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THE KINETIC FOKKER-PLANCK EQUATION WITH

GENERAL FORCE

CHUQI CAO

March 18, 2020

Abstract. We consider the kinetic Fokker-Planck equation with a class of
general force. We prove the existence and uniqueness of a positive nor-
malized equilibrium (in the case of a general force) and establish some
exponential rate of convergence to the equilibrium (and the rate can be
explicitly computed). Our results improve results about classical force to
general force case. Our result also improve the rate of convergence for the
Fitzhugh-Nagumo equation from non-quantitative to quantitative explicit
rate.
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1. Introduction

In this paper, we consider the kinetic Fokker-Planck (KFP for short) equation
with general force and confinement

(1.1) ∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(∇vW (v)f),

for a density function f = f(t, x, v), with t ≥ 0, x ∈ Rd, v ∈ Rd, with

V (x) =
〈x〉γ

γ
, γ ≥ 1, W (v) =

〈v〉β

β
, β ≥ 2,

where 〈x〉2 := 1 + |x|2, and the Fitzhugh-Nagumo equation

(1.2) ∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∂2
vvf,

1
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with
A(x, v) = ax− bv, B(x, v) = v(v − 1)(v − c) + x,

for some a, b, c > 0. The evolution equations are complemented with an initial
datum

f(0, x, v) = f0(x, v) on R2d.

It’s easily seen that both equations are mass conservative, that is

M(f(t, ·)) =M(f0),

where we define the mass of f by

M(f) =

∫
Rd×Rd

f(x, v)dxdv.

When G satisfies
LG = 0, M(G) = 1, G > 0,

we say that G is a positive normalized steady state.
For a given weight function m, we will denote Lp(m) = {f |fm ∈ Lp} the
associated Lebesgue space and ‖f‖Lp(m) = ‖fm‖Lp the associated norm, for
p = 2 we also use (f, g)L2(m) to denote the associate scalar product.
With these notations, we can introduce the main result of this paper.

Theorem 1.1. (1) When 2 ≤ β, 1 ≤ γ, there exist a weight function m > 0 and
a positive normalized steady state G ∈ L1(m) such that for any initial datum
f0 ∈ Lp(m), p ∈ [1,∞], the associated solution f(t, ·) of the kinetic Fokker-
Planck equation (1.1) satisfies

‖f(t, ·)−M(f0)G‖Lp(m) ≤ Ce−λt‖f0 −M(f0)G‖Lp(m),

for some constant C, λ > 0.
(2) The same conclusion holds for the kinetic Fitzhugh-Nagumo equation (1.2).

In the results above the constants C and λ can be explicitly estimated in
terms of the parameters appearing in the equation by following the calculations
in the proofs. We do not give them explicitly since we do not expect them to
be optimal, but they are nevertheless completely constructive.

Remark 1.2. Theorem 1.1 is also true when V (x) behaves like 〈x〉γ and W (v)
behaves like 〈v〉β, that is for any V (x) satisfying

C1〈x〉γ ≤ V (x) ≤ C2〈x〉γ , ∀x ∈ Rd,

C3|x|〈x〉γ−1 ≤ x · ∇xV (x) ≤ C4|x|〈x〉γ−1, ∀x ∈ Bc
R,

and
|Dn

xV (x)| ≤ Cn〈x〉γ−2, ∀x ∈ Rd, ∀n ≥ 2,

for some constant Ci > 0, R > 0, and similar estimates holds for W (v).

We prove both cases of Theorem 1.1 by proving the following theorem, which
gives convergence result for more general KFP type models.
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Theorem 1.3. Consider the following equation

(1.3) ∂tf := Lf = divx(A(x, v)f) + divv(B(x, v)f) +K∆vf,

with K > 0 constant, A(x, v), B(x, v) ∈ C1 and

A(x, v) = −v + Φ(x),

where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|,
for some M > 0. We assume also that there exist W (x, v) such that

∇vW (x, v) = B(x, v),

define

φ2(m) = v · ∇xm
m
− Φ(x) · ∇xm

m
+

1

2
divxΦ(x) +K

|∇vm|2

m2

+ K
∆vm

m
−B(x, v) · ∇vm

m
+

1

2
divvB(x, v).

If we can find a weight function m and a function H ≥ 1 such that the four
conditions holds
(C1)(Lyapunov condition) For some α, b > 0 there holds

L∗m ≤ −αm+ b,

(C2)for some constant C1, C2, C3 > 0 we have

− C1H ≤ φ2(m) ≤ −C2H + C3,

(C3)For any integer n ≥ 1 fixed, for any ε > 0 small, we can find a constant
Cε,n such that

n∑
k=1

|Dk
xΦ(x)|+

n∑
k=1

|Dk
x,vB(x, v)| ≤ Cn,ε + εH,

(C4)For some constant C4 > 0 there holds

∆x,vm

m
≥ −C4.

Then there exist a positive normalized steady state G such that

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m),

for some C, λ > 0. In addition, for any p ∈ [1,∞], if

ϕp(m) ≤ −a+M1BR ,

for some constant a,M,R > 0, where

ϕp(m) = v · ∇xm
m
− Φ(x) · ∇xm

m
+ (1− 1

p
)divxΦ(x) + 2K(1− 1

p
)
|∇vm|2

m2

+ K(
2

p
− 1)

∆vm

m
−B(x, v) · ∇vm

m
+ (1− 1

p
)divvB(x, v),
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then we have

‖f(t, ·)−M(f0)G‖Lp(m) ≤ Ce−λt‖f0 −M(f0)G‖Lp(m).

Remark 1.4. In fact φ2(m) satisfies∫
Rd×Rd

(f(Lg) + g(Lf))m2 = −2K

∫
Rd×Rd

∇vf · ∇vgm2 + 2

∫
Rd×Rd

fgφ2(m)m2,

and ϕp(m) satisfies∫
Rd×Rd

sign f |f |p−1Lfmp = −K
∫
Rd×Rd

|∇v(mf)|2|f |p−2mp−2 +

∫
Rd×Rd

|f |pϕp(m)mp.

the computation can be found in Appendix B. Condition (C2)-(C4) ensures
some regularity estimate which we will see in Section 3.

Remark 1.5. For the kinetic Fokker-Planck equation with general force 1.1, we
can take

W (x, v) = F (v) + v · ∇xV (x),

and

m = eλH1 , H1 = |v|2 + V (x) + εv · ∇x〈x〉, H = 〈v〉β + 〈x〉γ−1 + 1,

for some λ, ε > 0 small. For the kinetic Fitzhugh-Nagumo equation (1.2), we
can take

m = eλ(x2+v2), H = |v|4 + |x|2 + 1, W =
1

4
|v|4 − 1

3
(1 + c)v3 +

1

2
|v|2 + x · v,

for some constant λ > 0, the computation can be found in Section 6 below.

Remark 1.6. For the kinetic Fitzhugh-Nagumo equation (1.2), an exponential
convergence with non-quantitative rate to the convergence has already been
proved in [18], our method improves the result to a quantitative rate.

If β = 2, the equation (1.1) will turns to the classical KFP equation

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(vf).

This time we observe that

G = Z−1e−W , W =
v2

2
+ V (x), Z ∈ R+,

is an explicit steady state. There are many classical results for this equation
on the case γ ≥ 1, where there is an exponentially decay. We refer the inter-
ested readers to [24, 5, 6, 14, 10, 11, 1, 17], and for the weak confinement case
γ ∈ (0, 1), there are also some polynomial or sub-geometric convergence results
proved in [1, 2, 7]. We also emphasize that our results for kinetic Fokker-Planck
equation with general force and confinement are to our knowledge new.

We carry out all of our proofs using variations of Harris’s Theorem for Markov
semigroup. Harris’s Theorem originated in the paper [12] where Harris gave con-
ditions for existence and uniqueness of a steady state for Markov processes. It
was then pushed forward by Meyn and Tweedie in [23] to show exponential con-
vergence to equilibrium. [13] gives an efficient way of getting quantitative rates
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for convergence to equilibrium once the assumptions have been quantitatively
verified. We give the precise statement in the next section.

One advantage of the Harris method is that it directly yields convergence
for a wide range of initial conditions (there are many choice of m and H in
Theorem 1.3), while previous proofs of convergence to equilibrium mainly use
some strongly weighted L2 or H1 norms (typically with a weight which is the
inverse of a Gaussian). The Harris method also gives existence of stationary
solutions under general conditions; in some cases these are explicit and easy
to find, but in other cases such as the two models in our paper they can be
nontrivial and non-explicit. Also the Harris method provides a quantitative
rate of convergence to the steady state, which is better than non-quantitative
type argument such as Krein Rutman theorem.

