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Introduction

In this paper, we consider the kinetic Fokker-Planck (KFP for short) equation with general force and confinement (1.1)

∂ t f = Lf := -v • ∇ x f + ∇ x V (x) • ∇ v f + ∆ v f + div v (∇ v W (v)f ),
for a density function f = f (t, x, v), with t ≥ 0, x ∈ R d , v ∈ R d , with

V (x) = x γ γ , γ ≥ 1, W (v) = v β β , β ≥ 2,
where x 2 := 1 + |x| 2 , and the Fitzhugh-Nagumo equation

(1.2) ∂ t f := Lf = ∂ x (A(x, v)f ) + ∂ v (B(x, v)f ) + ∂ 2 vv f, 1 with A(x, v) = ax -bv, B(x, v) = v(v -1)(v -c) +
x, for some a, b, c > 0. The evolution equations are complemented with an initial datum f (0, x, v) = f 0 (x, v) on R 2d . It's easily seen that both equations are mass conservative, that is

M(f (t, •)) = M(f 0 ),
where we define the mass of f by

M(f ) = R d ×R d f (x, v)dxdv.

When G satisfies

LG = 0, M(G) = 1, G > 0, we say that G is a positive normalized steady state. For a given weight function m, we will denote L p (m) = {f |f m ∈ L p } the associated Lebesgue space and f L p (m) = f m L p the associated norm, for p = 2 we also use (f, g) L 2 (m) to denote the associate scalar product. With these notations, we can introduce the main result of this paper. 

f (t, •) -M(f 0 )G L p (m) ≤ Ce -λt f 0 -M(f 0 )G L p (m) ,
for some constant C, λ > 0.

(2) The same conclusion holds for the kinetic Fitzhugh-Nagumo equation (1.2).

In the results above the constants C and λ can be explicitly estimated in terms of the parameters appearing in the equation by following the calculations in the proofs. We do not give them explicitly since we do not expect them to be optimal, but they are nevertheless completely constructive.

Remark 1.2. Theorem 1.1 is also true when V (x) behaves like x γ and W (v) behaves like v β , that is for any V (x) satisfying

C 1 x γ ≤ V (x) ≤ C 2 x γ , ∀x ∈ R d , C 3 |x| x γ-1 ≤ x • ∇ x V (x) ≤ C 4 |x| x γ-1 , ∀x ∈ B c R , and |D n x V (x)| ≤ C n x γ-2
, ∀x ∈ R d , ∀n ≥ 2, for some constant C i > 0, R > 0, and similar estimates holds for W (v).

We prove both cases of Theorem 1.1 by proving the following theorem, which gives convergence result for more general KFP type models.

Theorem 1.3. Consider the following equation

(1.3) ∂ t f := Lf = div x (A(x, v)f ) + div v (B(x, v)f ) + K∆ v f,
with K > 0 constant, A(x, v), B(x, v) ∈ C 1 and

A(x, v) = -v + Φ(x),
where Φ(x) is Lipschitz

|Φ(x) -Φ(y)| ≤ M |x -y|,
for some M > 0. We assume also that there exist W (x, v) such that

∇ v W (x, v) = B(x, v), define φ 2 (m) = v • ∇ x m m -Φ(x) • ∇ x m m + 1 2 div x Φ(x) + K |∇ v m| 2 m 2 + K ∆ v m m -B(x, v) • ∇ v m m + 1 2 div v B(x, v).
If we can find a weight function m and a function H ≥ 1 such that the four conditions holds (C1)(Lyapunov condition) For some α, b > 0 there holds L * m ≤ -αm + b, (C2)for some constant C 1 , C 2 , C 3 > 0 we have

-C 1 H ≤ φ 2 (m) ≤ -C 2 H + C 3 , ( 
C3)For any integer n ≥ 1 fixed, for any > 0 small, we can find a constant C ,n such that

n k=1 |D k x Φ(x)| + n k=1 |D k x,v B(x, v)| ≤ C n, + H, ( 
C4)For some constant C 4 > 0 there holds

∆ x,v m m ≥ -C 4 .
Then there exist a positive normalized steady state G such that

f (t, •) -M(f 0 )G L 1 (m) ≤ Ce -λt f 0 -M(f 0 )G L 1 (m) ,
for some C, λ > 0. In addition, for any p ∈ [1, ∞], if

ϕ p (m) ≤ -a + M 1 B R ,
for some constant a, M, R > 0, where

ϕ p (m) = v • ∇ x m m -Φ(x) • ∇ x m m + (1 - 1 p )div x Φ(x) + 2K(1 - 1 p ) |∇ v m| 2 m 2 + K( 2 p -1) ∆ v m m -B(x, v) • ∇ v m m + (1 - 1 p )div v B(x, v),
then we have

f (t, •) -M(f 0 )G L p (m) ≤ Ce -λt f 0 -M(f 0 )G L p (m) .
Remark 1.4. In fact φ 2 (m) satisfies

R d ×R d (f (Lg) + g(Lf ))m 2 = -2K R d ×R d ∇ v f • ∇ v gm 2 + 2 R d ×R d f gφ 2 (m)m 2 ,
and ϕ p (m) satisfies

R d ×R d sign f |f | p-1 Lf m p = -K R d ×R d |∇ v (mf )| 2 |f | p-2 m p-2 + R d ×R d |f | p ϕ p (m)m p .
the computation can be found in Appendix B. Condition (C2)-(C4) ensures some regularity estimate which we will see in Section 3.

Remark 1.5. For the kinetic Fokker-Planck equation with general force 1.1, we can take

W (x, v) = F (v) + v • ∇ x V (x)
, and

m = e λH 1 , H 1 = |v| 2 + V (x) + v • ∇ x x , H = v β + x γ-1 + 1,
for some λ, > 0 small. For the kinetic Fitzhugh-Nagumo equation (1.2), we can take

m = e λ(x 2 +v 2 ) , H = |v| 4 + |x| 2 + 1, W = 1 4 |v| 4 - 1 3 (1 + c)v 3 + 1 2 |v| 2 + x • v,
for some constant λ > 0, the computation can be found in Section 6 below.

Remark 1.6. For the kinetic Fitzhugh-Nagumo equation (1.2), an exponential convergence with non-quantitative rate to the convergence has already been proved in [START_REF] Mischler | On a kinetic FitzHugh-Nagumo model of neuronal network[END_REF], our method improves the result to a quantitative rate.

If β = 2, the equation (1.1) will turns to the classical KFP equation

∂ t f = Lf := -v • ∇ x f + ∇ x V (x) • ∇ v f + ∆ v f + div v (vf ).
This time we observe that

G = Z -1 e -W , W = v 2 2 + V (x), Z ∈ R + ,
is an explicit steady state. There are many classical results for this equation on the case γ ≥ 1, where there is an exponentially decay. We refer the interested readers to [START_REF] Villani | [END_REF][START_REF] Dolbeault | Hypocoercivity for kinetic equations conserving mass[END_REF][START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF][START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF][START_REF] Hérau | Short and long time behavior of the Fokker-Planck equation in a confining potential and applications[END_REF][START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF][START_REF] Mischler | Exponential stability of slowing decaying solutions to the Kinetic-Fokker-Planck equation Arch[END_REF], and for the weak confinement case γ ∈ (0, 1), there are also some polynomial or sub-geometric convergence results proved in [START_REF] Bakry | Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré[END_REF][START_REF] Cao | The kinetic Fokker-Planck equation with weak confinement force[END_REF][START_REF] Douc | Subgeometric rates of convergence of f -ergodic strong Markov processes[END_REF]. We also emphasize that our results for kinetic Fokker-Planck equation with general force and confinement are to our knowledge new.

We carry out all of our proofs using variations of Harris's Theorem for Markov semigroup. Harris's Theorem originated in the paper [START_REF] Harris | The existence of stationary measures for certain Markov processes[END_REF] where Harris gave conditions for existence and uniqueness of a steady state for Markov processes. It was then pushed forward by Meyn and Tweedie in [START_REF] Meyn | Markov chains and stochastic stability[END_REF] to show exponential convergence to equilibrium. [START_REF] Hairer | Yet another look at Harris ergodic theorem for Markov chains[END_REF] gives an efficient way of getting quantitative rates for convergence to equilibrium once the assumptions have been quantitatively verified. We give the precise statement in the next section.

One advantage of the Harris method is that it directly yields convergence for a wide range of initial conditions (there are many choice of m and H in Theorem 1.3), while previous proofs of convergence to equilibrium mainly use some strongly weighted L 2 or H 1 norms (typically with a weight which is the inverse of a Gaussian). The Harris method also gives existence of stationary solutions under general conditions; in some cases these are explicit and easy to find, but in other cases such as the two models in our paper they can be nontrivial and non-explicit. Also the Harris method provides a quantitative rate of convergence to the steady state, which is better than non-quantitative type argument such as Krein Rutman theorem.

