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Abstract

This study focuses on the assessment of a linear algorithm for comput-
ing the spherical harmonic coefficients of the gravitational potential of a
constant density polyhedron. The ability to compute such an expansion
would favor several applications, in particular in the field of the inter-
pretation and assessment of GOCE gravitational models. The studied
algorithm is the only known method that would achieve this computation
at a computational cost depending linearly on the number of computed
coefficients. We show that although this methods suffers from severe di-
vergence issues, it could be applied to retrieve band-limited estimates of
the potential generated by a constant density polyhedron.
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1 Introduction

Constant density polyhedra provide a versatile representation of whole plane-
tary bodies as well as density discontinuities inside a planet at any scale. This
representation allows the exact computation of the gravitational potential of



such features through well known analytical formulas (Barnett, 1976; Petrovi¢,
1996; Pohéanka, 1988). These formulas yield the potential value at any compu-
tation point, providing that their singularities are properly managed (Tsoulis
and Petrovi¢, 2001). Applications range from the accurate computation of the
terrain effect (Tsoulis, 2001) to the modelling of the gravitational field of small
planetary bodies (Simonelli et al., 1993; Werner and Scheeres, 1996). Such an-
alytical computations show two major drawbacks. First, the computation is
pointwise: one single computation yields the potential or its directional deriva-
tives at a single computation point. The computation might become highly
tedious as the number of computing locations increases. Secondly, in the con-
text of some specific applications, one might seek for a band-limited estimate of
the potential, which cannot be obtained through these analytical formulas.

In the context of the forthcoming GOCE satellite, we are here interested
in numerical methods for computing the spherical harmonic expansion of the
gravitational potential of a constant density polyhedron. A direct computation
of such an expansion from the geometry of the polyhedron would provide on
the one hand a band-limited estimate of the potential that would be directly
comparable to GOCE derived potential models, and on the other hand a fast
access to the value of this band-limited potential at a large number of locations.
Such a tool would enhance the interpretation of GOCE data, allowing to remove
the signal from known features (topography, local geological models, etc.) from
GOCE derived gravitational models at chosen wavelengths. When the density
of the body can be described as a function of the direct distance to its geometric
center, the computation of the spherical harmonic expansion of its potential ad-
mits some numerical (Chao and Rubincam, 1989) or even analytical (Balmino,
1994; Martinec et al., 1989) solutions. In the case of the general polyhedron,
no closed formulation is known. We are aware of two numerical methods, pro-
posed by Werner (1997), and Jamet and Thomas (2004). Both rely on recursion
relationships. The quadratic complexity of Werner’s method makes it only ap-
plicable to very low degrees. The method by Jamet and Thomas is of linear
complexity with respect to the number of computed coefficients and the number
of edges of the polyhedron. It has never been numerically implemented yet. We
focus here on the assessment of Jamet and Thomas’s algorithm. The implemen-
tation was adapted in order to work with fully normalized spherical harmonics,
as defined by Heiskanen and Moritz (1967, p. 31). In section 2, we restrict
ourselves to a brief presentation of the principles of the method. Then, in sec-
tion 3, we present some numerical experiments that underline the strenghts and
weaknesses of the proposed method. Finally, in section 4, we comment on the
possible applications of this algorithm.

2 Algorithm

The spherical harmonic expansion of the gravitational potential of any finite
body can be written as

V(r,0,\) = Giw{l—l-f z": Vn7m(r,9,)\)}

n=1m=0



with
‘/n,m (T, 0, )\) = Cn,mRn,m (Ta 9, /\) +
Snﬂ’nSn,m (’I“, 97 A) (1)

where (r,0, \) are the spherical coordinates of the considered point (radius, co-
latitude and longitude), G the gravitational constant, M the mass of the body,
R, m and S, ,, are the irregular solid harmonics, defined here as

Ry (1,0,X) = (%)n P, (cos @) cos (mA)
Spom (r,0,\) = (%)n P, m (cosf)sin (mA)

with a being an arbitrary length greater than the longest radius including the at-
tracting sources. In this expression, ¢, ,, and s, ,, are the coeflicients of the ex-
pansion to be computed. These coefficients, like their normalized counterparts,
can be written as a volume integral defined over the whole body (Heiskanen
and Moritz, 1967). When the body is of constant density, this volume integral

writes
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where dv is the volume element, hgf)m and hifin are the regular solid harmonics
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while ky(fzn and k,(fzn are constants depending on the degree n, the order m and
the density of the body. Jamet and Thomas’s method relies on the following
principles. Firstly, the polyhedron is decomposed into simplices originating at
the origin of the coordinate system. The volume integral over each simplex is
then converted into a surface integral over the corresponding planar face of the
polyhedron by using the divergence theorem of Gauss. So far, this procedure is
much similar to the methods for exhibiting analytical formulas of the potential,
as the one used for instance by Petrovi¢ (1996). Applying the Stokes theorem
to the surface integral yields then a recurrent relationship between the surface
integrals of same order m and of consecutive degree n, from which one gets
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where the line integrals are computed along each edge of this planar face, and
where o, ,,, and 3y, ,,, are constants depending on geometry of the handled planar
face, its edges, and on degree n and order m. In particular Jamet and Thomas
(2004) show that

d

u,.n )
where A (n,m) is a constant depending on degree and order, d is the distance
from the origin of the frame to the plane of the face, n the unit vector normal
to the face, and u, the unit vector of the z axis of the frame. The line integrals
themselves are expressed through a complex set of recurrent relationships that
will not be exposed here. The complete set of relationships as well as their
derivation can be found in Jamet and Thomas (2004). Similar relationships can
be obtained for the normalized spherical harmonic coefficients. The experiments
presented in the following make use of the latter formulation.

