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Abstract. Structural approaches have greatly simplified the analysis
of intractable properties in Petri nets, notably liveness. In this paper,
we further develop these structural methods in particular weighted sub-
classes of Petri nets to analyze liveness and deadlockability, the latter
property being a strong form of non-liveness.

For homogeneous join-free nets, from the analysis of specific substruc-
tures, we provide the first polynomial-time characterizations of structural
liveness and structural deadlockability, expressing respectively the exis-
tence of a live marking and the deadlockability of every marking.

For the join-free class, assuming structural boundedness and leaving out
the homogeneity constraint, we show that liveness is not monotonic,
meaning not always preserved upon any increase of a live marking.
Finally, we use this new material to correct a flaw in the proof of a
previous characterization of monotonic liveness and boundedness for ho-
mogeneous asymmetric-choice nets, published in 2004 and left unnoticed.

Keywords: Structural analysis - Weighted Petri net - Deadlockability
- Liveness - Boundedness - Monotonicity - Fork-attribution - Join-free -
Communication-free - Synchronization-free - Asymmetric-choice.

1 Introduction

Liveness is a behavioral property of Petri nets that is fundamental for many real
world applications, notably embedded and flexible manufacturing systems. Such
applications have to keep all their functions (transitions) active over time, a
condition modeled by the liveness property. Deadlockability states the existence
of a reachable deadlock (i.e. a dead marking, from which no transition is fireable)
and is a particular case of non-liveness; its negation, deadlock-freeness, is often
studied together with liveness.

Importance of weights. In this paper, we investigate weighted Petri nets,
which are well suited to the modeling of real-life systems. In the domain of
embedded systems, Synchronous Data Flow graphs [12] have been introduced



to model the communications between a finite set of periodic processes. These
graphs can be modeled by weighted T-nets, a Petri net subclass in which each
place has at most one input and one output. In the domain of flexible manu-
facturing systems (FMS), the weights make possible the modeling of bulk con-
sumption or production of resources [20]. In these cases, weights allow a compact
representation of the volumes of data or resources exchanged.

Relationship with boundedness. Embedded applications have to use a limi-
ted amount of memory, a requirement formalized by the notion of boundedness
in Petri nets. An objective is to extend the expressiveness of weighted T-nets so
as to model more complex embedded applications while ensuring liveness and
boundedness efficiently.

Analysis, subclasses and structure. Although decidable [7, 6], the problems
of checking liveness or boundedness are EXPSPACE-hard [7,4,13]. A common
approach to alleviate this difficulty is to consider specific subclasses and to relate
the structure of the net to its behavior.

Homogeneity of weights is a restriction that simplifies the study of weighted
classes: a net is homogeneous if each place has all its outputs weights equal [22,
11]. In this paper, we focus on join-free (JF) Petri nets, which forbid synchro-
nizations, and homogeneous asymmetric-choice (HAC) nets, in which each pair
p,p’ of input places of any synchronization satisfies the following: all the outputs
of p are also outputs of p’, or conversely. HAC nets generalize weighted T-nets
and homogeneous JF (HJF) nets.

Many efforts have been devoted to the structural analysis of Petri nets, yield-
ing efficient checking methods in particular subclasses. Structural liveness states
the existence of a live marking, while structural boundedness ensures bounded-
ness for every initial marking. Polynomial-time characterizations of both proper-
ties are known for ordinary (unit-weighted) free-choice (OFC) nets (in which all
conflicting transitions have equal enabling conditions), based on decompositions
into specific subnets (e.g. siphons and traps) and inequalities on the rank of
the incidence matrix of the net (Rank theorems) [2,5,18]. From such structural
conditions, polynomial-time methods checking the liveness of an initial marking
have been deduced for bounded OFC nets [5].

Similar techniques, sometimes in a weaker form, have been developed for
other classes with weights, including JF and HAC nets [22, 16,11, 1,20, 18, 9].

Monotonic behavior. Another crucial criterion is the monotonicity of desired
properties, meaning their preservation upon any increase of the initial marking.
Embedded and manufacturing systems, among others, need their behavior to be
maintained regardless of any addition of initial data items or resources. Liveness
and boundedness are not monotonic in general, even when taken together, e.g.
in HAC nets [8, 18]. However, monotonic liveness (m-liveness) is fulfilled by OFC
nets and some larger classes that contain HJF nets [5,22,16,2, 3, 1].

Several complex Petri net subclasses are decomposable into specific JF sub-
nets induced by subsets of places. In the HAC class and its subclass of homo-



geneous (weighted) free-choice (HFC) nets, m-liveness has been expressed in
terms of the m-liveness of such JF substructures [22, 11]. Exploiting this fact in
a bottom-up approach, polynomial-time sufficient conditions of m-liveness for
bounded JF nets were shown to propagate to the decomposable, bounded HFC
nets [10]. For the larger class of weighted free-choice nets, which contains HFC
nets, there exist polynomial-time sufficient conditions of decomposability into
structurally live and bounded JF nets [22].

Moreover, in any m-live system, every subsystem induced by any subset of
places is necessarily m-live [3,11,8]. Hence, JF subnets form basic modules of
major importance for the study of liveness in decomposable classes.

Contributions. For the structural liveness analysis of HJF nets, we highlight
the importance of sub-consistency, which states the existence of a positive vec-
tor whose left-multiplication by the incidence matrix yields a non-null vector
with no positive component. We use this algebraic notion to develop the first
polynomial time characterizations of structural deadlockability (meaning dead-
lockability of every marking) and structural liveness for HJF nets, without the
classical assumption of structural boundedness (or conservativeness) exploited
in previous studies [5, 22, 18]3.

To achieve it, we first restrict our attention to siphons, i.e. subsets S of
places satisfying the next property on their surrounding transitions: the input
set of S is included in the output set of S. More precisely, in any HJF net
whose set of places is its unique siphon, we show the following: sub-consistency is
equivalent to structural deadlockability, and non-sub-consistency is equivalent to
structural liveness. Since sub-consistency can be checked with a linear program,
these conditions can be evaluated in polynomial-time. Also, we extend this result
to the rest of the HJF class, using a decomposition into minimal siphons.

