) for each p ∈ P 1 (no transition of T 1 belongs to σ 1 ). Let us denote by δ t the T-vector with value 1 for t, 0 elsewhere.

Hence, the induction hypothesis applies to ν -δ t ≤ P(σ 2 ) from the markings M 1 and M 1 , and there is a firing sequence M 1 [σ 1 with P(σ 1 ) = ν -δ t . Thus, the sequence σ = tσ 1 with Parikh vector ν is enabled at M . The lemma results.

Instantiating Lemma 3 with M = M , we deduce the next corollary.

Corollary 1 (Potential reachability in WMGs). Let N = (P, T, W ) be a WMG with incidence matrix C. Let M be any marking and ν ∈ N T be a T-vector such that M = M +C •ν ≥ 0. Let σ be a transition sequence such that ν ≤ P(σ). Then, if M [σ , there is a firing sequence M [σ M such that P(σ ) = ν. Lemma 3 and Corollary 1 are not valid in the class of FA systems. Indeed, denoting by C the incidence matrix of the system in Figure 4, by M 0 its initial marking (0, 2, 0) T and by ν the T-vector (1, 1, 1) T , we have: M 0 = M 0 + C • ν, and the sequence σ = t 2 t 2 t 1 t 3 is enabled at M 0 , with P(σ) ≥ ν. However, there is no initially feasible sequence whose Parikh vector equals ν.

We present next the notion of a maximal execution vector in order to obtain Theorem 3 on potentially reachable markings below. Conversely, suppose that ν ≤ maxex ζ . Then, for each t ∈ T , since ν(t) ≤ maxex ζ (t), there is a finite firing sequence M 0 [σ t such that ν(t) ≤ P(σ t )(t). By persistence and Keller's theorem (applied |T | -1 times), there is a finite firing sequence M 0 [σ such that ∀t ∈ T : P(σ t )(t) ≤ P(σ )(t), hence ν ≤ P(σ ) and Corollary 1 applies.

In this section, we delineated several properties on the reachability graph of WMGs. In the next section, we exploit some of these conditions, notably persistence and backward persistence, to synthesise a WMG from a given lts, when possible.

Synthesis of Connected, Bounded, Weakly Live WMGs

In the domain of Petri net synthesis from labelled transition systems, the aim is to build a Petri net system whose reachability graph is isomorphic to a given lts, when it exists. Usually, one has to check first some necessary structural properties of the lts. In some rare cases, such conditions have been proven sufficient for ensuring the existence of a solution (sometimes a unique minimal one) in the class considered and for driving the synthesis process [START_REF] Best | Characterisation of the state spaces of live and bounded marked graph Petri nets[END_REF][START_REF] Best | State space axioms for T-systems[END_REF]. However, in most cases, the known synthesis methods need a combination of such necessary conditions with other computational checks and constructions [START_REF] Badouel | Petri Net Synthesis[END_REF][START_REF] Best | Synthesis of persistent systems[END_REF][START_REF] Best | Synthesis and reengineering of persistent systems[END_REF][START_REF] Best | Synthesis of live and bounded persistent systems[END_REF][START_REF] Best | Synthesis of Bounded Choice-Free Petri Nets[END_REF][START_REF] Best | Bounded choice-free Petri net synthesis: Algorithmic issues[END_REF].

In this section, we focus on finite, totally reachable and weakly live lts, the latter property meaning that each label of T occurs at least once in the lts. We build a procedure synthesising a connected WMG solving such lts when possible.

First, in Subsection 4.1, we highlight necessary conditions of WMG-solvability, notably persistence, backward persistence and the existence of specific cycles. We also build a counter-example showing that these conditions, when satisfied, are not sufficient to ensure WMG-solvability.

Then, in Subsection 4.2, we highlight constraints induced by each place and we delineate two subsets of the lts states that are particularly relevant to WMGsynthesis. By focusing the analysis on these states, the number of checking steps is potentially reduced.

Finally, in Subsections 4.3 and 4.4, we define systems of constraints for two kinds of lts shapes: the cyclic case, i.e. when the lts is strongly connected (hence reversible), and the acyclic case, i.e. when the lts does not contain any cycle. We show these two cases to contain all the lts being solvable by a connected, bounded and weakly live WMG. Also, the number of constraints is reduced by checking only the relevant states defined in Subsection 4.2. When these systems have a solution, we obtain a WMG solving the lts. To extend this method to all the WMG-solvable lts, the decomposition technique developed in [START_REF] Devillers | Products of Transition Systems and Additions of Petri Nets[END_REF][START_REF] Devillers | Factorisation of transition systems[END_REF][START_REF] Devillers | Factorisation of Petri net solvable transition systems[END_REF] to factorise a lts into prime factors, i.e. factors that cannot be further factorised and hence should correspond to connected nets, can finally be exploited.

