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THE KINETIC FOKKER-PLANCK EQUATION WITH

GENERAL FORCE

CHUQI CAO

May 13, 2019

Abstract. We consider the kinetic Fokker-Planck equation with a class
of general force. We prove the existence and uniqueness of a positive
normalized equilibrium (in the case of a general force) and establish some
exponential rate of convergence to the equilibrium (and the rate can be
explicitly computed). Our results improve similar results established
by [26, 5, 6, 14, 10, 11, 1] to general force case, and improve the non-
quantitative rate of convergence in [18] to quantitative explicit rate.
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1. Introduction

In this paper, we consider the kinetic Fokker-Planck (KFP for short)
equation with general force

(1.1) ∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(∇vW (v)f),

for a density function f = f(t, x, v), with t ≥ 0, x ∈ Rd, v ∈ Rd, with

V (x) =
〈x〉γ

γ
, γ ≥ 1, W (v) =

〈v〉β

β
, β ≥ 2

where 〈x〉2 := 1 + |x|2, and the kinetic Fitzhugh-Nagumo equation

(1.2) ∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∂2
vvf

with
A(x, v) = ax− bv, B(x, v) = v(v − 1)(v − λ) + x

1
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for some a, b, λ > 0. The evolution equations are complemented with an
initial datum

f(0, x, v) = f0(x, v) on R2d.

It’s easily seen that both equations are mass conservative, that is

M(f(t, ·)) =M(f0),

where we define the mass of f by

M(f) =

∫
Rd×Rd

f(x, v)dxdv.

When G satisfies

LG = 0, M(G) = 1, G ≥ 0,

we say that G is a nonnegative normalized steady state.
For a given weight function m, we will denote Lp(m) = {f |fm ∈ Lp} the
associated Lebesgue space and ‖f‖Lp(m) = ‖fm‖Lp the associated norm.
With these notations, we can introduce the main result of this paper.

Theorem 1.1. (1) When 2 ≤ β, 1 ≤ γ, there exist a weight function m > 0
and a nonnegative normalized steady state G ∈ L1(m) such that for any
initial datum f0 ∈ L1(m), the associated solution f(t, ·) of the kinetic Fokker-
Planck equation (1.1) satisfies

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m),

for some constant C, λ > 0.
(2) The same conclusion holds for the kinetic Fitzhugh-Nagumo equation
(1.2).

In the results above the constants C and λ can be explicitly estimated in
terms of the parameters appearing in the equation by following the calcula-
tions in the proofs. We do not give them explicitly since we do not expect
them to be optimal, but they are nevertheless completely constructive.

Remark 1.2. Theorem 1.1 is also true when V (x) behaves like 〈x〉γ and W (v)
behaves like 〈v〉β, that is for any V (x) satisfying

C1〈x〉γ ≤ V (x) ≤ C2〈x〉γ , ∀x ∈ Rd,

C3|x|〈x〉γ−1 ≤ x · ∇xV (x) ≤ C4|x|〈x〉γ−1, ∀x ∈ Bc
R,

and

|Dn
xV (x)| ≤ Cn〈x〉γ−2, ∀x ∈ Rd, ∀n ≥ 2,

for some constant Ci > 0, R > 0, and similar estimates holds for W (v).

In fact, Theorem 1.1 is a special case of the following theorem.
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Theorem 1.3. Consider the following equation

(1.3) ∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∆vf

with
A(x, v) = −v + Φ(x)

where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|,
for some M > 0, define

φ2(m) = −v · ∇xm
m
− Φ(x) · ∇xm

m
+

1

2
divxΦ(x) +

|∇vm|2

m2

+
∆vm

m
−B(x, v) · ∇vm

m
+

1

2
divvB(x, v)

then if we can find a weight function m and a function H ≥ 1 such that

L∗m ≤ −αm+ b,

for some α, b > 0

− C1Hm ≤ φ2(m) ≤ −C2Hm+ C3,

for some C1, C2, C3 > 0, and for any integer n ≥ 2 fixed, for any ε > 0
small, we can find a constant Cε,n such that

n∑
k=2

|Dk
xΦ(x)|+

n∑
k=2

|Dk
x,vB(x, v)| ≤ Cn,ε + εH

and
∆x,vm

m
≥ −C4

for some C4 > 0, then we have there exist a steady state G such that

‖f(t, ·)−M(f0)G‖L1(m) ≤ Ce−λt‖f0 −M(f0)G‖L1(m).

for some C, λ > 0.

Remark 1.4. In fact φ2(m) satisfies∫
(f(Lg) + g(Lf))m2 = −2

∫
∇vf · ∇vgm2 + 2

∫
fgφ2(m)m2.

the computation can be found in Appendix C.