Then, leaving out homogeneity, we show that live, structurally bounded JF
nets are not always m-live, in constrast with the homogeneous case [22].

Finally, we use this new material to correct an erroneous proof of a previous
characterization of m-liveness-boundedness for HAC nets, published in 2004 in
[11] and left unnoticed.

Organisation of the paper. We formalize in Section 2 the notions used in this
paper. In Section 3, we present the polynomial-time conditions for the structural
deadlockability and liveness of HJF nets. We show in Section 4 that m-liveness
does not apply to all bounded JF nets. In Section 5, we correct the proof of the
mentioned previous result on the m-liveness-boundedness of HAC nets. Finally,
Section 6 presents our conclusion and perspectives.

2 Definitions, Notations and Properties

In this section, we present the main notions used in the paper.

3 Moreover, the well-known necessary conditions of liveness based on siphons contain-
ing traps or based on the existence of a repetitive vector [5, 18, 3] do not help.



2.1 Weighted and Ordinary Nets

A (weighted) net is a triple N = (P,T,W) where the sets P and T are finite
and disjoint, P is the set of places, T is the set of transitions, and W: (P x T) U
(T x P) — N is a weight function. P U T is the set of the nodes of the net. An
arc leads from a place p to a transition ¢ (respectively from a transition ¢ to a
place p) if W(p,t) > 0 (respectively W (¢,p) > 0). An ordinary net is a net whose
weight function W takes its values in {0, 1}.

The incidence matriz of a net (P, T,W) is a place-transition matrix Z such
that Vp € P, ¥Vt € T, I[p,t] = W(t,p) — W(p,t), where the weight of a non-
existing arc is 0. The pre-set of element x of P UT, denoted by ®z, is the set
{w|W(w,z) > 0}. By extension, for any subset £ of P or T, °E = |J,. *z.
The post-set of element x of P UT, denoted by z°*, is the set {y|W(x,y) > 0}.
Similarly, £* = U, cp**.

A join-transition is a transition having at least two input places. Such a
transition represents a synchronization on its input places. A choice-place is a
place having at least two output transitions.

2.2 Markings, Systems, Firing Sequences and Reachability

A marking M of a net N = (P,T,W) is a mapping M : P — N. The pair
(N, M) defines a system whose initial marking is M. The system (N, M) enables
a transition ¢ € T if Vp € *t, M(p) > W(p,t). The marking M’ obtained from

M by firing the enabled transition ¢, denoted by M Ny Y , is defined as follows:
Vp € P, M'(p) = M(p) — W(p,t) + W(t,p).

A firing sequence o of length n > 1 on the set of transitions 7', denoted
by o = titi, ..., with t;,t,,...,t;, € T, is a mapping {1,...,n} — T.
The firing sequence o is feasible in (N, My) if the successive markings obtained,

tin,

My tL> M, tl—2> My ... — M,, are such that Mj_; enables the transition ¢;,
for each k € {1,...,n}. We denote My = M,,.

The Parikh vector W(o) : T — N associated with a finite sequence of transi-
tions o maps every transition ¢ of T to the number of occurrences of ¢ in o.

A marking M’ is said to be reachable from the marking M if there exists a
firing sequence ¢ feasible in (N, M) such that M Z M’. The set of markings
reachable from M is denoted by [M).

2.3 Petri Net Properties
Main properties and monotonicity. Let S = (N, My) be a system.

— A transition ¢ is dead in S if no marking of [My) enables t. A deadlock,
or dead marking, is a marking enabling no transition. S is deadlock-free if
no deadlock belongs to [My); otherwise it is deadlockable. The net N is
structurally deadlockable if, for every marking M, (N, M) is deadlockable.

— A transition ¢ is live in S if for every marking M in [Mj), there is a marking
M’ in [M) enabling ¢. S is live if every transition is live in S. N is structurally
live if a marking M exists such that (N, M) is live.



— S is bounded if an integer k exists such that: VM € [My), for each place p,
M(p) < k. N is structurally bounded if (N, M) is bounded for each M.

— A behavioral property P is monotonic for S, or S is monotonically P, or
S is m-P, if (N, M) satisfies P for every M} > My. A marking M is m-P
if (N, M) is m-P, where N is deduced from the context. We shall typically
instantiate P with the liveness property.

Properties defined on nets extend to systems through their underlying net.

Vectors. The support of a vector V with index set I(V'), noted S(V), is the
set {i € I(V)|V[i] # 0} of indices of nonnull components. We denote by 0"
(respectively 1™) the column vector of size n whose components are all equal to
0 (respectively 1). We may use the simpler notation 0 and 1 when n is deduced
from the context.

Conservativeness, consistency and variants. Let N = (P,T,W) be a net
with incidence matrix Z.

— N is conservative if there exists a vector X > 1 such that X7 -7 = 0.

— N is consistent (respectively sur-consistent, sub-consistent) if there exists a
vector Y > 1 such that Z-Y = 0 (respectively Z-Y >0,Z-Y < 0). N
is weakly sur-consistent (respectively weakly sub-consistent) if there exists
a vector Y > 1 such that Z-Y > 0 (respectively Z -Y < 0), i.e. if it is
consistent or sur-consistent (respectively consistent or sub-consistent). Weak
sur-consistency is also known as structural repetitiveness.

— N is partially consistent (respectively partially sur-consistent, partially sub-
consistent) if there exists a vector Y > 0 such that Z-Y = 0 (respectively
Z7-Y>0,7-Y<0).

2.4 Petri Nets Subclasses
A weighted net N = (P,T,W) is:

— a P-net (or S-net) if Vt € T : |*t] <1 and [t*| < 1.

— a T-net (or generalized event graph) if Vp € P : |*p| <1 and [p*| < 1.

— join-free (JF) (or generalized communication-free, synchronization-free) if
VteT:|*t <1

— choice-free (CF) (or output-nonbranching) if Vp € P : [p®*| < 1.