Here we briefly introduce the main idea of the paper. The paper uses Har-
ris method to prove convergence. Roughly speaking, Harris method says that
Lyapunov function plus positivity condition on a large ball implies L1(m) con-
vergence for some weight function m. The Lyapunov function is easy to find
so we mainly prove positivity on a large ball. The proof mainly contains three
steps. First we prove that f is above a constant on a point, then we use regu-
larity method to prove the continuity of the solution, thus we can obtain that
f is above a constant in a small ball. Finally we use the spreading of positivity
lemma which says if f ≥ δ in [0, t) × Br(x0, v0), then f ≥ δ in f ≥ Kδ in
[ t2 , t) × Bαr(x0, v0) for any α > 1 and some K > 0, we proved the positivity

thus the convergence in L1(m) is proved. We use the Duhamel’s formula and
regularity estimate to prove convergence p ∈ (1,∞]. This way of proving con-
vergence for linear models is quite new and have the potential to be extended
to other equations where exponential trend to equilibrium has not yet been
shown.

Let us end the introduction by describing the plan of the paper. In Section
2, we introduce Harris Theorem. In Section 3 we present the proof of a reg-
ularization estimate on SL. In Section 4 we prove the convergence result in
L1(m). In Section 5 we prove the theorem in the case of Lp(m) with general p.
In section 6, we compute the Lyapunov function for the two equations. Finally
in Appendix we prove some useful lemmas.

2. Harris Theorem and existence of steady state

In this section we introduce a PDE proof of Harris-Doeblin theorem and the
existence of steady state by S. Mischler and J. A. Cañizo.

Theorem 2.1. (Harris-Doeblin Theorem) We consider a Markov semigroup
SL(t) with generator L and define St := SL(t), we assume that
(H1)(Lyapunov condition) There exists some weight function m : Rd → [1,∞)
satisfying m(x) → ∞ as |x| → ∞ and there exist some constants α > 0, b > 0
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such that

L∗m ≤ −αm+ b,

(H2)(Harris condition) For any R > 0, there exist a constant T = T (R) > 0
and a positive, nonzero measure µ = µ(R) such that

ST f ≥ µ
∫
BR

f, ∀f ∈ L1(m), f ≥ 0, ‖f‖L1(m) ≤ 1,

where BR denotes the ball centered at origin with radius R. Suppose the Markov
semigroup St on L1(m) which satisfies (H1) and (H2). Then there exist some
constants C ≥ 1 and a < 0 such that

‖Stf‖L1(m) ≤ Ceat‖f‖L1(m), ∀t ≥ 0, ∀f ∈ L1(m), M(f) = 0.

Remark 2.2. Usually the statement of Harris condition do not requires

‖f‖L1(m) ≤ 1,

but in fact conclusion remains the same since for every function f we can
consider 1

λf and use the linearity of the solution. This additional assumption
will be helpful in Section 4.

Remark 2.3. In fact this version of Harris-Doeblin Theorem is a little stronger
than the version in [23] because this version do not require a minimum of T for
all R, in this version it may happen that

T (R)→ 0, as R→∞,
while in [23] they require a minimum t∗ > 0 for all R > 0.

Before proving the theorem, we first prove a useful lemma.

Lemma 2.4. (Doeblin’s variant). Under assumption (H2), if f ∈ L1(m), with
m(x)→∞ as |x| → ∞, satisfies

(2.1) ‖f‖L1 ≥
4

m(R)
‖f‖L1(m), M(f) = 0, ‖f‖L1(m) ≤ 1,

we then have

‖ST f‖L1 ≤ (1− 〈µ(R)〉
2

)‖f‖L1 ,

where

〈µ〉 =

∫
Rd
µ, m(R) := min{|m(x)|, x ∈ Bc

R},

Proof. From the hypothesis (2.1), we have∫
BR

f± =

∫
Rd
f± −

∫
BcR

f±

≥ 1

2

∫
Rd
|f | − 1

m(R)

∫
Rd
|f |m ≥ 1

4

∫
Rd
|f |,

since

‖f±‖L1(m) ≤ ‖f‖L1(m).



THE KFP EQUATION WITH GENERAL FORCE 7

Together with (H2), we get

ST f± ≥
µ(R)

4

∫
Rd
|f | := η,

We deduce

|ST f | ≤ |ST f+ − η|+ |ST f− − η| = ST f+ − η + ST f− − η = ST |f | − 2η,

and next ∫
Rd
|ST f | ≤

∫
Rd
ST |f | − 2η =

∫
Rd

(|f | − µ(R)

2

∫
Rd
|f |),

which is nothing but the announced estimate. �

Then we come to the proof of Theorem 2.1.

Proof. Proof of Theorem 2.1. We split the proof in several steps. In Step
1-6 we will assume ‖f0‖L1(m) ≤ 1.

Step 1. We fix f0 ∈ L1(m),M(f) = 0, and we denote ft := Stf0. From (H1),
we have

d

dt
‖f‖L1(m) ≤ −α‖ft‖L1(m) + b‖ft‖L1 , ∀t ≥ 0,

from what we deduce

‖ST f‖L1(m) ≤ e−αt‖f0‖L1(m) + (1− e−αt) b
α
‖f0‖L1 , ∀t ≥ 0,

In other words, we have proved

(2.2) ‖ST f‖L1(m) ≤ γ‖f0‖L1(m) +K‖f0‖L1 , ∀t ≥ 0,

with γ ∈ (0, 1) and K > 0. We fix R > 0 large enough such that 8b
α ≤ m(R),

then take T = T (R) and µ = µ(R), define

γ := e−αT , K := (1− e−αT )
b

α
,

Then we have K/A ≤ (1− γ)/2 with A := m(R)/4. We also recall that

(2.3) ‖ST f‖L1 ≤ ‖f0‖L1 , ∀t ≥ 0.

We define

‖f‖β = ‖f0‖L1 + β‖f0‖L1(m),

and we observe that the following alternative holds

(2.4) ‖f0‖L1(m) ≤ A‖f0‖L1 ,

or

(2.5) ‖f0‖L1(m) > A‖f0‖L1 .

Step 2. By Lemma 2.4 that under condition (2.4), there holds

(2.6) ‖ST f0‖L1 ≤ γ1‖f0‖L1 , γ1 ∈ (0, 1),
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and more precisely γ1 := 1 − 〈µ〉/2, which is nothing but the conclusion of
Lemma 2.4.
Step 3. We claim that under condition (2.4), there holds

(2.7) ‖ST f0‖β ≤ γ2‖f0‖β, γ2 := max(
γ1 + 1

2
, γ),

for β > 0 small enough. Indeed, using (2.2) and (2.7), we compute

‖ST f0‖β = ‖ST f0‖L1 + β‖ST f0‖L1(m)

≤ (γ1 +Kβ)‖f0‖L1 + γβ‖f0‖L1(m),

and we take β > 0 such that γ1 +Kβ ≤ γ2.
Step 4. We claim that under condition (2.5), there holds

(2.8) ‖ST f0‖L1(m) ≤ γ3‖f0‖L1(m), γ3 :=
γ + 1

2
.

Indeed we compute

‖ST f0‖L1(m) ≤ γ‖f0‖L1(m) +
K

A
‖f0‖L1(m) = γ3‖f0‖L1(m).

Step 5. We claim that under condition (2.5), there holds

(2.9) ‖ST f0‖β ≤ γ4‖f0‖β, γ4 :=
γ3 + 1/β

1 + 1/β
.

Indeed, using (2.3) and (2.8), we compute

‖ST f0‖β = ‖ST f0‖L1 + β‖ST f0‖L1(m)

≤ ‖f0‖L1 + γ3β‖f0‖L1(m)

≤ (1− ε)‖f0‖L1 + (ε+ γ3β)‖f0‖L1(m),

and we choose ε ∈ (0, 1) such that 1− ε = ε/β + γ3.
Step 6. By gathering (2.7) and (2.9), we see that we have

‖ST f0‖β ≤ γ5‖f0‖β, γ5 := max(γ2, γ4) ∈ (0, 1),

for some well chosen β > 0. By iteration, we get

‖SnT f0‖β ≤ γn5 ‖f0‖β,
and we then conclude there exist some constants C ≥ 1 and a < 0 such that

‖Stf‖L1(m) ≤ Ceat‖f‖L1(m), ∀t ≥ 0, ∀f ∈ L1(m), ‖f‖L1(m) ≤ 1, M(f) = 0.

Step 7. (Linearity argument) For general f , we can always find λ > 0 such that
‖ 1
λf‖L1(m) ≤ 1, since St is linear we have

‖Stf‖L1(m) = λ‖St(
1

λ
f)‖L1(m) ≤ λCeat‖

1

λ
f‖L1(m) = Ceat‖f‖L1(m), ∀t ≥ 0,

for all f ∈ L1(m), M(f) = 0. �

The Lyapunov condition also provides a sufficient condition for the existence
of an invariant measure (for the dual semigroup).
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Theorem 2.5. Any mass conserving positive Markov semigroup (St) which
fulfills the above Lyapunov condition has at least one invariant borelian measure
G ∈M1(m), where M1 is the space of measures.

Proof. Step 1. We prove that (St) is a bounded semigroup. For f0 ∈ M1(m),
we define ft := SL(t)f0, and we easily compute

d

dt

∫
|ft|m ≤

∫
|ft|L∗m ≤

∫
|ft|(−am+ b).