Remark 1.5. For the kinetic Fokker-Planck equation with general force 1.1,
we can take

m = eH1 , H1 = |v|2 + V (x) + εv · ∇x〈x〉, H = 〈v〉β + 〈x〉γ−1,

for some ε > 0 small, the computation can be found in Appendix B below.
For the kinetic Fitzhugh-Nagumo equation (1.2), we can take

m = eλ(x2+v2), H = |v|4 + |x|2,
for some constant λ > 0, the computation can be found in [18].



4 CHUQI CAO

For the kinetic Fitzhugh-Nagumo equation (1.2), an exponential conver-
gence with non-quantitative rate to the convergence has already been proved
in [18], our method improves the result to a quantitative rate.

If β = 2, the equation (1.1) will turns to the classical KFP equation

∂tf = Lf := −v · ∇xf +∇xV (x) · ∇vf + ∆vf + divv(vf),

This time we observe that

G = Z−1e−W , W =
v2

2
+ V (x), Z ∈ R+,

is an explicit steady state. There are many classical results on the case
γ ≥ 1, where there is an exponentially decay. We refer the interested readers
to [26, 5, 6, 14, 10, 11, 1, 17], and for the weak confinement case γ ∈ (0, 1),
there are also some polynomial or sub-geometric convergence results proved
in [1, 2, 7]. We also emphasize that our results for kinetic Fokker-Planck
equation with general potentials are to our knowledge new.

We carry out all of our proofs using variations of Harris’s Theorem for
Markov semigroup. Harris’s Theorem originated in the paper [12] where
Harris gave conditions for existence and uniqueness of a steady state for
Markov processes. It was then pushed forward by Meyn and Tweedie in
[25] to show exponential convergence to equilibrium. [13] gives an efficient
way of getting quantitative rates for convergence to equilibrium once the
assumptions have been quantitatively verified. We give the precise statement
in the next section.

One advantage of the Harris method is that it directly yields convergence
for a wide range of initial conditions, while previous proofs of convergence to
equilibrium mainly use some strongly weighted L2 or H1 norms (typically
with a weight which is the inverse of a Gaussian). The Harris method
also gives existence of stationary solutions under quite general conditions;
in some cases these are explicit and easy to find, but in other cases such
as the two models in our paper they can be nontrivial. Also the Harris
method provides a quantitative rate of convergence to the steady state,
which is better than non-quantitative type argument such as the consequence
of Krein Rutman theorem.

Let us end the introduction by describing the plan of the paper. In
Section 2, we introduce Harris Theorem. In section 3, we compute the
Lyapunov function for the kinetic Fokker Planck equation. In Section 4 we
present the proof of a regularization estimate on SL. In Section 5 we the
Harris condition for the general kinetic Fokker- Planck equation. Finally in
Appendix we present some

Acknowledgment. The author thanks to S. Mischler for furitful dis-
cussions on the full work of the paper. This work was supported by grants
from Région Ile-de-France the DIM program.
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2. Harris Theorem and existence of steady state

In this section we introduce Doeblin-Harris theorem and the existence of
steady state.

Theorem 2.1. (Harris- Doeblin Theorem) We consider a semigroup St with
generator L and we assume that
(H1)(Lyapunov condition) There exists some weight function m : Rd →
[1,∞) satisfying m(x) → ∞ as x → ∞ and there exist some constants
α > 0, b > 0 such that

L∗m ≤ −αm+ b,

(H2)(Harris condition) For any R > 0 there exist a constant T = T (R) > 0
and a positive, nonzero measure µ = µ(R) such that

ST f ≥ µ
∫
BR

f, ∀f ∈ X, f ≥ 0.

where BR denotes the ball centered at origin with radius R. There exist some
constants C ≥ 1 and a < 0 such that

‖Stf‖L1(m) ≤ Ceat‖f‖L1(m), ∀t ≥ 0, ∀f ∈ X, M(f) = 0.

Proof. See [23] Proposition 2.2 for instance. �

The Lyapunov condition also provides a sufficient condition for the exis-
tence of an invariant measure (for the dual semigroup).

Theorem 2.2. Any mass conserving positive Markov semigroup (St) which
fulfills the above Lyapunov condition has at least one invariant borelian mea-
sure G ∈M1(m), where M1 is the space of measures.

Proof. Step 1. We prove that (St) is a bounded semigroup. For f0 ∈M1(m),
we define ft := SL(t)f0, and we easily compute

d

dt

∫
|ft|m ≤

∫
|ft|L∗m ≤

∫
|ft|(−am+ b).

