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Among a few known techniques the isoparametric version of the nite element method for meshes consisting of curved triangles or tetrahedra is the one most widely employed to solve PDEs with essential conditions prescribed on curved boundaries. It allows to recover optimal approximation properties that hold for elements of order greater than one in the energy norm for polytopic domains. However, besides a geometric complexity, this technique requires the manipulation of rational functions and the use of numerical integration. We consider a simple alternative to deal with Dirichlet boundary conditions that bypasses these drawbacks, without eroding qualitative approximation properties.

In the present work we rst recall the main principle this technique is based upon, by taking as a model the solution of the Poisson equation with quadratic Lagrange nite elements. Then we show that it extends very naturally to viscous incompressible ow problems. Although the technique applies to any higher order velocity-pressure pairing, as an illustration a thorough study thereof is conducted in the framework of the Stokes system solved by the classical Taylor-Hood method.

Introduction

Consider the nite-element solution of second order elliptic equations posed in curved domains with Dirichlet boundary conditions. It is well known that a considerable order lowering may occur if prescribed boundary values are shifted to nodes that are not mesh vertexes of an approximating polygon or polyhedron formed by the union of straight-edged N -simplexes of a tted mesh. Over four decades ago some techniques were designed in order to remedy such a loss of accuracy, and possibly attain the same theoretical optimal orders as in the case of a polytopic domain, assuming that the solution is sufciently smooth. Two examples of such attempts in the framework of two-dimensional problems are the interpolated boundary condition method by Nitsche and Scott (cf. [ ] and [ ]), and the method introduced by Zlámal in [ ] and extended by Žénišek [ ]. Among such techniques the nite element method's isoparametric version is by far the one most widely in use since the sixties (cf. [ ]) in order to recover the lost optimality. One of the main reasons why it became so popular is the fact that the isoparametric technique applies to both two-and three-dimensional problems. We recall that this version of the nite element method is based on elements with curved boundary portions, aimed at better approximating a curved boundary than straight edges or plane faces. In this case the aforementioned shift of prescribed boundary values is avoided, since all nodes to which such values apply remain on the true boundary. The price to pay however is the manipulation of rational functions as both shape and trial functions de ned upon the curved elements, and the resulting compulsory use of numerical integration. While on the one hand this is far from being an obstacle in most current applications such as linear problems with constant coe cients, numerical integration can be a delicate issue in more complex situations. The technique exploited in this work allows overcoming all such issues, since it is based only on polynomial algebra upon an ordinary (i.e. a straight-edged) N -simplex. Moreover, in contrast to the simple polygonal approach no erosion of the theoretical order of a given interpolation inherent to the method occurs, especially for methods which are not of the lowest possible order. In short, our technique is aimed at ensuring a theoretical order greater or equal to two in the natural norm, without the use of curved elements and interpolating functions other than piecewise polynomials. Actually the conception of the nite-element technique for solving boundary value problems with a smooth curvilinear boundary considered in this work is close to the interpolated (Dirichlet) boundary condition method studied in [ ]. Though intuitive and known since the seventies, the latter technique has been of limited use so far. Among the reasons for this lies its di cult implementation, the lack of an extension to three-dimensional problems and restrictions on the choice of boundary nodal points to reach optimal convergence rates. In contrast our method is simple to implement in both two-and three-dimensional geometries. Moreover it is particularly handy, whenever a nite element method has normal component or normal derivative degrees of freedom as illustrated in [ ]. Indeed when a method incorporates this type of degree of freedom the de nition of isoparametric nite-element analogs is not always simple or clear (see e.g. [ ]). It is important to point out that e cient nite-element techniques are known since long, to optimally handle boundary conditions other than Dirichlet's, such as Neumann or Robin boundary conditions prescribed on curved boundaries. In this respect the author refers for instance to the works by Barrett and Elliott [ ] and [ ], besides [ ] where a clear explanation on the issues brought about by Neumann conditions prescribed on curved boundaries is given.

The technique applied in this paper was introduced in [ ], in connection with triangular Lagrange nite elements of any order k greater than one to solve the Poisson equation posed in a smooth curvilinear domain. In the subsequent work [ ] the author addressed the case of tetrahedral Lagrange elements of arbitrary order for second order elliptic PDEs in the same class of domains. A synthesis of both papers is given in [ ]. In [ ] the author and co-worker used the same approach to the solution of Maxwell's equations with a Hermite nite element method. In this work we push further such studies in accordance to the following outline. In Section we recall the main results on the new technique provided in [ ] and [ ], restricted to the case k = 2. Numerical examples are given in Section in connection with the two-dimensional Poisson equation as well. A rigorous study of this technique is carried out in Section in the framework of the nite-element solution of the equations governing incompressible viscous ows. Although such a study applies to di erent mixed elements or formulations of these equations such as GLS and SUPG, we con ne ourselves to the case of the popular Taylor-Hood element (cf. [ ]) as applied to the Stokes system in standard Galerkin formulation. In Section we supply numerical examples illustrating the theoretical results of Section , and we conclude in Section with a few comments.

Technique's short description

Referring to [ ] and [ ] for further details, here we describe our technique to solve boundary value problems with Dirichlet conditions prescribed on smooth curved boundaries, by solving a simple model problem as follows. Let Ω be a bounded N -dimensional domain for N = 2 or N = 3, and Γ be its boundary assumed to be su ciently smooth (Γ must be at least of the C 1 -class). Given a function f ∈ H 1 (Ω) we wish to nd a function u ∈ H 3 (Ω) that solves -∆u = f in Ω with u = on Γ assuming that ∈ H 5/2 (Γ).