Using the mass conservation and positivity, integrating the above differential
inequality, we get∫

|ft|m ≤ e−at
∫
|f0|m+

b

a
(1− e−at)

∫
|f0|

≤ max(1,
b

a
)

∫
|f0|m,∀t ≥ 0,

so that (St) is bounded in M1(m).
Step 2. We prove the existence of a steady state, more precisely, we start
proving that there exists a positive and normalized steady state G ∈ M1(m).
For the equivalent norm ||| · ||| defined on M1(m) by

|||f ||| := sup
t>0
‖SL(t)f‖M1(m),

we have |||SL(t)f ||| ≤ |||f ||| for all t ≥ 0, that is the semigroup SL is a con-
traction semigroup on (M1(m), ||| · |||). There exists R > 0 large enough such
that the intersection of the closed hyperplane {f ∈M1(m);M(f) = 1} and the
closed ball of radius R in (M1(m), ||| · |||) is a convex, non-empty subset. Then
consider the closed, weakly * compact convex set

K := {f ∈M1(m); |||f ||| ≤ R, f ≥ 0,M(f) = 1},
Since SL(t) is a linear, weakly * continuous, contraction in (M1(m), ||| · |||) and
M(SL(t)f) = M(f) for all t ≥ 0, we see that K is stable under the action of
the semigroup. Therefore we apply the Markov-Kakutani fixed point theorem
and we conclude that there exists G ∈ K such that SL(t)G = G for all t ≥ 0.
Therefore we have in particular G ∈ D(L) and LG = 0. �

3. Regularization property of SL

The aim of this section is to establish the following regularization property.
The proof closely follows the proof of similar results in [11, 17, 24]. In the whole
section, m and H refers to the one defined in Theorem 1.3.

Theorem 3.1. Consider the weight function m as defined in Theorem 1.3
satisfies condition (C1)-(C4), then there exist η, C > 0 such that

‖SL(t)f‖L2(m) ≤
C

t
5d+2

4

‖f‖L1(m), ∀t ∈ [0, η].
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for some weight function m. In addition, for any integer k > 0 there exist some
α(k), C(k) > 0 such that

‖SL(t)f‖Hk(m) ≤
C

tα
‖f‖L1(m), ∀t ∈ [0, η].

as a consequence we have

‖SL(t)f‖C2,δ ≤
C

tζ
‖f‖L1(m), ∀t ∈ [0, η],

for some δ ∈ (0, 1), ζ > 0.

We start with some elementary lemmas.

Lemma 3.2. For ft = SL(t)f0, define an energy functional

F(t, ft) := A‖ft‖2L2(m) + at‖∇vft‖2L2(m)

+ 2ct2(∇vft,∇xft)L2(m) + bt3‖∇xft‖2L2(m),(3.1)

with a, b, c > 0, c ≤
√
ab and A large enough. Then there exist η > 0 such that

d

dt
F(t, ft) ≤ −L(‖∇vft‖2L2(m) + t2‖∇xft‖2L2(m)) + C‖ft‖2L2(m),

for all t ∈ [0, η] and some L > 0, C > 0, as a consequence, we have

‖SLf0‖H1(m) ≤ Ct−
3
2 ‖f0‖L2(m),

for all t ∈ [0, η], iterating k times we get

‖SLf0‖Hk(m) ≤ Ct−
3k
2 ‖f0‖L2(m).

Remark 3.3. We need to note here that if we consider

F∗(t, ft) := A‖ft‖2L2(m) + at2‖∇vft‖2L2(m)

+ 2ct4(∇vft,∇xft)L2(m) + bt6‖∇xft‖2L2(m),

then by the same proof we have

d

dt
F∗(t, ft) ≤ −L(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)) + C‖ft‖2L2(m),

for all t ∈ [0, η], for some L > 0, C > 0. This version will be useful in the later
proof.

Proof. We only prove the case k = 1, for k = 2, one need only replace f by ∂xif
and ∂vif , similarly for k > 2. First by Theorem 1.3 and Remark 1.4 we have

(f,Lg)L2(m) + (g,Lf)L2(m) = −2K(∇vf,∇vg)L2(m) + (f, gφ2(m))L2(m),

for any f, g ∈ L2(m), without loss of generality we will assume K = 1. By
condition (C2), we have

d

dt
‖f‖2L2(m) = (f,Lf)L2(m) ≤ −‖∇vf‖2L2(m) − C1‖f‖2L2(mH1/2)

+ C2‖f‖2L2(m).
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We compute

∂xiLf = L∂xif + ∂xiΦ(x) · ∇xf + ∂xiB(x, v) · ∇vf(3.2)

+∂xidivxΦ(x)f + ∂xidivvB(x, v)f,

by condition (C3)

|∂xiΦ(x)|+ |∂xiB(x, v)|+ |∂xidivxΦ(x)|+ |∂xidivvB(x, v)| ≤ εH + C,

for some C > 0, we have

d

dt
‖∂xif‖2L2(m)

= (∂xif,L∂xif)L2(m) + (∂xif, ∂xiΦ(x) · ∇xf + ∂xiB(x, v) · ∇vf)L2(m)

+(∂xif, ∂xidivxΦ(x)f + ∂xidivvB(x, v)f)L2(m)

≤ −‖∇v(∂xif)‖2L2(m) − C1‖∂xif‖2L2(mH1/2)
+ C2‖∂xif‖2L2(m)

+ε(‖∇vf‖2L2(mH1/2)
+ ‖∇xf‖2L2(mH1/2)

+ ‖f‖2
L2(mH1/2)

)

+C(‖∇vf‖2L2(m) + ‖∇xf‖2L2(m) + ‖f‖2L2(m)).

Summing over i = 1, 2, 3, ..., n , we get

d

dt
‖∇xf‖2L2(m)

≤ −
n∑
i=1

‖∇v(∂xif)‖2L2(m) −
C1

2
‖∇xf‖2L2(mH1/2)

+ C‖∇xf‖2L2(m)

+C‖∇vf‖2L2(mH1/2)
+ C‖f‖2

L2(mH1/2)
,

for some C > 0. Similarly using

(3.3) ∂viLf = L∂vif − ∂xif + ∂viB(x, v) · ∇vf + ∂vidivvB(x, v)f,

and since

|∂viB(x, v)|+ |∂vidivvB(x, v)| ≤ εH + C,

we have

d

dt
‖∂vif‖2L2(m)

= (∂vif,L∂vif)L2(m) − (∂xif, ∂vif)L2(m) + (∂vif, ∂viB(x, v) · ∇vf)L2(m)

+(∂vif, ∂vidivvB(x, v)f)L2(m)

≤ −‖∇v(∂vif)‖2L2(m) − C1‖∂vif‖2L2(mH1/2)
+ C2‖∂vif‖2L2(m) + ε‖∇vf‖2L2(mH1/2)

+C‖∇vf‖2L2(m) − (∂xif, ∂vif)L2(m) + C‖f‖2
L2(mH1/2)

.
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Summing over i = 1, 2, ..., n we get

d

dt
‖∇vf‖2L2(m)

≤ −
n∑
i=1

‖∇v(∂vif)‖2L2(m) −
C1

2
‖∇vf‖2L2(mH1/2)

+ C‖f‖2
L2(mH1/2)

.

+C‖∇vf‖2L2(m) − (∇vf,∇xf)L2(m).

For the crossing term, using (3.2), (3.3) and condition (C2) and (C3), we have

d

dt
2(∂vif, ∂xif)L2(m)

= (∂vif,L∂xif)L2(m) + (∂vif, ∂xiΦ(x) · ∇xf + ∂xiB(x, v) · ∇vf)L2(m)

+(∂vif, ∂xidivxΦ(x)f + ∂xidivvB(x, v)f)L2(m)

+(∂xif,L∂vif)L2(m) − (∂xif, ∂xif)L2(m) + (∂xif, ∂viB(x, v) · ∇vf)L2(m)

+(∂xif, ∂vidivvB(x, v)f)L2(m),

We split into two parts, for the first part we compute

(∂vif,L∂xif)L2(m) + (∂xif,L∂vif)L2(m) − ‖∂xif‖2L2(m)

= −2(∇v(∂xif),∇(∂vif))L2(m) + (∂xif, φ2(m)∂vif)L2(m) − ‖∂xif‖2L2(m)

≤ −2(∇v(∂xif),∇(∂vif))L2(m) − ‖∂xif‖2L2(m) + C(|∇vf |, |∇xf |)L2(mH1/2),

for the second part we have

(∂vif, ∂xiΦ(x) · ∇xf + ∂xiB(x, v) · ∇vf)L2(m) + (∂xif, ∂viB(x, v) · ∇vf)L2(m)

+(∂vif, ∂xidivxΦ(x)f + ∂xidivvB(x, v)f)L2(m) + (∂xif, ∂vidivvB(x, v)f)L2(m)

≤ C‖∇vf‖2L2(mH1/2)
+ C(|∇vf |, |∇xf |)L2(mH1/2) + C(|f |, |∇xf |)L2(mH1/2)

+C‖f‖2
L2(mH1/2)

.

