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THE KINETIC FOKKER-PLANCK EQUATION WITH
GENERAL FORCE

CHUQI CAO

March 18, 2020

ABSTRACT. We consider the kinetic Fokker-Planck equation with a class of
general force. We prove the existence and uniqueness of a positive nor-
malized equilibrium (in the case of a general force) and establish some
exponential rate of convergence to the equilibrium (and the rate can be
explicitly computed). Our results improve results about classical force to
general force case. Our result also improve the rate of convergence for the
Fitzhugh-Nagumo equation from non-quantitative to quantitative explicit
rate.
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In this paper, we consider the kinetic Fokker-Planck (KFP for short) equation

with general force and confinement

(1.1) Ohf=Lf:=—v-Vof +V.V(z) Vof + Apf 4+ divy(V,W(v)f),

for a density function f = f(t,z,v), with t > 0, z € R%, v € R¢, with
Y B
v = 1 wey = g
gl )
where (z)2 := 1+ |z|2, and the Fitzhugh-Nagumo equation
(1.2) Ouf = Lf = 0:(Alw,0)f) + 0u(B(x,v)f) + 0} f,
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2 CHUQI CAO

with
A(z,v) =ax —bv, B(z,v)=v(v—1)(v—rc)+z,
for some a,b,c > 0. The evolution equations are complemented with an initial
datum
f(0,z,v) = fo(z,v) on R*,

It’s easily seen that both equations are mass conservative, that is

M(f () = M(fo),

where we define the mass of f by

M(f) = /]Rd y f(z,v)dzdv.

When G satisfies

LG=0, M(G)=1, G>0,
we say that G is a positive normalized steady state.
For a given weight function m, we will denote LP(m) = {f|fm € LP} the
associated Lebesgue space and || f|[zp(m) = [|fm[[zr the associated norm, for
p =2 we also use (f,g) £2(m) to denote the associate scalar product.
With these notations, we can introduce the main result of this paper.

Theorem 1.1. (1) When 2 < 3,1 < #, there exist a weight function m > 0 and
a positive normalized steady state G € L'(m) such that for any initial datum
fo € LP(m),p € [1,00], the associated solution f(t,-) of the kinetic Fokker-

Planck equation satisfies
1f(t,) = M(f0)GllLoim) < Ce™ |l fo — M(f0)Gl Lo m)»
for some constant C, A > 0.
(2) The same conclusion holds for the kinetic Fitzhugh-Nagumo equation .

In the results above the constants C' and A can be explicitly estimated in
terms of the parameters appearing in the equation by following the calculations
in the proofs. We do not give them explicitly since we do not expect them to
be optimal, but they are nevertheless completely constructive.

Remark 1.2. Theorem is also true when V' (x) behaves like (x)7 and W (v)
behaves like (v)?, that is for any V(z) satisfying

Ci(z)? < V(x) < Cy()?, Vo €R?,

Calz|{z)"™ ! <2V, V(z) < Cylz|{x)"!, Vo€ BS,
and
|DMV (z)] < Cp(x)'72, VYo eR?Y Vn>2,
for some constant C; > 0, R > 0, and similar estimates holds for W (v).

We prove both cases of Theorem [I.T| by proving the following theorem, which
gives convergence result for more general KFP type models.
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Theorem 1.3. Consider the following equation
(1.3) Ouf = Lf =divy(A(z,v)f) + divy(B(z,v) f) + KA, f,
with K > 0 constant, A(z,v), B(z,v) € C* and
A(z,v) = —v+ O(x),
where ®(x) is Lipschitz
B(x) — B(y)| < Moy,
for some M > 0. We assume also that there exist W (x,v) such that
VoW (z,v) = B(x,v),

define
Vem Vem 1 . |Vum|2
pa2(m) = wv- e O(x) - + idlvgﬂ)(a;) +K 3
A, v 1.
+ K mm — B(z,v) - Vo + §le@B(ZC,U).

If we can find a weight function m and a function H > 1 such that the four
conditions holds

(C1)(Lyapunov condition) For some o, b > 0 there holds
L'm < —am + b,
(C2)for some constant Cp,Cy,Cs > 0 we have
— C1H < ¢o(m) < —CoH + C3,

(C3)For any integer n > 1 fized, for any € > 0 small, we can find a constant
Cen such that

n n
> _ID5@() + ) 1Dy, Bla,v)| < Cne + eH,
k=1 k=1

(C4)For some constant Cy > 0 there holds
Agom

> —Cy.
m

Then there exist a positive normalized steady state G such that
1£(t,) = M(f0)Gllpimy < Ce M| fo — M(fo)Gll 11 (m)»
for some C,\ > 0. In addition, for any p € [1,00], if
pp(m) < —a+ Mlp,,

for some constant a, M, R > 0, where

_ V.m Vem 1. .. 1.|V,m|?
op(m) = v- - O(x) - -~ +(1— B)dlvz@(az) +2K(1 - ];) 3
2 A,m V,.m 1, ..
K(Z -1 — B(z,v) - 1— 2)div, B
+ (p ) - (z,v) - + ( p)dlvv (z,v),
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then we have

1f(t,) = M(f0)GllLoim) < Ce™ [ fo — M(f0)GIl Lo (m)-
Remark 1.4. In fact ¢a(m) satisfies

/ (F(Lo) + gLf)ym® = —2K [ Vof-Vagm?® +2 / Fada(mym?,
R xRd RI x R4 RI xR4

and ¢, (m) satisfies

/ sign ffP L mP =~ / IV (mf) 2L P22 + / |FPop(mm?.
R4 xRd R4 x R4

Rd x R4
the computation can be found in Appendix [Bl Condition (C2)-(C4) ensures
some regularity estimate which we will see in Section

Remark 1.5. For the kinetic Fokker-Planck equation with general force [1.1], we
can take
W(z,v) = F(v) +v-V,V(z),
and
=ML H = P4 V(@) e Valo), H = @)+ (@741,

for some A, e > 0 small. For the kinetic Fitzhugh-Nagumo equation (|1.2)), we
can take

1 1 1
m=e T H =+ a1, W= 1’”’4 - g(l +c)o’ + 5’”\2 +x-v,
for some constant A > 0, the computation can be found in Section [6] below.

Remark 1.6. For the kinetic Fitzhugh-Nagumo equation ([1.2)), an exponential
convergence with non-quantitative rate to the convergence has already been
proved in [I§], our method improves the result to a quantitative rate.

If 5 = 2, the equation (1.1)) will turns to the classical KFP equation
Of =Lf:=—v-Vof + VoV (x) Vof + Ay f +divy(vf).

This time we observe that
2
G=2z"1", W= % Y V(2), ZeRy,

is an explicit steady state. There are many classical results for this equation
on the case v > 1, where there is an exponentially decay. We refer the inter-
ested readers to [24, [5] [6], (14, 10, 1T}, 1, 17], and for the weak confinement case
v € (0,1), there are also some polynomial or sub-geometric convergence results
proved in [1} 2} [7]. We also emphasize that our results for kinetic Fokker-Planck
equation with general force and confinement are to our knowledge new.

We carry out all of our proofs using variations of Harris’s Theorem for Markov
semigroup. Harris’s Theorem originated in the paper [12] where Harris gave con-
ditions for existence and uniqueness of a steady state for Markov processes. It
was then pushed forward by Meyn and Tweedie in [23] to show exponential con-
vergence to equilibrium. [13] gives an efficient way of getting quantitative rates
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for convergence to equilibrium once the assumptions have been quantitatively
verified. We give the precise statement in the next section.

One advantage of the Harris method is that it directly yields convergence
for a wide range of initial conditions (there are many choice of m and H in
Theorem , while previous proofs of convergence to equilibrium mainly use
some strongly weighted L? or H' norms (typically with a weight which is the
inverse of a Gaussian). The Harris method also gives existence of stationary
solutions under general conditions; in some cases these are explicit and easy
to find, but in other cases such as the two models in our paper they can be
nontrivial and non-explicit. Also the Harris method provides a quantitative
rate of convergence to the steady state, which is better than non-quantitative
type argument such as Krein Rutman theorem.

