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Blind Marine Seismic Deconvolution
Using Statistical MCMC Methods

Olivier Rose¢ Member, IEEEJean-Marc BoucheMember, IEEEBenayad NsitiStudent Member, IEEE&Nd
Thierry ChonavelMember, IEEE

Abstract—in order to improve the resolution of seismic images, cannot be considered as a stationary signal for three main rea-
a blind deconvolution of seismic traces is necessary, since thesons: the usual sources as air guns or Sparkers cannot be suf-
source wavelet is not known and cannot be considered as a Sta-ficiantly controlled in operational conditions at sea to obtain
tionary signal. The reflectivity sequence is modeled as a Gaussian librated lets: th ived si lis bl d by the ahost
mixture, depending on three parameters (high and low reflector calibrated wavelets, the rgcelve S|gna IS blurred by the ghos
variances and reflector density), on the wavelet impulse response, Phenomenon due to multiple reflectlgns On'the free sea surfa'ce
and on the observation noise variance. These parameters areand also by averaging hydrophone signals in the common point
unknown and must be estimated from the recorded trace, which  method; the layered geological structure of the sea bottom acts
is the reflectivity convolved with the wavelet, plus noise. Two as a lowpass filter, depending on the localization of the common

methods are compared in this paper for the parameter estimation. . S
Since we are considering an incomplete data problem, we first point. Furthermore, the problem can be modeled as the filtering

consider maximum likelihood estimation by means of a stochastic Of the reflectivity sequence by a lowpass filter, whose impulse
expectation maximization (SEM) method. Alternatively, proper response is the wavelet source. So, since the wavelet is un-
prior distributions can be specified for all unknown quantities.  known, blind deconvolution must be applied to recover the re-
Then, a Bayesian strategy is applied, based on a Monte Carlo flectivity sequence from the recorded trace.

Markov Chain (MCMC) method. Having estimated the parame- . .

ters, one can proceed to the deconvolution. A maximum posterior The_f!rst deconvolution methqu [2,]' [3] assumed that the

mode (MPM) criterion is optimized by means of an McMC reflectivity sequence was a white noise and that the wavelet

method. The deconvolution capability of these procedures is was described by a deterministic ARMA model. In this case,

C?eﬁkeltlj: F?ESJAEE SEygtSth'C signals andhthen hon the TEISJT"C data ysual parametric methods based on second-order statistics

of the campaign, where the wavelet duration ; P

blurs the reflectivity, and on the SMAVH high-resolution marine can l_)e used, but they Systematlpglly lead to a mlnlmum phase
solution. If the wavelet is nonminimum phase, which occurs

seismic data. ) ) . .
in most experiments, one may then use higher order statistics

Chain Monte Carlo (MCMC), maximum likelihood, maximum (third- or fourth-order cumulants in general) to retrieve the

posterior mode (MPM) method, seismic signals, stochastic expec-Signal phase [4], [5]. However, this kind' O_f techniques' requires
tation maximization (SEM) algorithm. a large amount of data to ensure efficient estimation. Such

conditions are not satisfied in marine reflection seismology,
where the observation vectors contain less than 1000 samples.
Moreover, these higher order approaches do not really take into
HE AIM of high-resolution marine seismic exploration isaccount the statistical information contained in the reflectivity
to obtain an image of the sea-bottom lithography frorsignal. In particular, one simple way to characterize the seismic
reflected acoustic waves emitted by various seismic sourceignal is to consider that the sea floor is composed of several
It uses high-frequency waves with frequencies ranging frol@yers that are more or less homogenous and separated by
500 Hz to 2 KHz, which penetrates in the ground as far as 100interfaces where the reflections occur. This simple hypothesis
with a resolution of 1 m. The seismic source, which produces thermits us to statistically model the reflectivity sequence as
seismic wavelet, is tracked by a ship Fig. 1, which also dragsiaBernoulli-Gaussian process [6], [7] or, more generally, as
multitrace streamer consisting in an array of hydrophones. Tagmixture of Gaussian distributions [8]. For each sample of
hydrophones record the reflected acoustic signals. The travelthg reflectivity sequence, a Bernoulli variable characterizes
distance between two shots is equal to the half of the distaribe presence or the absence of a reflector. Then, conditionally
between two sensors, which means that each sensor will recdivdhat label, the amplitudes follow a Gaussian distribution.
signals coming from the same common reflection point of tHance this type of priori information is given, it is easy to
sea bed during a shot sequence. This allows to average the gigerporate it into the convolution model.
nals to increase the signal-to-noise ratio (SNR). The receivedl'he estimation can then be achieved by maximizing the pos-
signals can be modeled as the convolution of a source wavégsior likelihood functional. In practice, maximizing the likeli-
and a reflectivity sequence, which describes the most imp#eod functional of incomplete data models (here, the model is
tant interfaces met by the emitted wave [1]. The source waveggtmpleted by incorporating the Bernoulli reflectivity sequence)
can be done by using the expectation—maximization (EM) al-