Necessary Conditions for Solvability with Connected WMGs

For a synthesis into a connected WMG to succeed, the given lts must satisfy the conditions of Proposition 1, the properties described in Proposition 2, as well as persistence and backward persistence, as proved in Theorem 2. The boundedness of the WMG obtained stems from the finiteness of the lts. We capture part of these conditions with the next notation b and c and explain the relationship between the existence of a cycle in the lts and property c. Properties b and c. For any lts TS = (S, →, T, ι), we denote by: -b the property: TS is finite, weakly periodic, deterministic and backward deterministic, persistent and backward persistent, totally reachable; -c the property: TS is strongly connected, all its small cycles have the same prime Parikh vector π with support T , and P(α) is a multiple of π for each cycle α.

Let us consider the case in which the finite lts contains a cycle. Then, the (finite) reachability graph of any connected and bounded WMG solving this lts contains a cycle. Thus, from Proposition 2, the cycle contains all transitions. By Corollary 4 in [START_REF] Teruel | Choice-Free Petri Nets: a Model for Deterministic Concurrent Systems with Bulk Services and Arrivals[END_REF], the system is live, and by backward persistence, it is also reversible, implying the strong connectedness of the reachability graph. Consequently, we have to consider only two cases: the given lts is either acyclic or is strongly connected, the second case being considered in property c.

Without loss of generality, we assume in the sequel that the lts considered are weakly live. The next lemma presents relationships between properties relevant to the synthesis. Lemma 4 (Determinism, reversibility, cycle consistence). Let us consider a weakly live lts TS = (S, →, T, ι). 1) If TS satisfies b, it also satisfies the full determinism and full backward determinism.

2) If TS satisfies b and is acyclic, all the sequences between any two states have the same Parikh vector.

3) If TS satisfies b and contains a small prime cycle with support T and Parikh vector π, then TS satisfies property c, there is a small prime cycle around each state, each arc belongs to a small prime cycle, TS satisfies the strong cycle consistence; also, for any two states s 1 and s 2 , there is a sequence from s 1 to s 2 whose Parikh vector δ is not greater than nor equal to π, and each other sequence σ from s 1 to s 2 satisfies P(σ) = P(δ) + k • π for a non-negative integer k.

Proof. 1) Full determinism and full backward determinism arise directly from determinism and backward determinism and from persistence and backward persistence, with the aid of Proposition 3 applied to TS and to its reverse version.

2) If the lts is acyclic, satisfies b and, for some s ∈ S and s ∈ [s , we have s[α s as well as s[β s with P(α) = P(β), and α-• β or β-• α is non-empty (both of them may be non-empty). Then, as in the proof of Lemma 2, with the aid of Keller's theorem and of Lemma 1, we can build a uniform chain

s [α-• β s 1 [α-• β s 2 • • • and s [β-• α s 1 [β-• α s 2 • • • .
Since the lts is finite, there must exist positive integers i and j such that i < j and s i = s j , forming a non-empty cycle, hence a contradiction with the acyclicity.

3) In the rest of the proof, we suppose that the lts satisfies b and contains a small prime cycle α around some state s ∈ S with support T . Determinism and persistence imply that cycles can be pushed forward Parikh-equivalently, i.e.: if s[α s∧s[t s , then s [α s for some α with P(α ) = P(α) (applying Keller's theorem). Symmetrically, backward determinism and backward persistence imply that cycles can be pushed backward Parikh-equivalently. Now, consider any non-empty cycle β around some state s in TS . Both cycles α and β can be pushed backward Parikh-equivalently to the initial state ι (since s and s are reachable from ι by total reachability). Using Keller's theorem, both support-disjoint sequences α-• β and β-• α are feasible at ι and lead to some marking s 0 . Since (α-• β) n and (β-• α) n are feasible at ι for every positive integer n while the lts is finite, there exists a positive integer m such that (α-• β) m and (β-• α) m are cycles. Since the lts is also weakly periodic, deterministic and backward deterministic, both α-• β and β-• α are cycles. Since α, β = and supp(α) = T , we have P(α-• β) P(α). Hence, if α-• β = , it forms a smaller cycle, contradicting the fact that α is already a small cycle. Thus, necessarily, α-• β = , implying that P(β) ≥ P(α). Suppose that P(β) is not a multiple of P(α). Denote by k the largest integer such that P(β) ≥ k • P(α) and β = β-• α k = . Necessarily, P(α) ≥ P(β ) and P(β ) ≥ P(α), implying that P(α) P(α-• β ) 0, where α-• β is a cycle, contradicting the fact that α is a small cycle. We deduce that P(β), as well as each other Parikh vector of each non-empty cycle of the lts, is a multiple of P(α) = π.