Here we briefly introduce the main idea of the paper. The paper uses Har-
ris method to prove convergence. Roughly speaking, Harris method says that
Lyapunov function plus positivity condition on a large ball implies L!(m) con-
vergence for some weight function m. The Lyapunov function is easy to find
so we mainly prove positivity on a large ball. The proof mainly contains three
steps. First we prove that f is above a constant on a point, then we use regu-
larity method to prove the continuity of the solution, thus we can obtain that
f is above a constant in a small ball. Finally we use the spreading of positivity
lemma which says if f > § in [0,¢) x By(xo,v0), then f > 6 in f > K§ in
[L,t) X Bar(wo,vo) for any a > 1 and some K > 0, we proved the positivity
thus the convergence in L!(m) is proved. We use the Duhamel’s formula and
regularity estimate to prove convergence p € (1,00]. This way of proving con-
vergence for linear models is quite new and have the potential to be extended
to other equations where exponential trend to equilibrium has not yet been
shown.

Let us end the introduction by describing the plan of the paper. In Section
we introduce Harris Theorem. In Section [3| we present the proof of a reg-
ularization estimate on Sy. In Section [4] we prove the convergence result in
L'(m). In Section [5| we prove the theorem in the case of LP(m) with general p.
In section [6], we compute the Lyapunov function for the two equations. Finally
in Appendix we prove some useful lemmas.

2. HARRIS THEOREM AND EXISTENCE OF STEADY STATE

In this section we introduce a PDE proof of Harris-Doeblin theorem and the
existence of steady state by S. Mischler and J. A. Cadizo.

Theorem 2.1. (Harris-Doeblin Theorem) We consider a Markov semigroup
S (t) with generator L and define Sy := S (t), we assume that

(H1)(Lyapunov condition) There exists some weight function m : R¢ — [1, 00)
satisfying m(x) — oo as || — oo and there exist some constants o > 0,0 > 0
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such that
L'm < —am + b,

(H2)(Harris condition) For any R > 0, there exist a constant T = T(R) > 0
and a positive, nonzero measure p = u(R) such that

Spf > u/B fooVfeLYm), £20, |flom <L
R

where B denotes the ball centered at origin with radius R. Suppose the Markov
semigroup Sy on L'(m) which satisfies (H1) and (H2). Then there exist some
constants C > 1 and a < 0 such that

”StfHLl(m) < CeatHfHLl(m)v vt >0, Vfe Ll(m)7 M(f) =0.
Remark 2.2. Usually the statement of Harris condition do not requires

[fllzimy < 1,

but in fact conclusion remains the same since for every function f we can
consider % f and use the linearity of the solution. This additional assumption
will be helpful in Section [

Remark 2.3. In fact this version of Harris-Doeblin Theorem is a little stronger
than the version in [23] because this version do not require a minimum of 7" for
all R, in this version it may happen that

T(R) — 0, as R — oo,
while in [23] they require a minimum ¢, > 0 for all R > 0.

Before proving the theorem, we first prove a useful lemma.

Lemma 2.4. (Doeblin’s variant). Under assumption (H2), if f € L'(m), with
m(x) = 0o as |x| — oo, satisfies

4
we then have

(u(R))

ISrfl < (-

Az

where

W= [ pe m(R) = min{jm(a)l.« € B}

Proof. From the hypothesis (2.1)), we have
f+ = / fe— | Jx
Br Rd BS,

> g [ [mz 1 [0

[ fellLrmy < NI Lt m)-

since
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Together with (H2), we get

H(R) -
STfiZ4/Rd\f| =,

We deduce
St f| < |Srf+ —nl+|Srf- —nl = Srf+ —n+ Srf- —n=Sr|f| —2n,
and next
R
[isert [ selsi—2= [ as1-22 [ 1,
Rd Rd Rd Rd
which is nothing but the announced estimate. O

Then we come to the proof of Theorem

Proof. Proof of Theorem We split the proof in several steps. In Step
1-6 we will assume || fol|1(m) < 1.

Step 1. We fix fo € L'(m), M(f) = 0, and we denote f; := S;fo. From (H1),

we have
Oy <~ fllzagy B Flls, ¥ 20,
from what we deduce
1STflrmy < e N foll Lrgmy + (1 — efat)g\\fo\\u, vt >0,
In other words, we have proved
(2.2) 1STfllLrimy < Y follrm) + Kl follpr,  VE >0,

with v € (0,1) and K > 0. We fix R > 0 large enough such that %b < m(R),
then take T'=T(R) and p = pu(R), define

yi=e T K:=(1- e_aT)ﬁ,
o
Then we have K/A < (1 —+)/2 with A :=m(R)/4. We also recall that
(2.3) 157 fllee < [l follzr, VE=0.
We define

1£1lg = Il follr + Bl foll ()

and we observe that the following alternative holds

(2.4) [ follLr(my < AllfollLrs
or
(2.5) Il foll Lramy > Allfoll -

Step 2. By Lemma that under condition ([2.4)), there holds
(2.6) 1St follr <l follzr, 7 €(0,1),
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and more precisely v := 1 — (u)/2, which is nothing but the conclusion of
Lemma [2.41
Step 3. We claim that under condition (2.4)), there holds

m+1
(2.7) ST follg < 2l follg, 72 := max( 5 )5

for > 0 small enough. Indeed, using (2.2)) and (2.7, we compute
1St folls = NISTfollzr + BIST foll L1 (m)

< (m+EB)follzr + B follL1 omy-
and we take § > 0 such that v + K3 < s.
Step 4. We claim that under condition ({2.5)), there holds
oy +1
=

(2.8) 1ST foll L1 m) < 3l follLrmys 3

Indeed we compute

K
157 foll L1 my < Y follzrimy + — I foll 2 m) = V3l foll 21.gm)-
Step 5. We claim that under condition ({22.5)), there holds

(29 ISzholls < ullfollss = 22

Indeed, using (2.3)) and , we compute
1S foll ST foll . + BIST foll L (m)
< Alfollzr + 38 foll L1 (m)
< A =9lfollr + (e +v38) follLr (m)>

and we choose € € (0,1) such that 1 —e =¢/8 + 3.
Step 6. By gathering (2.7) and ({2.9)), we see that we have

157 follg < sl follg, 5 := max(y2,74) € (0,1),
for some well chosen 3 > 0. By iteration, we get
[Snrfolls < 5l folls,
and we then conclude there exist some constants C' > 1 and a < 0 such that
HStfHLl(m) < CeatHf”Ll(m)v Vi>0, Vfe Ll(m)7 ||f”L1(m) <1, M(f) =0.

Step 7. (Linearity argument) For general f, we can always find A > 0 such that
H%f“Ll(m) < 1, since S; is linear we have

1 1
1Sefllzrmy = AlSe( )l my < AceatHXfHLl(m) =Ce”|flprmy, VE=>0,
for all f € L*(m), M(f)=0. O

The Lyapunov condition also provides a sufficient condition for the existence
of an invariant measure (for the dual semigroup).
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Theorem 2.5. Any mass conserving positive Markov semigroup (Si) which
fulfills the above Lyapunov condition has at least one invariant borelian measure
G € M'(m), where M is the space of measures.

Proof. Step 1. We prove that (S;) is a bounded semigroup. For fo € M*!(m),
we define f; := S, (t) fo, and we easily compute

& [isim < [1siem < 1o+

Using the mass conservation and positivity, integrating the above differential
inequality, we get

Jisdm < e [ian+2a-e) [1a)

b
maaj(l, a) / |f0|m>Vt > 07

so that (S;) is bounded in M1(m).

