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Abstract

In this paper, heterogeneous set of parallel buck converters, feeding an unknown resistive load via a

common DC bus, is considered. When addressing control design problem of this interconnected power

converter, one has to accommodate competing objectives of (i) voltage regulation and (ii) power distribu-

tion among branches, also called current-sharing in this context. Related dynamics being coupled, clas-

sical solution resorts to frequency separation to prevent undesirable interaction between them. In stark

contrast with this approach, this paper proposes a novel framework which completely separate voltage

regulation from current distribution dynamics without frequency separation, hence offering tractability

without sacrificing performance. Such a reformulation is performed on the open-loop model so that

control law candidates are not confined in some particular class. Arbitrary large set of heterogeneous

converters can be handled. Remarkably, voltage regulation boils down to the control of a single virtual

buck converter. Controller design example exploiting the new structure is provided. In the context of

unknown resistive load, this controller achieves voltage regulation and minimizes overall power losses at

the steady-state while taking current limits of each branch into account. Those results are supported by

formal statements and proofs, and assessed through experimental results.

Keywords: Power-system control, Parallel power converters, DC-DC converters, Current-sharing,

Multi-port converters.

1. Introduction

1.1. About parallel interconnection of converters

Substituting a single high-capacity centralized electrical power converter by multiple distributed

converters connected in parallel is a strategy that becomes more and more popular. Indeed, paralleling

converters offers several advantages such as increased reliability due to redundancy and distribution of5

stresses of components, ease of maintenance and repair, improved thermal management and reduced

output ripple by interleaving phase of Pulse Width Modulation (PWM) [1, 2, 3].

An essential feature offered by parallel interconnection of converters is the possibility to distribute load

current. Indeed, if regulation of output voltage imposes overall current, distribution of current among
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converters remains free. This degree of freedom is usually addressed via the so-called balanced current-10

sharing which uniformly distributes currents among converters, see e.g. [1, 2]. If identical converters

(same class of converters sharing the same electrical components) are considered, this strategy is fully

justified by the fact that it equally distributes stresses among converters.

Vast majority of existing results on this topic have been derived in the context of identical converters.

However, several papers demonstrate that making non-identical converters working in concert would15

improve the unloading transient response and reduce the output voltage overshoot [4, 5, 6]. In the

patent [7], asymmetric inductors in multi-phase DC/DC converters are proposed to achieve fast transient

response and to optimize efficiency over the load range. Note, however, that classical balanced current-

sharing should be reconsidered in this context. Indeed, it has been recently shown that this policy cannot

be optimal for all load with respect to overall power losses [8].20

On the basis of the previous considerations, this paper aims contributing to the control counterpart

of interconnection of nonidentical converters.

1.2. On the related control problem

Few papers in the literature consider control of interconnection of non-identical converters and, hence,

seeks nonuniform current-sharing at the steady-state. Most of existing solutions achieving such a cur-25

rent distribution rely on “virtual droop resistors” which can be interpreted as a low-frequency negative

feedback on current which aims adjusting equilibrium current [9, 10]. Then a rule of thumb is to fix

the droop resistor magnitude for bus voltage to remain into allowed bounds when the converter injects

its maximum power [11, 9]. As noticed in [10], this strategy maintains constant current ratio between

converters. Yet, this prevents current-sharing minimizing power losses to be achievable. Theoretical and30

experimental proof of this fact has been provided in [8, 12], together with optimal control law imposing

load dependent current ratio at the steady-state.

Solution proposed in [8] suffers from two limitations, though. First, steady-state current constraints

cannot be taken into account. Controller addressing this issue is yet highly desirable since violating

those constraints might overheat coils. Second, stability is achievable under some frequency separation35

argument.

Let us now comment on this second limitation. When dealing with parallel converters, both voltage

and current distribution have to be regulated. It is well known that control of both related dynamics may

badly interact and, in turn, induce closed-loop instabilities if not properly treated [1, 2]. This phenomena

can be experienced either when homogeneous or heterogeneous set of converters is considered. Controlling40

parallel converters, and therefore dealing with the above (possibly interacting) dynamics, has been a

topic of extensive research effort well surveyed in [2, 13] for the homogeneous case. Remarkably, almost

all existing solutions make use of a two nested loops scheme and resort to some frequency separation

argument. Bandwidth of voltage regulation (the outer loop) is typically narrower than that of current

distribution control (the inner loop) [2]. By contrast, outer loop proposed in [8] performs fine voltage and45

current distribution regulation with comparable transient duration. However, it relies on low frequency
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model of some closed-inner-loop which prestabilized the system, so that frequency separation remains

the key to achieve stability.

If this strategy offers tractability, it also unavoidably lowers performance: Transient of the outer

loop has to be sufficiently slow not to destabilize the inner loop. Relying on models with complex50

impedances, interesting research directions have been opened to go beyond this frequency separation: In

[1] arbitrary number of identical converters are considered whereas the case of two different converters is

treated in [14]. Theoretical stability certificates of the overall system are not formally provided, though.

Furthermore, control schemes (the so-called “master/slave” and “democratic”) are a priori imposed even

if discussion about their intrinsic conservatisms seems hard to handle. In addition to that, generalization55

to arbitrary number of non identical converters along those lines leads to calculus burden.

We believe that limitations of most of those existing results are inherent to the retained methodology

which heavily relies on interconnection of single input single output (SISO) transfer functions. In this

paper, we seek a different strategy which rather adopts multi-variable point of view, allowing for geometric

decomposition of both state and input spaces.60

1.3. Scope and contributions of the paper

Parallel interconnection of arbitrary number of buck (step-down) DC/DC converters having distinct

characteristics is considered in this paper. Resulting electrical circuit is depicted by Fig. 1 considering

m branches.
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Figure 1: Electrical schematic.
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In this context, contribution of this paper is to provide a novel framework for control design. From the65

m inputs (duty cycles) to m + 1 outputs (currents and output voltage) model, a batch of disconnected

SISO subsystems is constructed. The two formulation being equivalent, it is shown that the original

control problem reduces to independent feedback subdesigns related to mere SISO models. Let us

already expose benefits of the proposed framework, as compared with classical existing solution.

No frequency separation assumption. Perhaps, the most remarkable feature of the novel framework is to70

completely separate voltage regulation from current distribution dynamics, hence preventing undesirable

interaction between them either during transient or at steady-state. No frequency separation assumption

being required, this new scheme offers tractability without sacrificing performance. This suggests that

the two related control objectives are actually not competing if properly treated.

Broad domain of applicability. This new framework possesses remarkable universality properties. (i) Ar-75

bitrary large set of heterogeneous converters can be handled, i.e. electrical components of each branches

can be freely selected. This is in contrast with most of existing control solution which relying on the

assumption of strictly identical branches. (ii) Whereas most of existing control solution are concerned

with balanced current-sharing, arbitrary and load-dependent current-distribution can be easily consid-

ered as control objective. This makes the new scheme suitable for heterogeneous set of converters for80

which balanced current-sharing is not optimal with respect to power losses [12]. (iii) Dynamical model

associated with this new framework are constructed by manipulated open-loop equations, instead of some

precompensated model. As a result, control law candidates are not restricted to the ones compatible with

preselected inner controller. To put it another way, every control scheme solving the control problem

can be reformulated into the proposed framework.85

Suitable structure for control design. Formulation of the new framework allows simple controller deriva-

tion. (i) Adopting the form of a cascaded scheme, it allows for standard tools related to this dynamical

structure to be used and, in turn, formal stability proofs to be more easily derived. (ii) Circuit theory

interpretation shows that voltage regulation boils down to classical output voltage control of a single

virtual buck converter whereas current distribution assignment is nothing but a set of independent reg-90

ulation problem of current flowing through a single virtual coil connected to a controlled voltage source.

This interpretation allows designers to make use of physical intuition throughout design procedure.

1.4. Outline and notations

The paper is structured as follows. In Section 2, we formalize our problem statement and introduce a

suitable preliminary assumption for the problem to be well-posed. Model description is provided and a95

running example of three bucks serving didactic purpose throughout this paper is proposed. In Section 3,

the classical solution of nested loops is reviewed. Its underlying assumption about frequency separation

between the loops is discussed and highlights via simulations. In Section 4, open-loop equations are

manipulated to arrive at our main contribution, which significance is discussed. In Section 5, an example
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of control design, whose structure is naturally suggested by the new framework, is provided. In Section100

6, performance of this controller is assessed via the physically relevant scenario where closed-loop system

has to asymptotically converges to the set-point regulating output voltage as well as minimizing overall

power losses while sticking into admissible power limits associated with each branch. Finally, in Section

7 we discuss relevance of the new framework to cop with untreated difficulties like constant-power load,

measurement failure and input saturation.105

A preliminary version of this paper was presented in [15]. Here, as compared to [15], we propose

an extensive discussion on the pervasive two-loops scheme considered in the literature (Section 3). We

also include statements and proofs of the stability property of the proposed controller (Section 5.2). In

addition to that, proposed design strategy is illustrated throughout the paper by means of a running

example (see Subsection 2.5 and “Example” environments), and assessed via experiments tackling a110

scenario which is meaningful from power electronics point of view (Section 6).