— fork-attribution (FA) if it is both JF and CF.

— free-choice (FC) (or Topologically Extended Free Choice) if Vpi,ps € P,
p; Nps # @ = p} = p3. This class generalizes, with arbitrary weights,
the ordinary free-choice nets (OFC) of the literature [5].

— asymmetric-choice (AC) if Vp1,p2 € P, p1®* Npa® # 0 = p1® C po* or
p2® C p1°®. The class of AC nets contains the FA, CF, JF, and FC nets.

— homogeneous if, Vp € P, Vt,t' € p*, W(p,t) = W(p,t'). The homogeneous
subclass of a class is obtained with an additional prefix letter H, e.g. HFC
denoting the homogeneous FC nets.

Some illustrations for these classes are presented in Figure 1.
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Fig. 1. The net on the left is HFC, the second one is HAC. The third net is homoge-
neous, non-AC since *¢; = {p1,p2}, while p;* Z p2°® and p2* Z p;°. Since they have
synchronizations, they are not JF. However, the fourth net is HJF.

2.5 Graph Structures

Subnets and subsystems. Let N = (P,T,W) and N’ = (P, T',W') be two
nets. N/ is a subnet of N if P’ is a subset of P, T’ is a subset of T, and W’ is
the restriction of W to (P’ x T")U (T' x P"). 8’ = (N', M]) is a subsystem of
S = (N, Mp) if N’ is a subnet of N and its initial marking M| is the restriction
of My to P, i.e. M, = Mpy|p.

N’ is a P-subnet of N if N’ is a subnet of N and T = *P’ U P’®, the pre-
and post-sets being taken in N. §' = (N', M() is a P-subsystem of S = (N, M)
if N’ is a P-subnet of N and S’ is a subsystem of S.

Similarly, N’ is a T-subnet of N if N’ is a subnet of N and P’ =°*T' UT’®,
the pre- and post-sets being taken in N. S = (N', M{)) is a T-subsystem of
S = (N, Mp) if N’ is a T-subnet of N and S’ is a subsystem of S.

Notice that a T-subnet (respectively P-subnet) is not necessarily a T-net
(respectively P-net).

Siphons and traps. Consider anet N = (P, T, W). A non-empty subset D C P
of places is a siphon (sometimes also called a deadlock) if *D C D*®. A non-empty
subset @ C P of places is a trap if Q°® C *Q.

Reduced graphs. The reduced graph R of a net N is the directed graph
G = (V, A) obtained from N by contracting every maximal strongly connected
component ¢ of N into one single node g. € V. The set A of arcs represents the
connections that remain after the contraction: for any two distinct nodes gy, g
of R that represent respectively the distinct components u,u’ of N, we have an
arc (gu, gu) from g, to gy if W(q,q') > 0 in N for some ¢ € u and ¢’ € v'. By
definition, each reduced graph is acyclic. This is illustrated on Figure 2.

9t1 9p
ge
®
®
9tz YGpa

Gty

Fig. 2. On the right, the reduced graph represents the net on the left. The node g.
represents the subnet ¢ defined by places pa, ps, ps, p7, ps and transitions ts, ts, te, t7.



In what follows, without loss of generality, we consider connected nets that
contain at least a place and a transition, unless otherwise specified.

3 Deadlockability and Liveness of Homogeneous JF Nets

Liveness, deadlockability and related properties have been studied previously in
the (weighted) join-free class, notably under the conservativeness (i.e. structural
boundedness) assumption [20, 22, 18,9] or in more restricted subclasses [14, 15].

In this section, we show that the notion of sub-consistency is a fundamen-
tal algebraic property characterizing structural deadlockability in the HJF nets
covered by a (unique) minimal siphon?. As a corollary, we obtain for the same
nets that structural liveness is equivalent to non-sub-consistency. Since sub-
consistency can be checked with linear programming, we deduce a polynomial-
time method checking structural deadlockability or structural liveness. We then
generalize these conditions to all HJF nets, by means of coverings with minimal
siphons. These results are dedicated to the HJF structure and do not apply to
inhomogeneous JF nets.

The characterization of structural deadlockability for the HJF nets covered
by a unique (minimal) siphon arises from a series of intermediate results.

First, we study a general relationship between deadlockability, non-liveness
and sub-consistency in the JF class.

Second, using previous results on the CF class, we show that strongly con-
nected JF systems are covered by strongly connected FA T-subsystems that may
either decrease, preserve or generate tokens in the JF system.

Third, we provide a variant of this classification, proving that sub-consistency
is equivalent to structural deadlockability in strongly connected FA nets.

Fourth, we show that each strongly connected, sub-consistent JF net contains
a strongly connected, sub-consistent (structurally deadlockable) FA T-subnet.

Finally, we prove by induction on the structure of the sub-consistent HJF
nets covered by a unique siphon that every marking can reach a deadlock by
directing tokens towards a sub-consistent, hence deadlockable, FA T-subsystem.

To simplify the development of these statements, we reveal and exploit the
graph structures corresponding to minimal siphons in join-free nets (Lemma 1),
namely quasi strongly connected nets, defined below.

Quasi-strong connectedness and siphons. A net is called quasi strongly
connected if it is connected and becomes strongly connected once we omit the
transitions with no output. We will use the next correspondence with siphons.

Lemma 1. Let N = (P, T,W) be a connected JF net. Then, P is the unique
siphon of N if and only if N is quasi strongly connected.

4 In this paper, we study siphons that may contain traps, remarkably in JF nets.
Hence, we cannot use the results of [3]. Also, our nets will often be structurally
repetitive (weakly sur-consistent), which is another well-known necessary condition
of structural liveness (Prop. 10 in [18]) that is not sufficient in the HJF class.



Proof. Assume that P is the unique siphon of N. If N is not quasi strongly
connected, consider a maximal quasi strongly connected subnet N’ without input
node and containing a place (consider a node g without input in the reduced
graph of N; since P is a non-empty siphon, g is not a single transition and
contains a place, while the subnet induced by the union of g with its output
transitions defines N’). Since N is not quasi strongly connected, the places of
N’ define a smaller siphon of N, a contradiction.