Step 2. We prove the existence of a steady state, more precisely, we start
proving that there exists a positive and normalized steady state G € M*'(m).
For the equivalent norm ||| - ||| defined on M!(m) by

AN = sup IS (@) fllart m)
t>0

A

IN

we have [||S(t) fI|| < |||f]|| for all £ > 0, that is the semigroup S, is a con-

traction semigroup on (M*(m),||| - |||). There exists R > 0 large enough such
that the intersection of the closed hyperplane {f € M!(m); M(f) = 1} and the
closed ball of radius R in (M*(m), ||| -|||) is a convex, non-empty subset. Then

consider the closed, weakly * compact convex set
K:={f e M'(m);[[|fl]| < R, f > 0, M(f) = 1},

Since S(t) is a linear, weakly * continuous, contraction in (M*(m), ||| -|||) and
M(Se(t)f) = M(f) for all t > 0, we see that K is stable under the action of
the semigroup. Therefore we apply the Markov-Kakutani fixed point theorem
and we conclude that there exists G € K such that S (¢)G = G for all ¢t > 0.
Therefore we have in particular G € D(L) and LG = 0. O

3. REGULARIZATION PROPERTY OF S,

The aim of this section is to establish the following regularization property.
The proof closely follows the proof of similar results in [I1} 17, 24]. In the whole
section, m and H refers to the one defined in Theorem [1.3]

Theorem 3.1. Consider the weight function m as defined in Theorem
satisfies condition (C1)-(C4), then there exist n,C > 0 such that

C
”Sﬁ(t)fHL2(m) < t5d+2 ||f||L1(m)7 vt € [Oan]
i
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for some weight function m. In addition, for any integer k > 0 there exist some
a(k),C(k) > 0 such that

1S () fl 5 (m)

as a consequence we have

¢
< 2

HfHLl(m)v vt € [0777]
C
1St fllozs < 2l Fllzamy, vt € [0,71],
for some § € (0,1),¢ > 0.

We start with some elementary lemmas.

Lemma 3.2. For f; = Sr(t) fo, define an energy functional
Fto fo) = Allfell72m) + atlVofelZam
(3.1) + 26 (Vo e, Vafo) 12(m) + 0V fill F2 oy

with a,b,c > 0,¢ < Vab and A large enough. Then there exist n > 0 such that

d
7t fi) < =LUIVofillZ2gny + 2 1VafillZ2gmy) + ClLEl T2 0m).

for allt € [0,1] and some L > 0,C > 0, as a consequence, we have
_3
1Sc foll zrrmy < Ct 2 foll L2 (m).
for all t € [0,n)], iterating k times we get

1Sz foll s my < O % 1 ol 2my-
Remark 3.3. We need to note here that if we consider
Ftfe) = AlfilT2imy + a1 Vo fillf2im
+ 2et (Vo fe, Vafo) r2(m) + 00 Va fill 22y

then by the same proof we have

d .
i (t, ft) < —LUIVufill F2gmy + Ve Fel22m) + Cllfell720m):

for all t € [0,n], for some L > 0,C > 0. This version will be useful in the later
proof.

Proof. We only prove the case k = 1, for k = 2, one need only replace f by 0, f
and 0y, f, similarly for £ > 2. First by Theorem [I.3] and Remark [T.4] we have

(fsL£9)r2(m) + (9, L) r2(m) = 2K (Vo f, Vog) L20m) + (f 962(m)) 2(m),

for any f,g € L?(m), without loss of generality we will assume K = 1. By
condition (C2), we have

d
%Hf”%?(m) = ([, Ef)LQ(m) < —||va‘|%2(m) - Cl”f”%qm]{l/‘z) + C2||f||%2(m)-
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We compute
(3.2) O, Lf = L0y, f+ 05,P(x) - Vuf +0.,B(x,v) - Vyf
+0,,div, @ (z) f + 0, div, B(x,v)f,
by condition (C3)
|0, ® ()| + |0, B2, v)| 4 |0, diva®(z)| + |0y, div, B(z,v)| < eH + C,

for some C' > 0, we have

00
= (O, f, L0z, f)r2(m) + (O, f, 00, ®(x) - Voo f + 00, B(w,0) - Voo f ) 12(m)
+ (O, f, Oz, dive®(z) f + O, divy B(x,v) f) 12(m)
V0@ N 22my = CallOu, FI3 2 g2y + CollOs, £ I 72m)
+€(|’va||2Lz(mH1/2) + ||V:r:f||%2(mH1/2) + ||f||2L2(mH1/2))
FOUT o oy + IV ey + 17220

IN

Summing over ¢ = 1,2,3,....,n , we get

d
%”Vﬂ!inQ(m)

IN

n Cl
i=1

FOITf Baurgirsy + CI aggnroy

for some C' > 0. Similarly using

(3.3) Op, Lf = LOy, f — Op, f + 0y, B(x,v) - Vo f + Oy, divy,B(z,v)f,

and since
|0y, B(z,v)| + |0y, divy,B(z,v)| < eH + C,
we have
d
00

= (8'Uif7 Eaﬂzf)L2(m) - (aﬁﬂzf? 8U¢f)L2(m) + (a'vif? 8U¢B(x7 U) : VUf)LQ(m)

+(8v1 f, 81,2. dinB($, ’U)f)L2 (m)

Vo @ui 20y = C1l00, 12 (i 2y + C2ll0u, 2y + €NV f 172 a2y
+C||va||%2(m) - (&Blfv 8vif)L2(m) + CHfH%?(mHl/Q)

IN
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Summing over ¢ = 1,2,...,n we get

d
IV 2y

- C
=S IV O By = SNV gy O gy

i=1
OV fll720my = (Vo Vaf) 12(m)
For the crossing term, using (3.2)), (3.3) and condition (C2) and (C3), we have

d
72(8%;707 azzf)L2(m)

= (datf L0, ) 12m) + (Do fs 0 ®(@) - Vo f + 0, B, 0) - Vo f) 12y
+ (0, [, O diva® () f + Or,divy B(2,0) f) 2 (m)
(Do, fs L00,F) 120m) — Do D, ) p20m) + (o, 0o B(2,0) - Vo f) 12y
+ (0, f, Ov; divy B(2,0) f) 12 (m)
We split into two parts, for the first part we compute
(v f L0, ) 12m) + Do 2 LO ) 12m) — 10 F |32y
= —2(Vo(0u:f), V(o £)) r2(m) + O fr $2(m) Do ) 12 () — 10 £ 72y
< =2V ), V(O ) L2(m) = 10 F72(my + CUV | [V f D) L2z
for the second part we have
(D0, f, 0, B(x) - Vo f + 02, B(,0) - Vo ) p2m) + (0o o 0o B@,0) - Vo) 12y
+(0; f5 O, diva ® () f + 0p, divy B(z,v) f) L2(my) + (O, [, Ou, dive B(2,0) f) 2 (m)
< CHvaH%%mHl/z) + CUV I Ve f D) L2gmezy + CULL VD) p2gme 2y
FON I ey

Gathering the two terms, and summing over ¢ we get

d
Ez(vva v:Ef)L2(m

< —22 @i D), V@0, 1) 20y — IV F By + IV e

IN

+ (Ivalv Vo fDr2mmzy + CUFLIVaf D 2y + Cl I gy
For the very definition of F in (3.1)), we easily compute

d d d
&f(t fr) = A&Hft”%% +tat— HV ftHLz +2Ct2d (Vo ft, Vaft) 2 (m)

d
08 G IV fll 2y + allVofilZ2(ony + 4Vt Vo fo) 2
+3bt2‘|vxft||%2(m)
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Gathering all the inequalities above together, we have
d

%}—(t, fr) <Th + T+ T3,

with
T = (a—A+Cat)|Vyfil2gn + (80t = ct? + Co) | Vo fill72(m)
+ (dct — at)(Vo fi, Ve f) 12m) + C2 Al fill 3 2m)
< —L(IVofillZamy + NIV fill Z2my) + CllFell72(my»

for some L,C > 0, if ¢ > 6b, A > a,b,c and 0 < n small. For the term T we
have
d

Ty = 3 at|Vo@u S5y — DIV (o f) 22y

i=1
=20t*(V (0, ft), Vo (v, f1)) £2m)] < 0,
since
12¢t* (Vo (O, f1)s Vo (Do, f1)) 12(m)|
< atl|Vo@u f 72 my + 0V (Do, fo) T2y
by our choice on a, b, c. For the term T3

e

Cy

+Cct*(IVofil, [Va i) p2mszy + Ct> (11 IV f]) po sy
+(—C1A 4 Cbt3 + Cat + Cct2)\|ft||§2(mH1/2) <0,
by taking A > a, b, c, ab > 2. So by taking A large and 0 < n small (¢ € [0,7]),

we conclude to

d
— F(t f) < =LV fellZaimy + Pl Ve fel Logmy) + Clel 20y

for sorrcllé L,C > 0, and that ends the proof. O
Lemma 3.4. We have

Vo (Fem) 22 < Ve filli2imy + Cllfill72(m):
for some constant C'.