Here we briefly introduce the main idea of the paper. The paper uses Harris method to prove convergence. Roughly speaking, Harris method says that Lyapunov function plus positivity condition on a large ball implies L 1 (m) convergence for some weight function m. The Lyapunov function is easy to find so we mainly prove positivity on a large ball. The proof mainly contains three steps. First we prove that f is above a constant on a point, then we use regularity method to prove the continuity of the solution, thus we can obtain that f is above a constant in a small ball. Finally we use the spreading of positivity lemma which

says if f ≥ δ in [0, t) × B r (x 0 , v 0 ), then f ≥ δ in f ≥ Kδ in [ t 2 ,
t) × B αr (x 0 , v 0 ) for any α > 1 and some K > 0, we proved the positivity thus the convergence in L 1 (m) is proved. We use the Duhamel's formula and regularity estimate to prove convergence p ∈ (1, ∞]. This way of proving convergence for linear models is quite new and have the potential to be extended to other equations where exponential trend to equilibrium has not yet been shown.

Let us end the introduction by describing the plan of the paper. In Section 2, we introduce Harris Theorem. In Section 3 we present the proof of a regularization estimate on S L . In Section 4 we prove the convergence result in L 1 (m). In Section 5 we prove the theorem in the case of L p (m) with general p. In section 6, we compute the Lyapunov function for the two equations. Finally in Appendix we prove some useful lemmas.

Harris Theorem and existence of steady state

In this section we introduce a PDE proof of Harris-Doeblin theorem and the existence of steady state by S. Mischler and J. A. Cañizo. 

S T f ≥ µ B R f, ∀f ∈ L 1 (m), f ≥ 0, f L 1 (m) ≤ 1,
where B R denotes the ball centered at origin with radius R. Suppose the Markov semigroup S t on L 1 (m) which satisfies (H1) and (H2). Then there exist some constants C ≥ 1 and a < 0 such that

S t f L 1 (m) ≤ Ce at f L 1 (m) , ∀t ≥ 0, ∀f ∈ L 1 (m), M(f ) = 0.
Remark 2.2. Usually the statement of Harris condition do not requires

f L 1 (m) ≤ 1,
but in fact conclusion remains the same since for every function f we can consider 1 λ f and use the linearity of the solution. This additional assumption will be helpful in Section 4.

Remark 2.3. In fact this version of Harris-Doeblin Theorem is a little stronger than the version in [START_REF] Meyn | Markov chains and stochastic stability[END_REF] because this version do not require a minimum of T for all R, in this version it may happen that T (R) → 0, as R → ∞, while in [START_REF] Meyn | Markov chains and stochastic stability[END_REF] they require a minimum t * > 0 for all R > 0.

Before proving the theorem, we first prove a useful lemma.

Lemma 2.4. (Doeblin's variant). Under assumption (H2

), if f ∈ L 1 (m), with m(x) → ∞ as |x| → ∞, satisfies (2.1) f L 1 ≥ 4 m(R) f L 1 (m) , M(f ) = 0, f L 1 (m) ≤ 1,
we then have

S T f L 1 ≤ (1 - µ(R) 2 ) f L 1 , where µ = R d µ, m(R) := min{|m(x)|, x ∈ B c R },
Proof. From the hypothesis (2.1), we have

B R f ± = R d f ± - B c R f ± ≥ 1 2 R d |f | - 1 m(R) R d |f |m ≥ 1 4 R d |f |, since f ± L 1 (m) ≤ f L 1 (m) .
Together with (H2), we get

S T f ± ≥ µ(R) 4 R d |f | := η,
We deduce

|S T f | ≤ |S T f + -η| + |S T f --η| = S T f + -η + S T f --η = S T |f | -2η,
and next

R d |S T f | ≤ R d S T |f | -2η = R d (|f | - µ(R) 2 R d |f |),
which is nothing but the announced estimate.

Then we come to the proof of Theorem 2.1.

Proof. Proof of Theorem 2.1. We split the proof in several steps. In Step 1-6 we will assume f 0 L 1 (m) ≤ 1.

Step 1. We fix f 0 ∈ L 1 (m), M(f ) = 0, and we denote f t := S t f 0 . From (H1), we have

d dt f L 1 (m) ≤ -α f t L 1 (m) + b f t L 1 , ∀t ≥ 0,
from what we deduce

S T f L 1 (m) ≤ e -αt f 0 L 1 (m) + (1 -e -αt ) b α f 0 L 1 , ∀t ≥ 0,
In other words, we have proved

(2.2) S T f L 1 (m) ≤ γ f 0 L 1 (m) + K f 0 L 1 , ∀t ≥ 0,
with γ ∈ (0, 1) and K > 0. We fix R > 0 large enough such that 8b α ≤ m(R), then take T = T (R) and µ = µ(R), define γ := e -αT , K := (1 -e -αT ) b α ,

Then we have K/A ≤ (1 -γ)/2 with A := m(R)/4. We also recall that

(2.3) S T f L 1 ≤ f 0 L 1 , ∀t ≥ 0.
We define

f β = f 0 L 1 + β f 0 L 1 (m) ,
and we observe that the following alternative holds (2.4)

f 0 L 1 (m) ≤ A f 0 L 1 , or (2.5) f 0 L 1 (m) > A f 0 L 1 .
Step 2. By Lemma 2.4 that under condition (2.4), there holds

(2.6) S T f 0 L 1 ≤ γ 1 f 0 L 1 , γ 1 ∈ (0, 1),
and more precisely γ 1 := 1 -µ /2, which is nothing but the conclusion of Lemma 2.4.

Step 3. We claim that under condition (2.4), there holds

(2.7) S T f 0 β ≤ γ 2 f 0 β , γ 2 := max( γ 1 + 1 2 , γ),
for β > 0 small enough. Indeed, using (2.2) and (2.7), we compute

S T f 0 β = S T f 0 L 1 + β S T f 0 L 1 (m) ≤ (γ 1 + Kβ) f 0 L 1 + γβ f 0 L 1 (m) ,
and we take β > 0 such that γ 1 + Kβ ≤ γ 2 .

Step 4. We claim that under condition (2.5), there holds

(2.8) S T f 0 L 1 (m) ≤ γ 3 f 0 L 1 (m) , γ 3 := γ + 1 2 .
Indeed we compute

S T f 0 L 1 (m) ≤ γ f 0 L 1 (m) + K A f 0 L 1 (m) = γ 3 f 0 L 1 (m) .
Step 5. We claim that under condition (2.5), there holds (2.9)

S T f 0 β ≤ γ 4 f 0 β , γ 4 := γ 3 + 1/β 1 + 1/β .
Indeed, using (2.3) and (2.8), we compute

S T f 0 β = S T f 0 L 1 + β S T f 0 L 1 (m) ≤ f 0 L 1 + γ 3 β f 0 L 1 (m) ≤ (1 -) f 0 L 1 + ( + γ 3 β) f 0 L 1 (m) ,
and we choose ∈ (0, 1) such that 1 -= /β + γ 3 .

Step 6. By gathering (2.7) and (2.9), we see that we have

S T f 0 β ≤ γ 5 f 0 β , γ 5 := max(γ 2 , γ 4 ) ∈ (0, 1),
for some well chosen β > 0. By iteration, we get S nT f 0 β ≤ γ n 5 f 0 β , and we then conclude there exist some constants C ≥ 1 and a < 0 such that

S t f L 1 (m) ≤ Ce at f L 1 (m) , ∀t ≥ 0, ∀f ∈ L 1 (m), f L 1 (m) ≤ 1, M(f ) = 0.
Step 7. (Linearity argument) For general f , we can always find λ > 0 such that

1 λ f L 1 (m) ≤ 1, since S t is linear we have S t f L 1 (m) = λ S t ( 1 λ f ) L 1 (m) ≤ λCe at 1 λ f L 1 (m) = Ce at f L 1 (m) , ∀t ≥ 0, for all f ∈ L 1 (m), M(f ) = 0.
The Lyapunov condition also provides a sufficient condition for the existence of an invariant measure (for the dual semigroup).

Theorem 2.5. Any mass conserving positive Markov semigroup (S t ) which fulfills the above Lyapunov condition has at least one invariant borelian measure G ∈ M 1 (m), where M 1 is the space of measures.