Conversely, if N is quasi strongly connected, then P is a siphon. Suppose
that a smaller siphon P’ exists. For any place p € P\ P/, and any directed path
from p to some place of P’, every place of this path belongs to P’ (by definition
of siphons and by join-freeness). Since all places of a quasi strongly connected
net belong to the same unique maximal strongly connected component of the
net, P’ = P, a contradiction. Hence, P is the unique siphon of N. a

3.1 Relating Deadlockability to Non-liveness and Sub-consistency
We provide next a necessary condition for structural deadlockability in JF nets.

Lemma 2. Let N be a JF net in which every place p has at least one output
transition. If N is structurally deadlockable, it is sub-consistent.

Proof. One can choose a sufficiently large marking My, with My(p) > W (p,t)
Vp € P, Vt € p®, that enables a sequence o containing all transitions, leading to
a marking M. A sequence o’ is feasible at M that leads to a deadlock M’. From
join-freeness, for each place p and each output transition ¢ of p, we have M’(p) <
W (p,t). Let us define 7 = oo¢’. The Parikh vector ¥(7) satisfies ¥(7) > 1.
Moreover, for every place p, M'(p) < My(p), from which we deduce Z-¥(7) < —1,
where 7 is the incidence matrix of N. Thus, N is sub-consistent. a

The converse does not hold: the ordinary HJF net formed of two transitions
t,t', a place p and two unit-weighted arcs such that ¢ is the input of p and t’ is
its output, is sub-consistent (look at ¥ (tt't")) and live for every initial marking.

The next equivalence between liveness and deadlock-freeness is inspired from
[21, 22], restricted to HJF nets but extended to possibly unbounded nets.

Lemma 3. Let S = (N, My) be a quasi strongly connected HJF system. S has
a non-live transition if and only if it is deadlockable.

Proof. As usual, we consider nets with T # (). It is clear that the reachability of
a deadlock implies non-liveness. Now, if a transition ¢ is dead in some reachable
marking M, all transitions in (*t)® are also dead in M since the net is HJF, and
since [*t|] = 1 we deduce that each transition in **¢ can be fired only a finite
number of times from M, leading to a marking at which these transitions are
dead. One can iterate this process on each directed path that reaches some dead
transition, leading to a deadlock by quasi strong connectedness. ad

The next lemma relates structural deadlockability to non-structural liveness
in the systems for which liveness is equivalent to deadlock-freeness.



Lemma 4. Let N be a net such that, for every marking M of N, deadlock-
freeness of (N, M) implies liveness of (N, M). Then, N is structurally deadlock-
able if and only if it is not structurally live.

Proof. Structural deadlockability obviously implies non-structural liveness for
all Petri nets with T # (). For the converse, if N is not structurally live, every
marking M is non-live for this net. Then, using the assumption that non-liveness
of (N, M) implies deadlockability of (N, M), we deduce that a deadlock is reach-
able from every marking M, implying structural deadlockability of V. O

This result also applies to quasi strongly connected HJF nets by Lemma 3.

3.2 Previous Results Relating JF and CF Nets to their FA Subclass

Basing on previous works on the FA and CF classes, we exhibit fundamental
structural and behavioral properties of JF nets, expressed in terms of FA nets:
strongly connected JF nets are covered by strongly connected FA T-subnets, the
latter benefitting from a structural classification for liveness and boundedness.
Roughly speaking, actions performed in such FA T-subnets may either decrease,
preserve or generate tokens in the associated area of the JF system.

Reverse-duality and covering. Structural results may be obtained directly
from known properties of the reverse-dual net, which is defined by reversing arcs
and swapping places with transitions. This method has been used for CF nets,
whose reverse-dual class is the JF class [20]. However, in general, the relationship
between the structure of a net and its behavioral properties cannot be deduced
from known properties of the reverse-dual net. Using reverse-duality, we obtain
the next variation of Lemma 10 in [20], getting a first glimpse of the important
role played by particular FA T-subnets in the behavior of JF nets since any
sequence feasible in a T-subsystem is feasible in the system.

Lemma 5 (Reverse-dual of Lemma 10 in [20]). Let N be a strongly con-
nected JF net. For each transition t of N, there is a strongly connected FA
T-subnet of N containing t.

In the following, we link the structure of FA nets to their behavior.

Structural liveness of CF nets. We deduce from Corollary 4 in [20] the next
characterization of structural liveness for CF nets, which generalize FA nets.

Lemma 6. A CF net is structurally live if and only if it is weakly sur-consistent.

A previous classification of strongly connected FA nets. Strongly con-
nected FA nets have been previously studied, notably in [19,20] where they are
presented as a natural generalization of weighted circuits. In the same studies
(page 6 in [20] and Section 4.1 in [19]), it is explained that the class of strongly
connected FA nets can be partitioned into three subclasses: “neutral”, when the
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Fig. 3. From left to right: an absorbing, a neutral and a generating FA net.

FA net is consistent and conservative; “absorbing”, when the FA net is not weakly
sur-consistent; or “generating”, when the FA net is not structurally bounded.
Figure 3 depicts an element of each class.

This partition does not apply to strongly connected JF nets, even if one
tries to replace non-weak sur-consistency by sub-consistency and even for their
subclass of homogeneous P-nets, as shown in Figure 4.

2 2 t1te t1t2 tito

T 1)[_11][%]§[0] 1)[-11][%]:[0] 1)[-11][%]2[0]

Fig. 4. The inequalities on the right show the homogeneous P-net on the left to be
jointly sub-consistent, consistent and sur-consistent. Hence, these three properties can-
not be used alone to tri-partition the class of strongly connected homogeneous P-nets.

Hence, this classification is tightly related to the FA structure. We will show
in Lemma 12 that non-weak sur-consistency is equivalent to sub-consistency in
strongly connected FA nets.