Now let P = {T h } h be a uniformly regular family of nite element meshes consisting of straightedged triangle or tetrahedra, according to the space dimension, satisfying the usual compatibility conditions (see e.g. [ ]). Every element of T h is to be viewed as a closed set. Moreover each one of these meshes is assumed to t Ω in such a way that all the vertexes of the polygon or the polyhedron ∪ T ∈T h T lie on Γ. We denote the interior of this union set by Ω h . Let Γ h be the boundary of Ω h , h T be the diameter of T ∈ T h and h := max T ∈ T h h T . We make the very reasonable assumption that every mesh triangle has no more than one edge in Γ h and no mesh tetrahedron has either no more than one face or no more than one edge contained in Γ h . The subset of T h consisting of elements having at least one edge on Γ h is denoted by S h . Now let V h be the nite-element space consisting of continuous functions that vanish on Γ h , whose restriction to each T ∈ T h belongs to P 2 , where P k is the space of polynomials of degree less than or equal to k. f ∈ L 2 (Ω h ) being an extension of f to Ω h \ Ω, we further set for u, ∈ H 1 (Ω h ):

āh (u, ) := ∫ Ω h grad u • grad dx and L h ( ) := ∫ Ω h f dx. ( )
To make ideas clear, and without loss of essential aspects, let us consider the case where ≡ 0. If we search for ūh such that, ūh ∈ V h and āh

( ūh , ) = L h ( ) ∀ ∈ V h , ( )
it is well-known that the energy norm of uūh in Ω h , that is, uūh ē,h , where

• ē,h := ∫ Ω h |grad(•)| 2 dx 1/2
, ( ) will be only an O(h 1.5 ).

In order to recover the optimal O(h 2 )-convergence rate in the energy norm we propose the following. Let W h be a space consisting of functions de ned in Ω h whose restriction to every element T ∈ T h is a polynomial of degree less than or equal to two, which are continuous at the vertexes of T and at the mid-points of the edges of T not contained in Γ h , ∀T ∈ T h . Besides this, a function w ∈ W h is required to vanish at all the mesh vertexes lying on Γ h , and at certain points of Γ belonging to the set ∆ S attached to an elements S ∈ S h containing the underlying portion of Γ, constructed as described below ∀S ∈ S h . We consider beforehand that the expression of w ∈ W h in every element S ∈ S h is extended to ∆ S \ Ω h . Referring to Figure , in the two-dimensional case ∆ S is the closed set delimited by Γ and the edge d of S contained in Γ h . For every S ∈ S h , the extension of w to ∆ S \ Ω h is required to vanish at a point P ∈ Γ located between two neighboring vertexes of S. To make implementation more straightforward P can be chosen to be the nearest intersection with Γ of the perpendicular to the edge d passing through its mid-point M. Henceforth ∆ S will be referred to as a skin. 

h : W h + H 1 (Ω h ) -→ [L 2 (Ω h )]
N being the broken gradient operator de ned by,

[grad h w] |T = grad[w |T ] ∀T ∈ T h .
Of course if w is continuous the forms a h and āh coincide. This always happens in the two-dimensional case, since W h ⊂ C 0 (Ω h ). However this inclusion is false in three-dimension space because functions w ∈ W h are not necessarily continuous on the interfaces of two tetrahedra in S h (cf. [ ]). For this reason in the sequel we will work with the broken energy norm • e,h given by,

• e,h :=

∫ Ω h |grad h (•)| 2 dx 1/2 , ( )
and also with the reduced broken energy norm • ẽ,h given by,

• ẽ,h := ∫ Ωh |grad h (•)| 2 dx 1/2
where Ωh :

= Ω h ∩ Ω. ( ) According to [ ] and [ ], u h -u e,h (resp. u h -u ẽ,h ) is an O(h 2 ) if Ω is convex (resp. non- convex).
In the remainder of this section we give a detailed proof of these results. One of the keys to the problem is the following proposition:

Proposition Provided h is su ciently small, for every w ∈ W h there exists ∈ V h such that w -e,h ≤ C 1 h w e,h , a h (w, ) ≥ w 2 e,h /2 ( )
where C 1 is a strictly positive constant independent of both w and h.

Proof : Given w ∈ W h let ∈ V h coincide with w at all mesh nodes, except those located on Γ which are not mesh vertexes. The latter are precisely the nodes P whose construction is illustrated in Figures and , at which w necessarily vanishes. Clearly enough ( -w) |T ≡ 0 for every T having no edge contained in Γ h . Therefore all we need are estimates of ∫ S |grad( -w) |S | 2 dx for every S ∈ S h , i.e. having at least one edge d ⊂ Γ h . For the sake of brevity we only consider the case of an S ∈ S h having exactly one such an edge d; indeed the case of a tetrahedron having a face contained in Γ h can be handled as a trivial extension of the argument that follows. Let then φ S ∈ P 2 be the Lagrange basis function that vanishes at all the ve nodes of S for N = 2 or nine nodes for N = 3, which are not the mid-point of Furthermore by a classical inverse inequality (cf. [ ]) there exists another mesh-independent constant

C ι such that, max x∈S |grad w(x)| ≤ C ι h -N /2 S ∫ S |grad w | 2 dx| 1/2 . ( )
It follows from ( ), ( ), ( ) and ( ) that

∫ S |grad( -w)| 2 dx ≤ C 2 ι C 2 δ C 2 Γ h 4-N S ∫ S |grad w | 2 dx ∫ S |grad φ S | 2 dx. ( )
Combining ( ) with the obvious estimate

∫ S |grad φ S | 2 dx ≤ C 2 φ h N -2 S ( )
for a suitable mesh-independent constant C φ , we easily obtain

-w e,h ≤ C 1 h w e ,h with C 1 = C φ C ι C δ C Γ . ( )
Finally, noting that a h (w, ) = w 2 e,h +a h (w, -w) ≥ w e,h ( w e,h --w e,h ), the lower bound, a h (w, ) ≥ w 2 e,h /2 ( ) trivially follows from ( ) for h = h 0 , where h 0 is the largest mesh size in the family P such that 1-C 1 h 0 is bounded below by 1/2. As an immediate consequence of ( ) a uniform inf-sup Babuška-Brezzi condition in connection with problem ( )-( ) is satis ed. More precisely we have: Corollary Provided h is su ciently small, it holds for some α ≥ 1/3:

∀w ∈ W h 0, sup ∈V h \{0} a h (w, ) w e ,h e,h ≥ α . ( ) Since obviously dim(V h ) = dim(W h )
, and both a h and L h are uniformly bounded independently of h, the simple fact that ( ) holds implies that ( ) is uniquely solvable (cf. [ ]).