Proof. We have

va,v(ftm)“%2 = ”mvx,vftH%2 + Hftva:,vm”%2 + 2(fitVaewm, mVa, fi) 12
1
= ”V:r,vftH%?(m) + ”ftvx,va%? - §(f152>Ax,v(m2))L2
1
= ||Vx,vft|‘%2(m) + (ftQ» |vx,vm|2 - §A:Jc,v(m2))L2

= ||V:v,vftH%2(m) - (ft2>mA:v,vm)L2a
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by condition (C4)

for some constant C, we are done. O

Lemma 3.5. Nash’s inequality: for any f € LY (R?) N HY(R?),there exist a
constant Cy such that:

143 :
1A < CalfIZI9uf e

For the proof we refer to [16], Section 8.13 for instance. O

Lemma 3.6. There exist X > 0 such that

d
(3.4) g et my < Allfllza ),
which implies
1fell 2 my < CeLfollp2 -
In particular we have
(3.5) [ fellLrmy < Cllfollimy,  VE € [0,7],
for some constant C' > 0.

Proof. 1t’ s an immediate consequence of the Lyapunov condition (C1). O
Now we come to the proof of Theorem

Proof. (Proof of Theorem (3.1L) We define
G(t, fo) = Bl fillF1gmy + 7 F (8, o),

with B, Z > 0 to be fixed and F* defined in Remark We choose t € [0, 7],
n small enough such that (a + b+ ¢)Zn?+! < %an (a,b,c, L are also defined

Remark . By (3.4) and Remark we have
d —1 1=
Z9 1) < ABIAll gy + 2677 (1 1)
—LtZ(HvatHQm(m) + t4||vxft|’2L2(m)) + CtZHftH%%m)

ABIfellZ sy + Ct M fell L2y
L
—th(Hvat”%%m) + Ve fell 22 my):

where A is defined in Lemma Nash’s inequality and Lemma |3.4] imply

IN

2 _d_ 2 4
[femllr2 < Cllfmll ;72 IVew(frm)|| 122 < Cllfimll /72 (IVew fmll g2 + Cll fiml|p2) 7.

Using Young’s inequality, we have

s
||ft||%2(m) < Cet 2d||f||3;1(m) + 6755(||V:v,vft“%2(m) + C’|ft||%2(m))~
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Taking e small such that Cen? < %, we deduce

s
el 2y < 2Cet™ 2 F 117 1 + 2667 Vo fellF 2

Taking e small we have

d _1_5
(8 1) S ABIFllZ sy + Cut” 2 el

for some C7 > 0. Choosing Z =1+ gd, and using 1) we deduce
vt e [0,m], Gt fi) <G(0, fo) + C2||f0||2L1(m) B CBHfOH%l(m)a

which proves

c
1Se()fllL2(m) < =) IflL1my> V€ [0,7].
i

together with Lemma [3.2] ends the proof. O

4. CONVERGENCE IN L'(m)

In this section we prove the Harris condition (H2) for Theorem [1.3] which
would imply the convergence for p = 1. Before the proof of the theorem, we
first prove a useful lemma.

Lemma 4.1. For any R > 0, there exist v,p > 0 such that for any t,R > 0,
there exists (xg,vo) € B, such that

f(t,zo,v0) > fo-
Br

v, p does not depend on fo,t, while xg,vg may depend on fy,t

Proof. From conservation of mass, we classically show that

d

pn 9 ft,z,v)dzdv = 0,
so we have
(4.1) [Sc@) g <1, V>0,
Define the splitting of the operator £ by

B=L—-A, A= Mxg(z,v),

with M, R > 0 large, where x is the cut-off function such that x(z,v) € [0, 1],
x(z,v) € C*®, x(z,v) = 1 when 22 +v? < 1, x(z,v) = 0 when 2% + v? > 2,
and xr = x(z/R,v/R). By the Lyapunov function condition (H1) and taking
M, R large, we have
(4.2) 1S |11 (my—L1(my < Ce™™, VE>0.

By Duhamel’s formula
S =S+ SpxAS,,
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we directly deduce from (4.1]) and 4.2 - that
||S£< >HL1 i S A, W0,

for some A > 0. We fix R > 0 and take g9 = folp, € L'(R?) such that
supp go C Bg, ,denote g: = Srgo, ft = S fo, then we have

/th/g():/ go = fo-
Rd Rd Br Br
Define

mi1(R) = max{|m(z)|,z € Bg}, mo(R)=min{|m(z)|,z € By},

We can see both mq,my — 0o as R — 0o, moreover, since there exists A > 0

such that
/ gthA/ gomﬁAm1(R)/ 90-
Rd R4 Bgr

For any p > 0, we write

/Bpgt = /Rdgt—/cgt
2 % ) Juo
> /Rdgo Aml())/BRo_2/BR90,

by taking mo(p) = 2Am(R). As a consequence, for any ¢ > 0, there exist a
(x0,v0) € B, which may depend on go,t such that

1
g(t, 0, v) > B ] %= 7/ go-

By the maximum principle we have

f(t,xo,v0) > g(t, x0,v0) > ’Y/ g0 =" fo.
Bgr Br

O

Before coming to the final proof we still need a theorem on spreading of
positivity. Define

B, (z0,v0) = {(z,v) € R x R?: |v — w| <7, |z — x0] < 77},
we have

Theorem 4.2. (Spreading of Positivity) Let f(t,x,v) be a classical nonnegative
solution of

atf - Avf = _(U + (I)(J?)) : vmf + A(t,l‘, U) ’ vvf + C(ta x?”)fa
in [0,T) x , where ®(x) is Lipschitz
() — @(y)| < Mlz —y|, Va,yeR"



THE KFP EQUATION WITH GENERAL FORCE 17

Suppose further that
A(t,xz,v) = V,W(z,v),
for some W (x,v). Define

1 1 1
D(t,x,v) = —Z\A(t,x, v)|? — idiva(t,:r, v) + §(U + ®(z)) - A(t, z,v) + C(t, z,v).

For any (z9,v0) fized, define V.= (M + 1)%(®(0) + |zo| + |vo|), then for any
r>0,0<7<min(1,73/2V,log2/M,1/20M), a > 1, § > 0, there exist A > 0
only depend on r?/7,a, M,V (independent of 0) such that if f > 6 > 0 in
[0,7) X By(xg,v0), then f > K& in [1/2,7) X Bar(xo,v9) where K also depends
on || D|| oo (B, (z0,00)) @4 W Loo (B4, (z0,00)) -

Proof. See Appendix [A] O

Remark 4.3. Former proofs of spreading of positivity such as Theorem A.19 in
[24] assumes that A and C' are uniformly bounded, by assuming

A(t,xz,v) = V,W(z,v)
we generalize this theorem to unbounded cases.

Then we come to prove our main theorem

Theorem 4.4. Under the assumption of Theorem . The equation
defined in Theorem satisfies the Harris condition: For any R > 0, there
exist a constant T = T(R) > 0 and a positive, nonzero measure yn = u(R) such
that

Srfo>p | fo, VfoeL'(m), f>0, |follpiom <1,
Br

As a consequence, Theorem[1.3 s proved.

