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Abstract—In order to improve the resolution of seismic images,
a blind deconvolution of seismic traces is necessary, since the
source wavelet is not known and cannot be considered as a sta-
tionary signal. The reflectivity sequence is modeled as a Gaussian
mixture, depending on three parameters (high and low reflector
variances and reflector density), on the wavelet impulse response,
and on the observation noise variance. These parameters are
unknown and must be estimated from the recorded trace, which
is the reflectivity convolved with the wavelet, plus noise. Two
methods are compared in this paper for the parameter estimation.
Since we are considering an incomplete data problem, we first
consider maximum likelihood estimation by means of a stochastic
expectation maximization (SEM) method. Alternatively, proper
prior distributions can be specified for all unknown quantities.
Then, a Bayesian strategy is applied, based on a Monte Carlo
Markov Chain (MCMC) method. Having estimated the parame-
ters, one can proceed to the deconvolution. A maximum posterior
mode (MPM) criterion is optimized by means of an MCMC
method. The deconvolution capability of these procedures is
checked first on synthetic signals and then on the seismic data
of the IFREMER ESSR4 campaign, where the wavelet duration
blurs the reflectivity, and on the SMAVH high-resolution marine
seismic data.

Index Terms—Blind deconvolution, EM algorithm, Markov
Chain Monte Carlo (MCMC), maximum likelihood, maximum
posterior mode (MPM) method, seismic signals, stochastic expec-
tation maximization (SEM) algorithm.

I. INTRODUCTION

T HE AIM of high-resolution marine seismic exploration is
to obtain an image of the sea-bottom lithography from

reflected acoustic waves emitted by various seismic sources.
It uses high-frequency waves with frequencies ranging from
500 Hz to 2 KHz, which penetrates in the ground as far as 100 m
with a resolution of 1 m. The seismic source, which produces the
seismic wavelet, is tracked by a ship Fig. 1, which also drags a
multitrace streamer consisting in an array of hydrophones. The
hydrophones record the reflected acoustic signals. The traveling
distance between two shots is equal to the half of the distance
between two sensors, which means that each sensor will receive
signals coming from the same common reflection point of the
sea bed during a shot sequence. This allows to average the sig-
nals to increase the signal-to-noise ratio (SNR). The received
signals can be modeled as the convolution of a source wavelet
and a reflectivity sequence, which describes the most impor-
tant interfaces met by the emitted wave [1]. The source wavelet
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cannot be considered as a stationary signal for three main rea-
sons: the usual sources as air guns or sparkers cannot be suf-
ficiently controlled in operational conditions at sea to obtain
calibrated wavelets; the received signal is blurred by the ghost
phenomenon due to multiple reflections on the free sea surface
and also by averaging hydrophone signals in the common point
method; the layered geological structure of the sea bottom acts
as a lowpass filter, depending on the localization of the common
point. Furthermore, the problem can be modeled as the filtering
of the reflectivity sequence by a lowpass filter, whose impulse
response is the wavelet source. So, since the wavelet is un-
known, blind deconvolution must be applied to recover the re-
flectivity sequence from the recorded trace.

The first deconvolution methods [2], [3] assumed that the
reflectivity sequence was a white noise and that the wavelet
was described by a deterministic ARMA model. In this case,
usual parametric methods based on second-order statistics
can be used, but they systematically lead to a minimum phase
solution. If the wavelet is nonminimum phase, which occurs
in most experiments, one may then use higher order statistics
(third- or fourth-order cumulants in general) to retrieve the
signal phase [4], [5]. However, this kind of techniques requires
a large amount of data to ensure efficient estimation. Such
conditions are not satisfied in marine reflection seismology,
where the observation vectors contain less than 1000 samples.
Moreover, these higher order approaches do not really take into
account the statistical information contained in the reflectivity
signal. In particular, one simple way to characterize the seismic
signal is to consider that the sea floor is composed of several
layers that are more or less homogenous and separated by
interfaces where the reflections occur. This simple hypothesis
permits us to statistically model the reflectivity sequence as
a Bernoulli–Gaussian process [6], [7] or, more generally, as
a mixture of Gaussian distributions [8]. For each sample of
the reflectivity sequence, a Bernoulli variable characterizes
the presence or the absence of a reflector. Then, conditionally
to that label, the amplitudes follow a Gaussian distribution.
Once this type ofa priori information is given, it is easy to
incorporate it into the convolution model.