Index Terms—Blind deconvolution, EM algorithm, Markov

. INTRODUCTION

Manuscript received July 1, 2002; revised March 11, 2003, orithm [9]. However, for our problem, this algorithm requires
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Airguns generating the source wavelet

Multitrace streamer

Fig. 1. Acquisition system.
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Fig. 2. Synthetic trace.

[15] enable us to circumvent this difficulty by solving the inte- Il. PROBLEM MODELING
gration and optimization problems by s_imulati_ng random vari- A seismic trace can be modeled as the convolution of the un-
abl_es. This appro_ach leads tp StOCha.‘St!c Versions of the EM own waveleth with the reflectivity sequence, yielding the
gorithm [stochastic expectation maximization (SEM), SAEM bservation
[12]. Moreover, we investigate the problem in a totally Bayesian
framework in which prior information is introduced upon the pa- y(k) = Sioh(i)r(k — i) + w(k). 1)
rameters [10]. Then, the estimation of the Bernoulli-Gaussigrind will, respectively, denote the trace vector of dimension
model and of the wavelet is solved by the simulation of randofy and the reflectivity sequence of length N. The source wavelet
variables via MCMC algorithms such as the Gibbs sampler [10).is represented by a moving average (MA) model with L coef-
Once the model has been estimated, the next step is the fiigents. The noise is assumed to be white Gaussian with vari-
convolution itself. This problem is said to be “ill-posed” beances2 . The reflectivity is represented by two random variables
cause, in the presence of noise, different reflectivity sequencgs) = (¢, r), which define a generalized Bernouilli-Gaussian
can lead to similar seismic data. Therefore, it is necessarygfocess [1]. Ifg(k) is equal to one, it indicates the position of
use as much prior information as possible upon the reflectivigyhigh reflector position and a small reflector position for zero.
to limit the set of acceptable solutions. Thus, it is natural to ag¢k) is the amplitude of the reflected signal and its distribution
count for the Bernoulli-Gaussian assumption introduced abowea Gaussian mixture.
Then, we need an adequatt_e procedqre to qchleve the detection pa(k) = 1) =1 — p(q(k) = 0) = A )
of reflectors and the estimation of their amplitude. Actually, the ) )
problem can be solved using either the maximaiposteriori p(r(k)) =AN (0701) + (=N (0700) N C)
(MAP) criterion, which can be optimized using the simulated is the density of the reflectivity sequeneg. is the variance
annealing technique, or by the suboptimum maximum posterisfrhigh reflectors, whiler2 represents the variance of secondary
mode (MPM) method, which involves optimization by meangeflections due to the inhomogeneity of each layer. Itis assumed
of a MCMC technique. thatop << o7,
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Fig. 3. True and estimated wavelets by using maximum likelihood (right images) and Bayesian methods (left images) for various SNR (from top1@,bottom:
13, and 6 db).

The aim of the problem is to estimate= (h, A, 03,07,02) The variables (k) are independent conditionally to the vari-

from the datay and then to proceed to the deconvolution witlablesq(k)
the estimated source wavelet

; ); 0 8
Ill. PARAMETER ESTIMATION |q Hp ) ®
A. Maximum Likelihood Approach 1 N (y(k)=h*r(k))?
pp pylei) = — - exp [_zk_m (-nr(h)) g
A classical method consists in using the maximum likelihood (2m02)> ow

(ML) criterion as follows:
The complete Log likelihood is expressed by

v = arg max Inp(y; 0). 4)

As mentioned above, this is in fact an incomplete data Ly, z;0) = —

202 202
problem [8], [9] and it must be solved by introducing the 50(2) ;\7[“’ 71 A\
missing variableg. The joint probability density is expressed - ; 5 — <3> Ino2 + ny(q)In (—)
by 0'0 g1
1-A
+no(g) In <( )> (10)
p(y,2;0) = p(ylz; 0)p(z; 0). (5) 70
As z = (g,r), it can also be written as with Q@ = dia@KQ) 1(2) = rf@Qr so(2) = r'(L — Q)r,
ni1(g) = ¢ q. We note thatir = Rh, where H andR are
p(y,2;0) = p(ylz; 0)p(rlg; 0)p(g; 0). (6) the convolut|on matrices associated witandh.