Next we prove error estimates for problem ( ). In this aim we denote by | • | m,D the usual seminorm of Sobolev space H m (D) in a bounded domain D ∈ N , for m ∈ N (cf. [ ]). First we have:

Theorem Assume that Ω is convex. Then provided h is su ciently small, for a certain mesh-independent constant C 2 it holds:

u h -u e,h ≤ C 2 h 2 |u | 3,Ω . ( )
where • e,h is the discrete H 1 -semi-norm de ned by ( ).

Proof : From ( ) we infer that

u h -w e,h ≤ 3 sup ∈V h \{0} a h (u h -w, ) e,h ∀w ∈ W h . ( ) Let I h (u) ∈ W h be the standard interpolate of u at the mesh nodes associated with W h . Taking in ( ) w = u h -I h (u)
, we add and subtract u in the rst argument of a h . Thus by straightforward calculations,

u h -I h (u) e,h ≤ 3 u -I h (u) e,h + sup ∈V h \{0} a h (u h -u, ) e,h . 
( )

Noting that a h (u h , ) = L h ( ) we come up with:

u h -I h (u) e,h ≤ 3 u -I h (u) e,h + sup ∈V h \{0} |a h (u, ) -L h ( )| e,h . 
( )

Since Ω h ⊂ Ω if Ω is convex, we observe that a h (u, ) = ∮ Γ h ∂u ∂n h dΓ h - ∫ Ω h
∆u dx, where ∂u ∂n h is the outer normal derivative of u on Γ h . Noting that -∆u = f in Ω h and ≡ 0 on Γ h , we trivially obtain,

u h -u e,h ≤ 4 u -I h (u) e,h . ( )
Then ( ) is a consequence of standard estimates of the interpolation error in Sobolev norms (cf. [ ]).

Remark It is interesting to note that although our method is non-conforming for N = 3, in any case V h is a subspace of H 1 (Ω h ). Therefore the variational residual a h (u, ) -L h ( ) vanishes if Ω is convex, in contrast to usual non-conforming methods.

Now we address the case of a non-convex Ω. Let us consider a smooth domain Ω close to Ω which strictly contains Ω ∪ Ω h for all h su ciently small. More precisely, denoting by Γ the boundary of Ω we assume that meas( Γ) -meas(Γ) ≤ ε for ε su ciently small. For the sake of simplicity henceforth we consider that f was extended by zero to the whole Ω \ Ω and still denote this extension by f . In doing so the following error estimate can be proved:

Theorem Assume that there exists a function ũ de ned in Ω, satisfying:

• ũ |Ω = u; • ũ = 0 a.e. on Γ; • ũ ∈ H 3 ( Ω).
Then as long as h is su ciently small it holds:

u h -u ẽ,h ≤ C2 [h 2 | ũ | 3, Ω + h 5/2 ∆ ũ 0, Ω],
(

)
where C2 is a mesh-independent constant and • ẽ,h denotes the standard H 1 -semi-norm de ned in ( ).

Proof : According to ( ) ∀w ∈ W h we have,

u h -w e,h ≤ 1 α sup ∈V h \{0} |a h ( ũ, ) -F h ( )| + |a h ( ũ -w, )| e,h . ( ) 
Since ũ ∈ H 3 ( Ω) we can apply First Green's identity to a h ( ũ, ) thereby getting rid of integrals on portions of Γ. Next we note that ∆ ũ + f = 0 in every T ∈ T h \ S h ; this is also true of elements T not belonging to the subset R h of S h consisting of elements R such that R \ Ω is not restricted to a set of vertexes of Ω h . Finally we recall that ∆ ũ + f vanishes identically in the set R ∩ Ω ∀R ∈ R h . Denoting by ∆R the interior of the set R \ Ω for R ∈ R h we can write:

|a h ( ũ, ) -F h ( )| = R ∈R h ∫ ∆R ∆ ũ dx ≤ R ∈R h ∆ ũ 0, ∆R 0, ∆R . ( )
Now taking into account that ≡ 0 on Γ h and recalling the constant C Γ de ned in Proposition , it holds:

| (x)| ≤ C Γ h 2 R |grad | 0,∞, ∆R , ∀x ∈ ∆R ,
where • 0,∞,D denotes the standard norm of L ∞ (D), D being a bounded open set of N . Next, using the same arguments as in the proof of Proposition , we derive the estimate |grad | 0,∞, ∆R ≤

C I h -N /2 R grad 0,R for a mesh-independent constant C I .
Noticing that the measure of ∆R is bounded by a constant depending only on Ω times h N +1 R , after straightforward calculations we obtain for a certain mesh-independent constant C Z :

∆ ũ 0, ∆R 0, ∆R ≤ C Z h 5/2 R ∆ ũ 0, ∆R grad 0,R ∀R ∈ R h . ( )
Now plugging ( ) into ( ) and applying the Cauchy-Schwarz inequality, we easily come up with,

|a h ( ũ, ) -F h ( )| ≤ C Z h 5/2 ∆ ũ 0, Ω e,h . ( )
Finally plugging ( ) into ( ) and taking w = I h ( ũ), we immediately establish the validity of error estimate ( ).

Remark There are many ways to ensure the existence of ũ satisfying the assumptions of Theorem , as long as Γ is as smooth as required. For instance we refer to [ ] for an interesting construction of ũ.