Proof. Step 1. We prove that (S t ) is a bounded semigroup. For f 0 ∈ M 1 (m), we define f t := S L (t)f 0 , and we easily compute

d dt |f t |m ≤ |f t |L * m ≤ |f t |(-am + b).
Using the mass conservation and positivity, integrating the above differential inequality, we get

|f t |m ≤ e -at |f 0 |m + b a (1 -e -at ) |f 0 | ≤ max(1, b a ) |f 0 |m, ∀t ≥ 0, so that (S t ) is bounded in M 1 (m).
Step 2. We prove the existence of a steady state, more precisely, we start proving that there exists a positive and normalized steady state 

G ∈ M 1 (m). For the equivalent norm ||| • ||| defined on M 1 (m) by |||f ||| := sup t>0 S L (t)f M 1 (m) ,
K := {f ∈ M 1 (m); |||f ||| ≤ R, f ≥ 0, M(f ) = 1}, Since S L (t) is a linear, weakly * continuous, contraction in (M 1 (m), ||| • |||) and M(S L (t)f ) = M(f )
for all t ≥ 0, we see that K is stable under the action of the semigroup. Therefore we apply the Markov-Kakutani fixed point theorem and we conclude that there exists G ∈ K such that S L (t)G = G for all t ≥ 0. Therefore we have in particular G ∈ D(L) and LG = 0.

Regularization property of S L

The aim of this section is to establish the following regularization property. The proof closely follows the proof of similar results in [START_REF] Hérau | Short and long time behavior of the Fokker-Planck equation in a confining potential and applications[END_REF][START_REF] Mischler | Exponential stability of slowing decaying solutions to the Kinetic-Fokker-Planck equation Arch[END_REF][START_REF] Villani | [END_REF]. In the whole section, m and H refers to the one defined in Theorem 1.3. 

S L (t)f L 2 (m) ≤ C t 5d+2 4 f L 1 (m) , ∀t ∈ [0, η].
for some weight function m. In addition, for any integer k > 0 there exist some α(k), C(k) > 0 such that

S L (t)f H k (m) ≤ C t α f L 1 (m) , ∀t ∈ [0, η]. as a consequence we have S L (t)f C 2,δ ≤ C t ζ f L 1 (m) , ∀t ∈ [0, η], for some δ ∈ (0, 1), ζ > 0.
We start with some elementary lemmas. Lemma 3.2. For f t = S L (t)f 0 , define an energy functional

F(t, f t ) := A f t 2 L 2 (m) + at ∇ v f t 2 L 2 (m) + 2ct 2 (∇ v f t , ∇ x f t ) L 2 (m) + bt 3 ∇ x f t 2 L 2 (m) , (3.1)
with a, b, c > 0, c ≤ √ ab and A large enough. Then there exist η > 0 such that

d dt F(t, f t ) ≤ -L( ∇ v f t 2 L 2 (m) + t 2 ∇ x f t 2 L 2 (m) ) + C f t 2 L 2 (m) ,
for all t ∈ [0, η] and some L > 0, C > 0, as a consequence, we have

S L f 0 H 1 (m) ≤ Ct -3 2 f 0 L 2 (m) ,
for all t ∈ [0, η], iterating k times we get

S L f 0 H k (m) ≤ Ct -3k 2 f 0 L 2 (m) .
Remark 3.3. We need to note here that if we consider

F * (t, f t ) := A f t 2 L 2 (m) + at 2 ∇ v f t 2 L 2 (m) + 2ct 4 (∇ v f t , ∇ x f t ) L 2 (m) + bt 6 ∇ x f t 2 L 2 (m)
, then by the same proof we have

d dt F * (t, f t ) ≤ -L( ∇ v f t 2 L 2 (m) + t 4 ∇ x f t 2 L 2 (m) ) + C f t 2 L 2 (m) ,
for all t ∈ [0, η], for some L > 0, C > 0. This version will be useful in the later proof.

Proof. We only prove the case k = 1, for k = 2, one need only replace f by

∂ x i f and ∂ v i f , similarly for k > 2.
First by Theorem 1.3 and Remark 1.4 we have

(f, Lg) L 2 (m) + (g, Lf ) L 2 (m) = -2K(∇ v f, ∇ v g) L 2 (m) + (f, gφ 2 (m)) L 2 (m) ,
for any f, g ∈ L 2 (m), without loss of generality we will assume K = 1. By condition (C2), we have

d dt f 2 L 2 (m) = (f, Lf ) L 2 (m) ≤ -∇ v f 2 L 2 (m) -C 1 f 2 L 2 (mH 1/2 ) + C 2 f 2 L 2 (m) .
We compute

∂ x i Lf = L∂ x i f + ∂ x i Φ(x) • ∇ x f + ∂ x i B(x, v) • ∇ v f (3.2) +∂ x i div x Φ(x)f + ∂ x i div v B(x, v)f,
by condition (C3)

|∂ x i Φ(x)| + |∂ x i B(x, v)| + |∂ x i div x Φ(x)| + |∂ x i div v B(x, v)| ≤ H + C,
for some C > 0, we have

d dt ∂ x i f 2 L 2 (m) = (∂ x i f, L∂ x i f ) L 2 (m) + (∂ x i f, ∂ x i Φ(x) • ∇ x f + ∂ x i B(x, v) • ∇ v f ) L 2 (m) +(∂ x i f, ∂ x i div x Φ(x)f + ∂ x i div v B(x, v)f ) L 2 (m) ≤ -∇ v (∂ x i f ) 2 L 2 (m) -C 1 ∂ x i f 2 L 2 (mH 1/2 ) + C 2 ∂ x i f 2 L 2 (m) + ( ∇ v f 2 L 2 (mH 1/2 ) + ∇ x f 2 L 2 (mH 1/2 ) + f 2 L 2 (mH 1/2 ) ) +C( ∇ v f 2 L 2 (m) + ∇ x f 2 L 2 (m) + f 2 L 2 (m) ).
Summing over i = 1, 2, 3, ..., n , we get

d dt ∇ x f 2 L 2 (m) ≤ - n i=1 ∇ v (∂ x i f ) 2 L 2 (m) - C 1 2 ∇ x f 2 L 2 (mH 1/2 ) + C ∇ x f 2 L 2 (m) +C ∇ v f 2 L 2 (mH 1/2 ) + C f 2 L 2 (mH 1/2 ) ,
for some C > 0. Similarly using

(3.3) ∂ v i Lf = L∂ v i f -∂ x i f + ∂ v i B(x, v) • ∇ v f + ∂ v i div v B(x, v)f,
and since

|∂ v i B(x, v)| + |∂ v i div v B(x, v)| ≤ H + C,
we have

d dt ∂ v i f 2 L 2 (m) = (∂ v i f, L∂ v i f ) L 2 (m) -(∂ x i f, ∂ v i f ) L 2 (m) + (∂ v i f, ∂ v i B(x, v) • ∇ v f ) L 2 (m) +(∂ v i f, ∂ v i div v B(x, v)f ) L 2 (m) ≤ -∇ v (∂ v i f ) 2 L 2 (m) -C 1 ∂ v i f 2 L 2 (mH 1/2 ) + C 2 ∂ v i f 2 L 2 (m) + ∇ v f 2 L 2 (mH 1/2 ) +C ∇ v f 2 L 2 (m) -(∂ x i f, ∂ v i f ) L 2 (m) + C f 2 L 2 (mH 1/2 ) .
Summing over i = 1, 2, ..., n we get

d dt ∇ v f 2 L 2 (m) ≤ - n i=1 ∇ v (∂ v i f ) 2 L 2 (m) - C 1 2 ∇ v f 2 L 2 (mH 1/2 ) + C f 2 L 2 (mH 1/2 ) . +C ∇ v f 2 L 2 (m) -(∇ v f, ∇ x f ) L 2 (m)
. For the crossing term, using (3.2), (3.3) and condition (C2) and (C3), we have

d dt 2(∂ v i f, ∂ x i f ) L 2 (m) = (∂ v i f, L∂ x i f ) L 2 (m) + (∂ v i f, ∂ x i Φ(x) • ∇ x f + ∂ x i B(x, v) • ∇ v f ) L 2 (m) +(∂ v i f, ∂ x i div x Φ(x)f + ∂ x i div v B(x, v)f ) L 2 (m) +(∂ x i f, L∂ v i f ) L 2 (m) -(∂ x i f, ∂ x i f ) L 2 (m) + (∂ x i f, ∂ v i B(x, v) • ∇ v f ) L 2 (m) +(∂ x i f, ∂ v i div v B(x, v)f ) L 2 (m) ,
We split into two parts, for the first part we compute

(∂ v i f, L∂ x i f ) L 2 (m) + (∂ x i f, L∂ v i f ) L 2 (m) -∂ x i f 2 L 2 (m) = -2(∇ v (∂ x i f ), ∇(∂ v i f )) L 2 (m) + (∂ x i f, φ 2 (m)∂ v i f ) L 2 (m) -∂ x i f 2 L 2 (m) ≤ -2(∇ v (∂ x i f ), ∇(∂ v i f )) L 2 (m) -∂ x i f 2 L 2 (m) + C(|∇ v f |, |∇ x f |) L 2 (mH 1/2
) , for the second part we have