Notation: The symbol Im stands for the identity matrix of dimensions m ×m. The null matrix

of size m× n is denoted by 0m×n. The vector (column matrix) of size m for which every entry is 1 (0)

is denoted by 1m (0m). The notation xk refers to the k-th element of the vector x, with 1 being the

index of the first element. The operator ’diag’ builds diagonal matrix from entries of the input vector115

argument.

Nomenclature: Main variables introduced in this paper are listed in Table 1.

Table 1: Nomenclature
v Voltage bus

ik Current in the k-th branch

dk Duty cycle of the k-th branch

Ek Voltage input of the k-th branch

Lk Inductance of the k-th branch

R ∈ L Load magnitude and its domain

C Output capacitor

m Number of branches

ir(R) Load-dependent current reference

vr Voltage reference

σ Sum of individual currents, see (2c)

δ Part of the new state vector, see (5)

T Transformation matrix, see Section 4.1

λk, µ Entries of the new input vector, see (11)

Leq Equivalent inductance, see Section 4.1

Eeq Equivalent voltage source, see Section 4.1
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2. Problem statement and model description

This section aims formalizing problem considered in this paper, as well as provides equations governing

dynamical model.120

2.1. State-variable and related dynamics

The electrical circuit represented by Fig. 1 is considered. It corresponds to parallel interconnection

of m buck converters sharing a single capacitor and connected to a common resistive load R. Magnitude

of the load is supposed to be constant and to belong to the compact and connected set

L :=
[
R R

]
⊂ R>0.

In addition to that, it is emphasized that R is unknown, as in most of practical situations.

Converters are controlled via PWM and dk refers to duty cycle of k-th converter where k belongs to

the following set

K := {1, . . .m}.

Voltage of DC bus is denoted by v and current in k-th inductor Lk is referred to as ik. As shown by

next section, state vector x of the related model gathers those signals:

Rm+1 3 x :=
[
iᵀ v

]ᵀ
.

Magnitude of voltage sources Ek are supposed to be known and constant. Capacitor C is connected in

parallel to the load.

Bus voltage regulation to a given value vr ∈ R>0 represents the foremost control goal.1 Nonetheless125

v only depends on the total current, that is the sum σ of each ik. Thus, additional degrees of freedom

remain in the way σ is distributed among converters. For this reason, current distribution control

(also called “current-sharing control”) is considered as an additional control objective so that power-flow

reference through the interconnection is fully defined. Yet, dynamics related to those two objectives

are intrinsically coupled, so that particular care should be taken not to jeopardize one of them when130

addressing the other.

2.2. General formulation of current-sharing problem

Typically, one seeks uniform current distribution, also called balanced current-sharing, where steady-

state currents of each branch are identical. Since sum of currents must equal vr/R at the steady-state,

uniform current distribution requires ik to converge to vr/(mR). As a result, control problem reads135

as follows: Design a state-feedback control law (i, v) 7→ d such that, for all load R ∈ L, voltage v(t)

asymptotically tends to vr and ik(t), (k ∈ K) converges to vr/(mR). Whenever identical converters

1Note that buck converter is a device that can only reduce input voltage so that each Ek must be larger than voltage

reference vr.
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are considered, balanced current-sharing strategy is fully justified by the fact that it equally distributes

stresses among converters. This policy has to be reconsidered if interconnection of non-identical convert-

ers is addressed, though. Indeed, it has been recently shown in [8] not only that balanced current-sharing140

cannot be optimal for all load with respect to overall power losses but also that optimal current ratio (i.e.

proportion of the total current that is to be affected to the each branch) is in general load-dependent.2

Motivated by this analysis, this paper aims addressing the general problem where current vector

reference ir can arbitrarily depend on R. This set-up allows set-point (ir(R), vr) to be tracked to be

selected beforehand via optimization problem of the following kind:

min
i
J(i) s.t. v = vr,

dik
dt

∣∣∣∣
k∈K

= dv

dt
= 0. (1)

Here, cost function J translates current distribution preferences. Section 6 provides a physically mean-

ingful example along this line, by defining J as total power losses and adding inequality constraints to

exclude undesirable power flow at the steady-state. Load magnitude R acting as a parameter in this145

optimization problem, the resulting current reference vector ir minimizing J(i) is indeed a function of

R. Note that if voltage sources correspond to generator or energy storage devices, then J can also

incorporate preferences on power-flow inside the interconnection.

Problem 1. Given a reference profile xr(·) := (ir(·), vr) : L → Rm × R>0, design (load independent)

state-feedback control law x 7→ d such that, for all constant but unknown R ∈ L, closed-loop system150

admits xr(R) as a globally asymptotically stable (GAS) equilibrium. •

Remark. From previous discussion, it should be clear that the proposed framework encompasses bal-

anced current-sharing (uniform current distribution) as the particular case for which xr(·) is selected as

(vr/(mR), . . . , vr/(mR), vr) = (1mvr/(mR), vr) ∈ Rm+1. y

If letting ir(R) to be load-dependent has clear technological motivation, it is emphasized that com-155

plying with this feature makes controller design non trivial as load R is unknown.

2.3. A necessary condition

For this problem to admit solutions, it is clear that prescribed xr(R) must be a admissible equilibrium,

that is there exists an input vector d that imposes ẋ to be equal to zero at xr(R). Remarking that constant

voltage equilibrium are such that the sum of currents of each branch equals v/R and that∑
k∈K

ik = v/R⇔ 1ᵀ
mi− v/R = 0⇔

[
R1ᵀ

m −1
]
x = 0,

it comes out that xr(R) must satisfied the following assumption for the problem to admit solutions.

2Interested reader can consult [8], where an example of parallel interconnection of two non-identical buck converters is

considered. It is proved, both theoretically and experimentally, that for lower output power most of the power should be

convey by the second converter, whereas the opposite ordering should to be preferred for higher output power.
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Assumption 1. It holds

xr(R) = [iᵀr (R), vr]ᵀ ∈ Ker
{[
R1ᵀ

m −1
]}

,

for all R ∈ L. 4

2.4. Model description160

Throughout this paper, it is assumed that (i) the Pulse Width Modulation (PWM) switching fre-

quency fs is sufficiently large for the dynamics to be approximated by an average (ripple-free) continuous-

time model, (ii) converters remain in continuous conduction mode and (iii) electrical components are

ideals, i.e. parasitic resistances can be neglected.

By virtue of Kirchhoff’s circuit laws, under previous assumptions, dynamics of the circuit depicted165

by Fig. 1 is governed by

∀k ∈ K, Lk
dik
dt

= −v + Ekdk, (2a)

C
dv

dt
= σ − v/R, (2b)

where

σ :=
∑
k∈K

ik = 1ᵀ
m i, (2c)

refers to the total current. Eq. (2a) describes dynamics of output currents produced by each converter

whereas (2b) corresponds to output voltage dynamics. The corresponding matrix formulation of previous

dynamical equations is as follows:diag {L} 0

0 C

 d

dt

i
v

 =

 0 −1m
1ᵀ
m −1/R

i
v


+

diag {E}

0ᵀ
m

 d. (3)

Fig. 2 gives graphical representation of the system dynamics and exhibits a natural feedback of voltage

v into dynamics of i which is governed by input d. This diagram clearly shows that control of v can only

by achieved “indirectly” through total current σ, driven by duty cycle d.

2.5. A running example170

Relevance of the proposed control framework will be assessed by way of two distinct configurations:

(i) the real experimental benchmark described in Section 6 and (ii) an academic example used throughout

this paper to support didactic discussion. Characteristics of this example are as follows:

• The interconnection is made of m = 3 converters whose electrical components are as follows

L1 = 300mH, L2 = L3 = 200mH,

E1 = E2 = 24V, E3 = 20V.
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Figure 2: Open-loop model.

• For clarity of the exposition, simple balanced current-sharing is considered as control objective

associated with this example, so that xr(R) = (1mvr/(mR), vr) and voltage reference vr is set to175

12V;

• Extreme values of the load is such that L = [0.1, 1]Ω.