3.3 Small Nets in Petri Nets and Sub-consistency in JF Nets

We present below the notion of small nets and introduce associated results about
decompositions into T-subnets. From this development, we express a variant of
the previous classification of FA nets in terms of sub-consistency, and deduce the
existence of a strongly connected sub-consistent FA T-subnet in every strongly
connected sub-consistent JF net.

In the sequel, the general type P used in the next definition shall be special-
ized to consistency, sur-consistency or sub-consistency.

Definition 1 ([17]). A net of type P is said to be small P if it does not contain
any non-empty proper T-subnet of the same type P.

In strongly connected, partially sub-consistent JF nets, the strong connect-
edness of small sub-consistent T-subnets is revealed next.

Lemma 7. Let N be a strongly connected, partially sub-consistent JF net. Then,
every small sub-consistent T-subnet of N is strongly connected. Moreover, there
exists such a (non-empty) strongly connected T-subnet in N.
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Proof. Denote by Z the incidence matrix of N. By partial sub-consistency, there
exists a vector m > 0 such that Z-7 < 0. Let us denote by J any small sub-
consistent T-subnet of N. Such a subnet exists, since the T-subnet N, of N
induced by the support of 7 is sub-consistent. We show that J is necessarily
strongly connected. Suppose that J is not strongly connected. If J is not con-
nected, it contains a proper sub-consistent T-subnet, contradicting the fact that
J is small sub-consistent. Hence, J is connected.

Consider the reduced graph R of J. It is acyclic (so that it defines a partial
order), connected (since so is J) and finite (so that there are maximal nodes).
Let us consider any such maximal node g, meaning that g has some input in
R (otherwise g would be R and J would be strongly connected) but no output
in R. We show that the subgraph corresponding to g is a strongly connected
T-subnet of N that contains at least a place and a transition. By definition, ¢
contains a node and is strongly connected.

If g is a single place, then it has an input transition in J and no output
in J, so that a sub-consistency vector u; for J cannot yield a null or negative
value (when left-multiplied by the incidence matrix Z; of J) for this place, a
contradiction. If g is a single transition, it has no output in J, hence no output
in N since J is a T-subnet of N, contradicting the strong connectedness of N.

Thus, g contains at least a place and a transition. If g is not a T-subnet of
J, this means that it contains a transition ¢ lacking an input or an output. The
transition ¢ must have its (unique, since N is JF) input place in g, since g is
strongly connected. It has all its outputs in g too, since g has no output in R
(hence in J \ g) by the choice of g. We obtain a contradiction, implying that ¢
is a T-subnet of J and N.

Now, we show that g is sub-consistent. Denote by Z; the sub-matrix of Z
restricted to J. Since J is sub-consistent, we have Z; -y < 0 for some integer
vector py > 1. Since g has some input node in R, it has some input node n
in J, and since g is strongly connected while J is JF, n must be a transition.
Because g is a maximal strongly connected component of J, any input transition
of (a place of) g cannot have its input place in g. Denote by ¢’ the union of the
net represented by g and all its input transitions in J with the arcs going from
these inputs to g. (Notice that g’ is a P-subnet of J.) Denote by j, and p; the
restriction of 117 to (the transitions of) g and g’ (so that ug, uy > 1) and by Zg,
IE’] the incidence matrices of g, ¢’ respectively. Since g has no output in R (nor
in J), hence in particular no output transition in ./, we have Z; - i, < 0 (we may
have equality if the negative values correspond to places not in g). Let p be a
place of g that is an output of n. Then, (Z, - p14)(p) < 0, and g is sub-consistent.

J thus contains a proper T-subnet of the same type, i.e. a sub-consistent one,
whereas J is small sub-consistent, a contradiction. We deduce that J is strongly
connected, hence the claimed property. a

This result is tightly related to the JF structure and does not apply to Petri
nets with synchronizations, as illustrated in Figure 5.
The next result investigates small sub-consistent FA nets.
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Fig. 5. The net on the left is strongly connected, sub-consistent and is not JF. On
the right, its unique non-empty, small, sub-consistent T-subnet, is neither strongly
connected nor JF.

Lemma 8. Let N be a strongly connected FA net. Then, N does not contain any
non-empty proper strongly connected T-subnet. Moreover, if N has the property
of sub-consistency it is small for this property.

Proof. Let us assume that N contains a non-empty proper strongly connected
T-subnet F'. Hence, there exists a node in N \ F'. Since N is strongly connected,
there exists a node n in N \ F that is an output of a node n’ in F. The node
n' cannot be a place (since F is strongly connected and n’® = {n}, we should
have that n’ is the only node of F', but then F' is not a T-subnet). Thus, n’ is a
transition and n is an output place of n’ that is not in F, contradicting the fact
that F' is a T-subnet.

If N is sub-consistent, Lemma 7 applies, implying that every small sub-
consistent T-subnet of NV is strongly connected, and there is a non-empty one in
N; from the first part of the claim, we deduce that N is small sub-consistent. O

It can be seen that the second part of the above result becomes false when
sur-consistency is considered instead of sub-consistency.

Structural deadlockability and sub-consistency in FA nets. To charac-
terize structural deadlockability in FA nets, we need the next technical result.

Lemma 9 (Propositions 16a, 18a in [17]). If a net is small sur-consistent,
then it does not contain any consistent or sub-consistent T-subnet (either proper
or not). If a net is small sub-consistent, then it does not contain any consistent
or sur-consistent T-subnet (either proper or not).

We are now able to deduce the following necessary and sufficient condition.

Lemma 10. Let N be any strongly connected FA net. N is structurally dead-
lockable if and only if it is sub-consistent.

Proof. If N is sub-consistent, it is small sub-consistent (by Lemma 8). By Lemma
9 it is neither consistent nor sur-consistent, hence it is not weakly sur-consistent.
By Lemma 6, it is not structurally live. By Lemma 4, it is structurally dead-
lockable. For the converse, suppose that N is structurally deadlockable. Then,
Lemma 2 applies. a
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A variant of the classification of strongly connected FA nets. By relating
sub-consistency to structural deadlockability and non-weak sur-consistency, we
obtain a variant of the classification of [19,20]. To achieve it, we need the next
lemma.