(∂ v i f, ∂ x i Φ(x) • ∇ x f + ∂ x i B(x, v) • ∇ v f ) L 2 (m) + (∂ x i f, ∂ v i B(x, v) • ∇ v f ) L 2 (m) +(∂ v i f, ∂ x i div x Φ(x)f + ∂ x i div v B(x, v)f ) L 2 (m) + (∂ x i f, ∂ v i div v B(x, v)f ) L 2 (m) ≤ C ∇ v f 2 L 2 (mH 1/2 ) + C(|∇ v f |, |∇ x f |) L 2 (mH 1/2 ) + C(|f |, |∇ x f |) L 2 (mH 1/2 ) +C f 2 L 2 (mH 1/2
) . Gathering the two terms, and summing over i we get

d dt 2(∇ v f, ∇ x f ) L 2 (m) ≤ -2 n i=1 (∇ v (∂ x i f ), ∇(∂ v i f )) L 2 (m) -∇ x f 2 L 2 (m) + C ∇ v f 2 L 2 (mH 1/2 ) + C(|∇ v f |, |∇ x f |) L 2 (mH 1/2 ) + C(|f |, |∇ x f |) L 2 (mH 1/2 ) + C f 2 L 2 (mH 1/2
) . For the very definition of F in (3.1), we easily compute

d dt F(t, f t ) = A d dt f t 2 L 2 (m) + at d dt ∇ v f t 2 L 2 (m) + 2ct 2 d dt (∇ v f t , ∇ x f t ) L 2 (m) +bt 3 d dt ∇ x f t 2 L 2 (m) + a ∇ v f t 2 L 2 (m) + 4ct(∇ v f t , ∇ x f t ) L 2 (m) +3bt 2 ∇ x f t 2 L 2 (m) .
Gathering all the inequalities above together, we have

d dt F(t, f t ) ≤ T 1 + T 2 + T 3 ,
with

T 1 = (a -A + Cat) ∇ v f t 2 L 2 (m) + (3bt 2 -ct 2 + Cbt 3 ) ∇ x f t 2 L 2 (m) + (4ct -at)(∇ v f t , ∇ x f t ) L 2 (m) + C 2 A f t 2 L 2 (m) ≤ -L( ∇ v f t 2 L 2 (m) + t 2 ∇ x f t 2 L 2 (m) ) + C f t 2 L 2 (m) , for some L, C > 0, if c > 6b, A
a, b, c and 0 < η small. For the term T 2 we have

T 2 = d i=1 [-at ∇ v (∂ v i f t ) 2 L 2 (m) -bt 3 ∇ v (∂ x i f t ) 2 L 2 (m) -2ct 2 (∇ v (∂ x i f t ), ∇ v (∂ v i f t )) L 2 (m) ] ≤ 0, since |2ct 2 (∇ v (∂ x i f t ), ∇ v (∂ v i f t )) L 2 (m) | ≤ at ∇ v (∂ v i f t ) 2 L 2 (m) + bt 3 ∇ v (∂ v i f t ) 2 L 2 (m)
, by our choice on a, b, c. For the term T 3

T 3 = - C 1 2 bt 3 ∇ x f t 2 L 2 (mH 1/2 ) + - C 1 2 at + Cbt 3 + Cct 2 ∇ v f t 2 L 2 (mH 1/2 ) +Cct 2 (|∇ v f t |, |∇ x f t |) L 2 (mH 1/2 ) + Cct 2 (|f |, |∇ x f |) L 2 (mH 1/2 ) +(-C 1 A + Cbt 3 + Cat + Cct 2 ) f t 2 L 2 (mH 1/2
) ≤ 0, by taking A a, b, c, ab c 2 . So by taking A large and 0 < η small (t ∈ [0, η]), we conclude to

d dt F(t, f t ) ≤ -L( ∇ v f t 2 L 2 (m) + t 2 ∇ x f t 2 L 2 (m) ) + C f t 2 L 2 (m)
, for some L, C > 0, and that ends the proof. Lemma 3.4. We have

∇ x,v (f t m) 2 L 2 ≤ ∇ x,v f t 2 L 2 (m) + C f t 2 L 2 (m) , for some constant C.
Proof. We have

∇ x,v (f t m) 2 L 2 = m∇ x,v f t 2 L 2 + f t ∇ x,v m 2 L 2 + 2(f t ∇ x,v m, m∇ x,v f t ) L 2 = ∇ x,v f t 2 L 2 (m) + f t ∇ x,v m 2 L 2 - 1 2 (f 2 t , ∆ x,v (m 2 )) L 2 = ∇ x,v f t 2 L 2 (m) + (f 2 t , |∇ x,v m| 2 - 1 2 ∆ x,v (m 2 )) L 2 = ∇ x,v f t 2 L 2 (m) -(f 2 t , m∆ x,v m) L 2 , by condition (C4) ∆ x,v m m ≥ C,
for some constant C, we are done.

Lemma 3.5. Nash's inequality: for any

f ∈ L 1 (R d ) ∩ H 1 (R d ),there exist a constant C d such that: f 1+ 2 d L 2 ≤ C d f 2 d L 1 ∇ v f L 2 .
For the proof we refer to [START_REF] Lieb | Analysis 2nd[END_REF], Section 8.13 for instance. Lemma 3.6. There exist λ > 0 such that

d dt f L 1 (m) ≤ λ f L 1 (m) , (3.4) which implies f t L 1 (m) ≤ Ce λt f 0 L 1 (m) .
In particular we have

f t L 1 (m) ≤ C f 0 L 1 (m) , ∀t ∈ [0, η], (3.5) 
for some constant C > 0.

Proof. It' s an immediate consequence of the Lyapunov condition (C1). Now we come to the proof of Theorem 3.1.

Proof. (Proof of Theorem 3.1.) We define

G(t, f t ) = B f t 2 L 1 (m) + t Z F * (t, f t ),
with B, Z > 0 to be fixed and F * defined in Remark 3.3. We choose t ∈ [0, η], η small enough such that (a + b + c)Zη Z+1 ≤ 1 2 Lη Z (a, b, c, L are also defined Remark 3.3). By (3.4) and Remark 3.3, we have

d dt G(t, f t ) ≤ λB f t 2 L 1 (m) + Zt Z-1 F * (t, f t ) -Lt Z ( ∇ v f t 2 L 2 (m) + t 4 ∇ x f t 2 L 2 (m) ) + Ct Z f t 2 L 2 (m) ≤ λB f t 2 L 1 (m) + Ct Z-1 f t 2 L 2 (m) - L 2 t Z ( ∇ v f t 2 L 2 (m) + t 4 ∇ x f t 2 L 2 (m) ),
where λ is defined in Lemma 3.6. Nash's inequality and Lemma 3.4 imply

f t m L 2 ≤ C f m 2 d+2 L 1 ∇ x,v (f t m) d d+2 L 2 ≤ C f t m 2 d+2 L 1 ( ∇ x,v f m L 2 + C f t m L 2 ) d d+2 .
Using Young's inequality, we have

f t 2 L 2 (m) ≤ C t -5 2 d f 2 L 1 (m) + t 5 ( ∇ x,v f t 2 L 2 (m) + C f t 2 L 2 (m) ).
Taking small such that C η 3 ≤ 1 2 , we deduce

f t 2 L 2 (m) ≤ 2C t -5 2 d f 2 L 1 (m) + 2 t 5 ∇ x,v f t 2 L 2 (m) . Taking small we have d dt G(t, f t ) ≤ λB f t 2 L 1 (m) + C 1 t Z-1-5 2 d f t 2 L 1 (m) ,
for some C 1 > 0. Choosing Z = 1 + 5 2 d, and using (3.5), we deduce

∀t ∈ [0, η], G(t, f t ) ≤ G(0, f 0 ) + C 2 f 0 2 L 1 (m) ≤ C 3 f 0 2 L 1 (m) , which proves S L (t)f L 2 (m) ≤ C t 5d+2 4 f L 1 (m) , ∀t ∈ [0, η].
together with Lemma 3.2 ends the proof.