The estimation can then be achieved by maximizing the pos-
terior likelihood functional. In practice, maximizing the likeli-
hood functional of incomplete data models (here, the model is
completed by incorporating the Bernoulli reflectivity sequence)
can be done by using the expectation–maximization (EM) al-
gorithm [9]. However, for our problem, this algorithm requires
high-dimensional integrations that are very difficult to calcu-
late by means of classical numerical methods. MCMC methods
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Fig. 1. Acquisition system.

Fig. 2. Synthetic trace.

[15] enable us to circumvent this difficulty by solving the inte-
gration and optimization problems by simulating random vari-
ables. This approach leads to stochastic versions of the EM al-
gorithm [stochastic expectation maximization (SEM), SAEM]
[12]. Moreover, we investigate the problem in a totally Bayesian
framework in which prior information is introduced upon the pa-
rameters [10]. Then, the estimation of the Bernoulli–Gaussian
model and of the wavelet is solved by the simulation of random
variables via MCMC algorithms such as the Gibbs sampler [10].

Once the model has been estimated, the next step is the de-
convolution itself. This problem is said to be “ill-posed” be-
cause, in the presence of noise, different reflectivity sequences
can lead to similar seismic data. Therefore, it is necessary to
use as much prior information as possible upon the reflectivity
to limit the set of acceptable solutions. Thus, it is natural to ac-
count for the Bernoulli–Gaussian assumption introduced above.
Then, we need an adequate procedure to achieve the detection
of reflectors and the estimation of their amplitude. Actually, the
problem can be solved using either the maximuma posteriori
(MAP) criterion, which can be optimized using the simulated
annealing technique, or by the suboptimum maximum posterior
mode (MPM) method, which involves optimization by means
of a MCMC technique.

II. PROBLEM MODELING

A seismic trace can be modeled as the convolution of the un-
known wavelet with the reflectivity sequence, yielding the
observation

(1)

and will, respectively, denote the trace vector of dimension
N and the reflectivity sequence of length N. The source wavelet

is represented by a moving average (MA) model with L coef-
ficients. The noise is assumed to be white Gaussian with vari-
ance . The reflectivity is represented by two random variables

, which define a generalized Bernouilli–Gaussian
process [1]. If is equal to one, it indicates the position of
a high reflector position and a small reflector position for zero.

is the amplitude of the reflected signal and its distribution
is a Gaussian mixture.

(2)

(3)

is the density of the reflectivity sequence. is the variance
of high reflectors, while represents the variance of secondary
reflections due to the inhomogeneity of each layer. It is assumed
that .
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Fig. 3. True and estimated wavelets by using maximum likelihood (right images) and Bayesian methods (left images) for various SNR (from top to bottom:17,
13, and 6 db).

The aim of the problem is to estimate
from the data and then to proceed to the deconvolution with
the estimated source wavelet.

III. PARAMETER ESTIMATION

A. Maximum Likelihood Approach

A classical method consists in using the maximum likelihood
(ML) criterion as follows:

(4)

As mentioned above, this is in fact an incomplete data
problem [8], [9] and it must be solved by introducing the
missing variables . The joint probability density is expressed
by

(5)

As , it can also be written as

(6)

Each component of this equation can be easily expressed. As
is a Bernoulli variable, with

(7)

The variables are independent conditionally to the vari-
ables

(8)

(9)

The complete Log likelihood is expressed by

(10)

with diag , , ,

. We note that , where and are
the convolution matrices associated withand .

