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Abstract

Among a few known techniques the isoparametric version of the �nite element method
for meshes consisting of curved triangles or tetrahedra is the one most widely employed
to solve PDEs with essential conditions prescribed on curved boundaries. It allows to
recover optimal approximation properties that hold for elements of order greater than
one in the energy norm for polytopic domains. However, besides a geometric complexity,
this technique requires the manipulation of rational functions and the use of numerical
integration. We consider a simple alternative to deal with Dirichlet boundary conditions
that bypasses these drawbacks, without eroding qualitative approximation properties.
In the present work we �rst recall the main principle this technique is based upon, by
taking as a model the solution of the Poisson equation with quadratic Lagrange �nite
elements. Then we show that it extends very naturally to viscous incompressible �ow
problems. Although the technique applies to any higher order velocity-pressure pairing,
as an illustration a thorough study thereof is conducted in the framework of the Stokes
system solved by the classical Taylor-Hood method.
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1 Introduction
Consider the �nite-element solution of second order elliptic equations posed in curved domains with
Dirichlet boundary conditions. It is well known that a considerable order lowering may occur if pre-
scribed boundary values are shifted to nodes that are not mesh vertexes of an approximating polygon
or polyhedron formed by the union of straight-edged N -simplexes of a �tted mesh. Over four decades
ago some techniques were designed in order to remedy such a loss of accuracy, and possibly attain the
same theoretical optimal orders as in the case of a polytopic domain, assuming that the solution is suf-
�ciently smooth. Two examples of such attempts in the framework of two-dimensional problems are
the interpolated boundary condition method by Nitsche and Scott (cf. [17] and [25]), and the method
introduced by Zlámal in [32] and extended by Žénišek [30]. Among such techniques the �nite element
method’s isoparametric version is by far the one most widely in use since the sixties (cf. [31]) in order
to recover the lost optimality. One of the main reasons why it became so popular is the fact that the
isoparametric technique applies to both two- and three-dimensional problems. We recall that this ver-
sion of the �nite element method is based on elements with curved boundary portions, aimed at better



approximating a curved boundary than straight edges or plane faces. In this case the aforementioned
shift of prescribed boundary values is avoided, since all nodes to which such values apply remain on
the true boundary. The price to pay however is the manipulation of rational functions as both shape
and trial functions de�ned upon the curved elements, and the resulting compulsory use of numerical
integration. While on the one hand this is far from being an obstacle in most current applications such
as linear problems with constant coe�cients, numerical integration can be a delicate issue in more
complex situations. The technique exploited in this work allows overcoming all such issues, since it
is based only on polynomial algebra upon an ordinary (i.e. a straight-edged) N -simplex. Moreover, in
contrast to the simple polygonal approach no erosion of the theoretical order of a given interpolation
inherent to the method occurs, especially for methods which are not of the lowest possible order. In
short, our technique is aimed at ensuring a theoretical order greater or equal to two in the natural
norm, without the use of curved elements and interpolating functions other than piecewise polyno-
mials.
Actually the conception of the �nite-element technique for solving boundary value problems with a
smooth curvilinear boundary considered in this work is close to the interpolated (Dirichlet) boundary
condition method studied in [7]. Though intuitive and known since the seventies, the latter technique
has been of limited use so far. Among the reasons for this lies its di�cult implementation, the lack of
an extension to three-dimensional problems and restrictions on the choice of boundary nodal points
to reach optimal convergence rates. In contrast our method is simple to implement in both two- and
three-dimensional geometries. Moreover it is particularly handy, whenever a �nite element method
has normal component or normal derivative degrees of freedom as illustrated in [22]. Indeed when
a method incorporates this type of degree of freedom the de�nition of isoparametric �nite-element
analogs is not always simple or clear (see e.g. [4]).
It is important to point out that e�cient �nite-element techniques are known since long, to optimally
handle boundary conditions other than Dirichlet’s, such as Neumann or Robin boundary conditions
prescribed on curved boundaries. In this respect the author refers for instance to the works by Barrett
and Elliott [2] and [3], besides [28] where a clear explanation on the issues brought about by Neumann
conditions prescribed on curved boundaries is given.

The technique applied in this paper was introduced in [20], in connection with triangular Lag-
range �nite elements of any order k greater than one to solve the Poisson equation posed in a smooth
curvilinear domain. In the subsequent work [21] the author addressed the case of tetrahedral Lagrange
elements of arbitrary order for second order elliptic PDEs in the same class of domains. A synthesis of
both papers is given in [23]. In [19] the author and co-worker used the same approach to the solution
of Maxwell’s equations with a Hermite �nite element method. In this work we push further such stud-
ies in accordance to the following outline. In Section 2 we recall the main results on the new technique
provided in [20] and [21], restricted to the case k = 2. Numerical examples are given in Section 3 in
connection with the two-dimensional Poisson equation as well. A rigorous study of this technique is
carried out in Section 4 in the framework of the �nite-element solution of the equations governing in-
compressible viscous �ows. Although such a study applies to di�erent mixed elements or formulations
of these equations such as GLS and SUPG, we con�ne ourselves to the case of the popular Taylor-Hood
element (cf. [16]) as applied to the Stokes system in standard Galerkin formulation. In Section 5 we
supply numerical examples illustrating the theoretical results of Section 4, and we conclude in Section
6 with a few comments.

2 Technique’s short description
Referring to [20] and [21] for further details, here we describe our technique to solve boundary value
problems with Dirichlet conditions prescribed on smooth curved boundaries, by solving a simple model
problem as follows. Let Ω be a bounded N -dimensional domain for N = 2 or N = 3, and Γ be its bound-
ary assumed to be su�ciently smooth (Γ must be at least of theC1-class). Given a function f ∈ H 1(Ω)
we wish to �nd a function u ∈ H 3(Ω) that solves −∆u = f in Ω with u = д on Γ assuming that
д ∈ H 5/2(Γ).