Convergence in L 1 (m)

In this section we prove the Harris condition (H2) for Theorem 1.3, which would imply the convergence for p = 1. Before the proof of the theorem, we first prove a useful lemma. Lemma 4.1. For any R > 0, there exist γ, ρ > 0 such that for any t, R > 0, there exists (x 0 , v 0 ) ∈ B ρ such that

f (t, x 0 , v 0 ) ≥ γ B R f 0 .
γ, ρ does not depend on f 0 , t, while x 0 , v 0 may depend on f 0 , t Proof. From conservation of mass, we classically show that

d dt R d f (t, x, v)dxdv = 0, so we have (4.1) S L (t) L 1 →L 1 ≤ 1, ∀t ≥ 0,
Define the splitting of the operator L by

B = L -A, A = M χ R (x, v),
with M, R > 0 large, where χ is the cut-off function such that χ(x, v) 

∈ [0, 1], χ(x, v) ∈ C ∞ , χ(x, v) = 1 when x 2 + v 2 ≤ 1 , χ(x, v) = 0 when x 2 + v 2 ≥
S L (t) L 1 (m)→L 1 (m) ≤ A, ∀t ≥ 0,
for some A > 0. We fix R > 0 and take

g 0 = f 0 1 B R ∈ L 1 (R d ) such that supp g 0 ⊂ B R , ,denote g t = S L g 0 , f t = S L f 0 , then we have R d g t = R d g 0 = B R g 0 = B R f 0 . Define m 1 (R) = max{|m(x)|, x ∈ B R }, m 2 (R) = min{|m(x)|, x ∈ B c R }, We can see both m 1 , m 2 → ∞ as R → ∞, moreover, since there exists A > 0 such that R d g t m ≤ A R d g 0 m ≤ Am 1 (R) B R g 0 .
For any ρ > 0, we write

Bρ g t = R d g t - B c ρ g t ≥ R d g 0 - 1 m 2 (ρ) R d g t m ≥ R d g 0 - Am 1 (R) m 2 (ρ) B R g 0 ≥ 1 2 B R g 0 ,
by taking m 2 (ρ) = 2Am(R). As a consequence, for any t > 0, there exist a (x 0 , v 0 ) ∈ B ρ which may depend on g 0 , t such that

g(t, x 0 , v 0 ) ≥ 1 |B ρ | Bρ g t := γ B R g 0 .
By the maximum principle we have

f (t, x 0 , v 0 ) ≥ g(t, x 0 , v 0 ) ≥ γ B R g 0 = γ B R f 0 .
Before coming to the final proof we still need a theorem on spreading of positivity. Define

Br (x 0 , v 0 ) = {(x, v) ∈ R d × R d : |v -v 0 | ≤ r, |x -x 0 | ≤ r 3 },
we have Theorem 4.2. (Spreading of Positivity) Let f (t, x, v) be a classical nonnegative solution of

∂ t f -∆ v f = -(v + Φ(x)) • ∇ x f + A(t, x, v) • ∇ v f + C(t, x, v)f, in [0, T ) × Ω, where Φ(x) is Lipschitz |Φ(x) -Φ(y)| ≤ M |x -y|, ∀x, y ∈ R d . Suppose further that A(t, x, v) = ∇ v W (x, v), for some W (x, v). Define D(t, x, v) = - 1 4 |A(t, x, v)| 2 - 1 2 div v A(t, x, v) + 1 2 (v + Φ(x)) • A(t, x, v) + C(t, x, v).
For any (x 0 , v 0 ) fixed, define V = (M + 1) 2 (Φ(0

) + |x 0 | + |v 0 |), then for any r > 0, 0 < τ < min(1, r 3 /2V, log2/M, 1/20M ), α > 1, δ > 0, there exist λ > 0 only depend on r 2 /τ, α, M, V (independent of δ) such that if f ≥ δ > 0 in [0, τ ) × Br (x 0 , v 0 ), then f ≥ Kδ in [τ /2, τ ) × Bαr (x 0 , v 0 ) where K also depends on D L ∞ ( Bλr (x 0 ,v 0 )) and W L ∞ ( Bλr (x 0 ,v 0 )) .
Proof. See Appendix A.

Remark 4.3. Former proofs of spreading of positivity such as Theorem A.19 in [START_REF] Villani | [END_REF] assumes that A and C are uniformly bounded, by assuming

A(t, x, v) = ∇ v W (x, v)
we generalize this theorem to unbounded cases.

Then we come to prove our main theorem 

S T f 0 ≥ µ B R f 0 , ∀f 0 ∈ L 1 (m), f ≥ 0, f 0 L 1 (m) ≤ 1,
As a consequence, Theorem 1.3 is proved.

Proof. By Lemma 4.1 we have there exist γ, ρ > 0 such that for any t, R > 0, there exists (x 0 , v 0 ) ∈ B ρ such that

f (t, x 0 , v 0 ) ≥ γ B R f 0 .
where γ, ρ does not depend on f 0 , t while x 0 , v 0 may depend on f 0 , t. By Lemma 4.1 we have

f C 2,δ ≤ C f 0 L 1 (m) , ∀t ∈ [ η 2 , η],
in particular

∇ x f L ∞ + ∇ v f L ∞ + ∆ x f L ∞ + f L ∞ ≤ C f 0 L 1 (m) , ∀t ∈ [ η 2 , η],
and by equation

∂ t f := Lf = ∂ x (A(x, v)f ) + ∂ v (B(x, v)f ) + ∆ v f, we have ∇ x f L ∞ (Ω) + ∇ v f L ∞ (Ω) + ∂ t f L ∞ (Ω) ≤ C f 0 L 1 (m) ≤ C, ∀t ∈ [ η 2 , η],
for Ω = B 2ρ and some constant C > 0. By continuity, for every R > 0, there exist t 1 , t 2 , r 0 , ρ, γ > 0 which do not depend on f 0 and (x 0 , v 0 ) ∈ B ρ which may depend on f 0 , such that for all t ∈ (t 1 , t 2 ), we have

f (t, x, v) ≥ γ 2 1 Br 0 (x 0 ,v 0 ) B R f 0 ,
where B r 0 (x 0 , v 0 ) denotes the ball centered at (x 0 , v 0 ) with radius r 0 . Take r 1 = min{( r 0 2 , ( r 0 2 )

1 3 } such that Br 1 (x 0 , v 0 ) ⊂ B r 0 (x 0 , v 0 ), then we have f (t, x, v) ≥ γ 2 1 Br 1 (x 0 ,v 0 ) B R f 0 . Take α = max{ 2ρ r 1 , ( 2ρ r 1 ) 1 3 , 1} large such that B 2ρ (x 0 , v 0 ) ⊂ Bαr 1 (x 0 , v 0 ). Define τ = min(t 2 -t 1 , 1, r 3 1 2V , log2 M , 1 20M
).

Using Theorem 4.2, we have

f (t, x, v) ≥ γ 2 1 Bαr 1 (x 0 ,v 0 ) B R f 0 ≥ K γ 2 1 B 2ρ (x 0 ,v 0 ) B R f 0 , since (x 0 , v 0 ) ∈ B ρ implies that B ρ ⊂ B 2ρ (x 0 , v 0 ), we have f (t, x, v) ≥ K γ 2 1 Bρ(0,0) B R f 0 ,
for any t ∈ (t 2 -T 2 , t 2 ). So we can define µ(R) = K λ 2 1 Bρ(0,0) , T (R) = t 2 -T 4 , note it's independent of (x 0 , v 0 ), thus independent of f 0 , we conclude the Harris condition (H2).

Then by Theorem 2.1, we have proved

f (t, •) -M(f 0 )G L 1 (m) ≤ Ce -λt f 0 -M(f 0 )G L 1 (m) ,
which is Theorem 1.3 in the case p = 1. Remark 4.5. If we replace f in the proofs by the normalized steady state G, we can deduce that G > 0.

Proof of L p (m) convergence

In the last section, we have prove Theorem 1.3 in the case of p = 1, now we prove it for general p, which will complete the proof of the theorem. In this section, A B will denote A ≤ CB for some constant C > 0. First recall the splitting

B = L -A, A = M 1 χ R 1 (x, v), since ϕ p (m) ≤ -C + M 1 B R ,
by Remark 1.4 it's easily seen that we can take M 1 , R 1 such that (5.1)

S B (t) L p (m)→L p (m) e -at ,
and by the Lyapunov condition

(5.2) S B (t) L 1 (m)→L 1 (m) e -at ,
for some β > 0. Before going to the proof of our main theorem, we need two last deduced results.

Lemma 5.1. We have

S B (t)A L p (m)→L p (m) e -at , ∀t ≥ 0,
and S B (t)A L 1 (m)→L 1 (m) e -at , ∀t ≥ 0, and S B (t)A L 1 (m)→L p (m) t -α e -at , ∀t ≥ 0,

for α = 5d+2 4
and some β > 0.

Proof. The first two inequalities are obtained obviously by (5.1), (5.2) and the property of A. For the third inequality we split it into two parts, t ∈ (0, η] and t > η, where η is defined in Theorem 3.1. When t ∈ (0, η] , we have e -at ≥ e -aη , by Theorem 3.1, we have

S B (t)A L 1 (m)→L p (m) t -α t -α e -at , ∀t ∈ (0, η],
for some a > 0. When t ≥ η, by Theorem 3.1, we have

S B (η) L 1 (m)→L p (m) η α 1,
and by Lemma 5.1

S B (t -η) L p (m)→L p (m) e -a(t-η) e -at ,
gathering the two inequalities, we have

S B (t)A L 1 (m)→L p (m) e -at t -α e -at , ∀t > η,
the proof is ended by combining the two cases above.