Using the mass conservation and positivity, integrating the above differential
inequality, we get∫

|ft|m ≤ e−at
∫
|f0|m+

b

a
(1− e−at)

∫
|f0|

≤ max(1,
b

a
)

∫
|f0|m,∀t ≥ 0,

so that (St) is bounded in M1(m).
Step 2. We prove the existence of a steady state, more precisely, we start
proving that there exists a positive and normalized steady state G ∈M1(m).
For the equivalent norm ||| · ||| defined on M1(m) by

|||f ||| := sup
t>0
‖SL(t)f‖M1(m),
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we have |||SL(t)f ||| ≤ |||f ||| for all t ≥ 0, that is the semigroup SL is a
contraction semigroup on (M1(m), ||| · |||). There exists R > 0 large enough
such that the intersection of the closed hyperplane {f ∈ M1(m); 〈f〉 = 1}
and the closed ball of radius R in (M1(m), ||| · |||) is a convex, non-empty
subset. Then consider the closed, weakly * compact convex set

K := {f ∈M1(m); |||f ||| ≤ R, f ≥ 0, 〈f〉 = 1},
Since SL(t) is a linear, weakly * continuous, contraction in (M1(m), ||| · |||)
and 〈SL(t)f〉 = 〈f〉 for all t ≥ 0, we see that K is stable under the action
of the semigroup. Therefore we apply the Markov-Kakutani fixed point
theorem and we conclude that there exists G ∈ K such that SL(t)G = G.
Therefore we have in particular G ∈ D(L) and LG = 0. �

3. Regularization property of SL

The aim of this section is to establish the following regularization prop-
erty. The proof closely follows the proof of similar results in [11, 17, 26]

Theorem 3.1. Consider the weight function m as defined in Theorem 1.3,
there exist η, C > 0 such that

‖SL(t)f‖L2(m) ≤
C

t
5d+1

2

‖f‖L1(m), ∀t ∈ [0, η].

for some weight function m. In addition, for any integer k > 0 there exist
we some α(k), C(k) > 0 such that

‖SL(t)f‖Hk(m) ≤
C

tα
‖f‖L1(m), ∀t ∈ [0, η].

as a consequence we have

‖SL(t)f‖C2,δ(m) ≤
C

tζ
‖f‖L1(m), ∀t ∈ [0, η],

for some δ ∈ (0, 1), ζ > 0

We start with some elementary lemmas.

Lemma 3.2. For ft = SL(t)f0, define an energy functional

F(t, ft) := A‖ft‖2L2(m) + at2‖∇vft‖2L2(m)

+ 2ct4(∇vft,∇xft)2
L2(m) + bt6‖∇xft‖2L2(m),(3.1)

with a, b, c > 0, c ≤
√
ab and A large enough. Then there exist η > 0 such

that

d

dt
F(t, ft) ≤ −L(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)) + C‖ft‖2L2(m),

for all t ∈ [0, η], for some L > 0, C > 0, as a consequence, we have

‖SLf0‖H1(m) ≤ Ct−6‖f0‖L2(m),
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for all t ∈ [0, η], iterating k times we get

‖SLf0‖Hk(m) ≤ Ct−6k‖f0‖L2(m).

Proof. We only prove the case k = 1, for k = 2, one need only replace f by
∂xif and ∂vif , similarly for k > 2. First by Theorem 1.3 and Remark 1.4
we have

(f,Lg)L2(m) + (g,Lf)L2(m) = −2(∇vf,∇vg)L2(m) + (f, gφ2(m))L2(m),

for any f, g ∈ L2(m). As a consequence, we have

d

dt
‖f‖2L2(m) = (f,Lf)L2(m) ≤ −‖∇vf‖2L2(m)−C1‖f‖2L2(mH1/2)

+C2‖f‖2L2(m).

By

(3.2) ∂xiLf = L∂xif +
d∑
j=1

∂2
xixjV ∂vjf,

and since

|∇2
xV (x)| ≤ CH1,

for some C > 0, we have

d

dt
‖∂xif‖L2(m)

= (∂xif,L∂xif)L2(m) + (∂xif,
d∑
j=1

∂2
xixjV ∂vjf)L2(m)

≤ −‖∇v(∂xif)‖2L2(m) − C1‖∂xif‖2L2(mH1/2)
+ C2‖∂xif‖2L2(m) + C(|∇xf |, |∇vf |)L2(mH1/2).

Using Cauchy-Schwarz inequality and summing over i = 1, 2, 3, ..., n , we get

d

dt
‖∇xf‖2L2(m)

≤ −
n∑
i=1

‖∇v(∂xif)‖2L2(m) −
C1

2
‖∇xf‖2L2(mH1/2)

+ C2‖∇xf‖2L2(m) + C‖∇vf‖2L2(mH1/2)
.

for some C > 0. Similarly using

(3.3) ∂viLf = L∂vif − ∂xif +

d∑
j=1

∂2
vivjW∂vjf,

and since

|∇2
vW (v)| ≤ C1

2d
H + C,
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we have

d

dt
‖∂vif‖2L2(m)

= (∂vif,L∂vif)L2(m) − (∂xif, ∂vif)L2(m) + (∂vif,
d∑
j=1

∂2
vivjW∂vjf)L2(m)

≤ −‖∇v(∂vif)‖2L2(m) − C1‖∂vif‖2L2(mH1/2)
+ C2‖∂vif‖2L2(m) +

C1

2d
‖|∇vf‖2L2(mH1/2)

+C‖∇vf‖2L2(m) − (∂xif, ∂vif)L2(m).