3. Literature review

This section outlines existing solutions of Problem 1. It focuses on “active current-sharing mech-

anisms” rather than (open-loop) conventional droop methods, since the latter does not achieve exact180

current and voltage regulation thus, does not appropriately answer to Problem 1 [16, 17].3

Literature in this area is well surveyed in [2, 13]. Remarkably, almost all existing solutions make

use of a two nested loops scheme.This section first provides on overview of main implementations of this

strategy. Then, its intrinsic limitation associated with the bandwidth of the two loops is discussed and

illustrated.185

3.1. The ubiquitous two nested loops scheme

As noticed in [2], control solution of Problem 1 are typically designed via a two-step procedure. The

first step aims associating a close control to each converter making them individually acts as a either a

controlled voltage source or a controlled current source. The second step seeks coordination of individual

subsystems in order to achieve exact voltage and current regulation. The resulting control scheme adopts190

the two nested loops scheme depicted on Fig. 3. The inner loop results from first step procedure whereas

the second step is concerned by outer loop design.

Rephrasing in terms of control theory, the first step aims designing a control law (ik, v) 7→ dk using

local signal and such that the whole interconnected system admits an attractive equilibrium characterized

by individual steady-state behavior of the form v = vref,k − αkik for voltage-mode control and ik =195

3Saying it differently, conventional droop control can only drive closed-loop system toward a (load-dependent) neigh-

borhood of xr(R) instead of this set-point itself.
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iref,k − v/βk for current-mode control. Signals vref,k and iref,k are exogenous signal (from the close

control point of view) whereas αk and βk are constant parameters depending on close controller gains as

well as converter parameters and having units of Ω. Relying on circuit theory considerations, it is shown

in [2] that first step can only results in three different configurations: Parallel interconnection of imperfect

voltage sources (type I), parallel interconnection of current sources plus one voltage source (type II) and200

parallel interconnection of current sources (type III). Note that theoretical proof of existence of some

attractive equilibrium for the overall interconnection is seldom provided, even when vref,k and iref,k are

assumed to be constant. Notable exception of this fact can be found in [14, 1], where complex impedances

and transfer functions analysis is provided, and in [8], where state-space analysis via Lyapunov functional

is performed.205

When it comes to the second step, the goal is to design a high level control layer driving the whole

system toward current and voltage reference by means of signals vref,k and iref,k. Usually, not only voltage

v but also current ik of each branches are fed back to this outer controller, in order to regulate voltage

deviation vr−v as well as current deviation ir− i to zero, whatever is the load. Depending on the type of

implemented inner loop, different outer control scheme can be used: For type I (resp. type III), the outer210

controller delivers voltage (current) references vref,k (iref,k) to each branch based on individual current

and voltage deviation; For type II, the unique voltage source is responsible for voltage regulation and its

own current serves as reference for other branches which are assimilated to current sources. Note that

so-called “master/slave” and “democratic” strategies correspond to outer loops counter-part of type II

and type III close control loops, respectively [2, 1].215

3.2. A simple type III control scheme implementation

Let us illustrate general strategy outlined in previous subsection in the particular case of type III

inner loop. This particular control structure has been indeed recognized as the most promising, due to

fast transient, see [2, p.1103] and [13, p.907].

Close control loop is selected as a PI controller fed by current deviation with respect to iref,k plus

output voltage cancelling out natural feedback of v into current dynamics (see Fig. 2):

dk(s) = Ki,k

Ek

1 + s/ωi,k
s

(iref,k(s)− ik(s)) + v

Ek
. (4)

Suitable gain selection imposes individual converters to behave as current controlled sources, i.e. if

iref,k(t) is a sufficiently slowly time-varying signal, then differences between this reference and ik(t) is

small enough to be neglected so that ik(t) can be driven almost perfectly by way of iref,k(t). At low

frequency, resulting interconnection can be approximated via the following algebraic relationship

v(s) = R
∑
k∈K

iref,k(s)

which is nothing but Kirchhoff’s junction rule.220

Let us borrow outer loop proposed in [2, Section V] for this type of inner loop and in the case of

balanced current-sharing. Structure of this high level controller is depicted by Fig. 5 where transfer
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functions H1(s) and H2,k(s) read as follows:

H1(s) = K1

ε

1 + s/ω1

s
, H2,k(s) = K2,k/ε

1 + s/ω2,k
.

with K1 = −4.8× 104, ω1 = 6× 103, K2,k = −0.7 and ω2,k = 1× 105 for all k. Parameter ε is set to zero

for the time being. Infinite DC gain of H1 cancels steady-state voltage deviation and current deviation

can be made negligible by increasing K2,k.

Example. Let us perform simulations for the three bucks example introduced in Subsection 2.5. Controller

parameters are selected as follows:

Ki,k =
[
11.84 7.90 7.90

]
× 105,

ωi,k =
[
4.49 4.49 4.49

]
× 104.

For initial conditions corresponding to v(0) = 0V and i(0) = [0, 10, 20]A, simulation results are depicted

by Fig. 4 when R = 1Ω: Voltage regulation is asymptotically exact and all currents seemingly reaches225

the same value at the steady-state. y

By modifying gains 1/m (see Fig. 5), this control scheme can be easily adapt to deal with nonuniform

current distribution if fixed current ratio is considered, i.e. each converter delivers a fixed percentage of

the total current. Yet, going further by requiring this ratio to be load depend as in Problem 1, appears

to be much more involved.230

3.3. Frequency separation as a fundamental tool for achieving closed-loop stability

If its simplicity makes the two loops control solution attractive, particular care should be taken in

its implementation. The nested loops may indeed badly interact. If this phenomena has already been

reported in the literature (see e.g. [2, 13]), theoretical stability certificate are seldom established. Indeed,

in order to theoretically validate the approach, one has to taken variability of the load into account as235

well as bandwidth of each loops.

In order to highlight this phenomena, gains of transfer functions H1 and H2,k have been parametrized

by strictly positive real ε: The smaller is ε, the higher is the gain of the transfer function and the larger is

the bandwidth of the outer controller. Starting from ε = 1, leading to a satisfactory closed-loop system

(see Fig. 4), this bandwidth is progressively enlarged, by decreasing ε, up to reach instability. Extreme240

value of load domain L is considered and same initial conditions as for Fig. 4 are used. Chronograph

of voltage trajectories are reported in Fig. 6: If either ε = 1 or ε = 0.8 lead to satisfactory results,

instability is experienced for ε = 0.6 regardless of the value of R. This behavior is confirmed by location

of poles of the closed-loop transfer function from vr to v: As shown by Fig. 7 which focuses on R = 1Ω,

by decreasing ε from 1 to 0.6, we move poles from pentagram to square, so that system becomes instable245

since one square belongs to the right hand side of the complex plan.

The above conclusion suggests that classical two loops control solution suffers from fundamental

limitation: If satisfactory steady-state is achievable, transient performances are implicitly bounded.
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Figure 6: Impact of load value and gain of the outer loop on step response of closed-loop system with two loops controller.
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Figure 7: Motion of poles of the closed-loop transfer function from vr to v when increasing gain of outer loop.
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Indeed, when trying to accelerate either voltage regulation or current-sharing dynamics, one ends up to

increase gain of the outer loop so that frequency separation collapses and the two loops start interacting250

what, in turn, leads to instability.

4. Geometrical decomposition of the dynamical model

This section presents the main result of this paper. Reformulation of open-loop model (2) is first

obtained before being interpreted from circuit theory view-point. Then, discussions about relevance of

this result for control purpose ends the section. In stark contrast with the two nested loops scheme,255

our approach isolates current-sharing from voltage regulation (and vice versa) via geometric considera-

tions and without resorting to frequency separation argument. It is shown that this strategy allows to

outperform fundamental limitations of existing two loops controllers.

4.1. A new basis

As exhibited by (2b), voltage dynamics does not depend on each current ik individually but rather

on total current σ. In order to better highlight this dependency, let us introduce the new coordinates

(δ, σ, v) ∈ Rm−1 × R× R where σ explicitly appears:
δ

σ

v

 = T−1

i
v

 , (5)

with

T−1 :=


Γᵀ
m 0m−1

1ᵀ
m 0

0ᵀ
m 1

 ∈ R(m+1)×(m+1), (6)

and where Γm ∈ Rm×(m−1) is defined as follows

Γm :=



1 0 · · · 0

−1 1
. . .

...

0 −1
. . . 0

...
. . . . . . 1

0 · · · 0 −1


=

Im−1

0ᵀ
m−1

−
0ᵀ

m−1

Im−1

 . (7)

Note that T is indeed invertible as Γm is a matrix basis of the orthogonal complement of Im {1m} in

Rm. It can be easily verified that T reads

T =

Γm(Γᵀ
mΓm)−1 1

m
1m 0m

0ᵀ
m−1 0 1

 . (8)

It is worth mentioning that the new coordinate δ ∈ Rm−1 admits a simple physical interpretation:

From (5), this signal is related to i in the following way

δ = Γᵀ
mi =

[
(i1 − i2) (i2 − i3) · · · (im−1 − im)

]ᵀ
,
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which shows that δ reflects current distribution. This is nothing but the component of i which is missing260

in σ, as expected from invertibility of T .