Lemma 5.2. let X, Y be two Banach spaces, S(t) a semigroup such that for all t ≥ 0 and some 0 < a we have

S(t) X→X ≤ C X e -at , S(t) Y →Y ≤ C Y e -at ,
and for some 0 < α, we have

S(t) X→Y ≤ C X,Y t -α e -at .
Then we can have that for all integer n > 0

S ( * n) (t) X→X ≤ C X,n t n-1 e -at , similarly S ( * n) (t) Y →Y ≤ C Y,n t n-1 e -at , and 
S ( * n) (t) X→Y ≤ C X,Y,n t n-α-1 e -at .
In particular for α + 1 < n, and for any a * < a

S ( * n) (t) X→Y ≤ C X,Y,n e -a * t .
Proof. See Lemma 2.5 in [START_REF] Mischler | On a kinetic FitzHugh-Nagumo model of neuronal network[END_REF].

Then we come to the final proof.

Proof. (Proof of Theorem 1.3.) Remember that we already proved

S L (I -Π)(t) L 1 (m)→L 1 (m) e -at ,
where I is the identity operator and Π is a projection operator defined by

Π(f ) = M(f )G.
First, Iterating the Duhamel's formula we split it into 3 terms

S L (I -Π) = (I -Π){S B + n-1 l=1 (S B A) ( * l) * (S B )} +(S B (t)A) ( * (n-1)) * {(I -Π)S L } * (AS B (t)),
and we will estimate them separately. By (5.1) the first term is thus estimated. For the second term, still using (5.1), we get

S B (t)A L p (m)→L p (m) e -at ,
by Lemma 5.2, we have

(S B (t)A) ( * l) L p (m)→L p (m)
t l-1 e -at , together with (5.1) the second term is estimated. For the last term by Hölder's inequality we have

I L p (m)→L 1 (mG) 1 with G = e -(|v| 2 +|x| 2 )
(there are many choice of G) so we have

AS B (t) L p (m)→L 1 (m) e -at .
By Lemma 5.1 and 5.2, we have

(S B A) ( * (n-1)) (t) L 1 (m)→L p (m) t n-α-2 e -at , finally recall S L (t)(I -Π) L 1 (m)→L 1 (m) e -at .
Taking n > α + 2 the third term is estimated, thus the proof is ended by gathering the inequalities above.

Proof of Main Theorem

This section we come to prove Theorem 1.1. Recall that we have proved Theorem 1.3 in the last section, the only thing remain to prove is to find a weight function m and a function H ≥ 1 in Theorem 1.3. Proof. We recall the kinetic Fitzhugh-Nagumo equation

∂ t f := Lf = ∂ x (A(x, v)f ) + ∂ v (B(x, v)f ) + ∂ 2 vv f, with A(x, v) = ax -bv, B(x, v) = v(v -1)(v -c) + x,
by a change of variable w = bv, the equation is changed to

∂ t f := Lf = ∂ x (A(x, v)f ) + ∂ v (B(x, v)f ) + 1 b 2 ∂ 2 vv f, with A(x, v) = ax -v, B(x, v) = 1 b 3 v(v -b)(v -bc) + x, we have L * f = -A(x, v)∂ x f -B(x, v)∂ v f + 1 b 2 ∂ vv f
, for some a, b, c > 0. This time we have

L * m m = v • ∇ x m m -ax • ∇ x m m + 1 b 2 ∆ v m m -( 1 b 3 v(v -b)(v -bc) + x) • ∇ v m m .
We can take m = e r 2 (|x| 2 +|v| 2 ) , with r > 0 to be fixed later, then we have

∇ x m m = rx, ∇ v m m = rv, ∆ v m m = r + r 2 |v| 2 ,
we then compute

L * m m = rx • v -ar|x| 2 + r b 2 + r 2 b 2 |v| 2 - 1 b 3 |v| 2 (v -b)(v -bc) -rx • v = -ar|x| 2 - 1 b 3 |v| 4 + M 1 v 3 + M 2 |v| 2 + M 3 , for some constant M 1 , M 2 , M 3 > 0, so the Lyapunov condition (C1) L * m ≤ -αm + b, is satisfied for some α, b > 0, similarly φ 2 (m) = v • ∇ x m m -ax • ∇ x m m + a 2 + 1 b 2 |∇ v m| 2 m 2 + 1 b 2 ∆ v m m -( 1 b 3 v(v -b)(v -bc) + x) • ∇ v m m + 1 2b 3 (3v 2 + 2b(1 + c)v + b 2 c
), and this time we have

φ 2 (m) = rx • v -ar|x| 2 + a 2 + r 2 b 2 |v| 2 + r b 2 + r 2 b 2 |v| 2 - 1 b 3 |v| 2 (v -b)(v -bc) -rx • v + 1 2b 3 (3v 2 + 2b(1 + c)v + b 2 c) = -ar|x| 2 - 1 b 3 |v| 4 + K 1 v 3 + K 2 |v| 2 + K 3 v + K 4 , for some constants K 1 , K 2 , K 3 , K 4 , if we take H = |v| 4 + |x| 2 + 1,
it's easily seen that we have

-C 1 H ≤ φ 2 (m) ≤ -C 2 H + C 3 ,
for some C 1 , C 2 , C 3 > 0, which is just condition (C2). And it's easily seen that for any integer n ≥ 2 fixed, for any > 0 small, we can find a constant C ,n such that

n k=1 |D k x (ax)|+ n k=1 |D k x,v ( 1 b 3 v(v-b)(v-bc)+x)| ≤ P 1 |v| 2 +P 2 |v|+P 3 ≤ C n, + H,
with P 1 , P 2 , P 3 > 0 constant, so condition (C3) is also satisfied. Since

∆ x,v m m = 2r + r 2 |v| 2 + r 2 |x| 2 ≥ 0,
all the conditions of Theorem 1.3 is satisfied, we finally compute

ϕ ∞ (m) = v • ∇ x m m -ax • ∇ x m m + a + 2 b 2 |∇ v m| 2 m 2 - 1 b 2 ∆ v m m -( 1 b 3 v(v -b)(v -bc) + x) • ∇ v m m + 1 b 3 (3v 2 + 2b(1 + c)v + b 2 c). We have ϕ ∞ (m) = rx • v -ar|x| 2 + a + 2r 2 b 2 |v| 2 - r b 2 - r 2 b 2 |v| 2 - 1 b 3 |v| 2 (v -b)(v -bc) -rx • v + 1 b 3 (3v 2 + 2b(1 + c)v + b 2 c) = -ar|x| 2 - 1 b 3 |v| 4 + K 1 v 3 + K 2 |v| 2 + K 3 v + K 4 , for some constants K 1 , K 2 , K 3 , K 4 , it's easily seen that ϕ ∞ (m) ≤ C + M 1 B R ,
for some C, M, R > 0, the proof is finished.

Then we come to find a weight function m and a function H ≥ 1 for the kinetic Fokker-Planck equation with general force. Proof. First we have

L * f = v • ∇ x f -∇ x V (x) • ∇ v f + ∆ v f -∇ v W (v) • ∇ v f, denote H 1 = |v| 2 2 + V (x) + v • ∇ x x , m = e λH 1 ,
so we have

L * m m = λ(v • ∇ x H 1 -∇ x V (x) • ∇ v H 1 + ∆ v H 1 + λ|∇ v H 1 | 2 -∇ v W (v) • ∇ v H 1 ).
We easily compute 

∇ v H 1 = v + ∇ x x , ∇ x H 1 = ∇ x V (x) + v • ∇ 2 x x , ∆ v H 1 = d,
L * m m = λ(v • ∇ x V (x) + v∇ x x 2 v -∇ x V (x) • v -∇ x V (x) • ∇ x x + d +λ|v + ∇ x x | 2 -∇ v W (v) • ∇ x x -∇ v W (v) • v ≤ C(λ 2 |v| 2 + λ|∇W (v)|) -λ∇ x V (x) • ∇ x x -λ∇ v W (v) • v,
for some constant take λ > 0 small, we conclude

L * m ≤ -C 1 Hm + C 2 ,
for some constant C 1 , C 2 > 0, with H = v β + x γ-1 + 1, then the Lyapunov condition (C1) follows. For the second inequality, by Lemma 3.2 we have

φ 2 (m) = λ(v • ∇ x H 1 + ∇ x V (x) • ∇ v H 1 + ∆ v H 1 +2λ|∇ v H 1 | 2 -∇ v W (v) • ∇ v H 1 ) + 1 2 ∆ v W (v),
we compute