Now let P = {Th}h be a uniformly regular family of �nite element meshes consisting of straight-
edged triangle or tetrahedra, according to the space dimension, satisfying the usual compatibility con-
ditions (see e.g. [9]). Every element of Th is to be viewed as a closed set. Moreover each one of these
meshes is assumed to �t Ω in such a way that all the vertexes of the polygon or the polyhedron ∪T ∈ThT
lie on Γ. We denote the interior of this union set by Ωh . Let Γh be the boundary of Ωh , hT be the dia-
meter of T ∈ Th and h := maxT ∈Th hT .
We make the very reasonable assumption that every mesh triangle has no more than one edge in Γh
and no mesh tetrahedron has either no more than one face or no more than one edge contained in Γh .
The subset of Th consisting of elements having at least one edge on Γh is denoted by Sh .
Now let Vh be the �nite-element space consisting of continuous functions that vanish on Γh , whose
restriction to each T ∈ Th belongs to P2, where Pk is the space of polynomials of degree less than or
equal to k . f̃ ∈ L2(Ωh) being an extension of f to Ωh \ Ω, we further set for u,v ∈ H 1(Ωh):{

āh(u,v) :=
∫
Ωh

grad u · grad v dx
and Lh(v) :=

∫
Ωh

f̃ v dx.
(1)

To make ideas clear, and without loss of essential aspects, let us consider the case where д ≡ 0. If we
search for ūh such that,

ūh ∈ Vh and āh(ūh,v) = Lh(v) ∀v ∈ Vh, (2)
it is well-known that the energy norm of u − ūh in Ωh , that is, ‖ u − ūh ‖ē ,h , where

‖ · ‖ē ,h :=
[∫

Ωh

|grad(·)|2dx
]1/2
, (3)

will be only an O(h1.5).
In order to recover the optimal O(h2)-convergence rate in the energy norm we propose the following.
Let Wh be a space consisting of functions de�ned in Ωh whose restriction to every element T ∈ Th
is a polynomial of degree less than or equal to two, which are continuous at the vertexes of T and at
the mid-points of the edges of T not contained in Γh , ∀T ∈ Th . Besides this, a function w ∈ Wh is
required to vanish at all the mesh vertexes lying on Γh , and at certain points of Γ belonging to the set
∆S attached to an elements S ∈ Sh containing the underlying portion of Γ, constructed as described
below ∀S ∈ Sh . We consider beforehand that the expression of w ∈ Wh in every element S ∈ Sh is
extended to ∆S \ Ωh .
Referring to Figure 1, in the two-dimensional case ∆S is the closed set delimited by Γ and the edge d of
S contained in Γh . For every S ∈ Sh , the extension ofw to ∆S \Ωh is required to vanish at a point P ∈ Γ
located between two neighboring vertexes of S . To make implementation more straightforward P can
be chosen to be the nearest intersection with Γ of the perpendicular to the edge d passing through its
mid-point M . Henceforth ∆S will be referred to as a skin.
Referring to Figures 2 and 3 (right), in the three-dimensional case, for every boundary edge d of an
element S ∈ Sh we �rst denote by Π the plane bisecting the dihedral formed by the faces F and F

′ of
S and another tetrahedron S

′

∈ Sh respectively, whose intersection is d . We generically denote by δd
the closed subset of Π comprised between d and Γ, referred to as a plane skin hereafter, as depicted in
Figure 2 for a tetrahedron S having a face F contained in Γh . Referring to Figure 3 (left), in the case of
such a tetrahedron we denote by ∆S the closed subset of Ω ∪ Ωh delimited by the three plane skins
δd , Γ and F . For the other type of tetrahedrons S ∈ Sh there will be only one such a plane skin δd and
we set ∆S = δd . Then for every S ∈ Sh the extension of w to ∆S \ Ωh is required to vanish at a point
P ∈ Γ belonging to δd located between the end-points of d , for every edge d of S contained in Γh . Akin
to the two-dimensional case P can be conveniently chosen to be the nearest intersection with Γ of the
perpendicular to d in δd passing through its mid-point M .

Now instead of solving (2) we search for uh such that,

uh ∈Wh and ah(uh,v) = Lh(v) ∀v ∈ Vh . (4)

where
ah(w,v) :=

∫
Ωh

gradhw · grad v dx ∀w ∈Wh and ∀v ∈ Vh, (5)



Figure 1: Set ∆S for triangles S in Sh with their nodes P ∈ Γ associated with M ∈ Γh

gradh : Wh + H
1(Ωh) −→ [L

2(Ωh)]
N being the broken gradient operator de�ned by,

[gradhw] |T = grad[w |T ] ∀T ∈ Th .

Of course ifw is continuous the forms ah and āh coincide. This always happens in the two-dimensional
case, sinceWh ⊂ C0(Ωh). However this inclusion is false in three-dimension space because functions
w ∈ Wh are not necessarily continuous on the interfaces of two tetrahedra in Sh (cf. [21]). For this
reason in the sequel we will work with the broken energy norm ‖ · ‖e ,h given by,

‖ · ‖e ,h :=
[∫

Ωh

|gradh(·)|
2dx

]1/2
, (6)

and also with the reduced broken energy norm ‖ · ‖ẽ ,h given by,

‖ · ‖ẽ ,h :=
[∫

Ω̃h

|gradh(·)|
2dx

]1/2
where Ω̃h := Ωh ∩ Ω. (7)

According to [20] and [21], ‖ uh − u ‖e ,h (resp. ‖ uh − u ‖ẽ ,h ) is an O(h2) if Ω is convex (resp. non-
convex). In the remainder of this section we give a detailed proof of these results. One of the keys to
the problem is the following proposition:

Proposition 1 Provided h is su�ciently small, for everyw ∈Wh there exists v ∈ Vh such that{
‖ w −v ‖e ,h≤ C1h ‖ w ‖e ,h,
ah(w,v) ≥‖ w ‖

2
e ,h /2

(8)

where C1 is a strictly positive constant independent of bothw and h.

Proof : Given w ∈ Wh let v ∈ Vh coincide with w at all mesh nodes, except those located on Γ which
are not mesh vertexes. The latter are precisely the nodes P whose construction is illustrated in Figures
1 and 3, at which w necessarily vanishes. Clearly enough (v − w) |T ≡ 0 for every T having no edge
contained in Γh . Therefore all we need are estimates of

∫
S |grad(v − w) |S |

2dx for every S ∈ Sh , i.e.
having at least one edge d ⊂ Γh . For the sake of brevity we only consider the case of an S ∈ Sh having
exactly one such an edge d ; indeed the case of a tetrahedron having a face contained in Γh can be
handled as a trivial extension of the argument that follows.
Let then φS ∈ P2 be the Lagrange basis function that vanishes at all the �ve nodes of S for N = 2 or
nine nodes for N = 3, which are not the mid-point of d . Denoting such a mid-point by MS we clearly
have

[v −w] |S = w(MS )φS . (9)



Figure 2: Plane skin δd for two tetrahedra S, S ′ having faces F , F ′ ⊂ Γh with F ∩ F
′