When the complete data are known, the optimization
Each component of this equatlon can be easily expresseg. Asroblem solution is straightforward. A Gibbs sampler [10],
is a Bernoulli variablep(q) = [Tr_, p(q(k)) with [11] is used to obtain the complete data by simulation, which
consists of a random sampling from the probability distribution
p(q(k); 0) = X2F) (1 — x)t—alk), (7 p(z(k)|y: z_;,), wherez_, means all the vector values except
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TABLE |
PERFORMANCES OF THEBAYESIAN AND ML D ECONVOLUTION MSEw MEAN SQUARE ERRORBETWEEN TRUE AND ESTIMATED WAVELETS. MSEr MEAN SQUARE
ERROR BETWEEN TRUE AND ESTIMATED IMPULSES OF THEREFLECTIVITY SEQUENCEFA NUMBER OF FALSE ALARMS (DETECTED IMPULSES OF
HIGH-AMPLITUDE, WHICH DO NOT EXIST). D = NUMBER OF DETECTED IMPULSES OFHIGH AMPLITUDE (ON 25 GENERATED IMPULSES, LE1 = NUMBER OF
IMPULSESWHOSE LOCALIZATION HAS AN ERROR OFONE SAMPLE LEFT ORRIGHT, LE2 = NUMBER OF IMPULSESWHOSE LOCALIZATION HAS AN ERROR
OF TWO SAMPLES LEFT ORRIGHT, LE3 = NUMBER OF IMPULSESWHOSE L OCALIZATION HAS AN ERROR OFTHREE SAMPLES LEFT ORRIGHT

SNR(dB) MSEw | MSEr FA D LE1 LE2 LE3
Bayesian | 0.0009 2.9 2 23 1 0 0
1 ML | 0.0018 2.6 18 22 2 1 0
Bayesian | 0.0029 2.4 4 22 1 0 0
B ML | 0.0026 3.5 22 21 3 1 1
Bayesian 0.027 2.7 7 19 1 0 0
6 ML 0.06 3.4 11 18 1 2 0
z(k). In this case, it can be shown that the posterior density Initialization:
function becomes [8] « choice ofg(® andz(®;
For: =1,...,M:
* E step: .
p(a(k) = 1]y, z ) . Simulation ofz () by the Gibbs sampler ac-
-1 (1 1)
e 5€xXp | o — o7 i .
A Viog Vo 2N » Estimation of the parameters
with A = My ()~ My(r) with
My(r)=R"R, M,(r)=R"y
-1 -1 (i 1
Vi = L1 Vo = 1.1 oo = N (y"y — My(r)" My (1)~ My(r))
Vi 0% ’ Vi J%
9 ~2(3) _ s51(2)
m Em mo = Em V. Tw = n1(q)
1= Vw w 0 — Vw w w E 4.
26 S0(2)
1 & 7 nolg)
w == h y(k h(j k— -
m EZ; (4) |y(k + 1) Z r(i+k — j) o i)
1= ]#l )\ - N
L
E = h*i). (12)
i=0 B. Bayesian Approach

In Bayesian estimation, the hyper parameteere random
For the simulation of the vectar, the Gibbs sampler has theand have a prior density(¢). When no prior distribution

following iterative steps: is available, it is possible to specify noninformative prior
distributions that are easy to handle, such as conjugate priors
> =1,..., AU i O .
FOI'.I Chtl?:gd(i:‘k LN [10]. Then, the objective is to estimate the joint posterior
. Computatio,n ob(q(k) = 1jy:z_,); distribution p(y, #|z), which can be expressed by using the
- Ir 22—k ) -
* Random sampling of; in [0,1] and new value of Bays rule by
q(k): j 0)p(yl0)p(8
o k) = 1 !f p(q(k) = u ) >u p(gﬁlz) _ P(E@v )p(g| )p(0) (13)
0 ifplg(k) = 1y;z_p) <u’ p(z)
« Estimation: simulation of (k) with N'(mg,02); h
. New value:z® (k) = (q(k), r(k)): wit

The SEM [12] is then used to solve the estimation / /
z)= .

problem: p(zly, 0)p(y|0)p(0)dydo. (14)
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Fig. 4. True reflectivity and reflectivities.