When the complete data are known, the optimization
problem solution is straightforward. A Gibbs sampler [10],
[11] is used to obtain the complete data by simulation, which
consists of a random sampling from the probability distribution

, where means all the vector values except
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TABLE I
PERFORMANCES OF THEBAYESIAN AND ML DECONVOLUTION MSEw MEAN SQUARE ERRORBETWEENTRUE AND ESTIMATED WAVELETS. MSEr MEAN SQUARE

ERRORBETWEEN TRUE AND ESTIMATED IMPULSES OF THEREFLECTIVITY SEQUENCEFA NUMBER OF FALSE ALARMS (DETECTEDIMPULSES OF

HIGH-AMPLITUDE, WHICH DO NOT EXIST). D = NUMBER OF DETECTEDIMPULSES OFHIGH AMPLITUDE (ON 25 GENERATED IMPULSES), LE1 = NUMBER OF

IMPULSESWHOSELOCALIZATION HAS AN ERROR OFONE SAMPLE LEFT ORRIGHT, LE2 = NUMBER OF IMPULSESWHOSELOCALIZATION HAS AN ERROR

OF TWO SAMPLES LEFT ORRIGHT, LE3 = NUMBER OFIMPULSESWHOSELOCALIZATION HAS AN ERROR OFTHREESAMPLES LEFT ORRIGHT

. In this case, it can be shown that the posterior density
function becomes [8]

(11)

with

(12)

For the simulation of the vector, the Gibbs sampler has the
following iterative steps:

For and
• Choice of k;
• Computation of ;
• Random sampling of in [0,1] and new value of

:

•
if
if ;

• Estimation: simulation of with ;
• New value: :

The SEM [12] is then used to solve the estimation
problem:

Initialization:
• choice of and ;

For :
• E step:

• Simulation of by the Gibbs sampler ac-
cording to ;

• M step:
• Estimation of the parameters

with

B. Bayesian Approach

In Bayesian estimation, the hyper parametersare random
and have a prior density . When no prior distribution
is available, it is possible to specify noninformative prior
distributions that are easy to handle, such as conjugate priors
[10]. Then, the objective is to estimate the joint posterior
distribution , which can be expressed by using the
Bays rule by

(13)

with

(14)
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Fig. 4. True reflectivity and reflectivities.

This requires integrations that are generally impossible to
perform. To overcome this difficulty, Monte Carlo methods are
used to build a Markov chain whose equilibrium distribution
coincides with the desired joint posterior distribution of the
unknown parameters. This is performed by the Gibbs sampler,

which generates estimates by sampling from conditional
distributions.

A detection–estimation procedure is used to simulate
the missing variable, because the direct sampling from

is impossible.
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Fig. 5. Convergence speed of the SEM method(SNR = 15 dB).

Fig. 6. Convergence speed for the Bayesian method(SNR = 15 dB).

• Detection: simulate according to the distribution
, where any vector is

defined by

• Estimation: simulate according to .
Each parameter is associated to a prior and classical conjugate

priors, such as Gaussian distributions; Beta distributions or
Inverse Gamma distributions are used [10]

(15)

(16)

(17)

(18)

The posterior distribution of is expressed by

(19)

where

(20)
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Fig. 7. Registered seismic trace n1.

Fig. 8. Estimated wavelets of ten successive traces from 1 to 10 of shot 602
by maximum likelihood with the maximum value position atd = 68 ms.

and

(21)

The posterior distribution of the noise variance is an Inverse
Gamma distribution, as follows:

(22)

with

(23)

The posterior distribution of the primary reflectivity variance
follows:

(24)

with

(25)

Fig. 9. Estimated wavelets of ten successive traces from 1 to 10 of shot 602
by Bayesian method with the maximum value position atd = 68ms.

The posterior distribution of the secondary reflectivity variance
follows:

(26)

with

(27)

The density of the reflectivity is given by

(28)

with

(29)

From these distributions, an algorithm [13] similar to the Gibbs
sampler leads to the parameter estimation

Random initialization of and ;
For ,

• simulate from
• simulate from
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Fig. 10. Convergence speed for the SEM method.

Fig. 11. Convergence speed for the Bayesian method.

• simulate from

• simulate from
• simulate from
• simulate from .

IV. DECONVOLUTION

As the parametersand, in particular, are now known, the
deconvolution problem is reduced to an estimation of the hidden
variables from the observation. Thea posteriorilog likelihood
is expressed by .