Lemma 11. Consider any net N = (P, T, W) with incidence matriz T having a
consistency vector mp and a vector m > 0 such that Z-m <0 orZ-m > 0. Then,
in both cases, N is sub-consistent and sur-consistent.

Proof. Define 7’ = 71 + m, so that 7’ > 1, and 7"/ = k- m; — 7, where k is any
(sufficiently large) positive integer such that 7 > 1. If Z- 7 < 0, then 7’ is
a sub-consistency vector for N and 7" is a sur-consistency vector. Similarly, if
Z-m>0, ' is a sur-consistency vector and 7 is a sub-consistency vector. 0O

Lemma 12. Let N be a strongly connected FA net. N satisfies exactly one of
the following properties: consistency, sub-consistency or sur-consistency.

Proof. For this class, structural liveness is equivalent to weak sur-consistency
(consistency or sur-consistency) (Lemma 6), while non-structural liveness is
equivalent to structural deadlockability (Lemma 4) and sub-consistency (Lemma
10). We deduce that this class can be partitioned into two subclasses: the sub-
consistent ones and the weakly sur-consistent ones. If N is both consistent and
sur-consistent, it is also sub-consistent (by Lemma 11), a contradiction with the
previous observation. We deduce the claim. a

Existence of strongly connected sub-consistent FA T-subnets. Using
the new classification, the next refinement of Lemma 7 reveals the FA structure.

Lemma 13. Let N be a strongly connected, partially sub-consistent JF net.
Then, every small sub-consistent T-subnet of N is a strongly connected FA net.
Moreover, N contains such a (non-empty) strongly connected FA T-subnet.

Proof. Applying Lemma 7, every small sub-consistent T-subnet of NV is strongly
connected, and N contains such a non-empty T-subnet J. Suppose that J is
not FA. By Lemma 5, we know that J is covered by strongly connected FA T-
subnets. Since J is small sub-consistent, none of them is sub-consistent. Then,
using the new classification (Lemma 12), each of them is either consistent or
sur-consistent. By Lemma 9, J does not contain any consistent T-subnet nor
any sur-consistent T-subnet. We obtain a contradiction, and J is FA. a

3.4 Polynomial-time Intermediary Characterizations

In the following, we provide two characterizations of structural deadlockability
and liveness for the HJF nets covered by a unique siphon, or equivalently quasi
strongly connected HJF nets by Lemma 1.

The next theorem investigates structural deadlockability. The main step of
the proof is illustrated in Figure 6.
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Theorem 1 (Structural deadlockability). Consider any quasi strongly con-
nected HJF net. It is sub-consistent if and only if it is structurally deadlockable.

Proof. Structural deadlockability and Lemma 2 imply sub-consistency. We prove
the other direction by induction on the number n of places with several outputs.

Base case: n = 0. If N does not contain any choice, it is either a sub-
consistent strongly connected FA net, or a single output-free transition together
with its unique input place. In the first case, Lemma 10 applies, from which we
deduce structural deadlockability. We see easily that the second case also implies
structural deadlockability.

Inductive case: n > 0. N contains choices: it is not an FA net. We suppose
that the claim is true for every n’ < n. If N is strongly connected, Lemma
13 applies, and N contains a sub-consistent, strongly connected FA T-subnet
F. Otherwise, N contains an output-free transition, and we denote by F' the
T-subnet formed of this transition with its unique input place.

Let N’ be the subnet of N obtained by deleting all the places of F' and their
outgoing transitions. If N’ is empty, then all the places of N belong to F, in
which case firing only in F' leads to a deadlock (by Lemma 10 if F' is strongly
connected, trivially in the case of two nodes), since the net is homogeneous.
Otherwise, in the rest of the proof, we suppose that N’ is not empty.

Let Ni,..., Ng be all the maximal connected (not necessarily strongly con-
nected) components of N’. In the following, we prove these components to be
structurally deadlockable. Consider any such net N;. It cannot contain a transi-
tion without input, since such transitions do not occur in N and all outputs of
the deleted places were deleted. Thus, since it is not empty, it contains a place.

Since all places of N belong to a same unique maximal strongly connected
component of IV, there is in N a directed path from a place of F' to any place in
N;, and reciprocally. Consequently, there is a deleted node u (not in N;) input
of some node in V;. Since each transition of IV; has an input place in N;, and NV
is JF, u is a transition. By definition of N’, the input place of u, and each input
place of every other transition of the same kind, are deleted places and cannot
belong to IN;. Moreover, all the transitions of N that are outputs of places of N;
have not been deleted and belong to IV;, since otherwise their input would have
been deleted. Let Z be the incidence matrix of N and 7 be a sub-consistency
vector for N. In the sequel, each union of a transition ¢ with a subnet g of a net
h is a net containing g, ¢ and all arcs between ¢ and g in h. We have two cases.

First case. Suppose that NV, is quasi strongly connected. A transition ¢ exists
in NV that has been deleted and is an input of IV;, the input of ¢ not being in N;.
Also recall that N; has no output transition in N \ IV;. Denote by N/ the union
of N; with its deleted input transitions (and the arcs from these transitions to
N;). If I/ (respectively Z;) is the incidence matrix of N/ (respectively N;), the
projection 7} of w to N/ satisfies Z] - 7} < 0. Denoting by m; the projection of m
to IV;, we deduce that Z; - m; < 0: V; is sub-consistent. Since it is quasi strongly
connected and contains strictly fewer choices than N, the induction hypothesis
applies, and V; is structurally deadlockable.
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Second case. Otherwise, suppose that IV; has a different structure; it is not
strongly connected. Recall that N; does not contain any transition having no
input. Denote by R its reduced graph. Consider any node g of R that contains
at least one place and one transition. If no such g exists in R, which is acyclic,
it is clear that N; is structurally deadlockable. We consider the next cases for g.