This requires integrations that are generally impossible which generates estimates by sampling from conditional
perform. To overcome this difficulty, Monte Carlo methods ardistributions.
used to build a Markov chain whose equilibrium distribution A detection—estimation procedure is used to simulate
coincides with the desired joint posterior distribution of théhe missing variable, because the direct sampling from
unknown parameters. This is performed by the Gibbs sample(r, g|z, #*~) is impossible.
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* Detection: simulateg(n) according to the distribution

plg(n) = 1lz,¢_ ,r_,), where any vectow_, is

defined by

v_, =[o(1),...0o(n—1),v(n+1),...0(N)]".

+ Estimation: simulate(n) according tg(r(n)|z,q,r_,)-

Each parameter is associated to a prior and classical conjugate
priors, such as Gaussian distributiok’s Beta distributions or

Inverse Gamma distributiorse are used [10]

h:N (Q(L+1)><1> Yol

wm)

(15)

iteration

] 1000 2000 30
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Y003
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F—

iteration

[Eh)
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]
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12055
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The posterior distribution o is expressed by

where

1
-1 _
b)) —0—2

w

hlr,z 05 : N(m, %)

M(r) + %5t

507

(16)
17

(18)

(19)

(20)
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by maximum likelihood with the maximum value positiondat 68 ms. by Bayesian method with the maximum value positior at 68 ms.
and The posterior distribution of the secondary reflectivity variance
S follows:
Ow a§|§:IQ <VO; ’@) (26)
The posterior distribution of the noise variance is an Inverse
Gamma distribution, as follows: with
N
2
o2z, h® : IG (”w ;r N 2w ;F 3“’) 22) so=y_r(n) (1—q(n)). @7)
n=1
with The density of the reflectivity is given by
N 2 Alg : Be(¢ +ny1, 7+ N —ny) (28)
=Y (vm) —b"a(m) " (23)
n=1 with
The posterior distribution of the primary reflectivity variance N
follows: ny = Z q(n). (29)
n=1
vi+N v+ s?
ot)z: IG < - 5 7%> (24)  From these distributions, an algorithm [13] similar to the Gibbs
sampler leads to the parameter estimation
with Random initialization 0#(®) andz(®;
N Fori=1,...,1,
« simulatez®) from p(z|#¢~1)
1= r(ma(n). (25) simulatez z

n=l » simulater® from p(hly, 7@, oi )
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« simulatess ) from p(o2 |y, r®, b))
. simulates® from p(o2|2®)

- simulates; " from p(o2|z®)
simulateA®” from p(A|g(*).

IV. DECONVOLUTION

As the parameter® and, in particularh are now known, the
deconvolution problemis reduced to an estimation of the hidd
variables: from the observation. Theeposteriorilog likelihood

is expressed by.(y, z; 6).

The separation principle [1] allows us to solve this maximize

tion problem in two steps:

Detection : ¢ = arg maxp(q|y) (30)
g Py

Estimation : 7 = arg max p(r|y, q). (31)

08+ E
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0.4

o
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Fig. 12. Estimated reflectivity sequence corresponding to trate n
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Fig. 14. Deconvolved image of ESSR4 data.

The estimation step leads to a mean square method becauserihisgetection problem is not so easy because the vgbts2™

a quadratic form when is fixed

i(q) =S8 'H"y, with S=H"H+M and

1 ol o2
M = (I - =9 = -,
M=y [Q+ - g)} P R=TE 1T

discrete configurations, and testing all of them is not possible.
The solution consists in the applying a simpler criterion called
the maximum posterior mode (MPM) [14], which maximizes
the marginal distributiom(z(k)|y). As it cannot be explicitly
optimized, it is simulated by means of a Monte Carlo method
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TABLE I
ESTIMATED PARAMETERS FORSMAVH DATA
A ov% 012 crg
g 0.333 0.011 1.12 9.72 107
w
=
-

50 100 150 200 250 300 350 400 2

)

2

Shot number

TIME {m:

Fig. 15. Seismic image with SMAVH data.

using the Gibbs sampler. At each iteration, a sequefices 500
generated according to the distributiofx(k)|y; z_)-
The MPM algorithm follows the steps:

1) Initialization: A00 — —
* Choice qu(o) andf(o); o bqahratjwtl};;wb@r
2) Iterationi < I with a learning period < I, and a steady-
stage periody < ¢ < I;
» Computation ofi(k) = P(q(k) = 1|y;2_4)
« Detection: random sampling of U in [0,1]

Fig. 16. Deconvolved image with SMAVH data.