= edge d

First we refer to Figures 1 and 2 where the set ∆S is illustrated, for S ∈ Sh . Recalling that hS is the
diameter of S , by construction there exists a mesh-independent constant CΓ such that

|w(MS )| ≤ CΓh
2
S max
x∈∆S
|grad w(x)|. (10)

Since w is a polynomial in S there must exist another mesh-independent constant Cδ such that (cf
[28]):

max
x∈∆S
|grad w(x)| ≤ Cδ max

x∈S
|grad w(x)|. (11)

Furthermore by a classical inverse inequality (cf. [9]) there exists another mesh-independent constant
Cι such that,

max
x∈S
|grad w(x)| ≤ Cιh

−N /2
S

[∫
S
|grad w |2dx|

]1/2
. (12)

It follows from (9), (10), (11) and (12) that∫
S
|grad(v −w)|2dx ≤ C2

ιC
2
δC

2
Γh

4−N
S

∫
S
|grad w |2dx

∫
S
|grad φS |2dx. (13)

Combining (13) with the obvious estimate∫
S
|grad φS |2dx ≤ C2

φh
N−2
S (14)

for a suitable mesh-independent constant Cφ , we easily obtain

‖ v −w ‖e ,h≤ C1h ‖ w ‖e ,h with C1 = CφCιCδCΓ . (15)

Finally, noting that ah(w,v) =‖ w ‖2e ,h +ah(w,v −w) ≥‖ w ‖e ,h (‖ w ‖e ,h − ‖ v −w ‖e ,h), the lower
bound,

ah(w,v) ≥‖ w ‖
2
e ,h /2 (16)

trivially follows from (15) forh = h0, whereh0 is the largest mesh size in the family P such that 1−C1h0
is bounded below by 1/2.

As an immediate consequence of (8) a uniform inf-sup Babuška-Brezzi condition in connection
with problem (4)-(5) is satis�ed. More precisely we have:



Figure 3: Set ∆S for a tetrahedron S ∈Sh and its nodes (right) P ∈ Γ associated with M ∈ Γh

Corollary 1 Provided h is su�ciently small, it holds for some α ≥ 1/3:

∀w ∈Wh , 0, sup
v ∈Vh\{0}

ah(w,v)

‖ w ‖e ,h ‖ v ‖e ,h
≥ α . (17)

Since obviously dim(Vh) = dim(Wh), and both ah and Lh are uniformly bounded independently of h,
the simple fact that (17) holds implies that (4) is uniquely solvable (cf. [12]).

Next we prove error estimates for problem (4). In this aim we denote by | · |m,D the usual semi-
norm of Sobolev space Hm(D) in a bounded domain D ∈ <N , form ∈ N (cf. [1]). First we have:

Theorem 1 Assume thatΩ is convex. Then providedh is su�ciently small, for a certainmesh-independent
constant C2 it holds:

‖ uh − u ‖e ,h≤ C2h
2 |u |3,Ω . (18)

where ‖ · ‖e ,h is the discrete H 1- semi-norm de�ned by (6).

Proof : From (17) we infer that

‖ uh −w ‖e ,h≤ 3 sup
v ∈Vh\{0}

ah(uh −w,v)

‖ v ‖e ,h
∀w ∈Wh . (19)

Let Ih(u) ∈Wh be the standard interpolate of u at the mesh nodes associated withWh . Taking in (17)
w = uh−Ih(u), we add and subtractu in the �rst argument of ah . Thus by straightforward calculations,

‖ uh − Ih(u) ‖e ,h≤ 3
[
‖ u − Ih(u) ‖e ,h + sup

v ∈Vh\{0}

ah(uh − u,v)

‖ v ‖e ,h

]
. (20)

Noting that ah(uh,v) = Lh(v) we come up with:

‖ uh − Ih(u) ‖e ,h≤ 3
[
‖ u − Ih(u) ‖e ,h + sup

v ∈Vh\{0}

|ah(u,v) − Lh(v)|

‖ v ‖e ,h

]
. (21)

Since Ωh ⊂ Ω if Ω is convex, we observe that ah(u,v) =
∮
Γh

v
∂u

∂nh
dΓh −

∫
Ωh

v∆u dx, where ∂u
∂nh

is the

outer normal derivative of u on Γh . Noting that −∆u = f in Ωh and v ≡ 0 on Γh , we trivially obtain,

‖ uh − u ‖e ,h≤ 4 ‖ u − Ih(u) ‖e ,h . (22)

Then (18) is a consequence of standard estimates of the interpolation error in Sobolev norms (cf. [7]).



Remark 1 It is interesting to note that although our method is non-conforming for N = 3, in any case
Vh is a subspace of H 1(Ωh). Therefore the variational residual ah(u,v) − Lh(v) vanishes if Ω is convex, in
contrast to usual non-conforming methods.

Now we address the case of a non-convex Ω. Let us consider a smooth domain Ω̃ close to Ω which
strictly contains Ω ∪ Ωh for all h su�ciently small. More precisely, denoting by Γ̃ the boundary of Ω̃
we assume that meas(Γ̃) −meas(Γ) ≤ ε for ε su�ciently small. For the sake of simplicity henceforth
we consider that f was extended by zero to the whole Ω̃ \ Ω and still denote this extension by f̃ . In
doing so the following error estimate can be proved:

Theorem 2 Assume that there exists a function ũ de�ned in Ω̃, satisfying:

• ũ |Ω = u;

• ũ = 0 a.e. on Γ;

• ũ ∈ H 3(Ω̃).

Then as long as h is su�ciently small it holds:

‖ uh − u ‖ẽ ,h≤ C̃2[h
2 |ũ |3,Ω̃ + h

5/2 ‖ ∆ũ ‖0,Ω̃], (23)

where C̃2 is a mesh-independent constant and ‖ · ‖ẽ ,h denotes the standard H 1-semi-norm de�ned in (7).