Proof. By Lemma [£.1] we have there exist 7, p > 0 such that for any ¢, R > 0,
there exists (zo,v9) € B, such that

f(t,xo,v0) > fo-
Br

where v, p does not depend on fy, ¢t while zg, vg may depend on fy,¢. By Lemma
[4.3] we have

n
HfHCZv‘S < C”fOHLl(m)7 vt e [§a77]’

in particular
n
IVafllzee +1Voflizee + 1 Azfllee + N fllze < Cllfollrmy, V€ [5,m),
and by equation

atf = ‘Cf = 81«(14(.%',1})]0) + av(B(:E,’U)f) + A’L)f7

we have

IVaflle @) + Vo flle@) + 10cf o) < Cllifolligm < C, Vte [gﬂ?],
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for €2 = Bs, and some constant C' > 0. By continuity, for every R > 0, there
exist t1, 2,70, p,7 > 0 which do not depend on fy and (xg,vg) € B, which may
depend on fy, such that for all ¢t € (¢1,t2), we have

f(t x U) 1B,«0 (zo,v0) / fDu

where By, (zo,v9) denotes the ball centered at (xp,vp) with radius ro. Take
r1 = min{ (g, (5 ) } such that B, (wg,v0) C By (z0,v0), then we have

f(t Z 'U) 1Br1(a:o vo) / fO

Take a = max{ ( )3 1} large such that Ba,(xg,v0) C Bar, (%0, v0). Define

3
. ry log2 1
T:mln(tz—tl,:hﬁ,ﬁg,m).

Using Theorem we have

v i
f(t; x? U) 2 §]‘Bo¢7‘1 (:I:O:/UO) \/;R fO 2 KngQP(x()’UO) \/;R fo’

since (xo,v) € B, implies that B, C Ba,(x0,vp), we have

f(t,$,’l)) > Kngp(O,O)/ f07
Br

for any t € (t2 — %,tg). So we can define u(R) = K%pr(O,O),T(R) =ty — 7,
note it’s independent of (zg, vg), thus independent of fy, we conclude the Harris
condition (H2). O
Then by Theorem we have proved

1f(t,) = M(f0)Gll Limy < Ce™ | fo — M(fo) Gl L1 (mys
which is Theorem [I.3]in the case p = 1.

Remark 4.5. If we replace f in the proofs by the normalized steady state G, we
can deduce that G > 0.

5. PROOF OF LP(m) CONVERGENCE

In the last section, we have prove Theorem in the case of p = 1, now we
prove it for general p, which will complete the proof of the theorem. In this
section, A < B will denote A < CB for some constant C' > 0. First recall the
splitting

B=L—-A, A= Mxg(z,v),
since
pp(m) < —C+ Mgy,
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by Remark it’s easily seen that we can take My, Ry such that

(5.1) 1S | Lo (my—Lo(m) S €%,
and by the Lyapunov condition
(5.2) 1S Lt (my— L1 (m) S €,

for some 8 > 0. Before going to the proof of our main theorem, we need two
last deduced results.

Lemma 5.1. We have

1SBE)All Lo(m)—rem) S €%, V>0,

and
1S8(E) Al L1 my—i(m) S €%, VE>0,
and
1S8(H)All Lt m)—s Lo(m) S T %™, ¥t >0,
for o = % and some 3 > 0.

Proof. The first two inequalities are obtained obviously by , and the
property of A. For the third inequality we split it into two parts, t € (0, 7] and
t > n, where 7 is defined in Theorem When t € (0,7] , we have e~ > e~
by Theorem we have

HSB(t)AHLl(m)%LP(m) 5 t S tiaeiatv vt € (Oa 77];
for some a > 0. When ¢t > 7, by Theorem we have
IS8 L1 my—rrm)y S0 S 1,
and by Lemma [5.1

1S8(t = )| 2om) s Lrmy S e D e

gathering the two inequalities, we have
1S5(E)All L1 m)—Lr(m) S €% St %™, V>,
the proof is ended by combining the two cases above. ]

Lemma 5.2. let X, Y be two Banach spaces, S(t) a semigroup such that for
all t > 0 and some 0 < a we have

1S(t)|lx—x < Cxe™™, [S()[lysy < Cye™™,
and for some 0 < a, we have
1S(t)||x—y < Cxyt “e .
Then we can have that for all integer n > 0
1S ()| x—x < Cxpt™ e ™,

stmalarly
IS*™ () |ly Sy < Cyut™ e,
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and
HS(*n) (t) ||X~>Y < CX,Y7ntn_a_1€_at.

In particular for a4+ 1 < n, and for any a* < a
1S*™ ()| x—y < Cx,yme .
Proof. See Lemma 2.5 in [1§]. O
Then we come to the final proof.

Proof. (Proof of Theorem [1.3l) Remember that we already proved
”Sﬁ(I - H)(t)HLl(m)—)Ll(m) S.; eiata
where [ is the identity operator and II is a projection operator defined by
(f) = M(f)G.

First, Iterating the Duhamel’s formula we split it into 3 terms

n—1

Se(I—1) = (I-M{Sg+ > (SA)*" = (Sp)}
=1
+(S5()A) D 5 {(T = TT) S} + (ASs(t)),
and we will estimate them separately. By (/5.1 the first term is thus estimated.
For the second term, still using (5.1)), we get

—at

1S5(#) Al Lr(my—Lr(m) S €

by Lemma [5.2 we have

1(S5E)A) D Loy Lomy S 1™,

together with (|5.1)) the second term is estimated. For the last term by Holder’s
inequality we have
Il o (my—Lima) S 1
with
G = e~ (WP+z?)
(there are many choice of G) so we have

IASB @) Loy L1 (my S €

By Lemma [5.1] and [5.2] we have
||(SBA)(*(n_l))(t)||L1(WL)~>LP(m) 5 tn—Ot—Qe—at’
finally recall
ISEET = D)l myosrr oy S €

Taking n > « + 2 the third term is estimated, thus the proof is ended by
gathering the inequalities above. O
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6. PROOF OF MAIN THEOREM

This section we come to prove Theorem [[.I] Recall that we have proved
Theorem [I.3] in the last section, the only thing remain to prove is to find a
weight function m and a function H > 1 in Theorem

Theorem 6.1. Denote L the operator of the kinetic Fitzhugh-Nagumo equation
, then there exist a weight function m and a function H > 1 satisfies
Theorem [1.3.

Proof. We recall the kinetic Fitzhugh-Nagumo equation
Of = Lf = 0:(Al,0)f) + 0u(B(,v) f) + 03, f,
with
A(z,v) =ax —bv, B(z,v)=v(v—1)(v—rc)+z,

by a change of variable w = bv, the equation is changed to

0uf 1= Lf = 0u(A(w,0)f) + 0,(Blx,0)f) + 1502

with
A(z,v) =ar —v, B(z,v)= bisv(v —b)(v —be) + x,
we have
1
‘C’*f = 7"4(377/0)8%]0 - B(l’,?))avf + bﬁavvf’

for some a, b,c > 0. This time we have

L*m Vaem Vem 1 Aym
= v —ax - + —
m m m b2 m
1 \Y
—(ﬁv(v —b)(v—"bc)+ ) - ;;%m
We can take m = eg(‘x|2+‘”|2), with » > 0 to be fixed later, then we have
\Y A

alk =rz, Vom =ruv, ol =r 472,
m m

we then compute

L'm P R
= rz-v—ar|z +b—2+b—2\v|

m

1
- b—3\v|2(v —b)(v—"bc) —rz-v
1
= —ar|z)® - b—3|v|4 + Myv® 4 My|v|* + M3,

for some constant My, My, M3z > 0, so the Lyapunov condition (C1)

L'm < —am + b,
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is satisfied for some «, b > 0, similarly

Vam Vem a  1|V,m*> 1Am
¢2(m) = v m Ty + b2 m?2 +b2 m
1 . 1
~(g50(0 = b)(v = be) —I—x)  Yom 553 (807 + 2b(1 + )v + b0),
and this time we have
r
po(m) = rx-v—arlz*+ = +b2| v|? + b—2]v|2

(v —b)(v —bc) —rx - U-l-ﬁ(?ﬂ) + 2b(1 + ¢)v + bc)

1
= —a’r|$|2 — b—g|v|4 + K0 + K2!7)|2 + K3v + Ky,

z?s'”

for some constants K1, Ko, K3, K4, if we take
H=p*+z]* +1,
it’s easily seen that we have
— C1H < ¢a(m) < —CoH + Cs,

for some C1,Cy, C5 > 0, which is just condition (C2). And it’s easily seen that
for any integer n > 2 fixed, for any € > 0 small, we can find a constant Ce,,
such that