Using Cauchy-Schwarz inequality and summing over i = 1, 2, ..., n we get

d

dt
‖∇vf‖2L2(m)

≤ −
n∑
i=1

‖∇v(∂vif)‖2L2(m) −
C1

2
‖∇vf‖2L2(mH1/2)

+C‖|∇vf‖2L2(m) − (∇vf,∇xf)L2(m).

For the crossing term, we split it also into two parts. Using (3.2) and (3.3),
we have

d

dt
2(∂vif, ∂xif)L2(m)

= (∂xif,L∂vif)L2(m) − (∂xif, ∂xif)L2(m) + (∂xif,
d∑
j=1

∂2
vivjW∂vjf)L2(m)

+(∂vif,L∂xif)L2(m) + (∂vif,
d∑
j=1

∂2
xixjV ∂vjf)L2(m)

≤ −2(∇v(∂xif),∇(∂vif))L2(m) − ‖∂xif‖2L2(m) + C‖∇vf‖2L2(mH1/2)

+ C(|∇vf |, |∇xf |)L2(mH1/2),

Combining the two parts, using Cauchy-Schwarz inequality, and summing
over i we get

d

dt
2(∇vf,∇xf)L2(m)

≤ −2

n∑
i=1

(∇v(∂xif),∇(∂vif))L2(m) − ‖∇xf‖2L2(m) + C‖∇vf‖2L2(mH1/2)

+ C(|∇vf |, |∇xf |)L2(mH1/2),
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For the very definition of F in (3.1), we easily compute

d

dt
F(t, ft) = A

d

dt
‖ft‖2L2(m) + at2

d

dt
‖∇vft‖2L2(m) + 2ct4

d

dt
〈∇vft,∇xft〉2L2(m)

+bt6
d

dt
‖∇xft‖2L2(m) + 2at‖∇vft‖2L2(m) + 8ct3〈∇vft,∇xft〉2L2(m)

+6bt5‖∇xft‖2L2(m).

Gathering all the inequalities above together, we have

d

dt
F(t, ft) ≤ (2at−A+ Cat2)‖∇vft‖2L2(m) + (6bt5 − c

2
t4 + Cbt6)‖∇xft‖2L2(m)

+ (8ct3 − Cat2)(∇vft,∇xft)L2(m2) + CA‖ft‖2L2(m),

−
d∑
i=1

(at2‖∇v(∂vift)‖2L2(m) + bt6‖∇v(∂xift)‖2L2(m)

+ 2ct4(∇v(∂xift),∇v(∂vift))L2(m))−
C1

2
ct6‖∇xf‖2L2(mH1/2)

+ (−C1

2
at2 + 2Cbt6 + Cct4)‖∇vf‖2L2(mH1/2)

+ 2bt4C(|∇vf |, |∇xf |)L2(mH1/2),

for some C > 0. We observe that

|2ct4(∇v(∂xift),∇v(∂vift))L2(m))|
≤ at2‖∇v(∂vift)‖2L2(m) + bt6‖∇v(∂vift)‖2L2(m),

by our choice on a, b, c. So by taking A large and 0 < η small (t ∈ [0, η]),
we conclude to

d

dt
F(t, ft) ≤ −L(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)) + C‖ft‖2L2(m),

for some L,C > 0, and that ends the proof. �

Lemma 3.3. We have∫
|∇x,v(fm)|2 ≤

∫
|∇x,vf |2m2 + C

∫
f2m2,

Proof. We have∫
|∇(fm)|2 =

∫
|∇fm+∇mf |2

=

∫
|∇f |2m2 +

∫
|∇m|2f2 +

∫
2f∇fm∇xm

=

∫
|∇f |2m2 +

∫
(|∇m|2 − 1

2
∆(m2))f2,

=

∫
|∇f |2m2 −

∫
∆m

m
f2m2,

since
∆m

m
≥ −C,
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for some C > 0, we are done. �

Lemma 3.4. Nash’s inequality: for any f ∈ L1(Rd) ∩H1(Rd),there exist a
constant Cd such that:

‖f‖1+ 2
d

L2 ≤ Cd‖f‖
2
d

L1‖∇vf‖L2 ,

For the proof of Nash’s inequality, we refer to [16], Section 8.13 for instance.
�

Lemma 3.5. There exist λ > 0 such that

d

dt
‖f‖L1(m) ≤ λ‖f‖L1(m)(3.4)

which implies

‖ft‖L1(m) ≤ Ceλt‖f0‖L1(m)

In particular we have

‖ft‖L1(m) ≤ C‖f0‖L1(m), ∀t ∈ [0, η],(3.5)

for some constant C > 0.