Proof : According to (17) ∀w ∈Wh we have,

‖ uh −w ‖e ,h≤
1
α

sup
v ∈Vh\{0}

|ah(ũ,v) − Fh(v)| + |ah(ũ −w,v)|

‖ v ‖e ,h
. (24)

Since ũ ∈ H 3(Ω̃) we can apply First Green’s identity to ah(ũ,v) thereby getting rid of integrals on
portions of Γ. Next we note that ∆ũ + f̃ = 0 in every T ∈ Th \ Sh ; this is also true of elements T not
belonging to the subset Rh of Sh consisting of elements R such that R \ Ω is not restricted to a set of
vertexes of Ωh . Finally we recall that ∆ũ + f̃ vanishes identically in the set R ∩ Ω ∀R ∈ Rh . Denoting
by ∆̃R the interior of the set R \ Ω for R ∈ Rh we can write:

|ah(ũ,v) − Fh(v)| =

����� ∑
R∈Rh

∫
∆̃R

∆ũ v dx

����� ≤ ∑
R∈Rh

‖ ∆ũ ‖0,∆̃R ‖ v ‖0,∆̃R . (25)

Now taking into account that v ≡ 0 on Γh and recalling the constant CΓ de�ned in Proposition 8, it
holds:

|v(x)| ≤ CΓh
2
R ‖ |grad v | ‖0,∞,∆̃R , ∀x ∈ ∆̃R,

where ‖ · ‖0,∞,D denotes the standard norm of L∞(D), D being a bounded open set of <N . Next,
using the same arguments as in the proof of Proposition 8, we derive the estimate ‖ |grad v | ‖0,∞,∆̃R≤
CIh

−N /2
R ‖ grad v ‖0,R for a mesh-independent constant CI . Noticing that the measure of ∆̃R is

bounded by a constant depending only on Ω times hN+1R , after straightforward calculations we obtain
for a certain mesh-independent constant CZ :

‖ ∆ũ ‖0,∆̃R ‖ v ‖0,∆̃R≤ CZh
5/2
R ‖ ∆ũ ‖0,∆̃R ‖ grad v ‖0,R ∀R ∈ Rh . (26)

Now plugging (26) into (25) and applying the Cauchy-Schwarz inequality, we easily come up with,

|ah(ũ,v) − Fh(v)| ≤ CZh
5/2 ‖ ∆ũ ‖0,Ω̃ ‖ v ‖e ,h . (27)

Finally plugging (27) into (24) and taking w = Ih(ũ), we immediately establish the validity of error
estimate (23).

Remark 2 There are many ways to ensure the existence of ũ satisfying the assumptions of Theorem 2,
as long as Γ is as smooth as required. For instance we refer to [27] for an interesting construction of ũ.



3 Some numerics for the Poisson equation
Let us illustrate the performance of the new technique to handle Dirichlet conditions on curved bound-
aries. With this aim we �rst solve problems (2) and (4) in case Ω is the unit disk centered at the origin,
and a uniformly regular family of meshes consisting of 8n2 triangles for n = 2m , with m = 1, 2, . . .
is constructed in the way described in [21]. In these experiments we take f (x,y) = 9r where r =
(x2 + y2)1/2, and hence the exact solution is given by u(x,y) = 1 − r 3. Owing to symmetry only the
quarter disk corresponding to x > 0 andy > 0 is taken into account in the computations, and therefore
meshes containing 2n2 elements are employed. For a fairer comparison we also supply results obtained
for the same problem solved by the classical isoparametric technique. We denote the solution obtained
with this method by ũh .

Taking m = 2, 3, 4, 5, 6 and observing that h = 1/n, in Table 1 the quantities ‖ uh − u ‖e ,h ,
‖ ũh − u ‖e ,h and ‖ ūh − u ‖e ,h for the resulting decreasing values of h are displayed.

n −→ 4 8 16 32 64

‖ uh − u ‖e ,h −→ 0.1329×10−1 0.3343×10−2 0.8381×10−3 0.2097×10−3 0.5245×10−4

‖ ūh − u ‖e ,h −→ 0.5434×10−1 0.1969×10−1 0.7042×10−2 0.2503×10−2 0.8870×10−3

‖ ũh − u ‖e ,h −→ 0.1559×10−1 0.3837×10−2 0.9477×10−3 0.2353×10−3 0.5861×10−4

Table 1: Energy errors for a test-problem in a disk solved by methods (4), (2) and isoparametric FEs

Table 1 con�rms second order convergence in the energy norm for the approach advocated in this
paper, while the polygonal approach (2) yields only O(h1.5) approximations in the same norm, as pre-
dicted in classical books (cf. [9]). Of course the expected second order convergence of the isoparametric
solution is also observed. However the new method is a little more accurate.

Now in order to further illustrate the accuracy of method (4) in case Ω is not convex, we compare
it again with method (2) by solving a problem whose exact solution is not axisymmetric. More speci�c-
ally, here the domain described in polar coordinates (r , θ ) is given by Ω := {(r , θ )| r ≤ [4+cos(4θ )]/5}.
Takingд ≡ 0 and f = 16r 2−5.8r −11.2x2y2/r 3 the exact solution is the functionu = r 3−r 4−1.6x2y2/r .
Notice that f ∈ H 1(Ω) and u ∈ H 3(Ω).
Here again symmetry allows working with the computational domain corresponding to x > 0 and
y > 0. The meshes also consist of 2n2 elements, generated like in [22], by subdividing the radial co-
ordinate r into n equal parts and the azimuthal coordinate θ ∈ (0, π/2) into 2n equal parts.

Observing that h = 1/n, we show in Table 2 the quantity ‖ uh − u ‖e ,h for n = 2m , with
m = 2, 3, 4, 5, 6. Moreover, in order to give a better idea of how e�ective our method is, we also
supply the errors ‖ uh − u ‖0,h and |uh − u |∞,h , where ‖ · ‖0,h and | · |∞,h stand for the standard norm
of L2(Ωh) and the maximum absolute error at the nodal points, respectively.

n −→ 4 8 16 32 64

‖ uh − u ‖e ,h −→ 0.1566×10−1 0.4235×10−2 0.1089×10−2 0.2751×10−3 0.6910×10−4

‖ uh − u ‖0,h −→ 0.4875×10−3 0.5859×10−4 0.7315×10−5 0.9195×10−6 0.1156×10−6

|uh − u |∞,h −→ 0.8110×10−3 0.1790×10−3 0.2745×10−4 0.3701×10−5 0.4915×10−6

Table 2: Errors in di�erent senses for a test-problem in a non-convex domain solved by method (4)

Table 2 validates method’s second order convergence in energy norm established in Theorem 2. Even
better news come from the observed convergence rates of three in the norm of L2(Ωh) and of a little
less than three in the L∞-semi-norm | · |∞,h .