Hence, from total reachability and persistence, there is a small prime cycle (with Parikh vector π) around the initial state, as well as around any state.

Since there is a small cycle with support T around each state, by Keller's theorem each arc can be extended into a cycle: s[t s implies there is a sequence s [γ s with P(tγ) = π. As a consequence, TS is reversible, thus strongly connected.

For any cycle s[β s, from the above, we have that

P(β) = k • π for some integer k ≥ 0. Now, if a sequence s[γ s is such that k 1 • P(γ) = k 2 • π for some positive integers k 1 , k 2 ,
since π is prime k 1 must divide k 2 ; let us denote by k the integer k 2 /k 1 . We have P(γ) = k • π so that by full determinism s = s , hence the strong cycle consistence. Consider a sequence s[α s in TS . Suppose that P(α) ≥ π. Since there is a small cycle γ with Parikh vector π around s, we build a shorter sequence by applying Keller's theorem as follows: α-• γ is fireable at s and leads to s . We can build such shorter sequences until we get a sequence s[α s with P(α ) ≥ π and P(α) = P(α ) + k • π for some integer k > 0. If we start from another sequence s[β s , we get similarly s[β s with P(β ) ≥ π, and P(β) = P(β ) + h • π for a non-negative integer h. If P(β ) = P(α ), then we have two cases.

In the first case, one of them is greater than the other one, without loss of generality P(β ) ≥ P(α ), in which case, with Keller's theorem, we can construct from s the cycle β -• α with P(β -• α ) ≥ P(π) a contradiction with the fact that the Parikh vector of every cycle of TS is a multiple of π (with support T ).

In the second case, β -• α and α -• β are both non-empty with disjoint supports, their support containing at least one null component. In this second case, we construct from s 1 = s a chain s 1 [σ s 2 [σ s 3 • • • , with σ = β -• α as well as for σ = α -• β . Since the lts is finite, we must have s i = s j for some i < j, hence a cycle with Parikh vector n • π = (j -i) • P(σ) for some positive integer n, which is incompatible with the fact that the support of π is T and the support of σ does not contain all transitions.

Thus, we get a contradiction in both cases, implying that P(β ) = P(α ). We deduce that for every sequence σ from s 1 to s 2 , there exists a sequence δ ≥ π from s 1 to s 2 such that P(σ) = P(δ) + k • π for some non-negative integer k.

Insufficiency of the necessary conditions b and c for WMG-solvability.

In Figure 5, we provide an example of an FA system whose reachability graph satisfies all conditions of properties b and c but is not WMG-solvable. We deduce that these conditions, when satisfied by a given lts, are not sufficient for ensuring the existence of a solution in the WMG subclass. Indeed, in Figure 5, each possible attempt of a construction leads to a contradiction, as detailed next.

-Non-existence of a WMG solution with six places:

To obtain a WMG solution structured as on the right of Figure 5, the following sequences must be feasible at the initial marking M 0 :

t 3 t 1 ⇒ M 0 (p 1 ) ≥ 3 t 3 t 1 t 2 t 3 t 1 t 3 t 2 t 1 ⇒ M 0 (p 2 ) ≥ 3 t 2 t 3 t 1 t 2 ⇒ M 0 (p 3 ) ≥ 9 t 3 t 1 t 3 t 2 t 1 t 3 t 2 t 1 t 3 t 2 t 3 ⇒ M 0 (p 4 ) ≥ 9 t 3 t 1 t 3 ⇒ M 0 (p 5 ) ≥ 6 t 2 t 3 t 1 t 2 t 3 t 1 t 3 t 1 t 2 ⇒ M 0 (p 6 ) ≥ 12 
The sequence σ = t 2 t 3 t 1 t 3 t 1 t 3 t 2 t 1 t 3 t 3 is then feasible in such a constrained WMG but is not enabled in the FA system ζ.