φ 2 (m) = λ(v • ∇ x V (x) + v∇ x x v -∇ x V (x) • v -∇ x V (x) • ∇ x x + d +2λ|v + ∇ x x | 2 -∇ v W (v) • ∇ x x -∇ v W (v) • v) + 1 2 ∆ v W (v) ≤ C(λ 2 |v| 2 + λ|∇W (v)| + |∆ x W (v)|) -λ∇ x V (x) • ∇ x x -λ∇ v W (v) • v,
and we still have

-C 1 H ≤ φ 2 (m) ≤ -C 2 H + C 3 ,
for some constant C 1 , C 2 , C 3 > 0, thus condition(C2) is proved. It's easily seen that for any integer n ≥ 2 fixed, for any > 0 small, we can find a constant C ,n such that

n k=1 |D k x ∇ x V (x)|+ n k=1 |D k x,v ∇ v W (v)| = n+1 k=2 |D k x V (x)|+ n+1 k=2 |D k x,v W (v)| ≤ C n, + H,
by the definition of V (x) and W (v), so condition (C3) is also satisfied. For the last condition

∆ x,v m m = λ 2 |∇ x H 1 | 2 + λ 2 |∇ v H 1 | 2 + λ∆ x H 1 + λ∆ v H 1 .
For the term ∆ x H 1 we compute

∆ x H 1 = ∇ x V (x) + v • ∇∆ x ≥ -L 1 -L 2 |v|,
for some constant L 1 , L 2 > 0, and

|∇ v H 1 | 2 = |v + ∇ x x | 2 ≥ |v| 2 2 -L 3 ,
for some constant L 3 > 0, since

∆ v H 1 = d ≥ 0, we conclude that ∆ x,v m m ≥ C,
for some constant C, so all the conditions are satisfied. We finally compute

ϕ ∞ (m) = λ(v • ∇ x V (x) + v∇ x x v -∇ x V (x) • v -∇ x V (x) • ∇ x x -d +λ|v + ∇ x x | 2 -∇ v W (v) • ∇ x x -∇ v W (v) • v) + ∆ v W (v) ≤ C(λ 2 |v| 2 + λ|∇W (v)| + |∆ x W (v)|) -λ∇ x V (x) • ∇ x x -λ∇ v W (v) • v,
the proof is thus finished.

Appendix A. Proof of spreading of positivity

In this section, we will use the notation

Br (x 0 , v 0 ) = {(x, v) ∈ R d × R d : |v -v 0 | ≤ r, |x -x 0 | ≤ r 3 },
and Br will stand for Br (x 0 , v 0 ). Before proving the theorem on spreading of positivity, we first prove a useful lemma.

Lemma A.1. Define X t (x 0 , v 0 ) (abbreviated X t in the sequel) in this way, consider the ordinary differential equation

dx dt = v 0 + Φ(x),
and denote by X t (x 0 , v 0 ) the solution to this ordinary differential equation at time t with x(0) = x 0 , where Φ(x) is Lipschitz

|Φ(x) -Φ(y)| ≤ M |x -y|, ∀x, y ∈ R d .
with loss of generality we assume M ≥ 1. Then we have, for any

(x 0 , v 0 ) ∈ R d fixed, t ∈ [0, min{ log2 M , 1}), we have |X t -x 0 | ≤ t(M + 1) 2 (|v 0 | + |x 0 | + |Φ(0)|),
Proof. Since Φ(x) is Lipschitz, the existence and uniqueness of X t is satisfied. First by the definition of X t we have

d|X t | dt ≤ | dX t dt | ≤ |v 0 | + M (|X t | + |Φ(0)|),
by Grönwall's lemma we have

|X t | ≤ e M t |x 0 | + 1 M (e M t -1)(|v 0 | + M |Φ(0)|), since M ≥ 1, so for t ∈ (0, log2 M ) we have |X t | ≤ 2|x 0 | + |v 0 | + M |Φ(0)|, so | dX t dt | ≤ |v 0 | + M (|X t | + |Φ(0)|) ≤ (M + 1)|v 0 | + 2M |x 0 | + M 2 |Φ(0)| ≤ (M + 1) 2 (|v 0 | + |x 0 | + |Φ(0)|),
for any t ∈ (0, log2 M ), the lemma is thus proved. Use this X t , we come to construct a subsolution which is useful in our proof.

Lemma A.2. Define operator L as

L = ∂ ∂t + (v + Φ(x)) • ∇ x -∆ v , where Φ(x) is Lipschitz |Φ(x) -Φ(y)| ≤ M |x -y|, ∀x, y ∈ R d .
Then for any (x 0 , v 0 ) ∈ R d fixed, define V = (M + 1) 2 (Φ(0) + |x 0 | + |v 0 |), then for any r > 0, 0 < τ < min(1, r 3 /2V, log2/M, 1/20M ),α > 1, δ > 0, there exist constants λ > α, K > 0 which only depend on r 2 /τ , V , M , α (independent of δ) and a function φ such that

Lφ ≤ 0, in [0, τ ) × ( Bλr \ Br ),
and some boundary conditions

φ ≤ 0, on t = 0, φ ≤ δ on [0, τ ) × ∂ Br , φ ≤ 0 on [0, τ ) × ∂ Bλr , while φ ≥ Kδ on [ τ 2 , τ ) × ( Bαr \ Br ).
Proof. This proof is similar to the proof in [START_REF] Villani | [END_REF] Appendix A. 22. For t ∈ (0, τ ] and (x, v) ∈ R d \ Br let

Q(t, x, v) = a |v -v 0 | 2 2t -b (v -v 0 , x -X t (x 0 , v 0 )) t 2 + c |x -X t (x 0 , v 0 )| 2 2t 3 ,
where a, b, c > 0 will be chosen later on, and we define X t (x 0 , v 0 ) (abbreviated X t in the sequel) in this way, consider the ordinary differential equation

dx dt = v 0 + Φ(x),
and denote by X t (x 0 , v 0 ) the solution to this ordinary differential equation at time t with x(0) = x 0 . Let further

φ(t, x, v) = δe -µQ(t,x,v) -,
where µ, > 0 will be chosen later on. Let us assume b 2 < ac, so that Q is a positive definite quadratic form in the two variables v -v 0 and x -X t . Then

Lφ = -µδe -µQ A(Q), where A(Q) = ∂ t Q + (v + Φ(x)) • ∇ x Q -∆ v Q + µ|∇ v Q| 2 .
By computation,

A(Q) = -a |v -v 0 | 2 2t 2 + 2b (v -v 0 , x -X t ) t 3 -3c |x -X t | 2 2t 4 + b (v -v 0 , v 0 + Φ(X t )) t 2 -c (x -X t , v 0 + Φ(X t )) t 3 -b (v -v 0 , v + Φ(x)) t 2 + c (x -X t , v + Φ(x)) t 3 -a d t + µ|a v -v 0 t -b x -X t t 2 | 2 = B( v -v 0 t , x -X t t 2 ) + c (x -X t , Φ(x) -Φ(X t )) 2t 3 -b (v -v 0 , Φ(x) -Φ(X t )) t 2 -a d t ,
where B is a quadratic form on R n × R n with matrix P ⊗ I n ,

P = µa 2 -a 2 -b -µab + b + c 2 -µab + b + c 2 µb 2 -3c 2 If a, b, c are given, then as µ → ∞    trP = µ(a 2 + b 2 ) + O(1), detP = µ( 3ab 2 2 + abc -b 3 - 3a 2 c 2 ) + O(1).
Both quantities are positive if b ≥ 2a and ac b 2 , for example we can take

b = 2a, c > 12b, then as µ → ∞    trP = 5µa 2 + O(1), detP = µ( 1 2 a 2 c -a 2 b) + O(1) ≥ µ 1 3 a 2 c + O(1).
the eigenvalues of M are of order 5µa 2 and c 15 . So we may choose a, b, c and µ so that

B( v -v 0 t , x -X t t 2 ) ≥ c 20 ( |v -v 0 | 2 t 2 + |x -X t | 2 t 4 ). If τ ≤ 1 20M , we have c |(x -X t , Φ(x) -Φ(X t ))| 2t 3 ≤ M t 2 c |x -X t | 2 t 4 ≤ c 40 |x -X t | 2 t 4 ,
gathering the two terms we have

B( v -v 0 t , x -X t t 2 ) + c (x -X t , Φ(x) -Φ(X t )) 2t 3 ≥ c 40 ( |v -v 0 | 2 t 2 + |x -X t | 2 t 4
).