4 Application to the Taylor-Hood element
The classical Taylor-Hood element was introduced in [16] for the solution of the incompressible
Navier-Stokes equations. It consists of continuous piecewise polynomial representations of both ve-
locity and pressure in triangles or tetrahedra, of degree two for the former variable and of degree one
for the latter. Second order convergence results for this method were established by Verfürth [29] in
the case of a polygonal domain and by Bo� [5] in the case of polyhedrons. In this section we apply
the method described in Section 2 in order to extend such results to the case of smooth curvilinear
domains.
This study will be restricted to the linearized form of the stationary incompressible Navier-Stokes
equations, which governs incompressible viscous �ows at a very low Reynolds number. More speci�c-
ally our theory applies to the following Stokes system in a bounded domain Ω of <N at least of the
C1-class, for N = 2 or N = 3:
Given a �eld f ∈ [H 1(Ω)]N , and a velocity pro�le g de�ned on Γ assumed to belong to [H 5/2(Γ)]N and
to satisfy the conservation property

∮
Γ
g · n ds = 0, where n is the unit outer normal vector on Γ, we

wish to determine a velocity �eld u ∈ [H 1(Ω)]N and a hydrostatic pressure p ∈ L2(Ω)/<, where A/B
denotes the quotient between two vector spaces A and B, such that:

−∆u + grad p = f
div u = 0

}
in Ω

u = g on Γ.
(28)

A suitable regularity assumption on Ω, besides those applying to f and g, legitimately allows assuming
in turn that u ∈ [H 3(Ω)]N and p ∈ H 2(Ω).
Although all the results to be derived hereafter apply to the inhomogeneous case, in order to avoid non
essential di�culties, we further restrict the analysis conducted in this section to the case where g ≡ −→0 .

Our working spaces here will be the pair (Vh,Wh) of vector �eld spaces de�ned by Vh := [Vh]N
and Wh := [Wh]

N , together with the function space Qh := Q̃h ∩ L20(Ωh), with Q̃h := {q | q ∈
C0(Ωh), q |T ∈ P1, ∀T ∈ Th}, where L20(Ωh) = {q | q ∈ L2(Ωh),

∫
Ωh

q dx = 0}. For the sake of sim-
plicity, henceforth we denote by |w|1,h the semi-norm ‖ gradhw ‖0,h of a �eld w ∈ Wh + [H

1(Ωh)]
N ,

where ‖ · ‖0,h stands for standard norm of L2(Ωh).
We make the same assumptions as in Section 2 on a given familyP of meshesTh of Ω intoN -simplexes.
In doing so we consider the extension by zero f̃ of f to Ωh \ Ω, if applicable, and de�ne the broken
divergence operator divh : Wh + [H

1(Ωh)]
N −→ L2(Ωh) by [divhw] |T = div w |T ∀T ∈ Th . We further

set for w ∈Wh + [H
1(Ωh)]

N , v ∈ [H 1(Ωh)]
N and q ∈ L2(Ωh):

ch(w, v) :=
∫
Ωh

gradh w : grad v dx
bh(v,q) := −

∫
Ωh

q div v dx
dh(w,q) := −

∫
Ωh

q divhw dx
Lh(v) :=

∫
Ωh

f̃ · v dx.

(29)

Now we pose the corresponding �nite-element counterpart of (28) as:
Find uh ∈Wh and ph ∈ Qh such that:
ch(uh, v) + bh(v,ph) = Lh(v) ∀v ∈ Vh,
dh(uh,q) = 0 ∀q ∈ Qh .

(30)

According to the classical theory of linear variational problems (see e.g. [12]) problem (30) is well-
posed thanks to the validity of the underlying Babuška-Brezzi condition, or yet the inf-sup condition
(31), that is,
Proposition 2 Provided h is su�ciently small, there exists a strictly positive constant A independent of
h such that

inf
(w,p)∈Wh×Qh\{(

−→0 ,0)}
sup

(v,q)∈Vh×Qh\{(
−→0 ,0)}

ch(w, v) + bh(v,p) + dh(w,q)
[|w|21,h+ ‖ p ‖

2
0,h]

1/2[|v|21,h+ ‖ q ‖
2
0,h]

1/2 ≥ A. (31)



Proof: Let the pair (w,p) , (−→0 , 0) be given in Wh ×Qh .
First we observe that, since Taylor-Hood elements are uniformly stable, the following condition holds:

sup
v∈Vh\{

−→0 }

bh(v,p)
|v|1,h

≥ β ‖ p ‖0,h . (32)

for a constant β > 0 independent of both p and the mesh. Actually (32) is the consequence of well-
known arguments (cf. [8]), according to which there exist two mesh-independent constantsC3 andC4
also independent of p, such that one can �nd v0 ∈ Vh satisfying{

bh(v0,p) ≥ C3 ‖ p ‖
2
0,h

|v0 |1,h ≤ C4 ‖ p ‖0,h .
(33)

Noticing that ch is nothing but ah applied to vector �elds instead of functions, let v1 ∈ Vh satisfy
the obvious vector analog of (8) for our given w ∈ Wh . For a certain parameter η > 0 we de�ne
v := ηv0 + v1 and take q ≡ −p. From the obvious vector analog of (15) we easily obtain

|v1 |1,h ≤ (1 +C1h)|w|1,h,

which together with (33) immediately yields: ch(w, v)+bh(v,p)+dh(w,q) ≥
|w|21,h
2 −ηC4 |w|1,h ‖ p ‖0,h +bh(v1,p)−dh(w,p)+ηC3 ‖ p ‖

2
0,h

and |v|1,h+ ‖ q ‖0,h≤ (1 +C1h)|w|1,h + (ηC4 + 1) ‖ p ‖0,h .
(34)

Next we note that

bh(v1,p) − dh(w,p) =
∫
Ωh

p divh(w − v1)dx ≤
√
N |w − v1 |1,h ‖ p ‖0,h .

Thus using Young’s inequality and recalling that C1h ≤ 1/2, from (34) we obtain,
ch(w, v) + bh(v,p) + dh(w,q) ≥

|w|21,h
4 −

√
N |w − v1 |1,h ‖ p ‖0,h +(ηC3 − η

2C2
4) ‖ p ‖

2
0,h

and |v|1,h+ ‖ q ‖0,h≤
3|w|1,h

2 + (ηC4 + 1) ‖ p ‖0,h .
(35)

Moreover, plugging the natural vector version of (15) into the �rst inequality of (35), we derive


ch(w, v) + bh(v,p) + dh(w,q) ≥

|w|21,h
4 −

√
NC1h |w|1,h ‖ p ‖0,h +(ηC3 − η

2C2
4) ‖ p ‖

2
0,h

and |v|1,h+ ‖ q ‖0,h≤
3|w|1,h

2 + (ηC4 + 1) ‖ p ‖0,h .
(36)

Taking η = C3/(2C2
4), setting C5 = min{1/8, [C3/(2C4)]

2} and assuming that
√
NC1h ≤ 2C5 from

(36) we come up with, {
ch(w, v) + bh(v,p) + dh(w,q) ≥ C5(|w|21,h+ ‖ p ‖

2
0,h)

and [|v|21,h+ ‖ q ‖
2
0,h]

1/2 ≤ C6[|w|21,h+ ‖ p ‖
2
0,h]

1/2.
(37)

with C6 = {9/4 + [C3/(2C4) + 1]2}1/2.
In view of both inequalities in (37), as long as h ≤ min[2C5/

√
N , 1/2]/C1, (31) holds with A = C5/C6.