Some numerics for the Poisson equation

Let us illustrate the performance of the new technique to handle Dirichlet conditions on curved boundaries. With this aim we rst solve problems ( ) and ( ) in case Ω is the unit disk centered at the origin, and a uniformly regular family of meshes consisting of 8n 2 triangles for n = 2 m , with m = 1, 2, . . . is constructed in the way described in [ ]. In these experiments we take f (x, ) = 9r where r = (x 2 + 2 ) 1/2 , and hence the exact solution is given by u(x, ) = 1 -r 3 . Owing to symmetry only the quarter disk corresponding to x > 0 and > 0 is taken into account in the computations, and therefore meshes containing 2n 2 elements are employed. For a fairer comparison we also supply results obtained for the same problem solved by the classical isoparametric technique. We denote the solution obtained with this method by ũh . Taking m = 2, 3, 4, 5, 6 and observing that h = 1/n, in 

u h -u e,h -→ . × -1 . × -2 . × -3 . × -3 . × -4 ūh -u e,h -→ . × -1 . × -1 . × -2 . × -2 . × -3 ũh -u e,h -→ . × -1 . × -2 . × -3 . × -3 . × -4
Table : Energy errors for a test-problem in a disk solved by methods ( ), ( ) and isoparametric FEs

Table con rms second order convergence in the energy norm for the approach advocated in this paper, while the polygonal approach ( ) yields only O(h 1.5 ) approximations in the same norm, as predicted in classical books (cf. [ ]). Of course the expected second order convergence of the isoparametric solution is also observed. However the new method is a little more accurate.

Now in order to further illustrate the accuracy of method ( ) in case Ω is not convex, we compare it again with method ( ) by solving a problem whose exact solution is not axisymmetric. More speci cally, here the domain described in polar coordinates (r, θ ) is given by Ω := {(r, θ )| r ≤ [4 +cos(4θ )]/5}. Taking ≡ 0 and f = 16r 2 -5.8r -11.2x 2 2 /r 3 the exact solution is the function u = r 3 -r 4 -1.6x 2 2 /r . Notice that f ∈ H 1 (Ω) and u ∈ H 3 (Ω).

Here again symmetry allows working with the computational domain corresponding to x > 0 and > 0. The meshes also consist of 2n 2 elements, generated like in [ ], by subdividing the radial coordinate r into n equal parts and the azimuthal coordinate θ ∈ (0, π /2) into 2n equal parts.

Observing that h = 1/n, we show in Table the quantity u h -u e,h for n = 2 m , with m = 2, 3, 4, 5, 6. Moreover, in order to give a better idea of how e ective our method is, we also supply the errors u h -u 0,h and |u h -u | ∞,h , where • 0,h and | • | ∞,h stand for the standard norm of L 2 (Ω h ) and the maximum absolute error at the nodal points, respectively.

n

-→ 4 8 16 32 64

u h -u e,h -→ . × -1 . × -2 . × -2 . × -3 . × -4 u h -u 0,h -→ . × -3 . × -4 . × -5 . × -6 . × -6 |u h -u | ∞,h -→ . × -3 . × -3 . × -4 . × -5 . × -6
Table : Errors in di erent senses for a test-problem in a non-convex domain solved by method ( ) Table validates method's second order convergence in energy norm established in Theorem . Even better news come from the observed convergence rates of three in the norm of L 2 (Ω h ) and of a little less than three in the

L ∞ -semi-norm | • | ∞,h .

Application to the Taylor-Hood element

The classical Taylor-Hood element was introduced in [ ] for the solution of the incompressible Navier-Stokes equations. It consists of continuous piecewise polynomial representations of both velocity and pressure in triangles or tetrahedra, of degree two for the former variable and of degree one for the latter. Second order convergence results for this method were established by Verfürth [ ] in the case of a polygonal domain and by Bo [ ] in the case of polyhedrons. In this section we apply the method described in Section in order to extend such results to the case of smooth curvilinear domains. This study will be restricted to the linearized form of the stationary incompressible Navier-Stokes equations, which governs incompressible viscous ows at a very low Reynolds number. More speci cally our theory applies to the following Stokes system in a bounded domain Ω of N at least of the C 1 -class, for N = 2 or N = 3: Given a eld f ∈ [H 1 (Ω)] N , and a velocity pro le g de ned on Γ assumed to belong to [H 5/2 (Γ)] N and to satisfy the conservation property ∮ Γ g • n ds = 0, where n is the unit outer normal vector on Γ, we wish to determine a velocity eld u ∈ [H 1 (Ω)] N and a hydrostatic pressure p ∈ L 2 (Ω)/ , where A/B denotes the quotient between two vector spaces A and B, such that:

       -∆u + grad p = f di u = 0 in Ω u = g on Γ.
( )

A suitable regularity assumption on Ω, besides those applying to f and g, legitimately allows assuming in turn that u ∈ [H 3 (Ω)] N and p ∈ H 2 (Ω). Although all the results to be derived hereafter apply to the inhomogeneous case, in order to avoid non essential di culties, we further restrict the analysis conducted in this section to the case where g ≡ -→ 0 .

Our working spaces here will be the pair (V h , W h ) of vector eld spaces de ned by

V h := [V h ] N and W h := [W h ] N , together with the function space Q h := Qh ∩ L 2 0 (Ω h ), with Qh := {q | q ∈ C 0 (Ω h ), q |T ∈ P 1 , ∀T ∈ T h }, where L 2 0 (Ω h ) = {q | q ∈ L 2 (Ω h ), ∫ Ω h q dx = 0}.
For the sake of simplicity, henceforth we denote by |w| 1,h the semi-norm grad h w 0,h of a eld w ∈ W h + [H 1 (Ω h )] N , where • 0,h stands for standard norm of L 2 (Ω h ). We make the same assumptions as in Section on a given family P of meshes T h of Ω into N -simplexes. In doing so we consider the extension by zero f of f to Ω h \ Ω, if applicable, and de ne the broken divergence operator di h :