In the rest of the paper, we shall use the operator ∆ defined as follows

Rp 3 y 7→ ∆y := Γᵀ
py

= [(y1 − y2) · · · (yp−1 − yp)]ᵀ ∈ Rp−1 (9)

so that δ could alternatively be written as ∆i.

In this new basis, matrix equation (3) becomes

d

dt


δ

σ

v

 =


0 0 −Γᵀ

mdiag {L}−1 1m
0 0 −1ᵀ

mdiag {L}−1 1m
0 1/C −1/(RC)



δ

σ

v



+


Γᵀ
mdiag {L}−1 diag {E}

1ᵀ
mdiag {L}−1 diag {E}

0ᵀ
m

 d, (10)

since it holds

T−1

diag {L} 0m
0ᵀ
m C

−1 0m×m −1m
1ᵀ
m −1/R

T

=


Γᵀ
m 0m−1

1ᵀ
m 0

0ᵀ
m 1


 0 0m −diag {L}−1 1m

0ᵀ
m−1 1/C −1/(RC)



=


0 0 −Γᵀ

mdiag {L}−1 1m
0 0 −1ᵀ

mdiag {L}−1 1m
0 1/C −1/(RC)

 ,
and ASM. 1 can be written as[

δᵀr (R) σr(R) vr

]ᵀ
:= T−1

[
iᵀr (R) vr

]ᵀ
∈ Ker

{[
R1ᵀ

m −1
]
T
}

= Ker
{[

0ᵀ
m−1 R −1

]}
,

for all R ∈ L. Note that this set membership is nothing but the equilibrium condition of voltage dynamics

(2b), i.e.:

σr(R) = vr/R

Example. For the three bucks example introduced in Subsection 2.5, new state vector reads as follows:

(δ1, δ2, σ, v) = (i1 − i2, i2 − i3, i1 + i2 + i3, v)
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Balanced current-sharing objective is considered so that entries of current reference vector are identical,265

i.e. ir(R) = vr/(mR)1m. In such a case, current distribution reference δr = (ir,1 − ir,2, ir,2 − ir,3) is

identically null and, hence, does not depend on R unlike σr = ir,1 + ir,2 + ir,3 = vr/R. y

4.2. Block decomposition

State matrix (10) admits a block triangular structure which allows to interpret the system as a cascade

of two dynamical blocs: An upper-subsystem, governing coupled dynamics of (σ, v), feeds a lower-one,270

describing δ dynamics, with v. This cascaded structure originates from the independence of dynamics of

δ from (σ, v), so that the upper-subsystem impacts the lower-one but there is no signal in the other way

around.

Input d acts on both subsystems. To better understand this coupling, let us proceed to the change

of input coordinates

d = diag {E}−1 diag {L}
[
Γm(Γᵀ

mΓm)−1 1
m

1m
]
diag

{
∆?(L−1)

}
diag {∆?E} 0

0 Eeq/Leq

λ
µ

 (11)

which decomposes d into λ ∈ Rm−1 and µ ∈ R. In this relationship, the following constants have been

introduced:

R 3 1/Leq := 1ᵀ
mdiag {L}−1 1m =

∑
k

1/Lk

R 3 Eeq := min
k
Ek.

The operator ∆? derives from ∆, defined by (9), as follows

Rp 3 y 7→ (∆?y)k :=

 (∆y)k, (yk 6= yk+1)

1, (otherwise)
(12)

and, with slight abuse of notation, the inverse of any vector y ∈ Rp for which yk 6= 0, (k ∈ {1, . . . , p})

corresponds to component-wise inversion, i.e.

y−1 := diag {y}−1 1p =
[
1/y1 · · · 1/yp

]ᵀ
. (13)

Note that the use of ∆? instead of ∆ in (11) ensures that d 7→ (λ, µ) is a bijection as diag
{

∆?(L−1)
}

diag {∆?E}

is always invertible.4275

4Obviously, this assertion holds provided that the problem is physically meaningful in the sense that both Ek and Lk
are non-zero for all k ∈ K.
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Figure 8: New cascaded open-loop model.

The resulting dynamics of the open-loop system reduces to

d

dt


δ

σ

v

 =


0 0 −∆(L−1)

0 0 −1/Leq

0 1/C −1/(RC)



δ

σ

v



+


diag

{
∆?(L−1)

}
diag {∆?E} 0

0 Eeq/Leq

0 0


 λ
µ

 ,
so that the upper-subsystem Σv governs voltage dynamics through total current σ controlled by input µ

Σv : d
dt

σ
v

 =

 0 −1/Leq

1/C −1/(RC)

σ
v

+

Eeq/Leq

0

µ, (14)

and drives the lower-subsystem Σδ corresponding to dynamics of δ driven by control signal λ

Σδ : d
dt
δ = −∆(L−1)v

+ diag
{

∆?(L−1)
}

diag {∆?E}λ (15)

or, equivalently,

Σkδ :


(∆L)k

d

dt
δk = −v + (∆?E)kλk, (Lk 6= Lk+1)

d

dt
δk = (∆?E)kλk, (otherwise),

for all k ∈ {1, . . . ,m−1}. The last relationship has been obtained by left-multiplying (15) by diag{∆?(L−1)}−1.

Fig. 8 illustrates this structure.

Example. Consider example introduced in Subsection 2.5 and for which L1 6= L2 = L3 and E1 = E2 6= E3.

In this case, it holds

∆?(L−1) =
[
(1/L1 − 1/L2) 1

]ᵀ
,

∆?E =
[
1 (E2 − E3)

]ᵀ
.

Subsystem Σδ reads
(L1 − L2)δ̇1 = −v + λ1

δ̇2 = (E2 − E3)λ2,

19



and (11) gives

E1

L1
d1 −

E2

L2
d2 = ( 1

L1
− 1
L2

)λ1

E2

L2
d2 −

E3

L3
d3 = (E2 − E3)λ2

E1

L1
d1 + E2

L2
d2 + E3

L3
d3 = (min

k
Ek)(

∑
k

1
Lk

)µ

so that λ1,2 are related to differences of duty cycles (and drives δ = ∆i), whereas µ reflects the sum

d1 + d2 + d3 by which σ = i1 + i2 + i3 is controlled. y

4.3. Circuit theory interpretation280

From its dynamical equation (14), upper-subsystem Σv can be physical interpreted as the averaged

model of single (virtual) buck converter illustrated by Fig. 9 (a). Duty cycle of this virtual device

corresponds to µ and current flowing through it is nothing but σ. It is connected to the same load R and

capacitor C as that of the global system. Its inductance and voltage input equal Leq and Eeq, respectively.

Note also that Leq is nothing but the equivalent inductor resulting from parallel interconnection of every285

coil Lk.

As far as Σδ is concerned, its dynamics can be interpreted as m − 1 instances of (virtual) electrical

circuit Σkδ depicted by Fig. 9 (b) and where (∆?E)kλk acts as a controllable voltage source. Noticeably,

neighbor coils sharing the same value, i.e. Lk = Lk+1, make dynamics of δk independent of v since

∆(L−1)k = 0 (whereas (∆?(L−1))k = 1). This means that bus voltage does not affect current distribution290

δk between neighbor branches having the same inductance value.

4.4. Significance of the new formulation for control purpose

Geometric decompositions i 7→ (δ, σ) and d 7→ (λ, µ) are the core of the reasoning underlining the

construction of the control framework depicted by Fig. 8. We believe that this reformulation facilitates

control design for reasons that are now exposed. Note that Fig. 10 summarizes this forthcoming discussion295

by depicting the proposed control scheme.

1) From previous subsection, it comes out that λ parametrizes the part of d which is invisible by σ

and hence v, whereas µ is the remaining part by which σ can be affected. As a result, regulation of v

boils down to the design of the single input controller

Cv : (σ, v) 7→ µ,

which is actually nothing but voltage regulation problem for a single buck converter.

2) The new formulation allows for modular design. Indeed, both voltage v (via σ) and current

distribution δ can be controlled independently by way of µ and λ, respectively. If this assertion clearly

holds for Σv, effect of v on Σδ can also be canceled out even when Lk 6= Lk+1 by simply substituting300

λ by λ′ + v/(∆?E)k via an inner feedback loop. In such a case, one ends up with two disconnected

subsystems, as suggested by the dashed line of Fig. 8.
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Figure 9: Circuit theory interpretation of (a) Σv and (b) Σkδ in the two cases.
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Figure 10: Proposed control scheme.