Now we endeavor to derive error estimates for problem (30). Essentially this task is not more
complicated than the one carried out in Theorems 1 and 2. Indeed (30) can be rewritten as follows:

Find Uh ∈ Wh such that Ah(Uh,V ) = Lh(V ) ∀V ∈ V, (38)

where



• Uh = (uh,ph);

• V = (v,q);

• Wh :=Wh ×Qh ;

• Vh := Vh ×Qh ;

• Ah((w,p), (v,q)) := ch(w, v) + bh(v,p) + dh(w,q);

• Lh(V ) := Lh(v).

Now we denote by ‖ · ‖X ,h the norm over {Wh + [H
1
0 (Ωh)]

N } × L2(Ωh), given by

‖ V ‖X ,h := [|v|21,h+ ‖ q ‖
2
0,h]

1/2. (39)

Then letting A play the same role as the constant 1/3 in (17), analogously to (19) we obtain:

‖ Uh −W ‖X ,h≤
1
A

sup
V ∈Vh\{O}

Ah(Uh −W ,V )

‖ V ‖X ,h
∀W ∈ Wh . (40)

Finally noticing that here also the variational residual Ah((u,p), (v,q)) − Lh((v,q)) vanishes for
every (v,q) ∈ Vh if Ω is convex, using standard estimates for the interpolation error in Sobolev spaces,
akin to Theorem 1, (40) leads to:

Theorem 3 Provided h is small enough and Ω is convex, for a certain mesh-independent constant C it
holds:

[|u − uh |21,h+ ‖ p − ph ‖
2
0,h]

1/2 ≤ Ch2[|u|3,Ω + |p |2,Ω]. (41)

The case where Ω is not convex can be treated quite in the same manner as in Section 2. The key
to the problem is the existence of suitable extensions ũ of u and p̃ of p to the domain Ω̃ \ Ω, where
Ω̃ is de�ned in Section 2. More precisely, we extend f by zero to Ω̃ \ Ω̄ and still denote by f̃ such an
extension. However, naturally enough, more technicalities come into play here.
To begin with we need the following preliminary result:

Lemma 1 Let ϕ be a function in H 1(Ω̃) that vanishes on Γ. There exists a mesh-independent constant
CX such that

‖ ϕ ‖0,∆̃R≤ CXh
2
R |ϕ |1,∆̃R ∀R ∈ Rh . (42)

Proof : We refer to [15] for the terminology and some properties of di�eomorphisms used in this proof.
Let us cover the whole non-convex region of Γ by a set of M overlapping local maps, say, ωi , i =
1, . . . ,M . Owing to our regularity assumptions, there exists a C1-di�eomorphism Fi that transforms
ωi into a set ω̂i such that Γ̂i := Fi (Γ∩ωi ) is a line segment for N = 2 or a plane bounded set for N = 3.
Without loss of generality we assume that the measure of Γ̂i is not zero, and moreover that we can
assign each R ∈ Rh to a certain local map ωi , in such a way that R ⊂ ωi .
We generically denote by x̂ = (t̂, n̂) the local Cartesian coordinate system of<N with coordinates t̂ = t̂
for N = 2 or t̂ = (t̂1, t̂2) for N = 3 along or upon Γ̂i , and by n̂ the coordinate along the axis orthogonal
to Γ̂i oriented from this manifold outwards the image of ωi ∩ Ω under Fi . Let R ∈ Rh and ∆̂R be the
transformation of ∆̃R under Fi for the appropriate i . We denote by ϕ̂ the transformation of ϕ under Fi
de�ned in ω̂i . Since ϕ̂ = 0 on Γ̂i we can write

ϕ̂(t̂, n̂) =
∫ ν=n̂

ν=0

[
∂ϕ̂

∂n̂

]
(t̂,ν ) dν .

Hence, we obtain successively,∫
∆̂R

|ϕ̂ |2 dx̂ ≤
∫
∆̂R

�����∫ ν=n̂

ν=0

[
∂ϕ̂

∂n̂

]
(t̂,ν ) dν

�����2 d t̂dn̂,



∫
∆̂R

|ϕ̂ |2 dx̂ ≤
∫
∆̂R

l(t̂)

∫ ν=l (t̂)

ν=0

�����
[
∂ϕ̂

∂n̂

]
(t̂,ν )

�����2 dν
 d t̂dn̂,

where l(t̂) is the width of ∆̂R measured in the direction normal to Γ̂i from point (t̂, 0). Then denoting
by l̂ the maximum of l(t̂) over (t̂, 0) ∈ Γ̂i ∩ ∆̂R , we trivially obtain,∫

∆̂R

|ϕ̂ |2 dx̂ ≤ l̂2
∫
∆̂R

�����
[
∂ϕ̂

∂n̂

]
(t̂, n̂)

�����2 dn̂d t̂,

and further, ∫
∆̂R

|ϕ̂ |2 dx̂ ≤ Ĉih
2
R

∫
∆̂R

|�grad ϕ̂ |2 dx̂
where �grad(·) represents the gradient operator of a function de�ned in ω̂i , and the constant Ĉi depends
only on Ω and ω̂i .
Next we make straightforward changes of variables in the above integrals, thereby transforming them
into integrals in ∆̃R , and observe that �grad ϕ̂ = F−1i grad ϕ where Fi is the Jacobian matrix of Fi . From
a basic property of di�eomorphisms the spectral norm of Fi can be uniformly bounded above by a
constant independent of the mesh, as much as the Jacobian of both Fi and F −1i . Finally taking the
extrema over i of those constants and of Ĉi in the required senses, the result follows.

Now we have

Theorem 4 Assume that there exists ũ and p̃ satisfying the following conditions:

• ũ |Ω = u and p̃ |Ω = p

• ũ =
−→0 a.e. on Γ;

• ũ ∈ [H 3(Ω̃)]N and p̃ ∈ H 2(Ω̃).