W h + [H 1 (Ω h )] N -→ L 2 (Ω h ) by [di h w] |T = di w |T ∀T ∈ T h . We further set for w ∈ W h + [H 1 (Ω h )] N , v ∈ [H 1 (Ω h )] N and q ∈ L 2 (Ω h ):              c h (w, v) := ∫ Ω h grad h w : grad v dx b h (v, q) := - ∫ Ω h q di v dx d h (w, q) := - ∫ Ω h q di h w dx L h (v) := ∫ Ω h f • v dx.
( ) Now we pose the corresponding nite-element counterpart of ( ) as:

       Find u h ∈ W h and p h ∈ Q h such that: c h (u h , v) + b h (v, p h ) = L h (v) ∀v ∈ V h , d h (u h , q) = 0 ∀q ∈ Q h . ( )
According to the classical theory of linear variational problems (see e.g. [ ]) problem ( ) is wellposed thanks to the validity of the underlying Babuška-Brezzi condition, or yet the inf-sup condition ( ), that is, Proposition Provided h is su ciently small, there exists a strictly positive constant A independent of h such that

inf (w,p)∈W h ×Q h \{( - → 0 ,0)} sup (v,q)∈V h ×Q h \{( - → 0 ,0)} c h (w, v) + b h (v, p) + d h (w, q) [|w| 2 1,h + p 2 0,h ] 1/2 [|v| 2 1,h + q 2 0,h ] 1/2 ≥ A.
( ) Proof: Let the pair (w, p) ( -→ 0 , 0) be given in W h × Q h . First we observe that, since Taylor-Hood elements are uniformly stable, the following condition holds:

sup v∈V h \{ - → 0 } b h (v, p) |v| 1,h ≥ β p 0,h . ( )
for a constant β > 0 independent of both p and the mesh. Actually ( ) is the consequence of wellknown arguments (cf. [ ]), according to which there exist two mesh-independent constants C 3 and C 4 also independent of p, such that one can nd

v 0 ∈ V h satisfying b h (v 0 , p) ≥ C 3 p 2 0,h |v 0 | 1,h ≤ C 4 p 0,h . ( )
Noticing that c h is nothing but a h applied to vector elds instead of functions, let v 1 ∈ V h satisfy the obvious vector analog of ( ) for our given w ∈ W h . For a certain parameter η > 0 we de ne v := ηv 0 + v 1 and take q ≡ -p. From the obvious vector analog of ( ) we easily obtain

|v 1 | 1,h ≤ (1 + C 1 h)|w| 1,h ,
which together with ( ) immediately yields:

       c h (w, v)+b h (v, p)+d h (w, q) ≥ |w| 2 1,h 2 -ηC 4 |w| 1,h p 0,h +b h (v 1 , p)-d h (w, p)+ηC 3 p 2 0,h and |v| 1,h + q 0,h ≤ (1 + C 1 h)|w| 1,h + (ηC 4 + 1) p 0,h . ( ) Next we note that b h (v 1 , p) -d h (w, p) = ∫ Ω h p di h (w -v 1 )dx ≤ √ N |w -v 1 | 1,h p 0,h .
Thus using Young's inequality and recalling that C 1 h ≤ 1/2, from ( ) we obtain,

         c h (w, v) + b h (v, p) + d h (w, q) ≥ |w| 2 1,h 4 - √ N |w -v 1 | 1,h p 0,h +(ηC 3 -η 2 C 2 4 ) p 2 0,h and |v| 1,h + q 0,h ≤ 3|w| 1,h 2 + (ηC 4 + 1) p 0,h . ( )
Moreover, plugging the natural vector version of ( ) into the rst inequality of ( ), we derive

         c h (w, v) + b h (v, p) + d h (w, q) ≥ |w| 2 1,h 4 - √ NC 1 h|w| 1,h p 0,h +(ηC 3 -η 2 C 2 4 ) p 2 0,h and |v| 1,h + q 0,h ≤ 3|w| 1,h 2 + (ηC 4 + 1) p 0,h . 
( )

Taking η = C 3 /(2C 2 4 ), setting C 5 = min{1/8, [C 3 /(2C 4 )] 2 } and assuming that √ NC 1 h ≤ 2C 5 from ( ) we come up with, c h (w, v) + b h (v, p) + d h (w, q) ≥ C 5 (|w| 2 1,h + p 2 0,h ) and [|v| 2 1,h + q 2 0,h ] 1/2 ≤ C 6 [|w| 2 1,h + p 2 0,h ] 1/2 . ( ) with C 6 = {9/4 + [C 3 /(2C 4 ) + 1] 2 } 1/2 .
In view of both inequalities in ( ), as long as h ≤ min[2C 5 / √ N , 1/2]/C 1 , ( ) holds with A = C 5 /C 6 .

Now we endeavor to derive error estimates for problem ( ). Essentially this task is not more complicated than the one carried out in Theorems and . Indeed ( ) can be rewritten as follows:

Find U h ∈ W h such that A h (U h , V ) = L h (V ) ∀V ∈ V, ( )
where

• U h = (u h , p h ); • V = (v, q); • W h := W h × Q h ; • V h := V h × Q h ; • A h ((w, p), (v, q)) := c h (w, v) + b h (v, p) + d h (w, q); • L h (V ) := L h (v).
Now we denote by • X ,h the norm over

{W h + [H 1 0 (Ω h )] N } × L 2 (Ω h ), given by V X ,h := [|v| 2 1,h + q 2 0,h ] 1/2 . ( )
Then letting A play the same role as the constant 1/3 in ( ), analogously to ( ) we obtain:

U h -W X ,h ≤ 1 A sup V ∈V h \{ O } A h (U h -W , V ) V X ,h ∀W ∈ W h . ( )
Finally noticing that here also the variational residual A h ((u, p), (v, q)) -L h ((v, q)) vanishes for every (v, q) ∈ V h if Ω is convex, using standard estimates for the interpolation error in Sobolev spaces, akin to Theorem , ( ) leads to:

Theorem Provided h is small enough and Ω is convex, for a certain mesh-independent constant C it holds:

[|u -u h | 2 1,h + p -p h 2 0,h ] 1/2 ≤ Ch 2 [|u| 3,Ω + |p| 2,Ω ]. ( )
The case where Ω is not convex can be treated quite in the same manner as in Section . The key to the problem is the existence of suitable extensions ũ of u and p of p to the domain Ω \ Ω, where Ω is de ned in Section . More precisely, we extend f by zero to Ω \ Ω and still denote by f such an extension. However, naturally enough, more technicalities come into play here.