Proof. It’ s an immediate consequence of the Lyapunov condition (H1). �

Now we come to the proof of Theorem 3.1.

Proof. (Proof of Theorem 3.1.) We define

G(t, ft) = B‖ft‖2L1(m) + tZF(t, ft),

with B,Z > 0 to be fixed and F defined in Lemma 3.2. We choose t ∈ [0, η],
η small enough such that (a+b+c)ZηZ+1 ≤ 1

2Lη
Z (a, b, c, L are also defined

Lemma 3.2). By (3.4) and Lemma 3.2, we have

d

dt
G(t, ft) ≤ λB‖ft‖2L1(m) + ZtZ−1F(t, ft)

−LtZ(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)) + CtZ‖ft‖2L2(m)

≤ λB‖ft‖2L1(m) + CtZ−1‖ft‖2L2(m)

−L
2
tZ(‖∇vft‖2L2(m) + t4‖∇xft‖2L2(m)),

where λ is defined in Lemma 3.5. Nash’s inequality and Lemma 3.2 imply

‖fm‖L2 ≤ C‖fm‖
2
d+2

L1 ‖∇x,v(fm)‖
d
d+2

L2 ≤ C‖fm‖
2
d+2

L1 (‖∇x,vfm‖L2 + C‖fm‖L2)
d
d+2 .

Using Young’s inequality, we have

‖ft‖2L2(m) ≤ Cεt
−5d‖f‖2L1(m) + εt5(‖∇x,vft‖2L2(m) + C‖ft‖2L2(m)).

Taking ε small such that Cεη5 ≤ 1
2 , we deduce

‖ft‖2L2(m) ≤ 2Cεt
−5d‖f‖2L1(m) + 2εt5‖∇x,vft‖2L2(m).
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Taking ε small we have

d

dt
G(t, ft) ≤ dB‖ft‖2L1(m) + C1t

Z−1−5d‖ft‖2L1(m),

for some C1 > 0. Choosing Z = 1 + 5d, and using (3.5), we deduce

∀t ∈ [0, η], G(t, ft) ≤ G(0, f0) + C2‖f0‖2L1(m) ≤ C3‖f0‖2L1(m),

which proves

‖SL(t)f‖L2(m) ≤
C

t
5d+1

2

‖f‖L1(m), ∀t ∈ [0, η].

together with Lemma 3.2 ends the proof. �

4. Proof of Harris condition

In this section we prove the Harris condition (H2) for equation (1.3).
Before the proof of the theorem, we first prove a useful lemma.

Lemma 4.1. For any R > 0, there exist a λ, ρ such that for any t > 0,
there exists (x0, v0) ∈ Bρ such that

f(t, x0, v0) ≥ λ
∫
BR

f0.

Proof. From conservation of mass, we classically show that

d

dt

∫
Rd
f(t, x, v)dxdv = 0,

so we have

(4.1) ‖SL(t)‖L1→L1 ≤ 1, ∀t ≥ 0,

Define the splitting of the KFP operator L by

B = L −A, A = MχR(x, v).

with M,R > 0 large, where χ is the cut-off function such that χ(x, v) ∈ [0, 1],
χ(x, v) ∈ C∞, χ(x, v) = 1 when x2 + v2 ≤ 1 , χ(x, v) = 0 when x2 + v2 ≥ 2,
and χR = χ(x/R, v/R). From the Lyapunov function condition (H1) and
taking M,R large, we have

(4.2) ‖SB(t)‖L1(m)→L1(m) ≤ Ce−λt, ∀t ≥ 0.

By Duhamel’s formula

SL = SB + SB ∗ ASL,

we directly deduce from (4.1) and 4.2 that

‖SL(t)‖L1(m)→L1(m) ≤ A, ∀t ≥ 0,
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for some A > 0. We fix R > 0 and take g0 = f01BR ∈ L1(Rd) with that
supp g0 ⊂ BR, ,denote gt = SLg0, ft = SLf0, then we have∫

Rd
gt =

∫
Rd
g0 =

∫
BR

g0 =

∫
BR

f0.

Moreover, since there exists A > 0 such that∫
Rd
gtm ≤ A

∫
Rd
g0m ≤ Am(R)

∫
BR

g0.

For any ρ > 0, we write∫
Bρ

gt =

∫
Rd
gt −

∫
Bcρ

gt

≥
∫
Rd
g0 −

1

ρ

∫
Rd
gtm

≥
∫
Rd
g0 −

Am(R)

ρ

∫
BR

g0 ≥
1

2

∫
BR

g0,

by taking ρ = 2Am(R). As a consequence, for any t > 0, there exist a
(x0, v0) ∈ Bρ which may depend on g0 such that

g(t, x0, v0) ≥ 1

|Bρ|

∫
Bρ

gt ≥
1

2|B2Am(R)|

∫
BR

g0 := λ

∫
BR

g0.