Then, as long as h is small enough, for a certain mesh-independent constant C̃ it holds:

[|u − uh |21,Ω̃h+ ‖ p − ph ‖
2
Ω̃h
]1/2 ≤ C̃{h2[|ũ|3,Ω̃ + |p̃ |2,Ω̃] + h

5/2[|ũ|2,Ω̃ + |p̃ |1,Ω̃]}, (43)

where Ω̃h := Ωh ∩ Ω.

Proof : The proof of this theorem is based on the same arguments as the proof of Theorem 2. Therefore
we skip some details.
First we set Ũ := (ũ, p̃). For everyW = (w, r ) ∈ Wh we have:

‖ Uh −W ‖X ,h≤
1
A

sup
V=(v,q)∈Vh,O

|Ah(Ũ ,V ) − Lh(V )| + |Ah(W ,V ) − Ah(Ũ ,V )|

‖ V ‖X ,h
. (44)

The second term in the numerator of (44) can be handled in a standard manner by means of classical
interpolation theory. This yields for a mesh-independent constant C J :

inf
W ∈Wh

|Ah(W ,V ) − Ah(Ũ ,V )|

‖ V ‖X ,h
≤ C Jh

2[|ũ|3,Ω̃ + |p̃ |2,Ω̃]. (45)

Next, thanks to the fact that ũ ∈ [H 3(Ω̃)]N and p̃ ∈ H 2(Ω̃) we can write,

|Ah(Ũ ,V ) − Lh(V )| ≤
∑
R∈Rh

{∫
∆̃R

[|∆ũ| + |grad p̃ |]|v| dx +
∫
∆̃R

|q | |div ũ| dx
}
. (46)

Similarly to Theorem 2 the summation of the �rst integral on the right hand side of (46) can be bounded
above as follows, for a suitable mesh-independent constant CY :∑

R∈Rh

∫
∆̃R

[|∆ũ| + |grad p̃ |]|v| dx ≤ CYh
5/2[‖ ∆ũ ‖0,Ω̃ +|p |1,Ω̃]|v|1,h . (47)



On the other hand we have, ∫
∆̃R

|q | |div ũ| dx ≤‖ q ‖0,∆̃R ‖ div ũ ‖0,∆̃R . (48)

Now, since div ũ vanishes on Γ, using Lemma 1, it holds for a certain mesh-independent constantCX :

‖ div ũ ‖0,∆̃R≤ CXh
2
R |div ũ|1,∆̃R (49)

Moreover using the fact thatmeas(∆̃R ) ≤ CQh
N+1
R for a mesh-independent constantCQ , together with

the inverse inequality ‖ q ‖0,∞,R≤ CIh
−N /2
R ‖ q ‖0,R , from (48) and (49) we derive,∫

∆̃R

|q | |div ũ | dx ≤ CICQCXh
5/2
R |div ũ|1,∆̃R ‖ q ‖0,R . (50)

This trivially yields ∑
R∈Rh

∫
∆̃R

|q | |div ũ| dx ≤
√
NCICQCXh

5/2 ‖ q ‖0,h |ũ|2,Ω̃ . (51)

Finally combining (44), (45), (46), (47) and (51) we come up with (43).

As pointed out in Remark 2, the construction of a pair (ũ, p̃) satisfying the assumptions of Theorem
4 can be performed in di�erent manners. In this respect we refer for instance to [27].

5 Numerical validation for con�ned rotating �ows
One of the most remarkable applications of the method studied in the previous section is the simula-
tion of con�ned rotating �ows. Indeed in this case a viscous �uid adhere to the curved wall of the �ow
region, and thus handling the underlying Dirichlet boundary condition with a method of order higher
than one requires the use of an accurate technique. In this section we present results obtained with
ours, for two test-problems governed by the Stokes system.

In the tables of this section the acronym OCR stands for observed convergence rate.

5.1 Test-problem with a manufactured solution
First we apply the Taylor-Hood method combined with our technique to solve (28) with a manufactured
solution corresponding to the following data: Ω is the unit disk (centered at the origin), f = (8, 8)(x−y),
and g ≡

−→0 . Prescribing p(
√
2/2,
√
2/2) = 0, the exact solution has polynomial expressions, namely

u = (y,−x)(1 − x2 − y2) and p = x2 − y2.
We use meshes constructed like in the �rst test-problem of Section 3, but here the computational
domain is the whole disk. More speci�cally now we compute with (2n × 2n)-meshes containing 8n2
triangles, each mesh being symmetric with respect to the axes x = 0 and y = 0, for n = 2m with
m = 2, 3, 4, 5. We recall that h = 1/n.
In order to discard any particularity inherent to the problem being solved, we compared the numerical
solution with the one obtained by the simple polygonal approach.
We display in Table 3 the velocity and pressure errors in the norms | · |1,h and ‖ · ‖0,h for both
approaches. The notations ūh and p̄h are employed to represent the velocity and pressure obtained
by the simple polygonal approach. These results completely validate the analysis carried out in the
previous sections for the case of a convex domain (cf. Theorem 3). It is no surprise that the polygonal
approach does erode the order of the velocity approximation. It is interesting to note however that, at
least in this test-case, this simple approach does not a�ect the pressure approximation.



2n −→ 8 16 32 64 OCR

|uh − u|1,h −→ 0.3585×10−1 0.8833×10−2 0.2157×10−2 0.5299×10−3 O(h2)

|ūh − u|1,h −→ 0.7959×10−1 0.2746×10−1 0.9588×10−2 0.3370×10−2 O(h1.5)

‖ ph − p ‖0,h −→ 0.4266×10−1 0.1047×10−1 0.2567×10−2 0.6332×10−3 O(h2)

‖ p̄h − p ‖0,h −→ 0.4264×10−1 0.1047×10−1 0.2567×10−2 0.6332×10−3 O(h2)

Table 3: Errors for a test-(�ow) problem in a disk solved by method (30) and the polygonal approach

5.2 Pseudo circular Couette �ow
In order to check our method’s performance in the case of a non-convex �ow domain we used it to
solve the problem described as follows.
Circular Couette �ow of an incompressible viscous �uid with density ρ in a region comprised between
two concentric cylinders, where the inner one of radius ri rotates at an angular velocityω and the outer
one with radius re is kept �xed, is governed by the stationary Navier-Stokes equations with a zero
body-force right hand side. As long as the Reynolds number is su�ciently low, the �ow is laminar and
the solution to the problem is given by u = (sinθ,−cosθ )uθ (r )where uθ (r ) = ωr 2i (r 2e −r 2)/[r (re2 −ri2)]
and p(r ) = ρω2r 4i /(r