To begin with we need the following preliminary result:

Lemma Let ϕ be a function in H 1 ( Ω) that vanishes on Γ. There exists a mesh-independent constant

C X such that ϕ 0, ∆R ≤ C X h 2 R |ϕ | 1, ∆R ∀R ∈ R h . ( ) 
Proof : We refer to [ ] for the terminology and some properties of di eomorphisms used in this proof.

Let us cover the whole non-convex region of Γ by a set of M overlapping local maps, say, ω i , i = 1, . . . , M. Owing to our regularity assumptions, there exists a C 1 -di eomorphism F i that transforms ω i into a set ωi such that Γi := F i (Γ ∩ ω i ) is a line segment for N = 2 or a plane bounded set for N = 3. Without loss of generality we assume that the measure of Γi is not zero, and moreover that we can assign each R ∈ R h to a certain local map ω i , in such a way that R ⊂ ω i . We generically denote by x = ( t, n) the local Cartesian coordinate system of N with coordinates t = t for N = 2 or t = ( t1 , t2 ) for N = 3 along or upon Γi , and by n the coordinate along the axis orthogonal to Γi oriented from this manifold outwards the image of ω i ∩ Ω under F i . Let R ∈ R h and ∆R be the transformation of ∆R under F i for the appropriate i. We denote by φ the transformation of ϕ under F i de ned in ωi . Since φ = 0 on Γi we can write

φ( t, n) = ∫ ν = n ν =0 ∂ φ ∂ n ( t, ν ) dν .
Hence, we obtain successively,

∫ ∆R | φ | 2 d x ≤ ∫ ∆R ∫ ν = n ν =0 ∂ φ ∂ n ( t, ν ) dν 2 d td n, ∫ ∆R | φ | 2 d x ≤ ∫ ∆R l( t)      ∫ ν =l ( t) ν =0 ∂ φ ∂ n ( t, ν ) 2 dν      d td n,
where l( t) is the width of ∆R measured in the direction normal to Γi from point ( t, 0). Then denoting by l the maximum of l( t) over ( t, 0) ∈ Γi ∩ ∆R , we trivially obtain,

∫ ∆R | φ | 2 d x ≤ l2 ∫ ∆R ∂ φ ∂ n ( t, n) 2 d nd t,
and further,

∫ ∆R | φ | 2 d x ≤ Ĉi h 2 R ∫ ∆R | grad φ | 2 d x
where grad(•) represents the gradient operator of a function de ned in ωi , and the constant Ĉi depends only on Ω and ωi .

Next we make straightforward changes of variables in the above integrals, thereby transforming them into integrals in ∆R , and observe that grad φ = F -1 i grad ϕ where F i is the Jacobian matrix of F i . From a basic property of di eomorphisms the spectral norm of F i can be uniformly bounded above by a constant independent of the mesh, as much as the Jacobian of both F i and F -1 i . Finally taking the extrema over i of those constants and of Ĉi in the required senses, the result follows.

Now we have

Theorem Assume that there exists ũ and p satisfying the following conditions:

• ũ|Ω = u and p|Ω = p

• ũ = - → 0 a.e. on Γ; • ũ ∈ [H 3 ( Ω)] N and p ∈ H 2 ( Ω).
Then, as long as h is small enough, for a certain mesh-independent constant C it holds:

[|u -u h | 2 1, Ωh + p -p h 2 Ωh ] 1/2 ≤ C{h 2 [| ũ| 3, Ω + | p| 2, Ω] + h 5/2 [| ũ| 2, Ω + | p| 1, Ω]}, ( ) 
where Ωh := Ω h ∩ Ω.

Proof : The proof of this theorem is based on the same arguments as the proof of Theorem . Therefore we skip some details. First we set Ũ := ( ũ, p). For every W = (w, r ) ∈ W h we have:

U h -W X ,h ≤ 1 A sup V =(v,q)∈V h O |A h ( Ũ , V ) -L h (V )| + |A h (W , V ) -A h ( Ũ , V )| V X ,h . 
( )

The second term in the numerator of ( ) can be handled in a standard manner by means of classical interpolation theory. This yields for a mesh-independent constant C : inf

W ∈W h |A h (W , V ) -A h ( Ũ , V )| V X ,h ≤ C h 2 [| ũ| 3, Ω + | p| 2, Ω]. ( )
Next, thanks to the fact that ũ ∈ [H 3 ( Ω)] N and p ∈ H 2 ( Ω) we can write,

|A h ( Ũ , V ) -L h (V )| ≤ R ∈R h ∫ ∆R [|∆ ũ| + |grad p|]|v| dx + ∫ ∆R |q| |di ũ| dx . ( )
Similarly to Theorem the summation of the rst integral on the right hand side of ( ) can be bounded above as follows, for a suitable mesh-independent constant C Y :

R ∈R h ∫ ∆R [|∆ ũ| + |grad p|]|v| dx ≤ C Y h 5/2 [ ∆ ũ 0, Ω +|p| 1, Ω]|v| 1,h . ( )
On the other hand we have,

∫ ∆R |q| |di ũ| dx ≤ q 0, ∆R di ũ 0, ∆R . ( )
Now, since di ũ vanishes on Γ, using Lemma , it holds for a certain mesh-independent constant C X :

di ũ 0, ∆R ≤ C X h 2 R |di ũ| 1, ∆R ( )
Moreover using the fact that meas( ∆R

) ≤ C Q h N +1 R
for a mesh-independent constant C Q , together with the inverse inequality q 0,∞,R ≤ C I h -N /2 R q 0,R , from ( ) and ( ) we derive,

∫ ∆R |q| |di ũ| dx ≤ C I C Q C X h 5/2 R |di ũ| 1, ∆R q 0,R . ( )
This trivially yields

R ∈R h ∫ ∆R |q| |di ũ| dx ≤ √ NC I C Q C X h 5/2 q 0,h | ũ| 2, Ω . ( )
Finally combining ( ), ( ), ( ), ( ) and ( ) we come up with ( ).