By the maximum principle we have

f(t, x0, v0) ≥ g(t, x0, v0) ≥ λ
∫
BR

g0 = λ

∫
BR

f0.

�

Theorem 4.2. The equation (1.3) satisfies the Harris condition.

Proof. By Theorem 3.1 we know take for t > η
2 , we have

∆vf,∇xf,∇vf ∈ C0,α,

and by equation

∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∆vf,

we have

|∂tf |+ |∂xf |+ |∂vf | ≤ C on [
η

2
, η]×B2R,

for some constant C > 0. By continuity for every R > 0, there exist
t1, t2, r0, ρ, λ > 0 which do not depend on f and (x0, v0) ∈ Bρ which may
depend on f , such that for all t ∈ (t1, t2), we have

f(t, x, v) ≥ λ

2
1Br0 (x0,v0)

∫
BR

f0,

where Br0(x0, v0) denotes the ball centered at (x0, v0) with radius r0, to
make x0, v0 f independent we use
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Theorem 4.3. Let f(t, x, v) be a classical nonnegative solution of

∂tf −∆vf = −(v + Φ(x)) · ∇xf +A(t, x, v) · ∇vf +B(t, x, v)f,

in [0, T )× Ω, where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|, ∀x, y ∈ Ω,

Ω is an open subset of R2 , and A,B : [0, T ) × Rd and bounded continuous
functions. Let (x0, v0) ∈ Ω, let V ≥ |v0 + Φ(x0)| ,then for any r, τ >
0 there are constants λ,K > 0, only depending on Ā = ‖A‖L∞(Ω), B̄ =

‖B‖L∞(Ω) and r2/τ , , such that the following holds: If Bλr(x0, v0) ∈ Ω, τ <

min(1/2, r3/4V ) and f ≥ δ > 0 in [0, τ) × Br(x0, v0), then f ≥ Kδ in
[τ/2, τ)×B2r(x0, v0).

Proof. See Appendix A. �

Coming back to the proof of Theorem 4.2. Define

T = min(t2 − t1, 1/2, r3
0/4R),

iterate n times we have for any t ∈ (t2 − T
2n , t2)

f(t, x, v) ≥ λ

2

n∏
i=1

Ki1B2nr0
(x0,v0)

∫
BR

f0,

take n large such that 2nr0 > 2ρ, since (x0, v0) ∈ Bρ implies that Bρ ⊂
B2ρ(x0, v0), we have

f(t, x, v) ≥ λ

2

n∏
i=1

Ki1Bρ

∫
BR

f0,

for any t ∈ (t2 − T
2n , t2), which is just Harris condition. �

Appendix A. Proof of spreading of positivity

Theorem A.1. Let f(t, x, v) be a classical nonnegative solution of

∂tf −∆vf = −(v + Φ(x)) · ∇xf +A(t, x, v) · ∇vf +B(t, x, v)f,

in [0, T )× Ω, where Φ(x) is Lipschitz

|Φ(x)− Φ(y)| ≤M |x− y|, ∀x, y ∈ Ω,

Ω is an open subset of R2 , and A,B : [0, T ) × Rd and bounded continuous
functions. Let (x0, v0) ∈ Ω, let V ≥ |v0 + Φ(x0)| ,then for any r, τ >
0 there are constants λ,K > 0, only depending on Ā = ‖A‖L∞(Ω), B̄ =

‖B‖L∞(Ω) and r2/τ , , such that the following holds: If Bλr(x0, v0) ∈ Ω, τ <

min(1/2, r3/4V ) and f ≥ δ > 0 in [0, τ) × Br(x0, v0), then f ≥ Kδ in
[τ/2, τ)×B2r(x0, v0).
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Proof. This proof is similar to the proof in [26] Appendix A. 22. Let

g(t, x, v) = eB̄tf(t, x, v), then g ≥ f and Lg ≥ 0 in (0, T )× Ω, where

L =
∂

∂t
+ (v + Φ(x)) · ∇x −∆v −A(t, x, v) · ∇v,

Let us construct a particular subsolution for L. In the sequel, Br will stand
for Br(x0, v0). For t ∈ (0, τ ] and (x, v) ∈ Ω \Br let

Q(t, x, v) = a
|v − v0|2

2t
− b〈v − v0, x−Xt(x0, v0)〉

t2
+ c
|x−Xt(x0, v0)|2

2t3
,

where Xt(x0, v0) = x0 + t(v0 + Φ(x0)) (abbreviated Xt in the sequel) is the
position at time t of the geodesic flow starting from (x0, v0), and a, b, c > 0
will be chosen later on. Let further

φ(t, x, v) = δe−µQ(t,x,v) − ε,

where µ, ε > 0 will be chosen later on. Let us assume b2 < ac, so that Q is
a positive definite quadratic form in the two variables v − v0 and x − Xt.
Then

Lφ = µδe−µQA(Q),

where

A(Q) = ∂tQ+ (v + Φ(x)) · ∇xQ−∆vQ+ µ|∇vQ|2 −A(t, x, v) · ∇vQ.