Gathering the two terms, and summing over i we get

d

dt
2(∇vf,∇xf)L2(m)

≤ −2

n∑
i=1

(∇v(∂xif),∇(∂vif))L2(m) − ‖∇xf‖2L2(m) + C‖∇vf‖2L2(mH1/2)

+ C(|∇vf |, |∇xf |)L2(mH1/2) + C(|f |, |∇xf |)L2(mH1/2) + C‖f‖2
L2(mH1/2)

.

For the very definition of F in (3.1), we easily compute

d

dt
F(t, ft) = A

d

dt
‖ft‖2L2(m) + at

d

dt
‖∇vft‖2L2(m) + 2ct2

d

dt
(∇vft,∇xft)L2(m)

+bt3
d

dt
‖∇xft‖2L2(m) + a‖∇vft‖2L2(m) + 4ct(∇vft,∇xft)L2(m)

+3bt2‖∇xft‖2L2(m).
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Gathering all the inequalities above together, we have

d

dt
F(t, ft) ≤ T1 + T2 + T3,

with

T1 = (a−A+ Cat)‖∇vft‖2L2(m) + (3bt2 − ct2 + Cbt3)‖∇xft‖2L2(m)

+ (4ct− at)(∇vft,∇xft)L2(m) + C2A‖ft‖2L2(m)

≤ −L(‖∇vft‖2L2(m) + t2‖∇xft‖2L2(m)) + C‖ft‖2L2(m),

for some L,C > 0, if c > 6b, A � a, b, c and 0 < η small. For the term T2 we
have

T2 =
d∑
i=1

[−at‖∇v(∂vift)‖2L2(m) − bt
3‖∇v(∂xift)‖2L2(m)

−2ct2(∇v(∂xift),∇v(∂vift))L2(m)] ≤ 0,

since

|2ct2(∇v(∂xift),∇v(∂vift))L2(m)|
≤ at‖∇v(∂vift)‖2L2(m) + bt3‖∇v(∂vift)‖2L2(m),

by our choice on a, b, c. For the term T3

T3 = −C1

2
bt3‖∇xft‖2L2(mH1/2)

+

(
−C1

2
at+ Cbt3 + Cct2

)
‖∇vft‖2L2(mH1/2)

+Cct2(|∇vft|, |∇xft|)L2(mH1/2) + Cct2(|f |, |∇xf |)L2(mH1/2)

+(−C1A+ Cbt3 + Cat+ Cct2)‖ft‖2L2(mH1/2)
≤ 0,

by taking A� a, b, c, ab� c2. So by taking A large and 0 < η small (t ∈ [0, η]),
we conclude to

d

dt
F(t, ft) ≤ −L(‖∇vft‖2L2(m) + t2‖∇xft‖2L2(m)) + C‖ft‖2L2(m),

for some L,C > 0, and that ends the proof. �

Lemma 3.4. We have

‖∇x,v(ftm)‖2L2 ≤ ‖∇x,vft‖2L2(m) + C‖ft‖2L2(m),

for some constant C.

Proof. We have

‖∇x,v(ftm)‖2L2 = ‖m∇x,vft‖2L2 + ‖ft∇x,vm‖2L2 + 2(ft∇x,vm,m∇x,vft)L2

= ‖∇x,vft‖2L2(m) + ‖ft∇x,vm‖2L2 −
1

2
(f2
t ,∆x,v(m

2))L2

= ‖∇x,vft‖2L2(m) + (f2
t , |∇x,vm|2 −

1

2
∆x,v(m

2))L2

= ‖∇x,vft‖2L2(m) − (f2
t ,m∆x,vm)L2 ,
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by condition (C4)
∆x,vm

m
≥ C,

for some constant C, we are done. �

Lemma 3.5. Nash’s inequality: for any f ∈ L1(Rd) ∩ H1(Rd),there exist a
constant Cd such that:

‖f‖1+ 2
d

L2 ≤ Cd‖f‖
2
d

L1‖∇vf‖L2 .

For the proof we refer to [16], Section 8.13 for instance. �

Lemma 3.6. There exist λ > 0 such that

d

dt
‖f‖L1(m) ≤ λ‖f‖L1(m),(3.4)

which implies

‖ft‖L1(m) ≤ Ceλt‖f0‖L1(m).

In particular we have

‖ft‖L1(m) ≤ C‖f0‖L1(m), ∀t ∈ [0, η],(3.5)

for some constant C > 0.

Proof. It’ s an immediate consequence of the Lyapunov condition (C1). �

Now we come to the proof of Theorem 3.1.

Proof. (Proof of Theorem 3.1.) We define

G(t, ft) = B‖ft‖2L1(m) + tZF∗(t, ft),

with B,Z > 0 to be fixed and F∗ defined in Remark 3.3. We choose t ∈ [0, η],
η small enough such that (a + b + c)ZηZ+1 ≤ 1

2Lη
Z (a, b, c, L are also defined

Remark 3.3). By (3.4) and Remark 3.3, we have

d

dt
G(t, ft) ≤ λB‖ft‖2L1(m) + ZtZ−1F∗(t, ft)

−LtZ(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)) + CtZ‖ft‖2L2(m)

≤ λB‖ft‖2L1(m) + CtZ−1‖ft‖2L2(m)

−L
2
tZ(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)),

where λ is defined in Lemma 3.6. Nash’s inequality and Lemma 3.4 imply

‖ftm‖L2 ≤ C‖fm‖
2
d+2

L1 ‖∇x,v(ftm)‖
d
d+2

L2 ≤ C‖ftm‖
2
d+2

L1 (‖∇x,vfm‖L2 + C‖ftm‖L2)
d
d+2 .

Using Young’s inequality, we have

‖ft‖2L2(m) ≤ Cεt
− 5

2
d‖f‖2L1(m) + εt5(‖∇x,vft‖2L2(m) + C‖ft‖2L2(m)).
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Taking ε small such that Cεη3 ≤ 1
2 , we deduce

‖ft‖2L2(m) ≤ 2Cεt
− 5

2
d‖f‖2L1(m) + 2εt5‖∇x,vft‖2L2(m).

Taking ε small we have

d

dt
G(t, ft) ≤ λB‖ft‖2L1(m) + C1t

Z−1− 5
2
d‖ft‖2L1(m),

for some C1 > 0. Choosing Z = 1 + 5
2d, and using (3.5), we deduce

∀t ∈ [0, η], G(t, ft) ≤ G(0, f0) + C2‖f0‖2L1(m) ≤ C3‖f0‖2L1(m),

which proves

‖SL(t)f‖L2(m) ≤
C

t
5d+2

4

‖f‖L1(m), ∀t ∈ [0, η].

together with Lemma 3.2 ends the proof. �

4. Convergence in L1(m)

In this section we prove the Harris condition (H2) for Theorem 1.3, which
would imply the convergence for p = 1. Before the proof of the theorem, we
first prove a useful lemma.

Lemma 4.1. For any R > 0, there exist γ, ρ > 0 such that for any t, R > 0,
there exists (x0, v0) ∈ Bρ such that

f(t, x0, v0) ≥ γ
∫
BR

f0.

γ, ρ does not depend on f0, t, while x0, v0 may depend on f0, t

Proof. From conservation of mass, we classically show that

d

dt

∫
Rd
f(t, x, v)dxdv = 0,

so we have

(4.1) ‖SL(t)‖L1→L1 ≤ 1, ∀t ≥ 0,

Define the splitting of the operator L by

B = L −A, A = MχR(x, v),

with M,R > 0 large, where χ is the cut-off function such that χ(x, v) ∈ [0, 1],
χ(x, v) ∈ C∞, χ(x, v) = 1 when x2 + v2 ≤ 1 , χ(x, v) = 0 when x2 + v2 ≥ 2,
and χR = χ(x/R, v/R). By the Lyapunov function condition (H1) and taking
M,R large, we have

(4.2) ‖SB(t)‖L1(m)→L1(m) ≤ Ce−λt, ∀t ≥ 0.

By Duhamel’s formula

SL = SB + SB ∗ ASL,
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we directly deduce from (4.1) and 4.2 that

‖SL(t)‖L1(m)→L1(m) ≤ A, ∀t ≥ 0,

for some A > 0. We fix R > 0 and take g0 = f01BR ∈ L1(Rd) such that
supp g0 ⊂ BR, ,denote gt = SLg0, ft = SLf0, then we have∫

Rd
gt =

∫
Rd
g0 =

∫
BR

g0 =

∫
BR

f0.

Define

m1(R) = max{|m(x)|, x ∈ BR}, m2(R) = min{|m(x)|, x ∈ Bc
R},

We can see both m1,m2 → ∞ as R → ∞, moreover, since there exists A > 0
such that ∫

Rd
gtm ≤ A

∫
Rd
g0m ≤ Am1(R)

∫
BR

g0.