As pointed out in Remark , the construction of a pair ( ũ, p) satisfying the assumptions of Theorem can be performed in di erent manners. In this respect we refer for instance to [ ].

Numerical validation for con ned rotating ows

One of the most remarkable applications of the method studied in the previous section is the simulation of con ned rotating ows. Indeed in this case a viscous uid adhere to the curved wall of the ow region, and thus handling the underlying Dirichlet boundary condition with a method of order higher than one requires the use of an accurate technique. In this section we present results obtained with ours, for two test-problems governed by the Stokes system.

In the tables of this section the acronym OCR stands for observed convergence rate.

.

Test-problem with a manufactured solution

First we apply the Taylor-Hood method combined with our technique to solve ( ) with a manufactured solution corresponding to the following data: Ω is the unit disk (centered at the origin), f = (8, 8)(x -), and g ≡ -→ 0 . Prescribing p( √ 2/2, √ 2/2) = 0, the exact solution has polynomial expressions, namely u = ( , -x)(1 -x 2 -2 ) and p = x 2 -2 . We use meshes constructed like in the rst test-problem of Section , but here the computational domain is the whole disk. More speci cally now we compute with (2n × 2n)-meshes containing 8n 2 triangles, each mesh being symmetric with respect to the axes x = 0 and = 0, for n = 2 m with m = 2, 3, 4, 5. We recall that h = 1/n. In order to discard any particularity inherent to the problem being solved, we compared the numerical solution with the one obtained by the simple polygonal approach. We display in Table the velocity and pressure errors in the norms | • | 1,h and • 0,h for both approaches. The notations ūh and ph are employed to represent the velocity and pressure obtained by the simple polygonal approach. These results completely validate the analysis carried out in the previous sections for the case of a convex domain (cf. Theorem ). It is no surprise that the polygonal approach does erode the order of the velocity approximation. It is interesting to note however that, at least in this test-case, this simple approach does not a ect the pressure approximation. 

|u h -u| 1,h -→ . × -1 . × -2 . × -2 . × -3 O(h 2 ) | ūh -u| 1,h -→ . × -1 . × -1 . × -2 . × -2 O(h 1.5 ) p h -p 0,h -→ . × -1 . × -1 . × -2 . × -3 O(h 2 ) ph -p 0,h -→ . × -1 . × -1 . × -2 . × -3 O(h 2 )
Table : Errors for a test-( ow) problem in a disk solved by method ( ) and the polygonal approach .

Pseudo circular Couette ow

In order to check our method's performance in the case of a non-convex ow domain we used it to solve the problem described as follows.

Circular Couette ow of an incompressible viscous uid with density ρ in a region comprised between two concentric cylinders, where the inner one of radius r i rotates at an angular velocity ω and the outer one with radius r e is kept xed, is governed by the stationary Navier-Stokes equations with a zero body-force right hand side. As long as the Reynolds number is su ciently low, the ow is laminar and the solution to the problem is given by u = (sinθ, -cosθ )u θ (r ) where u θ

(r ) = ωr 2 i (r 2 e -r 2 )/[r (re 2 -ri 2 )] and p(r ) = ρω 2 r 4 i /(r 2 e -r 2 i ) 2 [r 2 /2 -r 4 e /( 2r 
2 ) -2r 2 e lo (r )] + c, c being a constant. If we enforce zero pressure on the outer wall, then c takes the value 2r 2 e lo (r e )ρω 2 r 4 i /(r 2 e -r 2 i ) 2 . Although there is no particular di culty to solve the Navier-Stokes equations with our method, in order to focus on our essentially validating goal, we apply it to a modi ed problem, in which the exact inertia term ρ[grad u]u with a minus sign is input as right hand side datum f. Of course the pair (u, p) is still the solution to the resulting Stokes system ( ) in the annulus Ω with inner radius r i and outer radius r e . The datum g in turn equals -→ 0 for r = r e , while its value for r = r i conforms to the given azimuthal velocity r i ω and a zero radial velocity.

Taking r e = 1, r i = 0.5, ω = 1 and ρ = 1, we proceeded to the numerical solution of thus de ned (pseudo) circular Couette ow problem with the Taylor-Hood method combined with our technique to approximate the boundary conditions. In order to avoid non physical boundary conditions, computations were carried out for the whole annulus. With this aim we used again (2n × 2n) symmetric meshes, for n = 2 m , with m = 3, 4, 5, 6, constructed in the way described in the previous subsection, except for the fact that now the elements inside the disk with radius r i were disregarded. This yields meshes consisting of 6n 2 triangles, with h = 1/n. We display in Table the velocity errors measured in the norms | • | 1,h and • 0,h , together with the pressure errors measured in the • 0,h -norm. It is interesting to note that the latter are decreasing at a rate faster than the O(h 2 ) observed in the test-problem of the previous sub-section. This seems to be due to the fact that in circular Couette ow the inertia term with a minus sign is nothing but the pressure gradient. On the other hand the velocity errors in the H 1 -semi-norm are in perfect agreement with the theoretical predictions. The velocity errors in the L 2 -norm in turn seem to decrease like an O(h 3 ), which is optimal.