Z |DF (ax |+Z|Dm bfgv v—b)(v—be)+z)| < Py|v|*+Pa|v|+Ps < Oy, +eH,

with Pj, P», P3 > 0 constant, so condition (C3) is also satisfied. Since

A
AL, VT r2|v|® + r2|z)? > 0,

all the conditions of Theorem [1.3]is satisfied, we finally compute

(m) — U.me_ax Vm+ +2]Vm\2 1 A,m
oo B m m b2 m? 2 m
1 Vi
~(55v(0 = b)(v = be) + ) - m b3(3 2 1 2b(1 + c)v + bc).
We have
o 2 2
Yoo(m) = rxm—ar\x]Q—i—a—i- lv|2 — 5—2——] vf?
1 1
- b—3]v|2(v—b)(v—bc) —rx-v+ b3(3v + 2b(1 + ¢)v + bc)

1
= —ar|;1c|2 — b—3|v|4 + K03 + K2|v\2 + K3v + Ky,

for some constants K1, Ko, K3, K4, it’s easily seen that
Saoo(m) <C+ M]]-BRv
for some C, M, R > 0, the proof is finished. O
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Then we come to find a weight function m and a function H > 1 for the
kinetic Fokker-Planck equation with general force.

Theorem 6.2. Denote L the operator of the kinetic Fokker-Planck equation
, then there exist a weight function m and a function H satisfies Theorem
1.3

Proof. First we have
Lf=v-Vof =V, V() Vof + Apf — VW (v) - Vyf,

denote
2
Hy = |U2| +V(z)+ev-Vy(z), m= M

so we have
L*m

= Av-VoH, —V,V(x) VoHy + A H + NV Hi|?> = V,W(v) - V,Hy).

We easily compute

VoHi =v+eVy(z), V,H =V,V(z)+ev- Vi(az), A Hi =d,

and since
V2(z) < CI,
where [ is the d x d identity matrix, we have
E*
mm = MNv-V,V(z)+ eV (z)?v — V,V(z) v —V,V(z) Vi) +d

v + eV () > = eV, W(v) - Vo(z) — V,W(v) - v
< CO2 P2+ ANV ()|) = AV V () - Vi (z) — AV, W (v) - v,
for some constant take A > 0 small, we conclude
L'm < —C1Hm + Cs,

for some constant Cy,Cy > 0, with H = (v)? + (x)7~! + 1, then the Lyapunov
condition (C1) follows. For the second inequality, by Lemma we have

$p2(m) = MNov-VeHy+ V.V (z) VyHy + AyHy
PNV = VIV (0) - Vo) + S AW (1),
we compute
g2(m) = Mv-VaV(2) + eoVa(r)v — VoV(x) v — Vo V() - Va(a) +d
+2XM|v + €V (x)|? — eV, W () - Vau(z) — Vo, W (v) - v) + %AUW(U)
< CO2 + AV ()| + AW (0)]) = AV V (2) - Valz) — AV, W (v) - v,

and we still have
— C1H < ¢o(m) < —CoH + C3,
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for some constant Cy, Co,C3 > 0, thus condition(C2) is proved. It’s easily seen
that for any integer n > 2 fixed, for any € > 0 small, we can find a constant
Ce,n such that

n+1 n+1
Z|Dkv V(x !+Z|Dk VoW (v |—Z|Dk |+Z|D )| < Cpyo4eH,

by the definition of V(x) and W (v), so condltlon (C3) is also satisfied. For the
last condition
Azym o 2 2 2
— =) ’va1’ + A ’Vle‘ + AALH, + AALH;.
For the term A, H; we compute
AyHy =V, V(z)+ev-VA(x) > —L; — Lo|v|,

for some constant L, Ly > 0, and
[l

|VUH1\2 = \U—i—eva;(x)]z 5

L37

for some constant Lz > 0, since

AyHi=d >0,
we conclude that
Am LM >0
m

for some constant C, so all the conditions are satisfied. We finally compute
Yoo(m) = Auv-V V(z)+evVy(x)v —V,V(z) v -V, V(z) Vy(zr)—d
HA\v + eV ()2 — eV, W (v) - Volz) — V,W(v) - v) + AW (v)

< Ol + AMVW ()] + [AW (0)]) = AVLV (2) - V() — AV, W (v) - v

the proof is thus finished. O

APPENDIX A. PROOF OF SPREADING OF POSITIVITY

In this section, we will use the notation
B(z0,v0) = {(z,v) e REX R : |v —wo| < 7, |z — 20| < 73},

and B, will stand for B, (xg,vo). Before proving the theorem on spreading of
positivity, we first prove a useful lemma.

Lemma A.l. Define Xy(xo,vg) (abbreviated Xy in the sequel) in this way,
consider the ordinary differential equation

dx

dt
and denote by Xi(xo,vo) the solution to this ordinary differential equation at
time t with x(0) = xo, where ®(x) is Lipschitz

|®(z) — (y)| < M|z —y|, Vz,yeR%

*Uo—i—q)( )



THE KFP EQUATION WITH GENERAL FORCE 25

with loss of generality we assume M > 1. Then we have, for any (zo,vy) € R?
fized, t € [0, min{ l?ff, 1}), we have

| Xy — @o| < (M + 1)%(Jug| + |zo| + |2(0)]),

Proof. Since ®(x) is Lipschitz, the existence and uniqueness of X; is satisfied.
First by the definition of X; we have

d| X¢| dXy
< |- < M(|X ®(0
St <52 < ool 4+ MO+ 19(0)))
by Gronwall’s lemma we have
1
[Xi| < e fao| + (e = 1)(Jvo] + M|®(0)),
since M > 1, so for ¢ € (0, l?\f’f) we have

| X¢| < 2[ao| + |vo| + M[2(0)],

SO
dX
L2 < ool + MK+ [2(0)]) < (M +D)fuo] + 20 o] + M2(0)
< (M +1)*(lvo] + |zo| + |2(0)]),
for any t € (0, 1?512)’ the lemma is thus proved. O

Use this X;, we come to construct a subsolution which is useful in our proof.

Lemma A.2. Define operator L as

E:%—i—(v—i—@(w))-vz—Av,

where ®(x) is Lipschitz
|®(z) = D(y)| < Mlz —y|, Va,yeR%
Then for any (xz9,v9) € R? fized, define V= (M + 1)2(®(0) + |zo| + |vo|), then
for any r >0, 0 <7 < min(1,73/2V,log2/M,1/20M),ac > 1, § > 0, there exist
constants A > o, K > 0 which only depend on r%/7, V., M, a (independent of
d) and a function ¢ such that
£¢ <0, in [037—) X (B)\r \ Br)a
and some boundary conditions
$<0, ont=0, ¢$<3§ on[0,7)xIB,, ¢<0 onl0,7)x By,

while -

¢ > K5 on [5,7') X (Bar \ By).
Proof. This proof is similar to the proof in [24] Appendix A. 22. For ¢ € (0, 7]
and (z,v) € R?\ B, let

lv — vpl? B b(v —vg, & — X¢(zg, v0)) N |z — Xy (20, v0)|?

" —
Qt,z,v) =a—; 2 213 ’
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where a, b, ¢ > 0 will be chosen later on, and we define X;(xg,vg) (abbreviated

X; in the sequel) in this way, consider the ordinary differential equation
dx

— =g+ P(x),
L

and denote by Xy(xp,vp) the solution to this ordinary differential equation at
time t with 2(0) = xg. Let further

o(t,x,v) = Se HQtzv) _ €,

where 1, e > 0 will be chosen later on. Let us assume b? < ac, so that Q is a
positive definite quadratic form in the two variables v — vy and x — X;. Then

Lé = —pde " A(Q),
where

AQ) =0,Q + (v+®(2)) - Vo — AQ + | Vo Q.