-Non-existence of a WMG solution with fewer places: Since the previous WMG system with six places and its necessary marking are too permissive, we deduce that the same contradicting sequence σ is also feasible in all less constrained WMGs, typically obtained by removing some places while retaining the necessary initial marking in the other places. Checking the necessary conditions in a pre-synthesis phase. Since the lts is finite, all the necessary properties for solvability can be checked in a naive way. However, some algorithmic improvement can be achieved by considering an adequate checking order. For instance, from Proposition 3, property b implies full determinism and full backward determinism, whose checking is thus avoided.

In the next subsection, we exhibit subsets of states of the lts whose analysis is sufficient to ensure some constraints, allowing to perform fewer operations.

Constraints and Subsets of States Relevant to WMG-Synthesis

In the following, we describe some constraints that must be fulfilled in order to synthesise a WMG. Also, we define two subsets of the states of the given lts that are sufficient to check in order to fulfill several constraints over all states, decreasing potentially the size of the systems of constraints to solve. A WMG synthesis amounts to build places of the kind schematised in Figure 6. If T = ∅, TS is reduced to its initial state and the (minimal) solution is the empty Petri net. If T = {a} is a singleton, either TS is acyclic, in the form of a single chain, and the minimal solution is a place p * ,a , with an initial marking deduced from the length of the chain, or it is a loop ι[a ι with a minimal solution reduced to a transition a without any place. Hence, in the following, we assume without loss of generality that |T | > 1. We shall also assume that the lts to be synthesised satisfies property b and either acyclicity or c.

M 0 is the marking corresponding to the initial state ι; consider any state s ∈ S with a shortest sequence from ι to s, meaning that no other sequence from ι to s has a smaller Parikh vector. By Lemma 4 (point 2 or 3), such a sequence exists, and all such sequences from ι to s share the same Parikh vector ∆ s . The marking corresponding to state s is given by M

s (p a,b ) = M 0 (p a,b )+∆ s (a)•W a -∆ s (b)•W b .
The next conditions are necessary and sufficient for allowing (and realising) a synthesis, and are related to the classical regional approach [START_REF] Badouel | Petri Net Synthesis[END_REF]:

-The number of tokens in p a,b must remain non-negative at each reachable marking described by a state in S. -For each state s not allowing b, there must exist a place p such that W b is larger than M s (p), where M s is the marking associated to s. -Any two different states s , s must be distinguished by a place p such that M s (p ) = M s (p ).

In many cases, notably for CF and MG synthesis [START_REF] Best | Synthesis of persistent systems[END_REF][START_REF] Best | State space axioms for T-systems[END_REF][START_REF] Best | Bounded choice-free Petri net synthesis: Algorithmic issues[END_REF][START_REF] Darondeau | Equality of languages coincides with isomorphism of reachable state graphs for bounded and persistent Petri nets[END_REF], hence in this study, the last constraint, called the separation property, arises from the other two and from the assumptions on TS .

Two subsets of states relevant to the WMG-synthesis. The first two constraints above are linked to two particular subsets of states of TS : for each label x ∈ T , we define

OX (x) = {r ∈ S | r[t ⇒ t = x} and NXX (x ) = {s ∈ S|¬s[x ∧ ∀s ∈ s • : s [x }.
For each state s in OX (x ) (the notation stemming from "Only X"), the only arc starting at s, if any, is labelled x. Let us consider a place p a,b and a longest sequence without a starting from some state s. This sequence is finite since the lts is finite, and each cycle along the sequence, if any, has support T , hence contains an a. Thus, we reach a state r either without successor (this may only occur if the lts is acyclic) or with a single output a, hence in OX (a) in both cases, and M s (p a,b ) ≥ M r (p a,b ). As a consequence, to check that all markings of p a,b reachable from ι are non-negative, we only have to check the states in

OX (a): r ∈ OX (a) ⇒ M r (p a,b ) ≥ 0 and M s (p a,b ) ≥ 0.
For each state s in NXX (x ), x cannot be executed at s (hence the first two letters NX of the notation), but in each next state s , if any, x is enabled (hence the last letter X of the notation). Let us assume that a place p a,b may be used to exclude performing b at some state s (i.e. In our case, for any label x, the states in NXX (x ) have a very special shape, highlighted in the next lemma whose proof is illustrated in Figure 7. If TS is acyclic, by persistence there is a unique (maximal) state without successor; let us call it s ∞ ; we then have s ∞ ∈ ∩ x∈T NXX (x ). If TS is cyclic, there is no such state. In any case, we may have several states s and label a = x in some NXX (x ) with s[ax . If each such system of constraints is solvable, we obtain a WMG solution of TS . Otherwise, there is no solution and the reason is known.