If τ ≤ 1 -b (v -v 0 , Φ(x) -Φ(X t )) t 2 -a d t ≥ -bM 2 |x -X t | 2 t 4 -b |v -v 0 | 2 t 2 - bd 2t ,
gathering the two terms, suppose c ≥ 80(M + 1) 2 b, we have

A(Q) ≥ bd 2t [ c 40bd ( |v -v 0 | 2 t + |x -X t | 2 t 3 ) -1].
Recall that (x, v) / ∈ Br , so -either |v -v 0 | ≥ r, and then A(Q) ≥ bd 2t [ c 40bd r 2 /τ -1], which is positive if c ≥ 40bd τ r 2 ; -or |x-x 0 | ≥ r 3 , and then by Lemma A. 2τ 3 -1], which is positive as soon as c ≥ 80bd( τ r 2 ) 3 . so it's OK to take c = b max{12, 80(M + 1) 2 , 80d( τ r 2 ) 3 , 40d τ r 2 }. To summarize: under our assumptions there is a way to choose the constants a, b, c, µ, depending only on d, M, V, r 2 /τ , satisfying c > b > a and ac > b 2 , so that Lφ ≤ 0, in [0, τ ) × ( Bλr \ Br ), as soon as 0 < τ < min(1, r 3 /2V, log2/M, 1/20M ). Recall that φ(t, x, v) = δe -µQ(t,x,v) -.

The boundary condition at t = 0 is obvious since e -µQ(t,x,v) vanishes identically at t = 0 (more rigorously, e -µQ(t,x,v) can be extended by continuity by 0 at t = 0). The condition is also true on [0, τ )×∂ Br since φ ≤ δ. It remains to prove it on [0, τ ) × ∂ Bλr . For that we estimate Q from below, since c > 12b, b = 2a, it's easily to seen that for any (t, x, v) ∈ [0, τ ) × ∂ Bλr for the term with operator ∆ we have

Q(t,
with φ 2 (m) = v • ∇ x m m -Φ(x) • ∇ x m m + 1 2 div x Φ(x) + K |∇ v m| 2 m 2 + K ∆ v m m -B(x, v) • ∇ v m m + 1 2 div v B(x, v).
(f ∆ v g + ∆ v f g)m 2 = -∇ v (f m 2 ) • ∇ v g + ∇ v (gm 2 ) • ∇ v f = -2 ∇ v f • ∇ v gm 2 + f g∆ v (m 2 ) = -2 ∇ v f • ∇ v gm 2 + 2 f g(|∇ v m| 2 + ∆ v mm).
For the other terms, using integration by parts we deduce 

f div v (B(x, v)g)m 2 + gdiv v (B(x, v)f )m 2 = f B(x, v) • ∇ v gm 2 + gB(x, v) • ∇ v f m 2 + 2div v B(x, v)f gm 2 = -f g∇ v • (B(x, v)m 2 ) + 2div v B(x, v)f gm 2 = -2f gB(x, v) • ∇ v m m m 2 + div v B(x, v)f gm 2 .
p 2 ∇ v (|f | p ) • ∇ v (m p ) - 1 p ∇ v (|f | p ) • ∇ v (m p ) = -(p -1) |∇ v (mf )| 2 |f | p-2 m p + (p -1) |∇ v m| 2 |f | p m p-2 - p -2 p 2 |f | p ∆ v m p .
Using that ∆ v m p = p∆ v m m p-1 + p(p -1)|∇ v m| 2 m p-2 , we obtain

C 1 = -(p -1) |∇ v (mf )| 2 |f | p-2 m p-2 + |f | p m p 2 p -1 ∆ v m m + 2 1 - 1 p |∇ v m| 2 m 2 .

Theorem 1 . 1 .

 11 (1) When 2 ≤ β, 1 ≤ γ, there exist a weight function m > 0 and a positive normalized steady state G ∈ L 1 (m) such that for any initial datum f 0 ∈ L p (m), p ∈ [1, ∞], the associated solution f (t, •) of the kinetic Fokker-Planck equation (1.1) satisfies

Theorem 2 . 1 .

 21 (Harris-Doeblin Theorem) We consider a Markov semigroup S L (t) with generator L and define S t := S L (t), we assume that (H1)(Lyapunov condition) There exists some weight function m : R d → [1, ∞) satisfying m(x) → ∞ as |x| → ∞ and there exist some constants α > 0, b > 0 such that L * m ≤ -αm + b, (H2)(Harris condition) For any R > 0, there exist a constant T = T (R) > 0 and a positive, nonzero measure µ = µ(R) such that

  we have |||S L (t)f ||| ≤ |||f ||| for all t ≥ 0, that is the semigroup S L is a contraction semigroup on (M 1 (m), ||| • |||). There exists R > 0 large enough such that the intersection of the closed hyperplane {f ∈ M 1 (m); M(f ) = 1} and the closed ball of radius R in (M 1 (m), ||| • |||) is a convex, non-empty subset. Then consider the closed, weakly * compact convex set

Theorem 3 . 1 .

 31 Consider the weight function m as defined in Theorem 1.3 satisfies condition (C1)-(C4), then there exist η, C > 0 such that

Theorem 4 . 4 .

 44 Under the assumption of Theorem 1.3. The equation (1.3) defined in Theorem 1.2 satisfies the Harris condition: For any R > 0, there exist a constant T = T (R) > 0 and a positive, nonzero measure µ = µ(R) such that

Theorem 6 . 1 .

 61 Denote L the operator of the kinetic Fitzhugh-Nagumo equation (1.2), then there exist a weight function m and a function H ≥ 1 satisfies Theorem 1.3.

Theorem 6 . 2 .

 62 Denote L the operator of the kinetic Fokker-Planck equation (1.1), then there exist a weight function m and a function H satisfies Theorem 1.3.

and since ∇ 2 x

 2 x ≤ CI, where I is the d × d identity matrix, we have

  Computation for φ 2 (m) and ϕ p (m) Lemma B.1. Define∂ t f := Lf = div x (A(x, v)f ) + div v (B(x, v)f ) + K∆ v f, with A(x, v) = -v + Φ(x),and K > 0 a constant, then for any weight function m we have(f (Lg) + g(Lf ))m 2 = -2K ∇ v f • ∇ v gm 2 + 2 f gφ 2 (m)m 2 , (B.1)

  Also we have forp ∈ [1, ∞] sign f |f | p-1 Lf m p = -K |∇ v (mf )| 2 |f | p-2 m p-2 + |f | p ϕ p (m)m p , v B(x, v),where we use f in place of R d ×R d f dxdv for short.Proof. DefineT f = -v • ∇ x f, we have f (T g)m 2 + (T f )gm 2 = T (f g)m 2 = -f gT (m 2 ) = -2 f gm 2 T m m ,

Similarlyf 2 = 2 + 2 (

 222 div x (Φ(x)g)m 2 + gdiv x (Φ(x)f )m -2f gΦ(x) • ∇ v m m m 2 + div x Φ(x)f gm 2 ,so (B.1) are proved by combining the terms above. For (B.2) we computeC 1 := sign f |f | p-1 m p ∆ v f = -∇ v (sign f |f | p-1 m p ) • ∇ v f = -(p -1)|∇ v f | 2 |f | p-2 m p -1 p ∇ v |f | p • ∇ v (m p ). Using ∇ v (mf ) = m∇ v f + f ∇ v m, we deduce C 1 = -(p -1) |∇ v (mf )| 2 |f | p-2 m p-2 + (p -1) |∇ v m| 2 |f | p m p-p -1)

  1, for any τ ≤ min{1, r 3 /(2V ), log2/M }

	|x -X t | 2 t 2	≥	|x -x 0 | 2 t 2	-	|X t -x 0 | 2 t 2
		≥	|x -x 0 | 2 t 2	-((M + 1) 2 (|v 0 | + |x 0 | + |Φ(0)|)) 2 ≥	r 6 τ 2 -V 2 ≥	r 6 2τ 2 ,
	so A(Q) ≥ bd 2t [ c 40bd	r 6	
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Thus if we choose = δ exp(-µaλ 2 8 min( r 2 τ , r 6 τ 3 )), we make sure that φ = δe -µQ -≤ 0 on [0, τ ) × ∂ Bλr . We finally come to prove the last thing, indeed, if t ≥ τ /2 and (x, v) ∈ Bαr \ Br then

τ 3 ), so we can find K > 0 such that

))] ≥ Kδ, recall the relationship between a and c, we conclude that λ, K depends only on r 2 /τ, M, V, α, the proof is thus ended.

Then for any

where K also depends on D L ∞ ( Bλr (x 0 ,v 0 )) and W L ∞ ( Bλr (x 0 ,v 0 )) .

Proof. We first start by a taking f = hG, with G = e -1 2 W (x,v) , we have

the equation turns to

By the definition of G we have

so the equation will turns to

Take the λ from Lemma A.2. Then take D = D L ∞ ( Bλr (x 0 ,v 0 )) , and Ē = e W L ∞ ( Bλr (x 0 ,v 0 )) , then we have

, where

by Lemma A.2, we can find a φ such that

and

So φ is a subsolution to g, then we have

Taking back to f we have

we conclude the theorem.

CHUQI CAO

For the other terms we have

Gathering all the terms (B.2) is proved.