Nevertheless, apart from the special case where δr(·) is constant, it should be notice that load have

to be estimated by controller of Σδ in order to properly define the desired reference δr(R). As a result,

some information have to be convey from Σv to Σδ for this estimation to be possible since Σδ does not

depend on R. For this reason, the map

Cδ : (δ, σ, v) 7→ λ,

is considered as the general form of controller for Σδ.

3) Ordering of the cascade preserves hierarchy of control objectives. Indeed, in general, lower subsys-

tem of cascaded system converges after the upper one has reached its equilibrium. As a result, leading305

control goals have preferably to be fulfill by highest subsystem. The proposed control scheme complies

with this guideline as voltage regulation, performed by Σv, dominates power-flow control, related to Σδ,

in the control objective hierarchy.

Still, v cannot be controlled directly by control input, but only through σ. However, open-loop inertia

of the total current σ is related to Leq which is typically very small, as parallel interconnection of coils310

ends up with a reduced equivalent inductance.

5. Control design for unknown load

The purpose of this section is to illustrate the relevance of the proposed control structure depicted by

Fig. 10. A procedure leading to subcontrollers Cv and Cδ is provided together with theoretical certificate

that the overall resulting controller solves Problem 1, see Theorem 5.3. This procedure is expected315

to be sufficiently simple to fulfill didactic purpose, yet leaving large room for improvement. Example

introduced in Subsection 2.5 will be used as a didactical illustration.

5.1. Control of individual subsystems

Exploiting cascaded structure depicted by Fig. 10, proof of stability of

(δ, σ, v) = (δr(R), vr/R, vr)
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(see subsection 4.1) can be established via classical tools for such an interconnection. This allows to

cope with non-linearities which might be introduced by load estimation (see subsection 5.1.2). In this320

context, stability for the overall system can be inferred from stability of (σ, v) = (vr/R, vr) for Cv ? Σv
and 0-stability of δ = δr(R) for Cδ ? Σδ (that is stability of Cδ ? Σδ when Cv ? Σv is at the steady-state),

as well as boundedness of trajectories [18].5

For this reason, stability for individual closed-loop subsystems Cv ?Σv and Cδ ?Σδ are first obtained

and then used as main ingredients to ensure stability for the whole system.325

5.1.1. Control of Σv (voltage regulation)

As Σv can be interpreted as a virtual buck converter, every technique which aims regulating this

system are applicable, see e.g. [19, 20]. In particular, let us use state-feedback with output integrator of

the form −kp(vr − v)− kdσ − ki/C
∫

(vr − v), so that Cv adopts the following formulation6

Cv :

 ż = (vr − v)/C

µ = −kiz − kp(vr − v)− kdσ.
(16)

Next lemma gives sufficient condition for controller gains computation.

Lemma 5.1. Let load dependent matrix A(R) be defined as

R3×3 3 A(R) :=


0 −1/Leq 0

1/C −1/(RC) 0

0 −1/C 0

 .
If there exist W = W ᵀ ∈ R3×3 and Y ∈ R1×3 such that W � 0 and

WAᵀ(R) +A(R)W +
[
Eeq/Leq 0 0

]ᵀ
Y +

Y ᵀ
[
Eeq/Leq 0 0

]
≺ 0 (17)

holds for all R ∈ ∂L = {R,R}, then gains computed via[
−kd kp −ki

]
= YW−1 (18)

ensure that (σ̃, ṽ) = 0 is a globally exponentially stable (GES) equilibrium for closed-loop (14) with (16)

and for all R ∈ L.330

Proof. Stability of the equilibrium satisfying v = vr is achieved if dynamics of Cδ ? Σδ, described by the

5Here, notation P1 ? P2 refers to the interconnection of P1 and P2.
6Here, integral gain ki is scaled via C in order to improve conditionning of matrices involved in the design of controller

parameters.
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following equation, is stable for all R ∈ L:

d

dt


σ

v

z

 =

A(R) +


Eeq/Leq

0

0



−kd
kp

−ki


ᵀ

︸ ︷︷ ︸
=:Â(R)


σ

v

z



+


−Eeq/Leqkp

0

1/C

 vr.
This condition is achieved if (17) is satisfied for all R ∈ ∂L. Indeed, in such a case, condition (17) holds for

all R ∈ L by convexity argument. Then, substituing Y by
[
−kd kp −ki

]
W givesWÂᵀ(R)+Â(R)W ≺

0 which, in turn, proves quadratic stability of closed-loop dynamics [21].

Example. Design of Cv can be alternatively tackled via a transfer function strategy. In this case, the

goal is to find a proper rational function k(s) such that poles of k(s)fµ→v(R; s)/(1 + k(s)fµ→v(R; s)) lie

in the open left half complex plane, for all R ∈ L. Here, load-dependent transfer function fµ→v(R; s)

characterized dynamical relationship between µ and v and reads (see (14)):

fµ→v(R; s) = EeqR

RLeqCs2 + Leqs+R

By means of Routh–Hurwitz stability criterion, one can be easily checked that PI controller

k(s) = kc(1 + s/ωc)/s

solves the problem if kc > (RCEeq)−1 and ωc < (RC − 1/(kcEeq))−1. y

5.1.2. Control of Σδ (current distribution assignment)335

Controller Cδ has to ensure 0-stability of δ = δr(R), that is stability when Σv has reached its equilib-

rium (σ, v) = (vr/R, vr). Since current distribution δr to be achieved is load dependent, it is necessary

to estimate R. Remarking that equilibrium points in the state-space must verify v = Rσ, computation

of vr/σ can serve as a simple load-estimator which asymptotically converges to R, provided that v goes

to vr as t tends to infinity: In such a case, σ(t) must converges to vr/R so that vr/σ(t) tends to R.340

Next lemma shows that the following static map is a suitable candidate

Cδ : λ = diag {∆?E}−1 diag
{

∆?(L−1)
}−1 (

−K(δr(R̂(σ))− δ) + ∆(L−1)vr
)

(19)

whenever K is Hurwitz, and where R̂ : R→ L = [R,R] reads

R̂(σ) :=


R, (σ < vr/R)

vr/σ, (vr/R ≤ σ ≤ vr/R)

R, (σ > vr/R).

and is depicted by Fig. 11.
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Figure 11: Load estimator R̂(σ).

Remark (Definition of R̂). Load estimation via vr/σ introduces non-linearity in the controller Cδ. Yet,

cascaded structure of the closed-loop can be exploited to cope with this difficulty, as demonstrated by

next subsection. Also, special care have to be taken to ensure that δr(vr/σ) remains bounded. As shown

by Fig. 11, this issue is addressed by saturating the quantity vr/σ outside L and, in turn, prevent division345

by zero. Since xr(R) has been assumed to be reachable, image of L by δr is bounded so that δr(vr/σ)

as well. y

Lemma 5.2. If (σ, v) = (vr/R, vr), then δ = δr(R) is a GES equilibrium of closed-loop (15) and (19)

for all Hurwitz matrix K ∈ R(m−1)×(m−1) and for all R ∈ L.

Proof. When (σ, v) = (vr/R, vr) and R ∈ L, closed-loop of (15) and (19) reads δ̇ = K(δ − δr(R)) and,350

hence, δ asymptotically converges to δr(R) whenever K is Hurwitz.

Example. Let us consider example of Subsection 2.5. In this case, controller Cδ reads (recall that δr ≡ 0):

λ = diag
{

L1L2

L2 − L1
,

1
E2 − E1

}
(Kδ

+

1/L2 − 1/L1

0

 vr)
Note that this expression reduces to λ1

λ2

 =

−vr + κ
L1L2

L2 − L1
δ1

κ

E2 − E1
δ2


by using simple choice K = −κI2. y

Remark (Independent dynamics). Dependency of dynamics of δ with respect to v can be canceled out, in

some particular case. Suppose that δr is constant (as for example of Subsection 2.5), then interconnection

Cδ ?Σδ is governed by δ̇ = K(δ− δr) if v is used in place of vr in (19). In such a case, Cv ?Σv and Cδ ?Σδ355

are fully decoupled so that Fig. 10 exhibits disconnected subsystems instead of unilateral relationship,

i.e. (σ, v) does not impact δ anymore. y
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5.2. Stability of the overall system

Let us make the following technical assumption.

Assumption 2. Map δr(·) is Lipschitz continuous, i.e. there exists β ≥ 0 such that δr(R1)− δr(R2) ≤360

β(R1 −R2) holds for all (R1, R2) ∈ L2. 4

Using this hypothesis and stability results of individual closed-loop subsystems Cv ? Σv and Cδ ? Σδ,

the following theorem demonstrates stability of x = xr(R) for the overall system.