= A (n,m)

3 Assessment

In order to numerically evaluate the linear algorithm for the computation of
polyhedral potential spherical harmonic coefficients, we set up a simple case
study consisting of a single tetrahedron of constant density and compare the
potential computed from its spherical harmonic expansion to the direct compu-
tation with closed analytical formulas (Petrovi¢, 1996). This tetrahedron is the
same test body as the one used by Werner (1997).

The geometry of the tetrahedron is shown in figure 1. Each of the four
vertices is given by means of its coordinates relative to a local orthogonal ref-
erence frame. The origin of the reference frame has been arbitrarily chosen as
one of the four vertices. Besides vertex coodinates, the implementation of the
linear algorithm requires the knowledge of the vertex topology given as an extra
topology matrix with the precondition that the normal vector to each corre-
sponding face will point outside of the tetrahedron. Thus, the two matrices
defining respectively the coordinates of the four vertices and their linkage are
the following

()
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Another important parameter in the numerical experiments is the location
of the computation point. The expression of the potential in a spherical har-
monic expansion implies that the numerical behavior of the series is essentially
governed by the powers of the ratio of radii 7p/rp where P corresponds to the
observation point and @ is a point of the attracting source. It has been theo-
retically argued that when rp > rq, the series converges for all points located
outside a sphere enclosing all masses; for rp < rg, the convergence area is again
a sphere, such that the attracting masses are nowhere included or intersected
(Tsoulis, 1999). The consequence for the numerical computation of the poten-
tial from its spherical harmonic expansion is that a higher degree of expansion
using better precision spherical harmonic coefficients is needed for points lo-
cated close to the attracting source. One should expect conversely that a small
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Figure 1: Constant density tetrahedron (5.52 g/cm?® ) taken as the attracting
source in our numerical experiments. In this case, the upper face of the tetra-
hedon is horizontal. The farthest point from the origin has been taken as the
computation point.

number of spherical harmonic coefficients would be sufficient for reaching the
same agreement with the analytical value of the potential when the computation
point is located at a large distance from the source. As a result, the best point
for performing a numerically significant test of the linear algorithm has to be
chosen within the convergence area as close as possible to the source. Thus, the
computations in our numerical experiments took place at point [—2,—1,1] of
the source tetrahedron where the convergence condition of spherical harmonic
series is still satisfied.

Finally, like in Werner (1997), the constant density of the tetrahedral source
was chosen equal to 5.52 g/cm?, which corresponds to an average density value
of the Earth’s masses.

3.1 Case of non horizontal faces

It should be noticed considering the geometry of the tetrahedron used in our
experiments that the face formed by vertices numbered 1, 2, and 3 is horizontal,
that is parallel to the zy plane of the reference frame. We wanted to investigate
in detail whether such a geometry is too much specific and might hide some
inherent numerical instabilities when used in the linear algorithm.

The first experiment we carried out for this reason consisted in calculat-
ing the potential values provided by the tetrahedra resulting from a rotation
around the x axis of the above-mentioned tetrahedron. The potential values
were compared to those obtained from a direct computation using closed ana-
lytical formulas and the results of the comparison are given in figure 2. It is
clear from this figure that the convergence of the series is ensured when the face
of the tetrahedron opposite to the origin is horizontal, which occurs for rotation
angles equal respectively to 0° and 180°. Conversely, for small rotation angles
(< 35° or > 135°) the convergence can be only observed at low degrees (< 25).
For high rotation angles, the divergence immediately occurs except when the
tetrahedron face is vertical. In this latter case, specific recursion formulas are
used, that do not show the same instabilities.
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Figure 2: Potential relative error as a function of both the rotation angle and the
maximum degree of the spherical harmonic expansion. White indicates when
the relative error is greater than 100%.

It is likely that the numerical instabitity observed for a tetrahedron with a
tilted face is due to the expression of the recursion fomulas used to calculate
the coefficients (eqs. 2 and 3). To put it more precisely, spherical harmonic
coeflicients of degree n are related to those of degree n — 1 by the multiplicative
factor a,, ., in inverse proportion to the cosine of the angle between the outer
normal of the tetrahedron face n and the unit vector u, of the z axis of the
reference frame (eq. 4). This factor increases appreciably when the tilt angle of
the tetrahedron face increases, thus causing an exponential growth of the error
propagated upon coefficients for increasing degrees. Other possible causes of
instabilities that are not discussed here where identified in the recursion process
for the computation of the line integrals (unpublished work). They are linked
with the coordinates of the leading unit vector of the edges of the tetrahedron
and might explain the dissymetry of figure 2 around the rotation angle 90°.