By computation,

A(Q) = −a |v − v0|2

2t2
+ 2b

〈v − v0, x−Xt〉
t3

− 3c
|x−Xt(x0, v0)|2

2t4

+ b
〈v − v0, v0 + Φ(x0)〉

t2
− c〈x−Xt, v0 + Φ(x0)〉

t3

− b
〈v − v0, v + Φ(x)〉

t2
+ c
〈x−Xt, v + Φ(x)〉

t3
− an

t

+ µ|av − v0

t
− bx−Xt

t2
|2 − a〈A, v − v0〉

t
+ b
〈A, x−Xt〉

t2

= B(
v − v0

t
,
x−Xt

t2
)− a〈A, v − v0〉

t
+ b
〈A, x−Xt〉

t2
− ad

t

− b
〈v − v0,Φ(x)− Φ(x0)〉

t2
+ c
〈x−Xt,Φ(x)− Φ(x0)〉

2t3
,

where B is a quadratic form on RnRn with matrix M ⊗ In,

M =

(
µa2 − a

2 + b −µab+ b+ c
2

−µab+ b+ c
2 µb2 − 3c

2

)
If a, b, c are given, then as µ→∞

trM = µ(a2 + b2) +O(1),

detM = µ(
3ab2

2
+ abc− b3 − 3a2c

2
) +O(1).
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Both quantities are positive if b ≥ a and ac ≥ b2, for example we can take
b = 2a, c = 8a, then as µ → ∞ the eigenvalues of M are of order µb2 and
ac/b > b. So for any fixed C we may choose a, b, c and µ so that

B(
v − v0

t
,
x−Xt

t2
) ≥ Cb( |v − v0|2

t2
+
|x−Xt|2

t4
).

where C is arbitrarily large. If t ∈ (0,min{ 1
M , 1}), we have

ε(Q) ≥ −8b
|x−Xt|2

t4
− 3b

|v − v0|2

t2
− 3bĀ2 − βd

2t
,

gathering the two terms, we have

A(Q) ≥ const.b
t
[C(
|v − v0|2

t
+
|x−Xt|2

t3
)− 1].

with C arbitrarily large. Recall that (x, v) /∈ Br, so
- either |v − v0| ≥ r, and then A(Q) ≥ const.(b/t)[Cr2/τ − 1], which is
positive if C > τ/r2;
- or |x− x0| ≥ r3, and then, for any τ ≤ r3/(4V ), then we have

|x−Xt|2

t2
≥ |x− x0|2

2t2
2|v0|2 ≥

r6

2τ2
− 2V 2 ≥ r6

4τ2
,

so A(Q) ≥ const.(b/t)[Cr6/4τ3 − 1], which is positive as soon as C >
4(τ/r2)3.

To summarize: under our assumptions there is a way to choose the con-
stants a, b, c, µ, depending only on d, Ā, r2/τ , satisfying c > b > a > 1 and
ac > b2, so that

Lφ ≤ 0, in [0, τ)× (Br \Br),
as soon as τ ≤ min(1, r3/(4V ), 1

M ). We now wish to enforce φ ≤ g for t = 0
and for (x, v) ∈ ∂(Br \Br); then the classical maximum principle will imply
g ≥ φ, in [0, τ)(Br \Br). The boundary condition at t = 0 is obvious since φ
vanishes identically there (more rigorously, φ can be extended by continuity
by 0 at t = 0). The condition is also true on ∂Br since φ ≤ δ and g ≥ δ. It
remains to impose it on ∂Br . For that we estimate Q from below: as soon
as ac/b2 is large enough, it’s easily easy to seen that for any (x, v) ∈ ∂Bλr

Q(t, x, v) ≥ a

4
(
|vv0|2

t
+
|x−Xt|2

t3
) ≥ a

4
min(

λ2r2

τ
,
λ6r6

4τ3
) ≥ αλ2

16
min(

r2

τ
,
r6

τ3
),

Thus if we choose

ε = δ exp(−µαλ
2

16
min(

r2

τ
,
r6

τ3
)),

we make sure that φ = δe−µQ − ε ≤ 0 on ∂Bλr, a fortiori φ ≤ g on this set,
and then we can apply the maximum principle.