Theorem 5.3. Under ASM. 1 and ASM. 2, the map (i, v) 7→ d described by (11), with µ delivered

by (16) and λ defined as in (19), solves Prob. 1 if K is Hurwitz and (kp, ki, kd) are computed as in365

Lemma 5.1.

Proof. Let us define the following relative coordinates

x̃ :=
[
δ̃ᵀ σ̃ ṽ z̃

]ᵀ
:=
[
δᵀ σ v z

]ᵀ
−
[
δᵀr (R) vr/R vr z?

]ᵀ
where z? refers to the asymptotic value of z. If (i) (σ̃, ṽ, z̃) = 0 is a GAS equilibrium for Cv ? Σv, (ii)

δ̃ = 0 is a 0-GAS equilibrium for Cδ ? Σδ (that is GAS when (σ̃, ṽ, z̃) = 0) and (iii) system trajectories

are globally bounded, then x̃ = 0 is a GAS equilibrium [18, Th.1.1]. Observe that properties (i) and (ii)

have been established by Lemmas 5.1 and 5.2.370

Let us now prove (iii). By global boundedness (GB) of the closed-loop system, we mean that for each

r > 0, there exists Ψ(r) > 0 such that for each initial condition x̃0 satisfying |x̃0| ≤ r, one has that all

solutions x̃ satisfy |x̃(t)| ≤ Ψ(r) for all t ≥ 0. To show this, first note that GAS of Cv ? Σv implies GB

of the (σ̃, ṽ, z̃) substate. Then, consider the function H = |δ̃|2/2. From (15) and (19), we get:

Ḣ = δ̃ᵀ ˙̃δ = δ̃ᵀ
(
K(δ − δr(R̂(σ)))−∆(L−1)ṽ

)
= δ̃ᵀ

(
K(δr(R)− δr(R̂(σ))) + ∆(L−1)ṽ

)
︸ ︷︷ ︸

=:ρ(σ,ṽ)

+δ̃ᵀKδ̃.

Then remarking that δ̃ᵀKδ̃ < 0 holds for all δ̃ since K is Hurwirtz, Ḣ can be bounded as follows:

Ḣ ≤ |δ̃| |ρ| ≤ (1 + |δ̃|2)|ρ| = (1 + 2H)|ρ|.

As proved in the sequel, (a) there exist positive kρ, λρ, t0 such that |ρ(t)| ≤ kρ exp(−λρt) for all t ≥ t0

and (b) |ρ(t)| is bounded for t ∈ [0, t0]. Then, from Gronwall-Bellman’s inequality [22, Lemma A.1],

since ρ(t) is integrable, we have that H = |δ̃|2/2 is globally bounded.

Let us now prove (a). First observe that (σ̃, ṽ, z̃) dynamics is actually GES, so that for each r > 0

there exist positive kσ, λσ, kv, λv such that |σ̃(t)| ≤ kσ exp(−λσt) and |ṽ(t)| ≤ kv exp(−λvt). As a result,

and from the fact that R belongs to L, there exists t0 ≥ 0 such that inequalities

vr(1/R− 1/R︸ ︷︷ ︸
<0

) ≤ σ̃(t) ≤ vr(1/R− 1/R︸ ︷︷ ︸
>0

)
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hold for all t ≥ t0. By adding σr = vr/R on both side, those inequalities equivalently read vr/R ≤ σ(t) ≤

vr/R so that R̂(σ(t)) = vr/σ(t) holds, by definition of R̂. This, in turn, proves that

R− R̂(σ(t)) = vr(
1
σr
− 1
σ(t) ) = vr

σ(t)− σr
σrσ(t) = R

σ(t) σ̃(t)

and, hence,

|R− R̂(σ(t))| ≤ RR

vr
|σ̃(t)|

are satisfied for all t ≥ t0. Using ASM. 2, it follows that

|ρ(σ, v − vr)| ≤ |K| |δr(R)− δr(R̂(σ))|

+ |∆(L−1)| |vr − v|

≤ |K| β|R− R̂(σ)|+ |∆(L−1)| |vr − v|

≤ |K| βRR
vr

kσ exp(−λσt)

+ |∆(L−1)| kv exp(−λvt)

≤ kρ exp(−λρt)

with

kρ = max{|K| βRR
vr

kσ, |∆(L−1)|kv} > 0

λρ = min{λσ, λv} > 0

This proves (a). In order to demonstrates (b), it suffices to invoke boundedness of L, the image of R̂,

and the fact that ṽ(t) is bounded for all t ≥ 0, so that

|ρ(σ, ṽ)| ≤ |K| |δr(R)− δr(R̂(σ))|+ |∆(L−1)| |ṽ|

≤ |K|M + |∆(L−1)| kv

holds for all t ≤ t0, and where M := max(R1,R2)∈L2 δr(R1)− δr(R2) is finite since ASM. 2 holds.

5.3. Controller in the original coordinates375

As a conclusion of this design part, controller expression in the original coordinates is now provided,

i.e. mapping (i, v) 7→ d. It can be derived by using Fig. 12 and making use of change of coordinates (11)

and (5) as well as subcontrollers expression Cv and Cδ provided by (16) and (19), respectively.

Observe that complexity of the resulting controller dramatically decreases by selecting gain matrix

of Cδ as K = −κI. Indeed, in such a case, one gets (see Appendix A)

dk = Lk
Ek

(
κ
( σ
m
− ik

)
+ wk(σ, µ)

)
, (20)

where wk is k-th entry of the following vector:

Rm 3 w(σ, µ) = 1
m

1mEeq/Leqµ

+ Γm(Γᵀ
mΓm)−1(κδr(R̂(σ)) + ∆(L−1)vr). (21)
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Figure 12: Proposed control scheme.

Thus, final controller is made of a proportional compensator on individual current ik whose gain is κ and

reference corresponds to average current σ/m. Output of this compensator is then shifted by wk(σ, µ)380

which only depends on signals related to voltage dynamics, namely σ and µ.

Remark. Observe that when δr is constant, wk becomes independent on σ. In particular, whenever

δr ≡ 0 holds (as for example of Subsection 2.5), wk further reduces to

wk(µ) = Eeq/Leq(µ/m) + bkvr,

where k-th entry of Γm(Γᵀ
mΓm)−1∆(L−1) is denoted by bk. Hence, wk(µ) does not depend on σ anymore

and boils down to a linear combination of voltage reference vr and µ/m, corresponding to a fixed portion

of the duty cycle of virtual buck Σv.

Suppose further that subcontroller Cv is designed via a transfer function strategy (see example at the385

end of Subsection 5.1.1). In this case, one typically generates signal µ from voltage deviation vr − v via

linear differential relationship captured by some transfer function k(s). The resulting controller adopts

the scheme depicted by Fig. 13, which ressembles to that of Fig. 5, i.e. outer controller of the classical

two loops controller considered in Section 3.2. If the two schemes seemingly share common features, they

differ mainly on the following aspects: (i) Signal of Fig. 5 which is alike to wk is identical for all converter390

whereas, on Fig. 13, bk makes computation of this signal dependent on k and (ii) output signal of Fig. 13

is already duty cycle vector d whereas controller of Fig. 13 produces iref , a mere internal signal of the

overall controller. This discussion gives rise to an additional outcome of this paper: Even if controller

of Fig. 13 has been elaborated following a non standard perspective, it can be regarded as some outer

control law of the classical two loops controller considered in Section 3.2. Yet, controller of Fig. 13395

benefits from the following features: (i) No inner loop is required (so that no frequency separation is

required) and (iii) clear guidelines about how to select parameter of the controller are provided together

with formal stability proof (see the forthcoming subsection). Let us emphasized that this controller

should merely be regarded as a particular example of what broader framework proposed in this paper
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Figure 13: Proposed control scheme for K = −κI and δr ≡ 0.

allows to achieve. y400

Example. Let us consider example of Subsection 2.5. Using procedure outlined in this section, the

following gains of subcontroller Cv described by (16) are computed:

kd = 5.7, kp = −270, ki = −4.0× 103.

and diagonal matrix K = −1×105 I2 is selected. In this case, closed-loop simulation results are depicted

by Fig. 14 for the same initial condition as the ones considered for Fig. 4. Exact voltage regulation and

perfect balanced current-sharing is asymptotically achieved. As compared to results obtained via the

two loops solution and depicted by Fig. 4, transient exhibited by Fig. 14 is much faster. y

6. Minimizing steady-state power losses under power constraints405

In order to illustrate the proposed approach, let us consider the physically relevant scenario where

closed-loop system has to asymptotically converges to the set-point minimizing overall power losses while

achieving exact voltage regulation, i.e. v(t) must converge to vr. In addition to that, desired steady-

state must comply with admissible power limits associated with each branch. This corresponds to select

(load-dependent) set-point xr(R) via the following optimization problem

min
i,v

J(i, v) s.t. v = vr,
dik
dt

∣∣∣∣
k∈K

= dv

dt
= 0, i ≤ ī (22)

where J gives total power losses and, according to [12, Eq. (11)], reads

J(i) =
∑
k∈K

r1,ki
2
k + r2,kik (23)
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Figure 14: Closed-loop simulation results obtained via new controller (20)
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for some positive constants r1,k and r2,k depending on circuit parameters. As compared to (22), problem

(22) incorporates inequality i ≤ ī in order to prevent each ik to exceed prescribed upper-bounds īk.