to SNR. Fig. 3 shows the true and estimated wavelets. It can be
1 ifd(k) > u seen in Table | that the error MSEw is a bit higher with the ML
q(k) = { ' method than with the Bayesian method at each SNR.
0, elsewhere . : . .
After applying the algorithms, it may occur that two neigh-
» Estimation: random uniform sampling ofk) with  poring estimated impulses are found, either successive or sepa-
N(my, V1), if qk)=1 rated by one sample. Then, a postprocessing procedure must be
r(k) = {N(mo, Vo), if q(k)=0 used to fuse these impulses by replacing them by their gravity
center. Fig. 4 shows the deconvolved reflectivity sequences and

3) Decision forl < k < N; o X
« Detection the true reflectivity sequence for both algorithms at SNR 17,
o1 I (i) 13, and 6 db. Table | compares the performances of the ML and
) 17 if T—1In E":I 14 (k) >~ Gmin H P H
q(k) = 0 II foh i=Io+ Bayesian approaches for the reflectivity sequence in terms of
T elsewhere good detection, false alarms, localization errors, and estimation
* Estlmajtlon _ _ error of the amplitude of detected impulses.
Diig s 1 RO (R) it g(k) =1 It can be seen on this example that the MCMC method gives
Zleoﬂq(”(k) a better deconvolution than the ML method. At high SNR,
r(k) = 1 O ) (& the localization of impulses by MCMC is more accurate with
Dimrg (1m0 : X
S (1—a0 () if g(k)=0. less misses and false detection than by ML, where more false
i=lot1 detections occur. If SNR decreases, the impulse miss number
increases, because low-amplitude impulses are not detected.
V. APPLICATION High-amplitude impulses continue to be well localized. It can
A. Synthetic Traces be remarked that both methods show good robustness with

regard to the SNR decrease.
. . . . .. The SEM convergence speed of the@arameters is shown
We build a synthetic trace (Fig. 2) by convolwr;g a Whm?n Fig. 5 for a SNR of 15 db. The convergence speed of the

Gaussian mixture impulse signati( = 1, o = ko?, k = . . N ; .
0.001) with a synthetic Ricker wavelet (Fig. 3), plus additiVeBaye5|an approach is shown in Fig. 6. In this last case, the prior

H : 7 _ _ _ —10
white noise, whose varianeé, is adjusted to obtain avariabledlsmbUtlon parameters wei, = 0.01, v, = vy = 1077,

i : 1 =v = 10719 45 = 99 = 1071° and¢ = 7 = 1.
SNR. The SNR is defined as We remark that it is faster for the Bayesian method, while the

2
SNR = 101log (Aoleh> parameter variance is higher. The wavelet estimation is more
g accurate with the Bayesian method when the SNR decreases.

whereE), = XL_ h%(n) stands for the wavelet energy.
In this simulation, 25 impulses of high amplitude correB: Real Traces

sponding to high reflectors were generated. We compare thel) ESSR4 Data:ln the case of the ESSR4 data acquired

deconvolution performances of the two methods with respaitring the ZAIANGO campaign by the IFREMER, the seismic
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Fig. 17. Seismic trace along line 1 with SMAVH data.
Fig. 18. Estimated reflectivity sequence along line 1 with SMAVH data.

data set was obtained using an innovative manner for synchro-
nizing a cluster of Gl guns in order to achieve deeper penetia-this experiment, all maximum positions from 20 to 80 ms
tion. The sources are no more synchronized on their firing ord@ie explored with a step of 8 ms. The minimum variance is ob-
but on their time of maximum energy, therefore decreasing tkgined ford = 68 ms with a superposition of ten estimated
signal bandwidth but increasing significantly the low-frequencyavelets from neighboring traces at the same maximum value.
content and, thus, the penetration. The source was compo$bé ML wavelet estimation for the seismic trace of Fig. 7 is
of 11 synchronized airguns shooting every 20 s with a sourggBown in Fig. 8. The Bayesian approach is presented in Fig. 9.
wavelet whose spectrum is in the band of 0-128 Hz. The mulfihe learning time has been experimentally set to 700 iterations.
trace streamer was composed of 360 clusters of 16 hydrophor¥¥g, remark that the variance of the estimated wavelet is lower
whose role was to improve the SNR by summing the receiv&dth the Bayesian approach than with the ML approach, which
signals. The length of the steamer was 4.5 km and each Isy#ggests that introducing a prior knowledge regularizes estima-
drophone cluster was separated by 12.5 m. The sampling ré@®. The empirical mean of the other parameters is computed
was 4 ms and each trace was composed of 2500 samples (Figff@)n the next 400 samples. The convergence speed of these pa-
The length of the MA model is a parameter that must be fixetemeters for the ML and Bayesian methods is, respectively, in
In our case, sufficient knowledge about the source wavelet géngs. 10 and 11.