Computational Synthesis in the General Acyclic Case

In the acyclic case, we may first apply the factorisation techniques of [START_REF] Devillers | Products of Transition Systems and Additions of Petri Nets[END_REF][START_REF] Devillers | Factorisation of transition systems[END_REF][START_REF] Devillers | Factorisation of Petri net solvable transition systems[END_REF] to check if the given lts is prime and thus has a chance to have a connected solution. The weights W a and W b around the place p a,b are not constrained by a T-semiflow. Thus, we may need variants of such places (differing by the weights W a , W b and the initial marking). We may also need places p * ,b and p a, * ; in particular, a place p * ,b with W b = 1 and M 0 = ∆ s∞ (b) excludes executing b at the final state s ∞ . Such a place may be redundant with other ones, but we do not aim here at building an optimal solution: we focus on the existence of a solution and on its construction.

In this acyclic case, the enabledness of labels is described by the first set of constraints below, using again the sufficient condition stating that the markings at states from OX (a) must be non-negative. The last constraint expresses that the place is useful for excluding some transition from some state.

For If each such system of constraints is solvable, we obtain a WMG solution of TS . Otherwise, no solution exists and we know the reason.

Conclusions and Perspectives

Weighted marked graphs (WMGs) form a well-known subclass of Petri nets with numerous real-life applications. These nets have been extensively studied in previous works, leading to strong theoretical results.

For this class, we obtained new structural and behavioural properties, such as backward persistence. We also delineated necessary conditions that must be fulfilled by a labelled transition system to be WMG-solvable. We showed that these necessary conditions are not sufficient. Finally, we specialised the synthesis procedures devised for choice-free nets in [START_REF] Best | Synthesis of persistent systems[END_REF][START_REF] Best | Synthesis and reengineering of persistent systems[END_REF][START_REF] Best | Synthesis of live and bounded persistent systems[END_REF][START_REF] Best | Synthesis of Bounded Choice-Free Petri Nets[END_REF][START_REF] Best | Bounded choice-free Petri net synthesis: Algorithmic issues[END_REF] to WMG nets.

A perspective is to develop additional properties of WMGs in order to enhance the pre-synthesis phase, allowing to discard non-solvable systems promptly. Ideally, such properties would characterise the WMG-solvable labelled transition systems in a purely structural way, in the spirit of the methods designed for plain marked graphs and T-systems in [START_REF] Best | Characterisation of the state spaces of live and bounded marked graph Petri nets[END_REF][START_REF] Best | State space axioms for T-systems[END_REF].

Fig. 1 .

 1 Fig. 1. A WMG system ζ and its reachability graph RG(ζ) are pictured respectively on the left and on the right. The initial marking is boxed in RG(ζ).

Theorem 2 ( 1 M 0

 210 Backward persistence of WMGs). In a connected WMG system ζ = (N, M 0 ), let us assume that markings M 1 , M 2 , M are reachable and that, for two different labels a and b, M1 [a M and M 2 [b M . Then, a marking M is reachable in ζ such that M [a M 2 and M [b M 1 .Proof. Let us write N = (P, T, W ) and introduce two sequencesσ 1 and σ 2 enabled in ζ such that M 0 [σ 1 M 1 and M 0 [σ 2 M 2 .From the previous remarks, we know that M is reachable in the reverse system (-N, M 1 ), hence belongs to N P . It remains to show that M ∈ [ζ . From Lemma 2, either P(σ 1 a) = P(σ 2 b) or, without loss of generality, P(σ 1 a) = P(σ 2 b) + k • π, where π is the unique minimal T-semiflow of N , with support T . Then, in either case, b occurs at least once in σ 1 . For the reverse net -N , we have M 1 [σ -1 , and from Keller's theorem, we have M 1 [b M and M 2 [a M ; we also have M 0 [b-