Remark. Proposed framework takes current limits into account only at the steady-state, so that nothing

prevents current ik to exceed īk during transient. Indeed, upper bound īk translates thermal capacity of

electrical components, so that overtaken those limits for a short period of time will not change dramati-410

cally temperature of the devices and, hence, is fully acceptable. This suggests that imposing ik(t) ≤ īk

at all time is not only useless but also conservative, in the sense that performances could be lowered by

this restriction. y

6.1. Experimental setup description

The experimental setup, represented on Fig. 15, is composed of two buck converters (m = 2), which415

are heterogeneous in the sense that inductors as well as transistors are different. It happens that electrical

components of converter 2 have lower quality but its diode threshold voltage is lower. As a result,

inequalities r1,1 = 0.1301Ω < r1,2 = 0.3058Ω and r2,1 = 0.3685V > r2,2 = 0.0361V hold and, in turn,

induce inversion between converter having priority, depending on the load. This kind of configuration

can appear when a fast synchronous buck converter with low power rating is used for converter 2 and a420

slower classical buck converter with higher power rating is used for converter 1. Characteristics of this

setup are listed by Table 2.

Parameters Values

Voltage reference vr 12V

Input voltage of the converters Ek 24V

Switching frequency fs 20kHz

Sampling frequency 10kHz

Transistor MOSFET 1 STP31510F7

Transistor MOSFET 2 STP30NF10

L1 1.3mH

L2 0.6mH

C 40µF

Table 2: Experimental Setup Parameters.

The controller hardware is Rapid Control Prototyping (RCP) system dSpace MicroLabBox which is

composed of a real-time processor that communicates with an FPGA and several (digital and analog)

inputs/outputs. The control law is implemented numerically in the real-time processor (NXP QorIQ425

P5020, dual-core 2GHz). It delivers duty cycles dk to a FPGA (Xilinx R© Kintex R©-7 XC7K325T FPGA)

in charge of the PWM implementation. The binary output signals are conveyed by optical fiber to the

driver of transistors (switching cells). Voltage and currents sampling instants are defined according to
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instantaneous value of PWM signals: Measurements are performed at instant times where instantaneous

value of the signal equals its average value over one period. This way, average values of voltage and430

currents are seemingly sampled. Load variations are controlled by the dSpace board through a pro-

grammable DC electronic load BK Precision 8600 series with a maximum power of 150W, so that the

total current can vary from 0 to 12A at the DC voltage v = 12V .

DC Sources

Voltage and currents
sensors

Capacitor

Inductances Switching cells
(transistors)

DC electronic Load

Rapid Control Prototyping 

Control + PWM

Figure 15: Experimental setup.

6.2. Solvability assumption

A single input voltage E1 = E2 = 24V is considered. (i) Regulating voltage stability at the reference

vr = 12V and (ii) imposing optimal current vector iopt are control objectives to be achieved for any

R ∈ L. Load set L reads

L = [R,R] = [1.8, 12] Ω

and current limits are ī1 = 3.0A and ī2 = 4.0A.435

Equality constraints involved in problem (22) impose v equal vr and, from (2b), set σ to σr = vr/R

(which in turn proves that any feasible point of problem (22) satisfies ASM 1) but let current distribution

δr free.7 In other words, writing problem (22) in the new coordinates leaves us to optimization problem

7From (2a), also observe that there always exists duty cycles dk equating current derivatives to zero. Steady-state

value of dk equals vr/Ek and, thus, belongs to [0, 1]. This means that, for any physically meaningful voltage reference, i.e.

satisfying vr ≤ mink Ek (see footnote 1), there exists an input vector d satisfying input constraints at the steady-state.
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for which decision variables set reduces to {δ}, as equality constraints assign values of both σ and v.

See Appendix B for details.440

As far as constraint i ≤ ī is concerned, the following chain can be derived:

i ≤ ī⇒ 1ᵀ
mi− 1ᵀ

mī ≤ 0⇔ σ ≤ 1ᵀ
mī.

Last inequality points out that magnitude of total current is limited by 1mī. As a result, for (22) to

admit solution, overall current σr = vr/R to be tracked must but less or equal than 1ᵀ
mī, which, in turn,

imposes lower bound on admissible load value.

Assumption 3. The following inequality

vr/1mī =: Rsat ≤ R (24)

holds. 4

Note that this assumption is satisfied for considered numerical values.445

6.3. Optimal locus in the (i1, i2) plan

Let us now locate reference xr(R) to be reached in the (i1, i2) plan depicted by Fig. 16. Note that,

when m = 2, new coordinates (δ, σ) can be easily interpreted by remarking that (−δ, σ) ∈ R×R simply

derives from (i1, i2) by a rotation of −π/4 radian angle follows by an homothetic transformation of ratio
√

2 since Γᵀ
2

1ᵀ
2

 =

1 −1

1 1

 =
√

2

cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)

 .
Feasible set. By setting σ to σr = vr/R, equality constraints of (22) impose that currents has to be

stabilized on the dashdot black line8 for which σ = i1 + i2 = vr/R. Asymptotic value of currents must

also belong to the white area, bounded by dashdot red line, where i ≤ ī holds, so that gray area refers to

i > ī. The (load dependent) resulting segment, i.e. part of the dashdot black line which belongs to the450

white area, corresponds to the feasibility set of (22). This is the set where current distribution δ can be

freely adjusted. Note that modifying R results in translating this segment as well as affecting its length.

The limit case, for which this length reduces to zero, occurs when the dashdot black line and dot red

lines intersect: At this point, each converter provides their maximum current īk and R = Rsat. Further

lowering of the load leads to infeasible problem.455

Optimal current distribution. Without loss of generality, assume that converters are numbered in such

a way that inequality

R0 := vrr1,2

ī1(r1,1 + r1,2) + (r2,1 − r2,2)/2
≥

vrr1,1

ī2(r1,1 + r1,2)− (r2,1 − r2,2)/2
(25)

8This line is nothing but the projection on the (i1, i2) plan of the subset of Rn satisfying ASM. 1.
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Figure 16: Load profile in the currents plan.

holds.9 In such a case, analytical load-dependent solution of (22) can be derived, as shown by Appendix

B:

i =



ī1

 1

−1

+ vr
R

0

1

 , (R ∈ [R,R0])

1
r1,1 + r1,2

r2,1 − r2,2

2

−1

1


+vr
R

r1,2

r1,1

 , (R ∈ ]R0, R̄])

(26)

Fig. 16 depicts location of this load-dependent optimal steady-state using dashed blue line as well as level

lines of J inside the white area. When R belongs to ]R0, R̄], optimal solution draws a straight line in

the interior of the white area where i ≤ ī. One recovers the unconstrained expression of optimal current

vector provided by [12, Eq. (12)]. When magnitude of R is lower, i.e. R ∈ [R,R0[, converter 1 reaches

its current limit and saturates. In this case, unsaturated converter 2 provides the remaining part of the460

9Indeed, if (25) does not hold, then the resulting inequality is nothing but (25) with r1,1, r1,2, r2,1, r2,2, ī1 and ī2 in

place of r1,2, r1,1, r2,2, r2,1, ī2 and ī1 and a strict inequality sign.

34



total current vr/R, required to achieve voltage reference. The fact that converter 1 always hits current

boundaries first is due to (25).

Remark (Load-dependent hierarchy). For the considered scenario, it can be seen that δ = i1− i2 changes

sign which translates the fact that priority for extraction of electrical power should be given to the first

branch (δ > 0) or the second one (δ < 0), depending on load magnitude. y465

6.4. Load time evolution

Load variation with respect to time is defined as the following function:

R(τ ; t) =


R, (0 ≤ t ≤ t1),

R+ (R−R) t− t1
τ

, (t1 ≤ t ≤ τ + t1),

R, (τ + t1 < t),

which uses parameters τ as the falling time to reach R from R and t1 = 0.01s as starting time for load

variation. Hence, transition is increasingly abrupt as τ decreases. Consequently, lowering parameter

τ tends to increase velocity of the (load-dependent) reference to be tracked by the system, therefore

making regulation task more demanding for the control law. If perfect control is expected to drive the470

system along the broken blue line of Fig. 16, low values of τ will definitely take system trajectories away

from this line.