For any ρ > 0, we write∫
Bρ

gt =

∫
Rd
gt −

∫
Bcρ

gt

≥
∫
Rd
g0 −

1

m2(ρ)

∫
Rd
gtm

≥
∫
Rd
g0 −

Am1(R)

m2(ρ)

∫
BR

g0 ≥
1

2

∫
BR

g0,

by taking m2(ρ) = 2Am(R). As a consequence, for any t > 0, there exist a
(x0, v0) ∈ Bρ which may depend on g0, t such that

g(t, x0, v0) ≥ 1

|Bρ|

∫
Bρ

gt := γ

∫
BR

g0.

By the maximum principle we have

f(t, x0, v0) ≥ g(t, x0, v0) ≥ γ
∫
BR

g0 = γ

∫
BR

f0.

�

Before coming to the final proof we still need a theorem on spreading of
positivity. Define

B̄r(x0, v0) = {(x, v) ∈ Rd × Rd : |v − v0| ≤ r, |x− x0| ≤ r3},
we have

Theorem 4.2. (Spreading of Positivity) Let f(t, x, v) be a classical nonnegative
solution of

∂tf −∆vf = −(v + Φ(x)) · ∇xf +A(t, x, v) · ∇vf + C(t, x, v)f,

in [0, T )× Ω, where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|, ∀x, y ∈ Rd.
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Suppose further that

A(t, x, v) = ∇vW (x, v),

for some W (x, v). Define

D(t, x, v) = −1

4
|A(t, x, v)|2 − 1

2
divvA(t, x, v) +

1

2
(v + Φ(x)) ·A(t, x, v) + C(t, x, v).

For any (x0, v0) fixed, define V = (M + 1)2(Φ(0) + |x0| + |v0|), then for any
r > 0, 0 < τ < min(1, r3/2V, log2/M, 1/20M), α > 1, δ > 0, there exist λ > 0
only depend on r2/τ, α,M, V (independent of δ) such that if f ≥ δ > 0 in
[0, τ)× B̄r(x0, v0), then f ≥ Kδ in [τ/2, τ)× B̄αr(x0, v0) where K also depends
on ‖D‖L∞(B̄λr(x0,v0)) and ‖W‖L∞(B̄λr(x0,v0)).

Proof. See Appendix A. �

Remark 4.3. Former proofs of spreading of positivity such as Theorem A.19 in
[24] assumes that A and C are uniformly bounded, by assuming

A(t, x, v) = ∇vW (x, v)

we generalize this theorem to unbounded cases.

Then we come to prove our main theorem

Theorem 4.4. Under the assumption of Theorem 1.3. The equation (1.3)
defined in Theorem 1.2 satisfies the Harris condition: For any R > 0, there
exist a constant T = T (R) > 0 and a positive, nonzero measure µ = µ(R) such
that

ST f0 ≥ µ
∫
BR

f0, ∀f0 ∈ L1(m), f ≥ 0, ‖f0‖L1(m) ≤ 1,

As a consequence, Theorem 1.3 is proved.

Proof. By Lemma 4.1 we have there exist γ, ρ > 0 such that for any t, R > 0,
there exists (x0, v0) ∈ Bρ such that

f(t, x0, v0) ≥ γ
∫
BR

f0.

where γ, ρ does not depend on f0, t while x0, v0 may depend on f0, t. By Lemma
4.1 we have

‖f‖C2,δ ≤ C‖f0‖L1(m), ∀t ∈ [
η

2
, η],

in particular

‖∇xf‖L∞ + ‖∇vf‖L∞ + ‖∆xf‖L∞ + ‖f‖L∞ ≤ C‖f0‖L1(m), ∀t ∈ [
η

2
, η],

and by equation

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∆vf,

we have

‖∇xf‖L∞(Ω) + ‖∇vf‖L∞(Ω) + ‖∂tf‖L∞(Ω) ≤ C‖f0‖L1(m) ≤ C, ∀t ∈ [
η

2
, η],
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for Ω = B2ρ and some constant C > 0. By continuity, for every R > 0, there
exist t1, t2, r0, ρ, γ > 0 which do not depend on f0 and (x0, v0) ∈ Bρ which may
depend on f0, such that for all t ∈ (t1, t2), we have

f(t, x, v) ≥ γ

2
1Br0 (x0,v0)

∫
BR

f0,

where Br0(x0, v0) denotes the ball centered at (x0, v0) with radius r0. Take

r1 = min{( r02 , (
r0
2 )

1
3 } such that B̄r1(x0, v0) ⊂ Br0(x0, v0), then we have

f(t, x, v) ≥ γ

2
1B̄r1 (x0,v0)

∫
BR

f0.

Take α = max{2ρ
r1
, (2ρ
r1

)
1
3 , 1} large such that B2ρ(x0, v0) ⊂ B̄αr1(x0, v0). Define

τ = min(t2 − t1, 1,
r3

1

2V
,
log2

M
,

1

20M
).

Using Theorem 4.2, we have

f(t, x, v) ≥ γ

2
1B̄αr1 (x0,v0)

∫
BR

f0 ≥ K
γ

2
1B2ρ(x0,v0)

∫
BR

f0,

since (x0, v0) ∈ Bρ implies that Bρ ⊂ B2ρ(x0, v0), we have

f(t, x, v) ≥ Kγ

2
1Bρ(0,0)

∫
BR

f0,

for any t ∈ (t2 − T
2 , t2). So we can define µ(R) = K λ

2 1Bρ(0,0), T (R) = t2 − T
4 ,

note it’s independent of (x0, v0), thus independent of f0, we conclude the Harris
condition (H2). �

Then by Theorem 2.1, we have proved

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m),

which is Theorem 1.3 in the case p = 1.

Remark 4.5. If we replace f in the proofs by the normalized steady state G, we
can deduce that G > 0.

5. Proof of Lp(m) convergence

In the last section, we have prove Theorem 1.3 in the case of p = 1, now we
prove it for general p, which will complete the proof of the theorem. In this
section, A . B will denote A ≤ CB for some constant C > 0. First recall the
splitting

B = L −A, A = M1χR1(x, v),

since

ϕp(m) ≤ −C +M1BR ,
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by Remark 1.4 it’s easily seen that we can take M1, R1 such that

(5.1) ‖SB(t)‖Lp(m)→Lp(m) . e
−at,

and by the Lyapunov condition

(5.2) ‖SB(t)‖L1(m)→L1(m) . e
−at,

for some β > 0. Before going to the proof of our main theorem, we need two
last deduced results.

Lemma 5.1. We have

‖SB(t)A‖Lp(m)→Lp(m) . e
−at, ∀t ≥ 0,

and

‖SB(t)A‖L1(m)→L1(m) . e
−at, ∀t ≥ 0,

and

‖SB(t)A‖L1(m)→Lp(m) . t
−αe−at, ∀t ≥ 0,

for α = 5d+2
4 and some β > 0.

Proof. The first two inequalities are obtained obviously by (5.1), (5.2) and the
property of A. For the third inequality we split it into two parts, t ∈ (0, η] and
t > η, where η is defined in Theorem 3.1. When t ∈ (0, η] , we have e−at ≥ e−aη,
by Theorem 3.1, we have

‖SB(t)A‖L1(m)→Lp(m) . t
−α . t−αe−at, ∀t ∈ (0, η],

for some a > 0. When t ≥ η, by Theorem 3.1, we have

‖SB(η)‖L1(m)→Lp(m) . η
α . 1,

and by Lemma 5.1

‖SB(t− η)‖Lp(m)→Lp(m) . e
−a(t−η) . e−at,

gathering the two inequalities, we have

‖SB(t)A‖L1(m)→Lp(m) . e
−at . t−αe−at, ∀t > η,

the proof is ended by combining the two cases above. �

Lemma 5.2. let X,Y be two Banach spaces, S(t) a semigroup such that for
all t ≥ 0 and some 0 < a we have

‖S(t)‖X→X ≤ CXe−at, ‖S(t)‖Y→Y ≤ CY e−at,
and for some 0 < α, we have

‖S(t)‖X→Y ≤ CX,Y t−αe−at.
Then we can have that for all integer n > 0

‖S(∗n)(t)‖X→X ≤ CX,ntn−1e−at,

similarly

‖S(∗n)(t)‖Y→Y ≤ CY,ntn−1e−at,
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and

‖S(∗n)(t)‖X→Y ≤ CX,Y,ntn−α−1e−at.

In particular for α+ 1 < n, and for any a∗ < a

‖S(∗n)(t)‖X→Y ≤ CX,Y,ne−a
∗t.

Proof. See Lemma 2.5 in [18]. �

Then we come to the final proof.

Proof. (Proof of Theorem 1.3.) Remember that we already proved

‖SL(I −Π)(t)‖L1(m)→L1(m) . e
−at,

where I is the identity operator and Π is a projection operator defined by

Π(f) =M(f)G.