By computation,

lv — vpl? (v —wvo,z — Xy) |z — Xy |?
A(Q) = —a 212 + 2b 3 — 307
b(U*UO,UoJr‘I)(Xt)) (x — Xy, v0 + ©(Xy))
+ o) —c 3
(v —0,v+ ®(2)) (x — Xy, v+ ®(x)) d
— b o +c 5 a5
v — g r—X
+ pla ; —b 3 L2
B v—vg T — X (z — Xy, (x) — ©(Xy))
= Bl =) +e 23
b(v —vg, ®(z) — P(Xy)) d
t2 t

where B is a quadratic form on R” x R™ with matrix P ® I,,,

p_ pa® —%—b  —pab+b+§
—pab+ b+ § pb? — %
If a, b, ¢ are given, then as y — oo
trP = p(a® + %) + 0(1),
3ab? 3a?
detP = M(GT + abc — b® — %) +O(1).

Both quantities are positive if b > 2a and ac > b?, for example we can take
b= 2a,c > 12b, then as u — oo

trP = 5ua® + O(1),

1 1
detP = ,u(ia?c —a’) +0(1) > ugazc + O(1).
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the eigenvalues of M are of order 5ua® and 1z. So we may choose a, b, ¢ and
1 so that
v—1vy T — Xy

|v — vpl? n |z — Xy |?
t 7 t?

) > —
t2 t4

B( 20

(

).
If 7 < ﬁ, we have
Mo = X0 0() — S| _ Mt o= X _ e o= X
2t3 -2 v T 40 ¢4
gathering the two terms we have
(r — X, ®(z) — (Xy)) c
> R
) te 213 = 10

v—vy *— X
B
( t 7 2

Ifr<i1

2 2
V— xr— X
‘ 20| | 475‘
t t

).

(

v =g, ®(x) — ©(Xy)) ag > b |z — X¢)? B b’v — vp|? - @’

2 t 4 t2 2t
gathering the two terms, suppose ¢ > 80(M + 1)2b, we have

bd. ¢ |Jv—wl|? |r—X?
AQ) 2 555 gl

Recall that (z,v) ¢ B, so
- either |[v — vo| > r, and then A(Q) > %[mﬁT2/T — 1], which is positive if
¢ > 40bd%;
-or |[z—xg| > r3, and then by Lemma for any 7 < min{1,73/(2V),log2/M}

|z — X, > |z —wol*  |Xi — ol

!

t2 - t2 t2
|z — 950\2 2 2 rf 2 rf
> B — (M Dol + ol + [0(0))? > 55 V2> 5,

so A(Q) > %[ﬁ% — 1], which is positive as soon as ¢ > 80bd(5)?. so it’s

OK to take - -
¢ = bmax{12,80(M + 1), 80d(r—2)3, 40d—}.

To summarize: under our assumptions there is a way to choose the constants
a,b,c, i, depending only on d, M, V,r?/7 , satisfying ¢ > b > a and ac > b?, so
that
Lp <0, in[0,7) x (B \ By),
as soon as 0 < 7 < min(1,73/2V,log2/M,1/20M). Recall that
o(t, x,v) = e ML) _ ¢

The boundary condition at ¢ = 0 is obvious since e ~#< vanishes identically
at t = 0 (more rigorously, e HQ(t2) can be extended by continuity by 0 at
t = 0). The condition is also true on [0, 7) x B, since ¢ < §. It remains to prove
it on [0,7) x OBy, . For that we estimate @ from below, since ¢ > 12b,b = 2a,
it’s easily to seen that for any (¢,z,v) € [0,7) x OBy,

A2r2 \6y6 S aX? r? 76

) 2 g i)

(t,x,v)

|v — vol? n |z — Xy |?
t 3

) > — min

Qt,,v) = §(

e
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Thus if we choose )

min(

A 2
€= 5exp(—/m T
-

6
) ﬁ))a
we make sure that ¢ = de ™9 — ¢ < 0 on [0,7) x QBAT. We finally come to
prove the last thing, indeed, if ¢ > 7/2 and (z,v) € B, \ B, then

v — o2 |x — X4|? 20212 90576 6 r2 b
Q(t, z,v) < 2¢( r + 3 ) < 2¢( - 3 ) < 22« cmax(?, ﬁ)’
take A such that
2 .6 2 .6
22 x 8 x 2a60max(r—, %) = a)\? min(r—, %),
TT TT
so we can find K > 0 such that
2 .6 22 2 .6
6 > dlexp(—220%apc max(—, ) — exp(— - min(S, 55))] > Ko,
TT
recall the relationship between a and ¢, we conclude that A\, K depends only on
r?/7, M, V, a, the proof is thus ended. O

Theorem A.3. Let f(t,z,v) be a classical nonnegative solution of
atf - Avf = _(U + (I)(J?)) ' vmf + A(t,l‘, U) ’ vvf + C(ta x?”)fa
in [0,T) x Q, where ®(x) is Lipschitz
|®(z) = D(y)| < M|z —y|, Va,yeRY,
suppose further that
A(t,z,v) = V,W(x,v),

for some W (x,v). Define

1 1 1
D(t,z,v) = fZ\VUA(t,x,v)F - gdiVUA(t, z,v) + i(v + ®(x)) - A(t, z,v) + C(t, z,v),
Then for any (xo,vo) fized, » > 0, 0 < 7 < min(1,73/2V,log2/M,1/20M),
a>1,0 >0, there exist A > 0 only depend on r?/r,a, M,V (independent of &)
such thatif f > 0 > 0in [0,7)x B, (xg,vp), then f > Ko in [1/2,7)X Bay(x0, Vo)
where K also depends on || D|| Lo (5, (z0,00)) @4 Wl Loo (), (20,00))-

Proof. We first start by a taking f = hG, with G = e_%w(x’”), we have
V.G = —%VxW(x,v)G, V.G = —%VUW(.%,U)G,
and ) )
AG = Z!VUW(:U, v)|? — iAUW(ﬂs,v),

the equation turns to
Goh = GAh+2V,h-V,G+hA,G— G+ ®(x)) - Vih —h(v+ ®(z)) - V.G

+GA(t,z,v) - Voh 4+ VG - A(t,z,v)h + C(t, z,v)Gh.
By the definition of G we have

2V,G - Vyh = =GA(t, z,v) - Vyh,
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so the equation will turns to
Oth = Ayh — (v+ @(z)) - Voh + D(t, z,v)h,
with
1 , 1 1
D(t,z,v) = 1IVoW(z,0)" = SAW (2,0) + (v + &(2)) - Vo W(z,v)
1
—iva(az, v) - A(t,xz,v) + C(t, z,v)

1 1 1
= _1|A(t’ :E,U)|2 - §dinA(tafE, U) + 5(11 + (I)(I)) . A(t7l‘,v)
+C(t,x,v).
Take the \ from Lemma Then take D = HDHLOO(BM(

e”W”L"O(BM(ZO’UO”, then we have

) and E =

Z0,v0)

| >

h>—=, in[0,7) x B,.

&

Let g(t,x,v) = eDth(t,x,v), then g > h and Lg > 0 in (0,7) x Bx.(z0,v0),
where

Ezi—i—(v—i—@(a:))-vx—Ay,
by Lemma we can find a ¢ such that
£¢ <0, in [037_) X (B)\r \ Br)v

and

| >

$<0, ont=0, ¢<—= onl0,7)xIB,, $#<0 onl0,7)x IBy,

&

while

[%,7) % (Bar \ By).

So ¢ is a subsolution to g, then we have

d)ng on

1) T _ _
g=>¢>K—= on [*aT)X(Bar\Br)a
E 2
which implies
_ 5 _ _ _
h>ge ™ > Kfe_TD on [%,
Taking back to f we have
1 o .
fZEhZKﬁe P on [=,7) X (Bar \ By),

we conclude the theorem. O
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APPENDIX B. COMPUTATION FOR ¢2(m) AND ¢,(m)
Lemma B.1. Define
Orf = Lf = divy(Aw,v)f) + div, (B(z,v) ) + KA,
with
A(z,v) = —v+ D(x),
and K > 0 a constant, then for any weight function m we have

(B.1) / (F(Lg) + g(LYm? = —2K / Vo f - Vogm? + 2 / Fada(m)m?.

with

Vam Vom 1 [Vym|?
= v — B(x)- “div,®(z) + K
da(m) = v- "~ a(a) v @(@) + K
b RA Ba) . Y B(z,v).
m

Also we have for p € [1, 0]

©2f sign 7117 Lmr =~k [ 1V,mpPUP2me 2 4 [ |7y mpne,

with

V.m V.m 1, .. 1.|V,m|?
#p(m) = v — &) (1= D)dive(2) + 2K(1— )=
2 Aym V,m 1, ..
K- —1 - B ) 1—--)d B » V)
+ (p ) m (z,v) - + ( p) iv, B(z,v)

where we use [ f in place of fRded fdxdv for short.