Three distinct scenarios are considered by affecting values of the following set to τ :

τ ∈ {0.002, 0.005, 0.08} (s),

Upper subplot of Fig. 17 illustrates related chronographs. Resulting time dependent reference xr(R) to

be tracked is computed in the new coordinates and δr and σr depicted by lower subplots of Fig. 17 (recall

that vr does not depend on load and, in turn, has constant magnitude).475

6.5. Experimental results

Control law is designed by implementing procedure underlined in subsection 5.1 and summarized by

Th. 5.3. Resulting controller gains are[
kd kp ki

]
=
[
0.237 −0.174 −0.061

]
,

and K is selected as −κI2 with κ ∈ R>0 in such a way that κ governs velocity of current distribution

regulation. Here, 5 is affected to κ. Then, experiments are performed by considering the three load

scenarios characterized by τ , successively. Results are represented (i) by Fig. 18 which depicts currents

and voltage chronographs and (ii) by Fig. 19 representing both duty cycles and estimated load value.480

Fig. 20 also allows to visualize those result into the currents plan. From those pictures, the following

conclusions can be drawn: (i) For large τ , load estimation as well as voltage and current distribution

regulations are sufficiently fast for reference to be accurately tracked, (ii) decreasing τ pushes closed-loop

system to its limit, up to a point where prescribed currents trajectory left out during transient and (iii)
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Figure 17: Load and bus voltage chronographs.

stability is preserved for all value of τ . To highlight current ripples, Fig. 21 provides oscilloscope screen-485

shots of the currents and voltage measurements at the steady-state for R = 12Ω (left) and R = 1.8Ω

(right). It corresponds to zooms on measurements related to Fig. 18, at the beginning and at the end of

the timeline.

Remark. Since parasitic elements were not taken into account in design model (2), experimental results

suggest that proposed control scheme possesses intrinsic robustness properties to parameter uncertainties490

resulting from imperfection of electrical components. y

7. Perspectives

This section discusses possible extensions of this work. Specifically, it aims to evaluate added value

of the proposed framework to address questions have been set aside.

7.1. Constant power load495

In the case where the load cannot be modeled as resistive component but rather as a constant power

load (CPL), voltage dynamical relationship (2b) becomes

Cv̇ = σ − p0/v,
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Figure 21: Oscilloscope screen-shots of steady state for R = 12Ω (left), R = 1.8Ω (right) (i1 in yellow, i2 in cyan, v in

magenta).

where term v/R has to be substituted by p0/v with p0 ∈ R>0, see e.g. [23]. This introduces strong non-

linearity that may cause system instability if not properly treated. Nevertheless, the proposed cascaded

reformulation allows to isolate this non-linearity to Σv and let Σδ unchanged. Specifically, lower-right

term of state matrix of (14) becomes −p0/(Cv2).

As a result, only Cv delivering µ has to be modified to cope with this difficulty. Note that the500

rough load estimator vr/σ now reads vrσ and asymptotically converges to p0, provided that stability of

equilibrium satisfying vr = v is ensured by Cv.

7.2. Required measurements

In this paper current measurements have been assumed to be possible. Indeed, from computation

of the rank of the observability matrix, it can be verified that current vector i is not observable from505

voltage measurement, so that observation techniques cannot be used.10

Interestingly, proposed framework can more easily cope with current measurements failure. Indeed,

regulation of Σv can also be performed via PI controller using only voltage measurement (see example

on Subsection 5.1.1). When implementing such a controller, voltage regulation (the foremost control

goal) is ensured to be satisfied if i is not measurable, without any risk of instability. Note however that510

current distribution is inevitably in open-loop.

7.3. Saturation of d

With the exception of Section 6 devoted to experimental results, it has been implicitly assumed that

λ and µ can be freely assigned. In practice, this is obviously not the case as duty cycle vector d belongs to

10Note that parasitic elements like internal resistances of inductors induce damping which restore current observability.

However, observers relying on this feature are expected to be fragile since magnitude of those parasitic elements are usually

badly estimated.
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[0, 1]m. By inverting (11), this constraint can be pre-computed by constructing sets Λ and Φ in which λ515

and µ has to, respectively, belongs to in order not to saturate d. Obviously, Λ depends on instantaneous

value of µ and, conversely, Φ takes λ as an input. However, considering that regulation of v, associated

to µ, is the major control goal, it is reasonable to modify trajectory of λ in order to avoid saturation

of µ. Saying it differently, by decomposing input vector d into new coordinates (λ, µ), each of them

being associated to distinct objectives, we gives a way take hierarchy between control goal into account:520

Typically would gives priority to µ, governing voltage trajectory, over λ regulating current distribution.

Giving a detailed answer along those line to input constraints issue is ongoing researches.

Appendix A. Controller expression in the original coordinates

Using change of coordinates (11) and (5) as well as controller expression (19), one gets

diag {L}−1 diag {E} d =
[
Γm(Γᵀ

mΓm)−1 1
m

1m
]

×

κ(δr(R̂(σ))− δ) + ∆(L−1)vr
Eeq/Leqµ


= w(σ, µ)− κΓm(Γᵀ

mΓm)−1Γᵀ
mi.

It comes out that (20) is nothing but componentwise form of previous relationship. To proves this,

observe that

Γm(Γᵀ
mΓm)−1Γᵀ

m = I− 1
m

1m1ᵀ
m

can be derived from (8).

Appendix B. Optimal reference expression525

Using (8), problem (22) can be rewritten in new coordinates as follows

min
δ
J(Γm(Γᵀ

mΓm)−1δ + vr
mR

1m, vr)

s.t. Γm(Γᵀ
mΓm)−1δ + vr

mR
1m ≤ ī (B.1)

where decision variables set reduces to {δ}. Definition of J , given by (23), leads to

min
δ

1
2δ

ᵀQδ + qᵀ(R)δ + ν s.t. Aδ + b(R) ≤ 0

for some constant (independent of δ) term ν and with

A := Γm(Γᵀ
mΓm)−1, b(R) := vr

mR
1m − ī,

Q := 2Aᵀdiag {r1}A, q(R) := Aᵀ( 2vr
mR

r1 + r2)

Using KKT conditions and provided that feasilibity set D := {δ ∈ Rm−1 | Aδ + b(R) ≤ 0} is non empty

(which is obviously the case whenever R ≤ Rsat holds), this standart problem is known to admit the
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following unique (global) solution (see e.g. [Urruty, p.340])

δ = −Q−1(q(R) +Aᵀµ) (B.2)

where Lagrange multiplier µ ∈ Rm satisfies

µk ≥ 0, µk(Aδ + b(R))k = 0 (B.3)

for all k ∈ K. In the following, we consider m = 2.

Suppose that R ∈]R0, R̄]. In this case, let us prove that Aδ + b < 0 for µ = 0 and

δ = −Q−1q = r2,2 − r2,1

r1,1 + r1,2
+ vr
R

(
1− 2r1,1

r1,1 + r1,2

)
,

so that this value of δ is optimal since (B.2) and (B.3) are trivially satisfied. Define c(R) as follows :

c(R) := A(−Q−1q(R)) + b(R)

= 1
r1,1 + r1,2

r2,1 − r2,2

2

−1

1

+ vr
R

r1,2

r1,1

− ī.
Then, from the fact that R 7→ c1(R) is a strictly decreasing function on R>0 (since r1 > 0) and the

observation that c1(R0) = 0, it follows that c1(R) < 0 for all R ∈]R0, R̄]. In the same way, it can be

proved that c2(R) < 0 on the same interval, since c2(R1) = 0 where R1 is the right-hand side of (25) so

that R0 ≥ R1 holds.530

Suppose now that R ∈ [R,R0]. In this case case, let us prove that Aδ + b ≤ 0 holds and that (B.2)

and (B.3) are satisfied for

µ =
[
r2,2 − r2,1 + 2vr

R
r1,2 − 2̄i1(r1,1 + r1,2) 0

]ᵀ
and

δ = 2̄i1 −
vr
R

so that this value of δ is optimal. First observe that Aδ+b = [0, vr/R− ī1− ī2]ᵀ ≤ 0 for all R ≥ R ≥ Rsat.

Then, it remains to show that (B.2) is satisfied and µ1 ≥ 0 holds. The former can be easily checked,

while the latter follows readily from the fact c1(R) ≥ 0 for all R ≤ R0 (see discussion above) and by

remarking that µ1 equals 2(r1,1 + r1,2)c1(R).

Using definition of T provided by (8) and the equality σ = vr/R at the steady-state, computation of535

corresponding expressions of i in both cases leads to (26).
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