First, Iterating the Duhamel’s formula we split it into 3 terms

SL(I −Π) = (I −Π){SB +
n−1∑
l=1

(SBA)(∗l) ∗ (SB)}

+(SB(t)A)(∗(n−1)) ∗ {(I −Π)SL} ∗ (ASB(t)),

and we will estimate them separately. By (5.1) the first term is thus estimated.
For the second term, still using (5.1), we get

‖SB(t)A‖Lp(m)→Lp(m) . e
−at,

by Lemma 5.2, we have

‖(SB(t)A)(∗l)‖Lp(m)→Lp(m) . t
l−1e−at,

together with (5.1) the second term is estimated. For the last term by Hölder’s
inequality we have

‖I‖Lp(m)→L1(mG) . 1

with

G = e−(|v|2+|x|2)

(there are many choice of G) so we have

‖ASB(t)‖Lp(m)→L1(m) . e
−at.

By Lemma 5.1 and 5.2, we have

‖(SBA)(∗(n−1))(t)‖L1(m)→Lp(m) . t
n−α−2e−at,

finally recall

‖SL(t)(I −Π)‖L1(m)→L1(m) . e
−at.

Taking n > α + 2 the third term is estimated, thus the proof is ended by
gathering the inequalities above. �
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6. Proof of Main Theorem

This section we come to prove Theorem 1.1. Recall that we have proved
Theorem 1.3 in the last section, the only thing remain to prove is to find a
weight function m and a function H ≥ 1 in Theorem 1.3.

Theorem 6.1. Denote L the operator of the kinetic Fitzhugh-Nagumo equation
(1.2), then there exist a weight function m and a function H ≥ 1 satisfies
Theorem 1.3.

Proof. We recall the kinetic Fitzhugh-Nagumo equation

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∂2
vvf,

with

A(x, v) = ax− bv, B(x, v) = v(v − 1)(v − c) + x,

by a change of variable w = bv, the equation is changed to

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) +
1

b2
∂2
vvf,

with

A(x, v) = ax− v, B(x, v) =
1

b3
v(v − b)(v − bc) + x,

we have

L∗f = −A(x, v)∂xf −B(x, v)∂vf +
1

b2
∂vvf,

for some a, b, c > 0. This time we have

L∗m
m

= v · ∇xm
m
− ax · ∇xm

m
+

1

b2
∆vm

m

−(
1

b3
v(v − b)(v − bc) + x) · ∇vm

m
.

We can take m = e
r
2

(|x|2+|v|2), with r > 0 to be fixed later, then we have

∇xm
m

= rx,
∇vm
m

= rv,
∆vm

m
= r + r2|v|2,

we then compute

L∗m
m

= rx · v − ar|x|2 +
r

b2
+
r2

b2
|v|2

− 1

b3
|v|2(v − b)(v − bc)− rx · v

= −ar|x|2 − 1

b3
|v|4 +M1v

3 +M2|v|2 +M3,

for some constant M1,M2,M3 > 0, so the Lyapunov condition (C1)

L∗m ≤ −αm+ b,
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is satisfied for some α, b > 0, similarly

φ2(m) = v · ∇xm
m
− ax · ∇xm

m
+
a

2
+

1

b2
|∇vm|2

m2
+

1

b2
∆vm

m

−(
1

b3
v(v − b)(v − bc) + x) · ∇vm

m
+

1

2b3
(3v2 + 2b(1 + c)v + b2c),

and this time we have

φ2(m) = rx · v − ar|x|2 +
a

2
+
r2

b2
|v|2 +

r

b2
+
r2

b2
|v|2

− 1

b3
|v|2(v − b)(v − bc)− rx · v +

1

2b3
(3v2 + 2b(1 + c)v + b2c)

= −ar|x|2 − 1

b3
|v|4 +K1v

3 +K2|v|2 +K3v +K4,

for some constants K1,K2,K3,K4, if we take

H = |v|4 + |x|2 + 1,

it’s easily seen that we have

− C1H ≤ φ2(m) ≤ −C2H + C3,

for some C1, C2, C3 > 0, which is just condition (C2). And it’s easily seen that
for any integer n ≥ 2 fixed, for any ε > 0 small, we can find a constant Cε,n
such that
n∑
k=1

|Dk
x(ax)|+

n∑
k=1

|Dk
x,v(

1

b3
v(v−b)(v−bc)+x)| ≤ P1|v|2+P2|v|+P3 ≤ Cn,ε+εH,

with P1, P2, P3 > 0 constant, so condition (C3) is also satisfied. Since

∆x,vm

m
= 2r + r2|v|2 + r2|x|2 ≥ 0,

all the conditions of Theorem 1.3 is satisfied, we finally compute

ϕ∞(m) = v · ∇xm
m
− ax · ∇xm

m
+ a+

2

b2
|∇vm|2

m2
− 1

b2
∆vm

m

−(
1

b3
v(v − b)(v − bc) + x) · ∇vm

m
+

1

b3
(3v2 + 2b(1 + c)v + b2c).

We have

ϕ∞(m) = rx · v − ar|x|2 + a+
2r2

b2
|v|2 − r

b2
− r2

b2
|v|2

− 1

b3
|v|2(v − b)(v − bc)− rx · v +

1

b3
(3v2 + 2b(1 + c)v + b2c)

= −ar|x|2 − 1

b3
|v|4 +K1v

3 +K2|v|2 +K3v +K4,

for some constants K1,K2,K3,K4, it’s easily seen that

ϕ∞(m) ≤ C +M1BR ,

for some C,M,R > 0, the proof is finished. �
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Then we come to find a weight function m and a function H ≥ 1 for the
kinetic Fokker-Planck equation with general force.

Theorem 6.2. Denote L the operator of the kinetic Fokker-Planck equation
(1.1), then there exist a weight function m and a function H satisfies Theorem
1.3.

Proof. First we have

L∗f = v · ∇xf −∇xV (x) · ∇vf + ∆vf −∇vW (v) · ∇vf,

denote

H1 =
|v|2

2
+ V (x) + εv · ∇x〈x〉, m = eλH1 ,

so we have

L∗m
m

= λ(v · ∇xH1 −∇xV (x) · ∇vH1 + ∆vH1 + λ|∇vH1|2 −∇vW (v) · ∇vH1).

We easily compute

∇vH1 = v + ε∇x〈x〉, ∇xH1 = ∇xV (x) + εv · ∇2
x〈x〉, ∆vH1 = d,

and since

∇2
x〈x〉 ≤ CI,

where I is the d× d identity matrix, we have

L∗m
m

= λ(v · ∇xV (x) + εv∇x〈x〉2v −∇xV (x) · v −∇xV (x) · ∇x〈x〉+ d

+λ|v + ε∇x〈x〉|2 − ε∇vW (v) · ∇x〈x〉 − ∇vW (v) · v
≤ C(λ2|v|2 + λ|∇W (v)|)− λ∇xV (x) · ∇x〈x〉 − λ∇vW (v) · v,

for some constant take λ > 0 small, we conclude

L∗m ≤ −C1Hm+ C2,

for some constant C1, C2 > 0, with H = 〈v〉β + 〈x〉γ−1 + 1, then the Lyapunov
condition (C1) follows. For the second inequality, by Lemma 3.2 we have

φ2(m) = λ(v · ∇xH1 +∇xV (x) · ∇vH1 + ∆vH1

+2λ|∇vH1|2 −∇vW (v) · ∇vH1) +
1

2
∆vW (v),

we compute

φ2(m) = λ(v · ∇xV (x) + εv∇x〈x〉v −∇xV (x) · v −∇xV (x) · ∇x〈x〉+ d

+2λ|v + ε∇x〈x〉|2 − ε∇vW (v) · ∇x〈x〉 − ∇vW (v) · v) +
1

2
∆vW (v)

≤ C(λ2|v|2 + λ|∇W (v)|+ |∆xW (v)|)− λ∇xV (x) · ∇x〈x〉 − λ∇vW (v) · v,

and we still have

− C1H ≤ φ2(m) ≤ −C2H + C3,
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for some constant C1, C2, C3 > 0, thus condition(C2) is proved. It’s easily seen
that for any integer n ≥ 2 fixed, for any ε > 0 small, we can find a constant
Cε,n such that

n∑
k=1

|Dk
x∇xV (x)|+

n∑
k=1

|Dk
x,v∇vW (v)| =

n+1∑
k=2

|Dk
xV (x)|+

n+1∑
k=2

|Dk
x,vW (v)| ≤ Cn,ε+εH,

by the definition of V (x) and W (v), so condition (C3) is also satisfied. For the
last condition

∆x,vm

m
= λ2|∇xH1|2 + λ2|∇vH1|2 + λ∆xH1 + λ∆vH1.

For the term ∆xH1 we compute

∆xH1 = ∇xV (x) + εv · ∇∆〈x〉 ≥ −L1 − L2|v|,
for some constant L1, L2 > 0, and

|∇vH1|2 = |v + ε∇x〈x〉|2 ≥
|v|2

2
− L3,

for some constant L3 > 0, since

∆vH1 = d ≥ 0,

we conclude that
∆x,vm

m
≥ C,

for some constant C, so all the conditions are satisfied. We finally compute

ϕ∞(m) = λ(v · ∇xV (x) + εv∇x〈x〉v −∇xV (x) · v −∇xV (x) · ∇x〈x〉 − d
+λ|v + ε∇x〈x〉|2 − ε∇vW (v) · ∇x〈x〉 − ∇vW (v) · v) + ∆vW (v)

≤ C(λ2|v|2 + λ|∇W (v)|+ |∆xW (v)|)− λ∇xV (x) · ∇x〈x〉 − λ∇vW (v) · v,
the proof is thus finished. �

Appendix A. Proof of spreading of positivity

In this section, we will use the notation

B̄r(x0, v0) = {(x, v) ∈ Rd × Rd : |v − v0| ≤ r, |x− x0| ≤ r3},
and B̄r will stand for B̄r(x0, v0). Before proving the theorem on spreading of
positivity, we first prove a useful lemma.