Case a. If g has no input in R, it has some output in R, because IN; is not
strongly connected. g has necessarily a deleted input transition whose input has
been deleted. Similarly to the “First case”, the union of g with its deleted input
transitions and its possible output transitions is a sub-consistent or consistent
net. Thus, the union of g with its possible outgoing transitions is a sub-consistent
subnet of IV; that is quasi strongly connected.

Case b. If g has some input transition and some output in R, similarly to
the previous cases, the union of g with its possible output transitions satisfies
sub-consistency and is quasi strongly connected.

Case c. If g has some input transition in R and no output in R, it may
have only output places in N. Using similar arguments as before, g satisfies
sub-consistency and is quasi strongly connected.

In all cases, the induction hypothesis can be applied to the union of g with its
possible output transitions, which all belong to IN;. We deduce that every such
subnet of NV; is structurally deadlockable. By following the partial order defined
by R on its directed paths, starting from the smallest nodes of R for this order
(i.e. with no input in R), selecting arbitrary (homogeneous) choices if needed,
every node of R can be successively deadlocked, finally deadlocking N;.

Thus, N; is always structurally deadlockable. Its possible inputs in N are
necessarily deleted transitions, while its possible outputs are necessarily deleted
places. Since all deleted places belong to a structurally deadlockable T-subnet F’
of N, all the tokens produced in such places when deadlocking all V;, 1 < j <k,
can be decreased by only firing transitions in F' (since F' is a T-subnet, and
it is structurally deadlockable) until F' deadlocks. Moreover, no deleted input
transition of any N; is a transition of F'; thus, by homogeneity, one can fire in F’
while never firing such inputs of N;, and new tokens will not be produced in any
N, in the process. We deduce that a firing sequence always exists that deadlocks
all V;’s first, then deadlocks F', reaching a global deadlock. ad

Figure 6 depicts three quasi strongly connected HJF nets®. The first one
is structurally live and not sub-consistent; the second and the third ones are
sub-consistent, thus structurally deadlockable.

We are now able to deduce the next corollary for structural liveness.

Corollary 1 (Structural liveness). Consider a quasi strongly connected HJF
net. It is structurally live if and only if it is not sub-consistent.

Proof. If such a net is sub-consistent, then it is structurally deadlockable by
Theorem 1, thus not structurally live. For the converse, if it is not structurally
live, it is structurally deadlockable (Lemmas 3 and 4) and sub-consistent by
Lemma 2. a

® Each of them has traps and is weakly sur-consistent (i.e. structurally repetitive).
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Fig. 6. Three quasi strongly connected HJF nets are pictured. On the left, it is not
sub-consistent, hence it is structurally live (a token in p; yields liveness). The nets in
the middle and on the right are sub-consistent. In both of them, there is a structurally
deadlockable FA T subnet: the T-subnet F' induced by t4 in the middle, the T-subnet
F’ induced by {t4,t5} on the right. In the proof, after the deletion of F' and F’ with
their outgoing transitions, the cycle ¢1pi1tsps remains in both nets. This cycle is strongly
connected and sub-consistent, thus it can deadlock; when firings in this cycle occur in
the initial nets (before deletion), tokens are produced only in p2, and t2 shall never be
fired. After the cycle deadlocks, F' and F’ deadlock, inducing a global deadlock.

Polynomial-time complexity. Checking the existence of a rational solution to
7-Y £0,Y > 1, and computing one when it exists, can be done in weakly poly-
nomial time with linear programming. Multiplying this solution by an adequate
rational number, we get an integer solution. Thus, Theorem 1 and Corollary 1
can be checked in polynomial time.

3.5 Generalization of the Conditions to all HJF Nets
A simple necessary condition for structural deadlockability is stated next.
Lemma 14. If a net (P,T,W) is structurally deadlockable, then P is a siphon.

Proof. If P is not a siphon, then ‘P Z P°, meaning that some input transition
of some place in P has no input place: such a transition is always fireable,
contradicting deadlockability. Thus, P is a siphon. a

In Theorem 1 and Corollary 1, the nets considered are quasi strongly con-
nected. Their set of places is their unique siphon by Lemma 1. We generalize
Theorem 1 and Corollary 1 through the two following corollaries.

Corollary 2 (Structural deadlockability). Consider a connected HJF net
N = (P,T,W). Denote by C the set of all the mazimal quasi strongly connected
subnets of N that contain at least one place and one transition. N is structurally
deadlockable if and only if P is a siphon and each element of C' is sub-consistent.

Proof. Assume that N is structurally deadlockable. P is a siphon by Lemma 14.
Consider a non-sub-consistent element ¢ of C. By Corollary 1, ¢ is structurally
live. In IV, the outputs of nodes of ¢ that do not belong to ¢ may only be places
while the inputs of nodes of ¢ that do not belong to ¢ may only be transitions:
in the first case, each output transition belongs to ¢ since ¢ is a maximal quasi
strongly connected subnet; in the second case, an input place would be the unique
input of a transition ¢, such that ¢ has no input in ¢, contradicting the definition
of ¢. Thus, ¢ remains structurally live in IV, contradicting deadlockability.
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Conversely, each element of ¢ is sub-consistent, hence structurally deadlock-
able (Theorem 1). For each place p of N, either p has no output, or the maximal
quasi strongly connected subnet containing p has a transition, belongs to C' and
is structurally deadlockable. Since P is a siphon, each transition of N has an
input. Hence, for every marking My, (N, My) can be deadlocked by following
the paths of the reduced graph R of N, since each node of R denotes either a
place with no output or a subnet of an element of C. a

Corollary 3 (Structural liveness). Let N = (P,T,W) be a connected HJF
net. Let C' be the set of mazimal quasi strongly connected subnets of N with no
input node in N and containing a place and a transition. Then, N is structurally
live if and only if no element of C' is sub-consistent.