Proof. Define
Tf = —U- vl‘fa

we have

/f(Tg)m2+/(Tf)gm2 = /T(fg)m2 = —/ng( = —Q/fngTm

for the term with operator A we have
/(fAvg + Avfg)mQ = _/vv(me) Vg + Vu(ng) Vo f
= —Q/va - Vogm? + /ngv(m2

= —2/va-vamQ+2/fg(]va2+Avmm).
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For the other terms, using integration by parts we deduce
[ F(Bavlgm® + gdiv, (Bla, o) m?
= /fB(x,v) - Vogm? + gB(z,v) - Vo, fm? + 2div, B(z, v) fgm?
= —/fgvv - (B(z,v)m?) + 2div,B(z,v) f gm?

= /—2ng(x,v) . Mmg + div, B(z,v) fgm?.
m

Similarly

so (B.1)) are proved by combining the terms above. For (B.2)) we compute

Cy = /signf|f\p_1mpAvf = —/VU(Signf|f|p_1mp) -Vof
- / - 1)\Vuf\2|fp2mp—; / VP - Vo(m?).

Using V,(mf) =mV,f + fV,m, we deduce

G = ~=1) [ [Dum PP 5 (o= 1) [ (FomPlspme
2(p—1) Dy . mP _1 Py . mP
2 [0 ot = - [ 9,1517) - Vo)
= 1) [ IV m )P+ o= 1) [ [V 2

_p;2/‘f|pAva‘
p

Using that Aym? = pAym mP~1 + p(p — 1)|V,m|>mP~2, we obtain

o= ~(p-1) / IV, (mf) 21 P2

2 A,m 1\ |Vym|?
e e (2 1) Sz (i) SEt]

31
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For the other terms we have

/Sign f|f]p71divv(B(x,v)f)mp

- / ;\f\pdmw(m, 0)m?) + divy B, v)| f|Pm?

= [P0 T (1 2 )div B, ) g
similarly
/sign fIfIPtdivy (A, v) f)mP
_ /—]f\pA(ac,v) (1 ;)divrA(x,v)fgmp
= 1P =) T 4 (1= v () g,
Gathering all the terms is proved. O

Acknowledgment. The author thanks to S. Mischler and J. A. Canizo
for fruitful discussions on the full work of the paper. This work was supported
by grants from Région Ile-de-France the DIM program and BISMA, Tsinghua
University.

1]

REFERENCES

Bakry, D., CaTTIAUX, P., GUILLIN, A., Rate of convergence for ergodic continuous
Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 (2008), no. 3, 727-759.
C. CA0. The kinetic Fokker-Planck equation with weak confinement force. ArXiv e-
prints, January 2018.

CARRAPATOSO, K., MISCHLER, S. Landau equation for very soft and Coulomb potentials
near Maxwellians. Ann. PDE 3 (2017), no. 1, Art. 1, 65 pp.

Duan, R. Hypocoercivity of linear degenerately dissipative kinetic equations. Nonlin-
earity 24, 8 (2011), 2165-2189.

DoOLBEAULT, J., MoOUHOT, C., AND SCHMEISER, C. Hypocoercivity for kinetic equations
conserving mass. Trans. Amer. Math. Soc. 367 (2015), no. 6, 3807-3828

DoLBEAULT, J., MounOT, C., AND SCHMEISER, C. Hypocoercivity for kinetic equations
with linear relaxation terms. C. R. Math. Acad. Sci. Paris 847, 9-10 (2009), 511-516.
Douc, R., Forr, G., GUILLIN, A., Subgeometric rates of convergence of f - ergodic
strong Markov processes. STOCHASTIC PROCESS. APPL. 119 (2009), no. 3, 897-923.
ECKMANN, J.-P., AND HAIRER, M. Spectral properties of hypoelliptic operators. Comm.
Math. Phys. 235, 2 (2003), 233-253

GUALDANI, M. P., MISCHLER, S., AND MouTHOT, C. Factorization of non-symmetric
operators and exponential H-Theorem. hal-00495786.

HELFFER, B., AND NIER, F. Hypoelliptic estimates and spectral theory for Fokker-
Planck operators and Witten Laplacians, vol. 1862 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2005.

HirAU, F. Short and long time behavior of the Fokker-Planck equation in a confining
potential and applications. J. Funct. Anal. 244, 1 (2007), 95-118.



(12]

(13]

(14]

18]
[19]
[20]
[21]
[22]
23]

24]

THE KFP EQUATION WITH GENERAL FORCE 33

T. E. HARrIs. The existence of stationary measures for certain Markov processes. In
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probabil-
ity, 1954-1955, vol. 11, pages 113-12. University of California Press, Berkeley and Los
Angeles, 1956.

MARTIN HAIRER., JONATHAN C. MATTINGLY. Yet another look at Harris ergodic theo-
rem for Markov chains. In Seminar on Stochastic Analysis, Random Fields and Appli-
cations VI, volume 63 of Progr. Probab., pages 109-117. Birkhuser/Springer Basel AG,
Basel, 2011.

HERrAU, F., NIER, F. Isotropic hypoellipticity and trend to equilibrium for the Fokker-
Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171, 2 (2004),
151-218.

KAvIAN, O., MISCHLER, S. The Fokker-Planck equation with subcritical confinement
force ,arXiv 2015.

LieB, E. AND Loss, M. Analysis 2nd. American Mathematical Society.

MISCHLER , S., MouHOT, C. Exponential stability of slowing decaying solutions to the
Kinetic-Fokker-Planck equation Arch. Ration. Mech. Anal. 221 (2016), no. 2, 677-723.
MISCHLER, S., QuiINAO, C., TouBoUL, J. On a kinetic FitzHugh-Nagumo model of
neuronal network, Comm. Math. Phys. 342 (2016), no. 3, 1001-1042.

MISCHLER, S. Semigroups in Banach spaces - factorization approach for spectral analysis
and asymptotic estimates, In preparation.

MouHnoT, C., AND NEUMANN, L. Quantitative perturbative study of convergence to
equilibrium for collisional kinetic models in the torus. Nonlinearity 19, 4 (2006), 969-998.
MouHoT, C. Rate of convergence to equilibrium for the spatially homogeneous Boltz-
mann equation with hard potentials. Comm. Math. Phys. 261, 3 (2006), 629-672.
ROCKNER, M., AND WANG, F.-Y Weak Poincaré inequalities and L?-convergence rates
of Markov semigroups. J. Funct. Anal. 185, 2 (2001), 564-603.

S. P. MEYN AND R. L. TWEEDIE. Markov chains and stochastic stability. Communica-
tions and Control Engineering Series. Springer-Verlag London, Ltd., London, 1993.
VILLANI, C. Hypocoercivity. Mem, Amer. Math Soc. 202(2009), no. 950

CHuQ1 CAO

BISMA, TSINGHUA UNIVERSITY, AND
CEREMADE, UNIVERSITE PARIS-DAUPHINE,
PLACE DU MARECHAL DE LATTRE DE TASSIGNY
75775 PARIs CEDEX 16 FRANCE
OCDID: 0000-0002-5451-9962

E-MAIL: chugicao@gmail.com



	1. Introduction
	2. Harris Theorem and existence of steady state
	3. Regularization property of SL
	4. Convergence in L1(m)
	5. Proof of Lp(m) convergence
	6. Proof of Main Theorem
	Appendix A. Proof of spreading of positivity
	Appendix B. Computation for 2(m) and p(m)
	References