2
e − r

2
i )

2[r 2/2 − r 4e /(2r 2) − 2r 2e loд(r )] + c , c being a constant. If we enforce zero
pressure on the outer wall, then c takes the value 2r 2e loд(re )ρω2r 4i /(r

2
e − r

2
i )

2.
Although there is no particular di�culty to solve the Navier-Stokes equations with our method, in
order to focus on our essentially validating goal, we apply it to a modi�ed problem, in which the exact
inertia term ρ[grad u]u with a minus sign is input as right hand side datum f . Of course the pair (u,p)
is still the solution to the resulting Stokes system (28) in the annulus Ω with inner radius ri and outer
radius re . The datum g in turn equals −→0 for r = re , while its value for r = ri conforms to the given
azimuthal velocity riω and a zero radial velocity.
Taking re = 1, ri = 0.5, ω = 1 and ρ = 1, we proceeded to the numerical solution of thus de�ned
(pseudo) circular Couette �ow problem with the Taylor-Hood method combined with our technique
to approximate the boundary conditions. In order to avoid non physical boundary conditions, com-
putations were carried out for the whole annulus. With this aim we used again (2n × 2n) symmetric
meshes, for n = 2m , with m = 3, 4, 5, 6, constructed in the way described in the previous subsection,
except for the fact that now the elements inside the disk with radius ri were disregarded. This yields
meshes consisting of 6n2 triangles, with h = 1/n.
We display in Table 4 the velocity errors measured in the norms | · |1,h and ‖ · ‖0,h , together with the
pressure errors measured in the ‖ · ‖0,h-norm. It is interesting to note that the latter are decreasing
at a rate faster than the O(h2) observed in the test-problem of the previous sub-section. This seems to
be due to the fact that in circular Couette �ow the inertia term with a minus sign is nothing but the
pressure gradient. On the other hand the velocity errors in theH 1-semi-norm are in perfect agreement
with the theoretical predictions. The velocity errors in the L2-norm in turn seem to decrease like an
O(h3), which is optimal.

2n −→ 16 32 64 128 OCR

|uh − u|1,h −→ 0.1592×10+0 0.4261×10−1 0.1090×10−1 0.2741×10−2 O(h2)

‖ uh − u ‖0,h −→ 0.3833×10−2 0.5339×10−3 0.6923×10−4 0.8744×10−5 O(h3)

‖ ph − p ‖0,h −→ 0.1209×10+0 0.2095×10−1 0.3952×10−2 0.6638×10−3 O(h≈2.5)

Table 4: Errors for the pseudo circular Couette �ow problem solved by method (30)



6 Extensions to other mixed elements and �nal comments
In the four previous sections we focused on the application of the technique introduced in [20] and
[21] to solve boundary value problems in smooth curved domains with Dirichlet boundary conditions,
in the particular case of quadratic Lagrange interpolation in N -simplexes. More speci�cally we con-
sidered the solution of the Poisson equation as a basis for the solution of incompressible viscous �ow
problems by the popular Taylor-Hood element. However this second order mixed �nite element was
chosen here only for illustrative purposes. As a matter of fact our technique basically applies to most
known reliable mixed methods of order greater than one, to solve this kind of problems, as long as
velocity degrees of freedom must be prescribed at boundary points di�erent from vertexes. Let us be
more speci�c about some of these methods.

1. If we stick to second-order methods based on the standard Galerkin formulation (such as Taylor-
Hood elements), the convergence results that apply to the Crouzeix-Raviart method on triangles
[11] for the polygonal case extend to method’s obvious modi�cation using our technique. No-
tice however that the application of this technique to the Crouzeix-Raviart method’s extension
to tetrahedra considered in [18] must be the object of a speci�c study. This is because it employs
certain mean values along element edges as velocity degrees of freedom, instead of nodal values.

2. Methods using a piecewise quadratic representation of the velocity combined with the Petrov-
Galerkin formulation due to Franca & Hughes [14] or the one of Douglas & Wang [13] can be
combined with our technique quite in the same manner as Taylor-Hood elements. The �nal
(second-order) qualitative results remain unchanged.

3. Any third-order method in the natural norms using a cubic velocity representation can also
be optimally handled in association with our technique. This is true of Taylor-Hood element’s
cubic extension using the standard Galerkin formulation considered by Bo� [6], and also of the
method in the Petrov-Galerkin formulation mentioned in the previous item. In both cases the
analysis is based on the arguments developed in [20] and [21] for cubic Lagrange �nite elements.

4. Methods of order k ≥ 4 in the natural norm, though of limited interest, can also be combined
with our technique. More particularly this is the case of the generalized Taylor-Hood pairing
consisting of the continuous PK − Pk−1 velocity-pressure representation considered in [6], or
yet the continuous Pk - discontinuous Pk−1 velocity-pressure method studied by Scott & Vogelius
[26]. However here optimal convergence results hold under the condition that a numerical
quadrature formula with a compatible order and without integration points in the interior of
boundary edges or faces be employed to compute the right hand side term. We refer to [20] and
[21] for more details about such a restriction, which also applies to isoparametric elements (cf.
[10]).

In conclusion the author emphasizes that the scope in Computational Engineering of the approach
adopted in this work to handle Dirichlet conditions prescribed on curved boundaries is much wider
than the one of classical techniques such as isoparametric �nite elements. This was shown in [19]
and [22] in the framework of Maxwell’s equations of Electromagnetism and deformations of elastic
membranes in mixed formulation, respectively. Moreover, even in cases where the use of classical
techniques is consolidated, our approach is at least as reliable and competitive in terms of accuracy.
We would also like to point out that, as far as we can see, our technique has only two drawbacks: �rst
of all it is necessary to solve a non symmetric problem, even when the original problem is symmetric.
Moreover for each boundary element a small matrix has to be inverted in order to determine the local
basis functions. However none of both issues are a real problem nowadays, taking into account the
state-of-the-art of Computational Linear Algebra.
A �nal remark on the choice of nodal points on Γ di�erent from vertexes is in order. As one can easily
infer from the analysis carried out throughout the paper, the construction of these nodes advocated in



Section 2 is not compulsory at all. Actually, referring to Figures 1 and 3, any other choice in ∆S ∩ Γ
for S ∈ Sh will do. However intuitively we can say that these nodes should not be too close to the
boundary vertexes of element S , since this may lead to a worse conditioning of the resulting linear
system.

Remark 3 Besides those considered in [22], applications to Solid Mechanics of the technique studied in
this paper can be found in [24].
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