Definition 3 (

 3 Maximal execution vector in WMGs). Let ζ be a WMG system whose set of transitions is T . We denote by maxex ζ : T → N ∪ {∞} the extended T-vector satisfying: ∀t ∈ T , maxex ζ (t) is the maximal number of times t may be executed in firing sequences of ζ, allowing the case maxex ζ (t) = ∞. Theorem 3 (Potential reachability in WMGs, revised). Let ζ = (N, M 0 ) be a WMG with incidence matrix C. Let ν ∈ N T be a T-vector such that M = M 0 + C • ν ≥ 0. Let maxex ζ be the maximal execution vector of ζ. Then, there exists a firing sequence M 0 [σ M with P(σ) = ν if and only if ν ≤ maxex ζ . Proof. Suppose that M 0 [σ M with P(σ) = ν. Since σ can be fired at M 0 , we deduce, from the definition of maxex ζ , that ∀t ∈ T , maxex ζ (t) ≥ P(σ)(t), thus ν ≤ maxex ζ .

Fig. 5 .

 5 Fig.5. A Fork-Attribution (FA) system ζ is pictured on the left. Its minimal prime T-semiflow π = (6, 3, 7) equals the Parikh vector of each small cycle of RG(ζ). The latter is persistent and backward persistent, reversible, finite and fulfills properties b and c. The most constrained WMG solution ζ whose reachability graph could be isomorphic to RG(ζ) is depicted on the right: its weights are directly deduced from π and, in each place, the given amount of tokens is necessary to enable the sequences of RG(ζ). However, this necessary initial marking already enables a sequence that is not feasible in ζ, namely σ = t2t3t1t3t1t3t2t1t3t3. Since every possible variant ζ of ζ is less constrained than ζ , each such ζ also enables σ. We deduce that no WMG solves RG(ζ).

Fig. 6 .

 6 Fig. 6. Possible types of places for the synthesis of a WMG (N, M0), with initial marking m a,b = M0(p a,b ), ma, * = M0(pa, * ) and m * ,b = M0(p * ,b ).

  ¬s[b ), meaning M s (p a,b ) < W b . If s [t s with ¬s [b (which implies t = b), then M s (p a,b ) ≥ M s (p a,b ), so that the same place p a,b disables b at s . Moreover, the longest chains of states excluding to perform b are necessarily finite since b occurs in any non-empty cycle; hence they all end in states of NXX (b). As a consequence, in order to exclude performing b when necessary, one only has to find, for each state r ∈ NXX (b), a place p a,b such that M r (p a,b ) < W b (while allowing all valid transitions, as expressed through OX (a)). In some cases, a same place p a,b can be used for several states in NXX (b).

Lemma 5 (

 5 Single outputs of the states in NXX ). Let TS = (S, →, T, ι) be a lts satisfying property b. If x, a, b ∈ T , r ∈ NXX (x ), r[a and r[b , then a = b. Proof. Let us assume that r[a r 1 and r[b s 1 with a = b. Since r ∈ NXX (x ), we have r 1 [x r 2 and s 1 [x s 2 for some states r 2 , s 2 . By persistence (and determinism), we also have r 1 [b s, s 1 [a s, s[x s , r 2 [b s and s 2 [a s for some s, s . By backward persistence, we then have s [a r 2 and s [b s 2 for some s , as well as s [x s and s [b s 1 for some s . Finally, by backward determinism, s = r and r[x , contradicting the fact that r ∈ NXX (x ).

Fig. 7 .

 7 Fig. 7. Illustration of the proof of Lemma 5.

4. 3

 3 Computational Synthesis in the General Cyclic Case Let TS = (S, →, T, ι) be a lts satisfying properties b and c, denoting by π the unique minimal Parikh vector of small cycles, with support T . Each place p a,b must satisfy W a • π(a) = W b • π(b), thus we can choose W a = π(b) and W b = π(a) (or any proportional values 3 , in particular π(b)/ gcd(π(a), π(b)) and π(a)/ gcd(π(a), π(b))), and the only parameter that still needs to be fixed is the initial marking (plus the exact pairs a, b for which we need those places). For each b ∈ T we need such a place p a,b if there is a state s ∈ NXX (b) such that s[ab (otherwise, there is no way to enable a b after an a when b is not directly enabled). We denote by pred (b) the set {a ∈ T |∃s ∈ NXX (b), s[ab } and, for any a ∈ pred (b), NXX (a, b) = {s ∈ NXX (b)|s[ab }. For each a, b ∈ T such that a ∈ pred (b), since W a = π(b) and W b = π(a), we have to solve the following constraints (in M 0 , over the non-negative integers): ∀s ∈ OX (a) : M 0 (p a,b ) ≥ ∆ s (b) • π(a) -∆ s (a) • π(b) ∀s ∈ NXX (a, b) : M 0 (p a,b ) < ∆ s (b) • π(a) -∆ s (a) • π(b) + π(a) This amounts to first compute M 0 (p a,b ) = max s∈OX (a) {∆ s (b) • π(a) -∆ s (a) • π(b)} and then to check that, for each s ∈ NXX (a, b), M 0 (p a,b ) < ∆ s (b) • π(a) -∆ s (a) • π(b) + π(a).