Lemma A.1. Define Xt(x0, v0) (abbreviated Xt in the sequel) in this way,
consider the ordinary differential equation

dx

dt
= v0 + Φ(x),

and denote by Xt(x0, v0) the solution to this ordinary differential equation at
time t with x(0) = x0, where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|, ∀x, y ∈ Rd.
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with loss of generality we assume M ≥ 1. Then we have, for any (x0, v0) ∈ Rd
fixed, t ∈ [0,min{ log2M , 1}), we have

|Xt − x0| ≤ t(M + 1)2(|v0|+ |x0|+ |Φ(0)|),

Proof. Since Φ(x) is Lipschitz, the existence and uniqueness of Xt is satisfied.
First by the definition of Xt we have

d|Xt|
dt
≤ |dXt

dt
| ≤ |v0|+M(|Xt|+ |Φ(0)|),

by Grönwall’s lemma we have

|Xt| ≤ eMt|x0|+
1

M
(eMt − 1)(|v0|+M |Φ(0)|),

since M ≥ 1, so for t ∈ (0, log2M ) we have

|Xt| ≤ 2|x0|+ |v0|+M |Φ(0)|,
so

|dXt

dt
| ≤ |v0|+M(|Xt|+ |Φ(0)|) ≤ (M + 1)|v0|+ 2M |x0|+M2|Φ(0)|

≤ (M + 1)2(|v0|+ |x0|+ |Φ(0)|),

for any t ∈ (0, log2M ), the lemma is thus proved. �

Use this Xt, we come to construct a subsolution which is useful in our proof.

Lemma A.2. Define operator L as

L =
∂

∂t
+ (v + Φ(x)) · ∇x −∆v,

where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|, ∀x, y ∈ Rd.

Then for any (x0, v0) ∈ Rd fixed, define V = (M + 1)2(Φ(0) + |x0|+ |v0|), then
for any r > 0, 0 < τ < min(1, r3/2V, log2/M, 1/20M),α > 1, δ > 0, there exist
constants λ > α,K > 0 which only depend on r2/τ , V , M , α (independent of
δ) and a function φ such that

Lφ ≤ 0, in [0, τ)× (B̄λr \ B̄r),
and some boundary conditions

φ ≤ 0, on t = 0, φ ≤ δ on [0, τ)× ∂B̄r, φ ≤ 0 on [0, τ)× ∂B̄λr,
while

φ ≥ Kδ on [
τ

2
, τ)× (B̄αr \ B̄r).

Proof. This proof is similar to the proof in [24] Appendix A. 22. For t ∈ (0, τ ]
and (x, v) ∈ Rd \ B̄r let

Q(t, x, v) = a
|v − v0|2

2t
− b(v − v0, x−Xt(x0, v0))

t2
+ c
|x−Xt(x0, v0)|2

2t3
,
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where a, b, c > 0 will be chosen later on, and we define Xt(x0, v0) (abbreviated
Xt in the sequel) in this way, consider the ordinary differential equation

dx

dt
= v0 + Φ(x),

and denote by Xt(x0, v0) the solution to this ordinary differential equation at
time t with x(0) = x0. Let further

φ(t, x, v) = δe−µQ(t,x,v) − ε,

where µ, ε > 0 will be chosen later on. Let us assume b2 < ac, so that Q is a
positive definite quadratic form in the two variables v − v0 and x−Xt. Then

Lφ = −µδe−µQA(Q),

where

A(Q) = ∂tQ+ (v + Φ(x)) · ∇xQ−∆vQ+ µ|∇vQ|2.
By computation,

A(Q) = −a |v − v0|2

2t2
+ 2b

(v − v0, x−Xt)

t3
− 3c

|x−Xt|2

2t4

+ b
(v − v0, v0 + Φ(Xt))

t2
− c(x−Xt, v0 + Φ(Xt))

t3

− b
(v − v0, v + Φ(x))

t2
+ c

(x−Xt, v + Φ(x))

t3
− ad

t

+ µ|av − v0

t
− bx−Xt

t2
|2

= B(
v − v0

t
,
x−Xt

t2
) + c

(x−Xt,Φ(x)− Φ(Xt))

2t3

− b
(v − v0,Φ(x)− Φ(Xt))

t2
− ad

t
,

where B is a quadratic form on Rn × Rn with matrix P ⊗ In,

P =

(
µa2 − a

2 − b −µab+ b+ c
2

−µab+ b+ c
2 µb2 − 3c

2

)
If a, b, c are given, then as µ→∞

trP = µ(a2 + b2) +O(1),

detP = µ(
3ab2

2
+ abc− b3 − 3a2c

2
) +O(1).

Both quantities are positive if b ≥ 2a and ac � b2, for example we can take
b = 2a, c > 12b, then as µ→∞ trP = 5µa2 +O(1),

detP = µ(
1

2
a2c− a2b) +O(1) ≥ µ1

3
a2c+O(1).
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the eigenvalues of M are of order 5µa2 and c
15 . So we may choose a, b, c and

µ so that

B(
v − v0

t
,
x−Xt

t2
) ≥ c

20
(
|v − v0|2

t2
+
|x−Xt|2

t4
).

If τ ≤ 1
20M , we have

c
|(x−Xt,Φ(x)− Φ(Xt))|

2t3
≤ Mt

2
c
|x−Xt|2

t4
≤ c

40

|x−Xt|2

t4
,

gathering the two terms we have

B(
v − v0

t
,
x−Xt

t2
) + c

(x−Xt,Φ(x)− Φ(Xt))

2t3
≥ c

40
(
|v − v0|2

t2
+
|x−Xt|2

t4
).

If τ ≤ 1

− b(v − v0,Φ(x)− Φ(Xt))

t2
− ad

t
≥ −bM2 |x−Xt|2

t4
− b |v − v0|2

t2
− bd

2t
,

gathering the two terms, suppose c ≥ 80(M + 1)2b, we have

A(Q) ≥ bd

2t
[
c

40bd
(
|v − v0|2

t
+
|x−Xt|2

t3
)− 1].

Recall that (x, v) /∈ B̄r, so
- either |v − v0| ≥ r, and then A(Q) ≥ bd

2t [
c

40bdr
2/τ − 1], which is positive if

c ≥ 40bd τ
r2 ;

- or |x−x0| ≥ r3, and then by Lemma A.1, for any τ ≤ min{1, r3/(2V ), log2/M}
|x−Xt|2

t2
≥ |x− x0|2

t2
− |Xt − x0|2

t2

≥ |x− x0|2

t2
− ((M + 1)2(|v0|+ |x0|+ |Φ(0)|))2 ≥ r6

τ2
− V 2 ≥ r6

2τ2
,

so A(Q) ≥ bd
2t [

c
40bd

r6

2τ3 − 1], which is positive as soon as c ≥ 80bd( τ
r2 )3. so it’s

OK to take
c = bmax{12, 80(M + 1)2, 80d(

τ

r2
)3, 40d

τ

r2
}.

To summarize: under our assumptions there is a way to choose the constants
a, b, c, µ, depending only on d,M, V, r2/τ , satisfying c > b > a and ac > b2, so
that

Lφ ≤ 0, in [0, τ)× (B̄λr \ B̄r),
as soon as 0 < τ < min(1, r3/2V, log2/M, 1/20M). Recall that

φ(t, x, v) = δe−µQ(t,x,v) − ε.
The boundary condition at t = 0 is obvious since e−µQ(t,x,v) vanishes identically
at t = 0 (more rigorously, e−µQ(t,x,v) can be extended by continuity by 0 at
t = 0). The condition is also true on [0, τ)×∂B̄r since φ ≤ δ. It remains to prove
it on [0, τ)× ∂B̄λr . For that we estimate Q from below, since c > 12b, b = 2a,
it’s easily to seen that for any (t, x, v) ∈ [0, τ)× ∂B̄λr

Q(t, x, v) ≥ a

4
(
|v − v0|2

t
+
|x−Xt|2

t3
) ≥ a

4
min(

λ2r2

τ
,
λ6r6

2τ3
) ≥ aλ2

8
min(

r2

τ
,
r6

τ3
).
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Thus if we choose

ε = δ exp(−µaλ
2

8
min(

r2

τ
,
r6

τ3
)),

we make sure that φ = δe−µQ − ε ≤ 0 on [0, τ) × ∂B̄λr. We finally come to
prove the last thing, indeed, if t ≥ τ/2 and (x, v) ∈ B̄αr \ B̄r then