To cope with this instability, an alternative means for computing any tetra-
hedral source contribution would be to perform the computation in suitable
reference frames where the faces involved in the recursion computation remain
always horizontal. This method is theoretically justified by the fact that the
potential value does not depend on the reference frame used to locate the at-
tracting source and the computation point. From now on, tetrahedral sources
with one horizontal face will be only considered.

3.2 Precision in coefficient computation

For the purpose of estimating the precision in spherical harmonic coefficient
computation by means of the linear algorithm, a computational method to de-
termine the coefficient relative errors was devised and experimented with our
case study. Figure 3 shows the relative errors affecting the coefficients, obtained
by running the linear algorithm with a random perturbation of the last signifi-
cant digit of all constant inputs at each step of the recursion and by comparing
the results with a computation without perturbation. When using the linear
algorithm, the coefficients are calculated vertically from the diagonal by increas-
ing the degree at constant order. The figure indicates that the linear algorithm
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Figure 3: Coefficient relative error as a function of both degree and order. Black
indicates when the relative error is greater than 100%.

is stable when the degree increases except near the diagonal where degree and
order are similar. The algorithm becomes stable again when the degree n and
the order m satisfy n > 1.8 m.

The maximum degree of the reachable spherical harmonic expansion by
means of the linear algorithm can be increased by enlarging the range of the
floating-point representation used in the computation. However, once the re-
cursion formulas have become divergent, the coefficient values can no longer be
recovered. This is the main limitation inherent to the linear algorithm, which
means that some additional procedures should be needed to make the linear
algorithm usable in practice at very high degrees.

3.3 Divergence control

The last numerical experiment was intented to test the convergence of the linear
algorithm for increasing spherical harmonic expansion degrees. Figure 4 shows
the relative errors of the cumulated potential as a function of the maximum
spherical harmonic degree. These errors have been calculated by comparing the
values of the potential provided by the spherical harmonic series deduced from
the linear algorithm and those calculated by means of close analytical formulas,
thus giving the accuracy of the potential spherical harmonic series for each
maximum degree of expansion. The same computation has been carried out
with removal of all the coefficients that exhibit a formal relative error greater
than 1079 as calculated through the method described in subsection 3.2. The
potential spherical harmonic series has proven to actually converge up to degree
600. The divergence that occurs afterwards is outstanding, following a quasi-
exponential growth of the error as the degree increases. The convergence which
is obtained, on the other hand, after removing the less precise coefficients is
nicely preserved up to degree 1400 where the relative error of the potential
determination is somewhat less than 1075.

Our findings suggest that the convergence of the potential spherical harmonic
expansion resulting from this linear algorithm can be efficiently controlled to
ensure the determination of the potential with a reasonable accuracy, which may
be sufficient for many applications (terrain effect computation, interpretation of
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Figure 4: Relative error of the cumulated potential as a function of the maximum
degree of the spherical harmonic expansion computed with all the coefficients
(gray solid line) and after removing coefficients with a formal error greater than
107° (black thick solid line).

the gravitational signal through comparison of gravity maps, etc.).

4 Conclusions

A linear algorithm for computing potential spherical harmonic coefficients of
constant density polyhedral sources has been implemented with a simple case
study consisting of a single tetrahedron of constant density. The divergence
of this algorithm when using a polyhedral source with a non horizontal face
opposite to the origin of the frame has been demonstrated conclusively in our
first numerical experiment. A change of reference frame which would link each
tetrahedron to its horizontal configuration is essential before applying this lin-
ear algorithm, which can be readily performed using rotation matrices. The
numerical estimation of the coefficient precision has provided the undisputed
evidence that the linear algorithm exhibits inherent instabilities affecting the
very first terms of the recursion formulas (nam) at high degrees, which would
have cast some doubt upon its efficiency. Fortunately, the effect of those nu-
merical instabilities can be completely avoided by removing the coefficients of
poor precision without significantly deteriorating the overall potential accuracy.
Providing these precautions, the linear algorithm will be empowered to be used
for many applications such as, and among others, gravity field and geoid mod-
elling at desired resolution, exact filtering of terrain effects in the computation
of residual terrain models or terrain corrections. Moreover, the computation
of the potential coefficients generated by real terrestrial bodies will allow us to
compare them directly to the coefficients retrieved by gravity exploring satellites
such as GOCE. Figure 5 shows an illustration of the ability of the method to
map the gravity field at desired resolution and at any location, thus allowing a
forward modelling of the gravity sources detectable by GOCE.
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Figure 5: These maps show the global variations of the T, component of the
gravity tensor (latitude and longitude range from respectively -90° to +90°
vertically and 0° to 360° horizontally) generated by the tetrahedral source of
our case study, and computed on the Earth’s surface and at GOCE’s altitude
(250 km). The gray scale does not correspond to absolute gravity gradient
values, but shows only their relative amplitudes. As expected, the corner which
is the closest to the Earth’s surface can be revealed by the high degrees of the
spherical harmonic expansion (upper and lower maps).
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