  each b ∈ T , a ∈ pred (b) and s ∈ NXX (a, b), we have to solve the following constraints (in M 0 (p a,b ), W a , W b ∈ N):∀s ∈ OX (a) : M 0 (p a,b ) ≥ ∆ s (b) • W b -∆ s (a) • W a M 0 (p a,b ) < ∆ s (b) • W b -∆ s (a) • W a + W b .To solve such a system, we can first consider the system in W a and W b :∀s ∈ OX (a) : ∆ s (b) • W b -∆ s (a) • W a + W b > ∆ s (b) • W b -∆ s (a) • W a i.e.: ∀s ∈ OX (a) : [∆ s (b) -∆ s (b) + 1] • W b > [∆ s (a) -∆ s (a)] • W aand then check if there exists a solution satisfying:∆ s (b) • W b -∆ s (a) • W a + W b > 0.

  (firing) sequence σ of length n ≥ 0 on the set of labels T , denoted by σ = t 1 . . . t n with t 1 . . . t n ∈ T , is enabled at some state s 0 if the successive states obtained, s 0 [t 1 s 1 . . . [t n s n , satisfy s k-1 [t i k s k , ∀k ∈ {1, . . . , n}: we note s 0 [σ s n .

	Simi-
	larly, other notions and notations, related to sequences and reachability in Petri
	nets, extend readily to labelled transition systems by replacing markings with
	states.
	The reachability graph RG(ζ) of a system ζ = (N, M 0 ) can be represented by
	the labelled transition system TS = (S, →, T, ι) if an isomorphism γ : S → [M 0
	exists such that γ(ι) = M 0 and (s, t, s ) ∈→ ⇔ γ(s)[t γ(s ) for all s, s ∈ S. If an
	lts TS is isomorphic to the reachability graph of a Petri net system ζ, we say
	that ζ solves TS , and that it WMG-solves TS if N is a WMG.

Lts and their relationship with Petri nets. A labelled transition system with initial state, abbreviated lts, is a quadruple TS = (S, →, T, ι) where S is the set of states, T is the set of labels, →⊆ (S × T × S) is the transition relation, and ι ∈ S is the initial state. A label t is enabled at s ∈ S if ∃s ∈ S : (s, t, s ) ∈→, written s[t or s[t s , in which case s is reachable from s through the execution of t. We denote by s • the set {s |∃t ∈ T, s[t s }. A label t is backward enabled at s if ∃s ∈ S : (s , t, s) ∈→, written [t s or s [t s. A

  persistent if for all states s, s , s ∈ S and labels t , t ∈ T such that s[t sand s[t s with t = t , there exists a state s ∈ S such that s [t s

	for all states s, s , s ∈ S and labels t, t ∈ T such that
	s[t s ∧ s[t s , necessarily s = s ; it is fully deterministic if for all sequences
	σ and σ such that P(σ) = P(σ ), we have, for all states s, s , s ∈ S:
	s[σ s ∧ s[σ s ⇒ s = s ;
	-backward deterministic if, for all states s, s , s ∈ S and labels t, t ∈ T such
	that s [t s ∧ s [t s, necessarily s = s ; it is fully backward deterministic if,
	for all sequences σ and σ such that P(σ) = P(σ ), we have, for all states
	s, s , s ∈ S: s [σ s ∧ s [σ s ⇒ s = s ;

and s [t s ; it is backward persistent if for all states s, s , s ∈ S and labels t , t ∈ T such that s [t s and s [t s with t = t , there exists a state s ∈ S such that s [t s and s [t s .

This is the only way to define an adequate p a,b ; in particular, there is no p * ,b or pa, * .