2n

-→ 16 32 64 128 OCR 

|u h -u| 1,h -→ . × +0 . × -1 . × -1 . × -2 O(h 2 ) u h -u 0,h -→ . × -2 . × -3 . × -4 . × -5 O(h 3 ) p h -p 0,h -→ . × +0 . × -1 . × -2 . × -3 O(h ≈2.5 )

Extensions to other mixed elements and nal comments

In the four previous sections we focused on the application of the technique introduced in [ ] and [ ] to solve boundary value problems in smooth curved domains with Dirichlet boundary conditions, in the particular case of quadratic Lagrange interpolation in N -simplexes. More speci cally we considered the solution of the Poisson equation as a basis for the solution of incompressible viscous ow problems by the popular Taylor-Hood element. However this second order mixed nite element was chosen here only for illustrative purposes. As a matter of fact our technique basically applies to most known reliable mixed methods of order greater than one, to solve this kind of problems, as long as velocity degrees of freedom must be prescribed at boundary points di erent from vertexes. Let us be more speci c about some of these methods.

. If we stick to second-order methods based on the standard Galerkin formulation (such as Taylor-Hood elements), the convergence results that apply to the Crouzeix-Raviart method on triangles [ ] for the polygonal case extend to method's obvious modi cation using our technique. Notice however that the application of this technique to the Crouzeix-Raviart method's extension to tetrahedra considered in [ ] must be the object of a speci c study. This is because it employs certain mean values along element edges as velocity degrees of freedom, instead of nodal values.

. Methods using a piecewise quadratic representation of the velocity combined with the Petrov-Galerkin formulation due to Franca & Hughes [ ] or the one of Douglas & Wang [ ] can be combined with our technique quite in the same manner as Taylor-Hood elements. The nal (second-order) qualitative results remain unchanged.

. Any third-order method in the natural norms using a cubic velocity representation can also be optimally handled in association with our technique. This is true of Taylor-Hood element's cubic extension using the standard Galerkin formulation considered by Bo [ ], and also of the method in the Petrov-Galerkin formulation mentioned in the previous item. In both cases the analysis is based on the arguments developed in [ ] and [ ] for cubic Lagrange nite elements.

. Methods of order k ≥ 4 in the natural norm, though of limited interest, can also be combined with our technique. More particularly this is the case of the generalized Taylor-Hood pairing consisting of the continuous P K -P k -1 velocity-pressure representation considered in [ ], or yet the continuous P k -discontinuous P k -1 velocity-pressure method studied by Scott & Vogelius [ ]. However here optimal convergence results hold under the condition that a numerical quadrature formula with a compatible order and without integration points in the interior of boundary edges or faces be employed to compute the right hand side term. We refer to [ ] and [ ] for more details about such a restriction, which also applies to isoparametric elements (cf.

[ ]).

In conclusion the author emphasizes that the scope in Computational Engineering of the approach adopted in this work to handle Dirichlet conditions prescribed on curved boundaries is much wider than the one of classical techniques such as isoparametric nite elements. This was shown in [ ] and [ ] in the framework of Maxwell's equations of Electromagnetism and deformations of elastic membranes in mixed formulation, respectively. Moreover, even in cases where the use of classical techniques is consolidated, our approach is at least as reliable and competitive in terms of accuracy. We would also like to point out that, as far as we can see, our technique has only two drawbacks: rst of all it is necessary to solve a non symmetric problem, even when the original problem is symmetric. Moreover for each boundary element a small matrix has to be inverted in order to determine the local basis functions. However none of both issues are a real problem nowadays, taking into account the state-of-the-art of Computational Linear Algebra. A nal remark on the choice of nodal points on Γ di erent from vertexes is in order. As one can easily infer from the analysis carried out throughout the paper, the construction of these nodes advocated in Section is not compulsory at all. Actually, referring to Figures and , any other choice in ∆ S ∩ Γ for S ∈ S h will do. However intuitively we can say that these nodes should not be too close to the boundary vertexes of element S, since this may lead to a worse conditioning of the resulting linear system.

Remark Besides those considered in [ ], applications to Solid Mechanics of the technique studied in this paper can be found in [ ].

  Figure : Plane skin δ d for two tetrahedra S, S having faces F, F ⊂ Γ h with F ∩ F = edge d

Figure

  Figure : Set ∆ S for a tetrahedron S ∈ S h and its nodes (right) P ∈ Γ associated with M ∈ Γ h

  

  Referring to Figures and (right), in the three-dimensional case, for every boundary edge d of an element S ∈ S h we rst denote by Π the plane bisecting the dihedral formed by the faces F and F of S and another tetrahedron S ∈ S h respectively, whose intersection is d. We generically denote by δ d the closed subset of Π comprised between d and Γ, referred to as a plane skin hereafter, as depicted in Figure for a tetrahedron S having a face F contained in Γ h . Referring to Figure (left), in the case of such a tetrahedron we denote by ∆ S the closed subset of Ω ∪ Ω h delimited by the three plane skins δ d , Γ and F . For the other type of tetrahedrons S ∈ S h there will be only one such a plane skin δ d and we set ∆ S = δ d . Then for every S ∈ S h the extension of w to ∆ S \ Ω h is required to vanish at a point P ∈ Γ belonging to δ d located between the end-points of d, for every edge d of S contained in Γ h . Akin to the two-dimensional case P can be conveniently chosen to be the nearest intersection with Γ of the perpendicular to d in δ d passing through its mid-point M.

	Now instead of solving ( ) we search for u h such that,
		u ( )
	where	a h (w, ) :=	∫
			Ω

h ∈ W h and a h (u h , ) = L h ( ) ∀ ∈ V h . h grad h w • grad dx ∀w ∈ W h and ∀ ∈ V h ,

(

) Figure : Set ∆ S for triangles S in S h with their nodes P ∈ Γ associated with M ∈ Γ h grad

  Table the quantities u h -u e,h , ũhu e,h and ūhu e,h for the resulting decreasing values of h are displayed.

	n	-→	4	8	16	32	64

Table :

 : Errors for the pseudo circular Couette ow problem solved by method ( )
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