Q(t, x, v) ≤ 2c(
|v − v0|2

t
+
|x−Xt|2

t3
) ≤ 2c(

2α2r2

τ
+

9α6r6

τ3
) ≤ 22α6cmax(

r2

τ
,
r6

τ3
),

take λ such that

22× 8× 2α6cmax(
r2

τ
,
r6

τ3
) = aλ2 min(

r2

τ
,
r6

τ3
),

so we can find K > 0 such that

φ ≥ δ[exp(−22α6aµcmax(
r2

τ
,
r6

τ3
))− exp(−µaλ

2

8
min(

r2

τ
,
r6

τ3
))] ≥ Kδ,

recall the relationship between a and c, we conclude that λ,K depends only on
r2/τ,M, V, α, the proof is thus ended. �

Theorem A.3. Let f(t, x, v) be a classical nonnegative solution of

∂tf −∆vf = −(v + Φ(x)) · ∇xf +A(t, x, v) · ∇vf + C(t, x, v)f,

in [0, T )× Ω, where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|, ∀x, y ∈ Rd,
suppose further that

A(t, x, v) = ∇vW (x, v),

for some W (x, v). Define

D(t, x, v) = −1

4
|∇vA(t, x, v)|2 − 1

2
divvA(t, x, v) +

1

2
(v + Φ(x)) ·A(t, x, v) + C(t, x, v),

Then for any (x0, v0) fixed, r > 0, 0 < τ < min(1, r3/2V, log2/M, 1/20M),
α > 1, δ > 0, there exist λ > 0 only depend on r2/τ, α,M, V (independent of δ)
such that if f ≥ δ > 0 in [0, τ)×B̄r(x0, v0), then f ≥ Kδ in [τ/2, τ)×B̄αr(x0, v0)
where K also depends on ‖D‖L∞(B̄λr(x0,v0)) and ‖W‖L∞(B̄λr(x0,v0)).

Proof. We first start by a taking f = hG, with G = e−
1
2
W (x,v), we have

∇xG = −1

2
∇xW (x, v)G, ∇vG = −1

2
∇vW (x, v)G,

and

∆vG =
1

4
|∇vW (x, v)|2 − 1

2
∆vW (x, v),

the equation turns to

G∂th = G∆vh+ 2∇vh · ∇vG+ h∆vG−G(v + Φ(x)) · ∇xh− h(v + Φ(x)) · ∇xG
+GA(t, x, v) · ∇vh+∇vG ·A(t, x, v)h+ C(t, x, v)Gh.

By the definition of G we have

2∇vG · ∇vh = −GA(t, x, v) · ∇vh,
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so the equation will turns to

∂th = ∆vh− (v + Φ(x)) · ∇xh+D(t, x, v)h,

with

D(t, x, v) =
1

4
|∇vW (x, v)|2 − 1

2
∆vW (x, v) +

1

2
(v + Φ(x)) · ∇vW (x, v)

−1

2
∇vW (x, v) ·A(t, x, v) + C(t, x, v)

= −1

4
|A(t, x, v)|2 − 1

2
divvA(t, x, v) +

1

2
(v + Φ(x)) ·A(t, x, v)

+C(t, x, v).

Take the λ from Lemma A.2. Then take D̄ = ‖D‖L∞(B̄λr(x0,v0)), and Ē =

e
‖W‖L∞(B̄λr(x0,v0)) , then we have

h ≥ δ

Ē
, in [0, τ)× B̄r.

Let g(t, x, v) = eD̄th(t, x, v), then g ≥ h and Lg ≥ 0 in (0, τ) × B̄λr(x0, v0),
where

L =
∂

∂t
+ (v + Φ(x)) · ∇x −∆v,

by Lemma A.2, we can find a φ such that

Lφ ≤ 0, in [0, τ)× (B̄λr \ B̄r),

and

φ ≤ 0, on t = 0, φ ≤ δ

Ē
on [0, τ)× ∂B̄r, φ ≤ 0 on [0, τ)× ∂B̄λr,

while

φ ≥ K δ

Ē
on [

τ

2
, τ)× (B̄αr \ B̄r).

So φ is a subsolution to g, then we have

g ≥ φ ≥ K δ

Ē
on [

τ

2
, τ)× (B̄αr \ B̄r),

which implies

h ≥ ge−τD̄ ≥ K δ

Ē
e−τD̄ on [

τ

2
, τ)× (B̄αr \ B̄r).

Taking back to f we have

f ≥ 1

Ē
h ≥ K δ

Ē2
e−τD̄ on [

τ

2
, τ)× (B̄αr \ B̄r),

we conclude the theorem. �
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Appendix B. Computation for φ2(m) and ϕp(m)

Lemma B.1. Define

∂tf := Lf = divx(A(x, v)f) + divv(B(x, v)f) +K∆vf,

with

A(x, v) = −v + Φ(x),

and K > 0 a constant, then for any weight function m we have∫
(f(Lg) + g(Lf))m2 = −2K

∫
∇vf · ∇vgm2 + 2

∫
fgφ2(m)m2,(B.1)

with

φ2(m) = v · ∇xm
m
− Φ(x) · ∇xm

m
+

1

2
divxΦ(x) +K

|∇vm|2

m2

+ K
∆vm

m
−B(x, v) · ∇vm

m
+

1

2
divvB(x, v).

Also we have for p ∈ [1,∞]∫
sign f |f |p−1Lfmp = −K

∫
|∇v(mf)|2|f |p−2mp−2 +

∫
|f |pϕp(m)mp,(B.2)

with

ϕp(m) = v · ∇xm
m
− Φ(x) · ∇xm

m
+ (1− 1

p
)divxΦ(x) + 2K(1− 1

p
)
|∇vm|2

m2

+K(
2

p
− 1)

∆vm

m
−B(x, v) · ∇vm

m
+ (1− 1

p
)divvB(x, v),

where we use
∫
f in place of

∫
Rd×Rd fdxdv for short.

Proof. Define

T f = −v · ∇xf,

we have∫
f(T g)m2 +

∫
(T f)gm2 =

∫
T (fg)m2 = −

∫
fgT (m2) = −2

∫
fgm2Tm

m
,

for the term with operator ∆ we have∫
(f∆vg + ∆vfg)m2 = −

∫
∇v(fm2) · ∇vg +∇v(gm2) · ∇vf

= −2

∫
∇vf · ∇vgm2 +

∫
fg∆v(m

2)

= −2

∫
∇vf · ∇vgm2 + 2

∫
fg(|∇vm|2 + ∆vmm).
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For the other terms, using integration by parts we deduce∫
fdivv(B(x, v)g)m2 + gdivv(B(x, v)f)m2

=

∫
fB(x, v) · ∇vgm2 + gB(x, v) · ∇vfm2 + 2divvB(x, v)fgm2

= −
∫
fg∇v · (B(x, v)m2) + 2divvB(x, v)fgm2

=

∫
−2fgB(x, v) · ∇vm

m
m2 + divvB(x, v)fgm2.

Similarly ∫
fdivx(Φ(x)g)m2 + gdivx(Φ(x)f)m2

=

∫
−2fgΦ(x) · ∇vm

m
m2 + divxΦ(x)fgm2,

so (B.1) are proved by combining the terms above. For (B.2) we compute

C1 :=

∫
sign f |f |p−1mp∆vf = −

∫
∇v(sign f |f |p−1mp) · ∇vf

=

∫
−(p− 1)|∇vf |2|f |p−2mp − 1

p

∫
∇v|f |p · ∇v(mp).

Using ∇v(mf) = m∇vf + f∇vm, we deduce

C1 = −(p− 1)

∫
|∇v(mf)|2|f |p−2mp−2 + (p− 1)

∫
|∇vm|2|f |pmp−2

+
2(p− 1)

p2

∫
∇v(|f |p) · ∇v(mp)− 1

p

∫
∇v(|f |p) · ∇v(mp)

= −(p− 1)

∫
|∇v(mf)|2|f |p−2mp + (p− 1)

∫
|∇vm|2|f |pmp−2

−p− 2

p2

∫
|f |p∆vm

p.

Using that ∆vm
p = p∆vm mp−1 + p(p− 1)|∇vm|2mp−2, we obtain

C1 = −(p− 1)

∫
|∇v(mf)|2|f |p−2mp−2

+

∫
|f |pmp

[(
2

p
− 1

)
∆vm

m
+ 2

(
1− 1

p

)
|∇vm|2

m2

]
.
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For the other terms we have∫
sign f |f |p−1divv(B(x, v)f)mp

= −
∫

1

p
|f |pdivv(B(x, v)mp) + divvB(x, v)|f |pmp

=

∫
−|f |pB(x, v) · ∇vm

m
mp + (1− 1

p
)divvB(x, v)fgmp,

similarly ∫
sign f |f |p−1divx(A(x, v)f)mp

=

∫
−|f |pA(x, v) · ∇xm

m
mp + (1− 1

p
)divxA(x, v)fgmp

=

∫
|f |p(v − Φ(x)) · ∇xm

m
mp + (1− 1

p
)divxΦ(x)fgmp.

Gathering all the terms (B.2) is proved. �
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