So now we have φ ≤ g, and this will yield a lower bound for g in [τ/2, τ)×
(B2r \Br): indeed, if t ≥ τ/2 and (x, v) ∈ B2r \Br then

Q(t, x, v) ≤ 2c(
|v − v0|2

t
+
|x−Xt|2

t3
) ≤ 2c(8

r2

τ
+

1026r6

τ3
) ≤ 2068cmax(

r2

τ
,
r6

t3
)
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For λ large enough we find K0 > 0 such that

φ(t, x, v) ≥ δ[exp(−2068µcmax(
r2

τ
,
r6

τ3
))−exp(−−µaλ

2

16
min(

r2

τ
,
r6

τ3
))] ≥ K0δ,

because c = 8a, to find such λ it suffices that

2068× 16× 8 max(
r2

τ
,
r6

τ3
) ≤ λmin(

r2

τ
,
r6

τ3
),

by consequence λ depends only on r2/τ .
Finally we find K,λ > 0 depending on Ā, C̄ and r2/τ such that

f ≥ K0δe
−τC̄ on [τ/2, τ)× (B2λ \Br),

�

Appendix B. Lyapunov function for the KFP equation

In this section we will give Lyapunov condition for the kinetic Fokker-
Planck equation.

Theorem B.1. Denote L the operator of the kinetic Fokker-Planck equation
(1.1), then there exist a weight function m satisfies Theorem 1.3.

Proof. First we have

L∗f = v · ∇vf −∇xV (x) · ∇vf + ∆vf −∇vW (v) · ∇vf,

we compute

L∗(v2 + V (x)) = d− v · ∇vW (v),

and

L∗(v · ∇x〈x〉) = v∇2
x〈x〉v −∇xV (x) · ∇x〈x〉+∇vW (v) · ∇x〈x〉,

since

∇2
x〈x〉 ≤ CI,

where I is the d × d identity matrix, combine the two terms together we
have

L∗(|v|2 + V (x) + εv · ∇x〈x〉) ≤ C − C(〈v〉β + 〈x〉γ−1),

with ε > 0 small, denote

H = |v|2 + V (x) + εv · ∇x〈x〉,

and since

L∗eλH

eλH
= λ(v · ∇xH −∇xV (x) · ∇vH + ∆vH + λ|∇vH|2 −∇vW (v) · ∇vH),

take λ > 0 small, we have

L∗(eλH) ≤ −C1H1e
λH + C2,
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for some constant C1, C2 > 0, with H1 = 〈v〉β + 〈x〉γ−1, then the Lyapunov
condition follows. For the second inequality, by Lemma C.1 we have

φ2(eλH) = λ(v · ∇xH +∇xV (x) · ∇vH +
1

2
∆vW (v)

+ ∆vH + (λ2 + λ)|∇vH|2 −∇vW (v) · ∇vH),

and we still have

φ2(eλH) ≤ −C1H1e
λH + C2,

for some constant C1, C2 > 0, thus the theorem is proved.
�

Appendix C. Computation for φ2(m)

Lemma C.1. Define

(C.1) ∂tf := Lf = ∂x(A(x, v)f) + ∂v(B(x, v)f) + ∆vf,

with

A(x, v) = −v + Φ(x),

Then for any weight function m we have∫
(f(Lg) + g(Lf))m2 = −2

∫
∇vf · ∇vgm2 + 2

∫
fgφ2(m)m2,(C.2)

with

φ2(m) = −v · ∇xm
m
− Φ(x) · ∇xm

m
+

1

2
divxΦ(x) +

|∇vm|2

m2

+
∆vm

m
−B(x, v) · ∇vm

m
+

1

2
divvB(x, v),

where we use
∫
f in place of

∫
Rd×Rd fdxdv for short.

Proof. Define

T f = −v · ∇xf,
we have∫
f(T g)m2 +

∫
(T f)gm2 =

∫
T (fg)m2 = −

∫
fgT (m2) = −2

∫
fgm2Tm

m
,

for the term with operator ∆ we have∫
(f∆vg + ∆vfg)m2 = −

∫
∇v(fm2) · ∇vg +∇v(gm2) · ∇vf

= −2

∫
∇vf · ∇vgm2 +

∫
fg∆v(m

2)

= −2

∫
∇vf · ∇vgm2 + 2

∫
fg|∇vm|2 + ∆vmm,
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using integration by parts∫
fdivv(B(x, v)g)m2 + gdivv(B(x, v)f)m2

=

∫
fB(x, v) · ∇vgm2 + gB(x, v) · ∇vfm2 + 2divvB(x, v)fgm2

= −
∫
fg∇v · (B(x, v)m2) + 2divvB(x, v)fgm2

=

∫
−2fgB(x, v) · ∇vm

m
m2 + divvB(x, v)fgm2,

similarly ∫
fdivx(Φ(x)g)m2 + gdivx(Φ(x)f)m2

=

∫
−2fgΦ(x) · ∇vm

m
m2 + divxΦ(x)fgm2,

so (C.2) are proved by combining the terms above. �
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