eration suggested the choice of a MA model with 35 coeffi- After convergence, we remark a higher variance of the param-
cients, giving a source duration of 140 ms. eters with the Bayesian method. One reason for this is that the
When estimating the source wavelet, a problem of phase siBtyesian approach uses simulations from probability distribu-
occurs because the convolution of shifted versions of the esibns more extensively than the ML approach. Nevertheless, the
mated wavelet with the reflectivity shifted the other way leadstimation means are similar. Fig. 12. shows the reflectivity se-
to the same seismic trace. As the wavelet is modeled by an Mdence obtained by applying the MPM deconvolution method.
process, there are some differences in the estimation when thputting the traces of all the shots of the same hydrophone
position of the wavelet maximum value is changed. We assumlaster side by side gives an image of the sea bottom stratigraphy
that this position belongs to the interval. Then, the following a{Figs. 13 and 14). Transitions between layers are thinner and less
gorithm is applied for neighboring traces, where the hypothesikirred in the deconvolved image.
of the wavelet stationary is madé < 10). 2) High-Resolution SMAVH DataThese data come from
For tracej = 1: a high-resolution marine seismic experiment undertaken

« Wavelet estimation o;ﬁl with the hypothesis that by IFREMER in shallow water. The source is an air gun

the maximum is at pas‘?ii‘bd . whose bandwidth is 200 Hz. The streamer is composed of 24

« Ford—d... +1 d hydrophones separated by a length of 25 m. Fig. 15 shows
« Wavelet shift of one sample 6ﬁ toward the the seismic image obtayned from 401 successive shqts. The
L =d-1 MCMC algorithm is applied on the raw data and the estimated
right; o i1 parameters are given in Table II. Fig. 16 shows the deconvolved
* Wavelet estimation of,;; image. Figs. 17 and 18 show, respectively, a raw seismic trace
Fortracej = 2,...,J i and the corresponding estimated reflectivity sequence along
» Wavelet estimation with an initialization by, for the vertical line 1. Comparing Figs. 15 and 16 shows that
d = dmin, .- ... s Qmax- blind deconvolution improves the information quality given

The decision is given by the minimum of variance, which givey the seismic image: New layers, which were blurred in the
seismic image, appear clearly in the deconvolved image; layer
interfaces are thinner and better localized in the deconvolved

J o
ha=J""3 " hy
=1

N

d, = argm(}n i

J

1
>
=1

; 2
N -
ﬂd - hd

image. A contribution of blind deconvolution here is to let
appear layers immediately under the sea-floor line, which were
masked in the original image because of the high energy of
the sea-floor reflection. This can also be seen by comparing
Figs. 17 and 18.
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VI. CONCLUSION [15] A. Doucet, N. de Freitas, and N. GordoSequential Monte Carlo
. . Methods in Practice New York: Springer-Verlag, 2001.
We compared an SEM implementation of the ML method

with an MCMC implementation of a Bayesian method for
parameter estimation in blind deconvolution of seismic traces.

These methods were applied to synthetic and real seisr Olivier Rosec(M'01) was born in 1971. He received

the engineering degree in electronic engineering

traces. In the last case, practical problems, such as the wav from the Institut Supérieur d’Electronique de Paris,
shift, have been experimentally solved. We showed that t Paris, France, in 1994 and the Ph.D. degree in
Baygsian approach .Iea.ds to sl?ghtly improved results, w.hi' ﬁ?fféS'Qi'ﬁgd‘;‘ﬁ,té’riv'a?iﬁrf&uefeeg ggtﬁelastmtlhcesgggle
implies that use of prior information leads to a more regularize Nationale Supérieure des Télécommunications de
wavelet estimation. We also showed on real data experime Bretagne, Brest, France, and at IFREMER, the
that these blind deconvolution methods enable to impro ‘ sl‘ffuezirrfg ,l?asﬂtcfe for Exploitation of the Sea,
seismic image resolution: Better localization of layer interfaces Since 2000, he has been with the research center of

is achieved and new Iayers can be detected after processingrmce Telecom, Lannion, France, where he works on speech signal processing.
the deconvolved image.
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