The separation principle [1] allows us to solve this maximiza-
tion problem in two steps:

(30)

(31)

The estimation step leads to a mean square method because it is
a quadratic form when is fixed

with and

Fig. 12. Estimated reflectivity sequence corresponding to trace n1.

Fig. 13. Seismic image of ESSR4 data.

Fig. 14. Deconvolved image of ESSR4 data.

The detection problem is not so easy because the vectorhas
discrete configurations, and testing all of them is not possible.
The solution consists in the applying a simpler criterion called
the maximum posterior mode (MPM) [14], which maximizes
the marginal distribution . As it cannot be explicitly
optimized, it is simulated by means of a Monte Carlo method
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Fig. 15. Seismic image with SMAVH data.

using the Gibbs sampler. At each iteration, a sequenceis
generated according to the distribution .

The MPM algorithm follows the steps:

1) Initialization:
• Choice of and ;

2) Iteration with a learning period and a steady-
stage period ;

• Computation of
• Detection: random sampling of U in [0,1]

if
elsewhere

• Estimation: random uniform sampling of with

if
if

3) Decision for ;
• Detection

if
elsewhere

• Estimation

if

if

V. APPLICATION

A. Synthetic Traces

We build a synthetic trace (Fig. 2) by convolving a white
Gaussian mixture impulse signal ( , ,

) with a synthetic Ricker wavelet (Fig. 3), plus additive
white noise, whose variance is adjusted to obtain a variable
SNR. The SNR is defined as

SNR

where stands for the wavelet energy.
In this simulation, 25 impulses of high amplitude corre-

sponding to high reflectors were generated. We compare the
deconvolution performances of the two methods with respect

TABLE II
ESTIMATED PARAMETERS FORSMAVH DATA

Fig. 16. Deconvolved image with SMAVH data.

to SNR. Fig. 3 shows the true and estimated wavelets. It can be
seen in Table I that the error MSEw is a bit higher with the ML
method than with the Bayesian method at each SNR.

After applying the algorithms, it may occur that two neigh-
boring estimated impulses are found, either successive or sepa-
rated by one sample. Then, a postprocessing procedure must be
used to fuse these impulses by replacing them by their gravity
center. Fig. 4 shows the deconvolved reflectivity sequences and
the true reflectivity sequence for both algorithms at SNR 17,
13, and 6 db. Table I compares the performances of the ML and
Bayesian approaches for the reflectivity sequence in terms of
good detection, false alarms, localization errors, and estimation
error of the amplitude of detected impulses.

It can be seen on this example that the MCMC method gives
a better deconvolution than the ML method. At high SNR,
the localization of impulses by MCMC is more accurate with
less misses and false detection than by ML, where more false
detections occur. If SNR decreases, the impulse miss number
increases, because low-amplitude impulses are not detected.
High-amplitude impulses continue to be well localized. It can
be remarked that both methods show good robustness with
regard to the SNR decrease.

The SEM convergence speed of theparameters is shown
in Fig. 5 for a SNR of 15 db. The convergence speed of the
Bayesian approach is shown in Fig. 6. In this last case, the prior
distribution parameters were , ,

, , and .
We remark that it is faster for the Bayesian method, while the
parameter variance is higher. The wavelet estimation is more
accurate with the Bayesian method when the SNR decreases.

B. Real Traces

1) ESSR4 Data:In the case of the ESSR4 data acquired
during the ZAIANGO campaign by the IFREMER, the seismic
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Fig. 17. Seismic trace along line 1 with SMAVH data.

data set was obtained using an innovative manner for synchro-
nizing a cluster of GI guns in order to achieve deeper penetra-
tion. The sources are no more synchronized on their firing order
but on their time of maximum energy, therefore decreasing the
signal bandwidth but increasing significantly the low-frequency
content and, thus, the penetration. The source was composed
of 11 synchronized airguns shooting every 20 s with a source
wavelet whose spectrum is in the band of 0–128 Hz. The multi-
trace streamer was composed of 360 clusters of 16 hydrophones,
whose role was to improve the SNR by summing the received
signals. The length of the steamer was 4.5 km and each hy-
drophone cluster was separated by 12.5 m. The sampling rate
was 4 ms and each trace was composed of 2500 samples (Fig. 7).