Proof. If an element of C is sub-consistent, it is structurally deadlockable (The-
orem 1) with no input, hence N cannot be structurally live. Conversely, if no
element of C' is sub-consistent, each is structurally live (Corollary 1). Thus,
there exists a marking for which all elements of C' are live. Such live subsys-
tems can generate an arbitrarily large number of tokens in their output places
in N. There may also exist nodes without input, which are necessarily single
transitions, hence also live subsystems. By join-freeness and homogeneity, an ar-
bitrarily large number of tokens can reach each place of the system by following
the directed paths in the reduced graph of N. We deduce liveness. a

Polynomial-time complexity. The set of the maximal quasi strongly con-
nected subnets of a join-free net forms a partition (or disjoint covering) of its
nodes. Thus, the number of these subnets is linear in the size of the system. De-
termining these subnets and checking their sub-consistency are polynomial-time
problems, and the conditions of Theorem 1 and Corollary 1 can be checked in
polynomial-time.

4 Non-monotonic Liveness of Inhomogeneous JF Nets

Liveness is not always monotonic, as shown for a bounded HAC system in [8]. In
HFC (hence also OFC and HJF) nets and in some other classes, liveness is known
to be monotonic [5,22,16]. For the inhomogeneous join-free class, we present on
the left of Figure 7 a simple example of non-monotonic liveness under the strong
connectedness assumption. On the right of the same figure, we provide, as far as
we know, the first structurally bounded, live, non m-live join-free system.

5 Improvements on a Previous Work on HAC Nets

We focus here on results of [11]. First, we observe that the pureness assumption
used in [11], which forbids nodes = such that *xNx® # (), is not necessary. Then,
we exhibit an incorrect argument of a proof in one of the central theorems of the
same paper, which is based on quasi strongly connected HJF subnets. Finally,
we correct this proof using Theorem 1.
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Fig. 7. The live and unbounded JF system on the left is not m-live, since adding a
token to pi allows to fire t2, leading to a deadlock. On the right, the JF system is
strongly connected and live; however, it is not m-live, since adding a token to ps and
firing two times ¢4 leads to a deadlock.

Unnecessary pureness. The assumption of pureness, which forbids self-loops,
is only exploited in the proof of the very first lemma of [11] (Lemma 3.1), which
is used in various later occasions. By refining a bit the proof, one can get rid of
this precondition.

An incorrect argument in a previous proof for HAC nets. Consider the
next characterization of [11] for the m-live and bounded markings of HAC nets,
where Np denotes the P-subnet of N induced by the set D of places and MP is
the restriction My|p.

Theorem 2 (Theorem 5.2 in [11]). An HAC system (N, My) is monoto-
nically live and bounded if and only if every place p is covered by a minimal
siphon, and for every minimal siphon D, (ND,MOD) is live and bounded.

Let us exhibit the problem that appears in the proof of this theorem. The
paper correctly shows the “if” part, i.e. that the liveness and boundedness of
all the P-subsystems induced by all the minimal siphons, which cover all places,
implies the monotonic liveness and boundedness of the entire HAC system. It
also proves that if (N, M) is live and bounded, then every place is covered
by a minimal siphon, and that if IV is live from each marking M > M, then
(Np, MP) is live for every minimal siphon D. However, to show that the exis-
tence of a minimal siphon D such that (Np, M) is live and unbounded implies
that (N, My) is not monotonically bounded, the authors use the next argument:

If p is unbounded in (Np, ML), for each integer k there is a firing se-
quence oy, such that MP[oy) My, in Np with My, (p) > k. Then there exist
M > My and M’ such that, in N, M[ok)M’ and M'(p) = My(p) > k,
contradicting the boundedness of (N, M).

This argument is incorrect, since it considers that dp € S, Vk € N, AM > M,
aM’ € [M): M'(p) > k instead of the desired goal, which is: 3p € S, IM > M,
Vk e N, IM' € [M): M'(p) > k. Actually, the authors do not use there the fact
that D is a minimal siphon. However, we are going to show that the authors had
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a correct intuition and the property they claim is valid. Other properties of the
literature for HAC nets, like [3, 1], do not help.

From Theorem 3.2 in the same paper [11], we know that (Np, ML) is live.
Let us now proceed by contradiction and assume that (Np, MP) is unbounded.
Since it is known that live and bounded Petri nets are consistent [18], the net N
is consistent. Hence, every P-subnet induced by any subset of places is also con-
sistent. In particular, this is also the case for Np. If a system is unbounded, the
underlying net is not structurally bounded. We recall the next characterization
for this property, which can be found in various studies, e.g. in [18].

Lemma 15 (Corollary 16 in [18]). A net with incidence matriz T is not
structurally bounded if and only if there exists a vector X > 0 such that Z-X > 0.

Applying Lemma 11, we get the sub-consistency and sur-consistency of Np.

Each minimal siphon of an HAC net induces a quasi strongly connected HJF
P-subnet (by [11] and Lemma 1). Applying Theorem 1, Np is structurally dead-
lockable, contradicting the liveness of (Np, MP), which must thus be bounded.
We deduce the validity of Theorem 5.2 in [11].

6 Conclusion and Perspectives

We examined a crucial substructure of several complex subclasses of Petri nets,
the weighted join-free class. In the homogeneous case, we obtained polynomial-
time characterizations of structural deadlockability and structural liveness that
are not subsumed by previous known methods. They enrich the set of efficient
structural analysis techniques for weighted Petri nets. In the inhomogeneous,
structurally bounded join-free case, we showed the non-monotonicity of liveness.
Finally, we used our new structural conditions on the homogeneous join-free
class to correct a previous erroneous proof of a characterization of monotonic
liveness and boundedness in the homogeneous asymmetric-choice class.

An important perspective is to find out, for the class of Petri net systems that
are decomposable into monotonically live siphon-induced join-free P-subsystems,
under which conditions such local behaviors propagate to the entire system. A
complementary objective is to broaden the methods that check decomposability
in polynomial-time and to deduce efficient sufficient conditions of monotonic
liveness and boundedness for larger classes. Future applications of such methods
encompass notably the design of embedded systems.
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