The length of the MA model is a parameter that must be fixed.
In our case, sufficient knowledge about the source wavelet gen-
eration suggested the choice of a MA model with 35 coeffi-
cients, giving a source duration of 140 ms.

When estimating the source wavelet, a problem of phase shift
occurs because the convolution of shifted versions of the esti-
mated wavelet with the reflectivity shifted the other way lead
to the same seismic trace. As the wavelet is modeled by an MA
process, there are some differences in the estimation when the
position of the wavelet maximum value is changed. We assume
that this position belongs to the interval. Then, the following al-
gorithm is applied for neighboring traces, where the hypothesis
of the wavelet stationary is made .

For trace :
• Wavelet estimation of with the hypothesis that

the maximum is at position ;
• For

• Wavelet shift of one sample of toward the
right;

• Wavelet estimation of ;
For trace

• Wavelet estimation with an initialization by for

The decision is given by the minimum of variance, which gives

Fig. 18. Estimated reflectivity sequence along line 1 with SMAVH data.

In this experiment, all maximum positions from 20 to 80 ms
are explored with a step of 8 ms. The minimum variance is ob-
tained for with a superposition of ten estimated
wavelets from neighboring traces at the same maximum value.
The ML wavelet estimation for the seismic trace of Fig. 7 is
shown in Fig. 8. The Bayesian approach is presented in Fig. 9.
The learning time has been experimentally set to 700 iterations.
We remark that the variance of the estimated wavelet is lower
with the Bayesian approach than with the ML approach, which
suggests that introducing a prior knowledge regularizes estima-
tion. The empirical mean of the other parameters is computed
from the next 400 samples. The convergence speed of these pa-
rameters for the ML and Bayesian methods is, respectively, in
Figs. 10 and 11.

After convergence, we remark a higher variance of the param-
eters with the Bayesian method. One reason for this is that the
Bayesian approach uses simulations from probability distribu-
tions more extensively than the ML approach. Nevertheless, the
estimation means are similar. Fig. 12. shows the reflectivity se-
quence obtained by applying the MPM deconvolution method.

Putting the traces of all the shots of the same hydrophone
cluster side by side gives an image of the sea bottom stratigraphy
(Figs. 13 and 14). Transitions between layers are thinner and less
blurred in the deconvolved image.

2) High-Resolution SMAVH Data:These data come from
a high-resolution marine seismic experiment undertaken
by IFREMER in shallow water. The source is an air gun
whose bandwidth is 200 Hz. The streamer is composed of 24
hydrophones separated by a length of 25 m. Fig. 15 shows
the seismic image obtained from 401 successive shots. The
MCMC algorithm is applied on the raw data and the estimated
parameters are given in Table II. Fig. 16 shows the deconvolved
image. Figs. 17 and 18 show, respectively, a raw seismic trace
and the corresponding estimated reflectivity sequence along
the vertical line 1. Comparing Figs. 15 and 16 shows that
blind deconvolution improves the information quality given
by the seismic image: New layers, which were blurred in the
seismic image, appear clearly in the deconvolved image; layer
interfaces are thinner and better localized in the deconvolved
image. A contribution of blind deconvolution here is to let
appear layers immediately under the sea-floor line, which were
masked in the original image because of the high energy of
the sea-floor reflection. This can also be seen by comparing
Figs. 17 and 18.
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VI. CONCLUSION

We compared an SEM implementation of the ML method
with an MCMC implementation of a Bayesian method for
parameter estimation in blind deconvolution of seismic traces.
These methods were applied to synthetic and real seismic
traces. In the last case, practical problems, such as the wavelet
shift, have been experimentally solved. We showed that the
Bayesian approach leads to slightly improved results, which
implies that use of prior information leads to a more regularized
wavelet estimation. We also showed on real data experiments
that these blind deconvolution methods enable to improve
seismic image resolution: Better localization of layer interfaces
is achieved and new layers can be detected after processing in
the deconvolved image.
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