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Abstract: This study contributes to a better understanding of where to place different energy
modelling tools and support better decision-making related to the sustainable development of energy
systems. It is argued that through the connection of the energy field and the field of sustainable
development, the current energy paradigm—encompassing economic, environmental and social
aspects—has emerged. This paper provides an analysis of different categories of existing energy
system models and their ability to provide answers to questions arising from the current energy
paradigm formulated within this study. The current energy paradigm and the relevant questions
were defined by conducting conceptual framework analysis. The overarching question of the current
paradigm asks how different energy pathways impact on the (sustainable) development of the energy
system and overall (sustainable) development globally and nationally. A review of energy system
models was conducted to analyse what questions of the current energy paradigm are addressed by
which models. The results show that most models address aspects of the current energy paradigm but
often in a simplified way. To answer some of the questions of the current energy paradigm in more
depth and to get novel insights on sustainable energy system development, it might be necessary use
complementary methods in addition to traditional energy modelling methodological approaches.

Keywords: energy paradigm; sustainability; energy system models

1. Introduction

Energy has been at the centre of political and scientific debate for many centuries. In line with
these debates, energy models representing energy systems have been developed. The energy system
directly and indirectly interacts with economic, social and environmental systems. Through these
interactions the systems influence the (sustainable) development of each other [1]. Energy is a central
driver for economic and social development as well as environmental and climate issues. Today, with
the emergence of the sustainability debate and considering the growing importance of the energy
system in reaching multiple sustainable development goals, it is necessary to explore to what extent
existing energy models are in accordance with the different aspects of the current views on the role of
energy systems. In this paper these views are referred to as the current energy paradigm. No recent
and comprehensive definition of the current energy paradigm exists, despite some earlier studies
referring to an emerging or new energy paradigm [2,3]. While many energy model reviews exist
(e.g., [4–7], so far none of them has been connected to the current energy paradigm. The aim of this
study is to bridge this gap.

Energies 2019, 12, 1584; doi:10.3390/en12081584 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-3493-965X
https://orcid.org/0000-0002-1996-3400
http://dx.doi.org/10.3390/en12081584
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/8/1584?type=check_update&version=2


Energies 2019, 12, 1584 2 of 22

Energy modelling has a long history and often supports decision-making in energy system
planning. The first simple linear programming energy models were developed in the 1960s. Since then,
many more have been developed [6]. One category of energy models is that of energy system models.
An energy system can be defined as the process chain (or a subset of it) from the extraction of primary
energy to the use of final energy to supply services and goods [8]. In other words, an energy system
encompasses the “combined processes of acquiring and using energy in a given society or economy” [9].
Therefore, in this study all models, which focus on energy production and usage in the system,
including the society or the economy, are referred to as energy system models.

In aiming to understand what kind of energy models are needed today to help answer the most
important questions related to energy system development in the light of the current energy paradigm
and overall sustainable development in the context of the sustainable development goals (SDGs) [10,11].
This paper aims to develop two main points:

1. The formulation of the current energy paradigm and related questions.
2. Analysis of existing energy system models used for assessing and decision making in energy

system development, specifically focusing on what models are able to answer which questions.

In order to help achieve sustainable development objectives energy models as supporting tools
should be able to answer a variety of questions that go beyond purely technological advancement of
energy systems [7]. This includes energy relevant aspects of the SDGs [12] and other biophysical and
socio-economic ones (e.g., [13–17]). Hence, the practical implications of this paper are:

1. Support in choosing the most relevant model for investigating and understanding a
particular issue.

2. Identifying gaps between the capabilities of existing energy models and requirements of the
current energy paradigm facilitates improvement of existing energy system models.

3. Point one and two, individually or combined, can facilitate better application of models for
decision-making related to the development of energy systems.

Section 2 describes the research method. In Section 3 the current energy paradigm is defined.
In Section 4 the models are analysed. This includes a description of the model categories, examples
for each of them and exploration of the question how the existing models relate to the current energy
paradigm. This is followed by a discussion and critical reflection of the findings in Section 5. Finally,
the conclusion presents a summary of the main findings in Section 6.

2. Method

To answer the question to what extent current energy system models are able to answer the
questions of the current energy paradigm, a literature and model review was carried out. First, the
relevant literature for defining the current energy paradigm and, second, selected models and their
documentation were reviewed. The current energy paradigm is defined by following the procedure
of the conceptual framework analysis presented in Reference [18]. This analysis is based on eight
phases, which are carried out iteratively and among others includes mapping data sources, defining
concepts and validation [18]. As suggested in Reference [18] selected data sources span a range of
text types and disciplines including the following: for supporting the paradigm part, Kuhn’s [19]
theory of paradigms was applied. The definition of the new view on energy systems was derived from
mainly two types of literature: (i) texts international documents dealing with energy in the context of
sustainable development, such as UN reports and international meeting or session reports [10,20–31]
(ii) studies on sustainability and energy relevant to the broader energy system, including literature
from different disciplines on the resource, environmental, economic and social aspects of the energy
system [3,6,13,15–17,32–55]. The concepts identified within the literature were categorized and later
integrated [18]. This resulted in a number of core concepts, constituting the current energy paradigm.
In this paper, the identified and integrated concepts are represented as questions that arise from the



Energies 2019, 12, 1584 3 of 22

current energy paradigm (see Section 3 Theory—The current energy paradigm). This provides the
basis for assessing what models are able to provide answers to which questions arising from the current
energy paradigm.

To obtain information on energy (system) models, first an initial search for energy model reviews
conducted within the last 15 years was carried out, which resulted in a total of thirteen energy model
reviews that were explored. Following this, the model reviews were narrowed down to those that
explicitly dealt with energy system models as defined in the introduction. This led to seven main reviews
covering 55 models (i.e., [6,7,51,56–59]). These were used for gaining preliminary insights into the
models and modelling practices of energy system modelling as defined above. Following the analysis
of the reviews, a total of fourteen models were reviewed in more detail (see list below). Based on prior
reviews [6,7,57,60] and the models’ manuals, it was decided to categorize the models into top-down,
bottom-up and hybrid models (more details in Section 4 Model analysis). Each of the categories
encompasses several subcategories of modelling techniques (e.g., econometric, linear optimization).

Furthermore, due to the increased importance of energy in the field of sustainable development,
energy plays a substantial role in models generally concerned with the assessment of sustainable
development. Hence, it is considered important to, additionally to the energy system models, also
include other assessment models that contain a substantial energy module. A total of seven (LEAP (the
Long range Energy Alternatives Planning system) [61]; Threshold21 [62]; IMAGE (Integrated Model to
Access Global Environment) [63]; FELIX (Functional Enviro-economic Linkages Integrated neXus) [64];
C-Roads [65]; DICE (Dynamic Integrated model of Climate and the Economy) [66]; REMIND (Regional
Model for Investment and Development) [67]) of those models were reviewed.

The common features of each model group and the chosen models were investigated to identify
how each of them addresses the questions raised by the current energy paradigm. In order to
complement the general findings about the model groups, the results regarding the chosen models
of each category are described in more detail. The exemplar models chosen for each category are
distinct in their modelling characteristics and being representative for the different model categories.
Additional criteria were the frequency of references to the energy systems models in the studied
literature reviews and the policy relevance of these models. All of the chosen models are used in a
policy-making context at a national, regional or international level. The models are:

Bottom-up

• MARKAL [68]
• TIMES [69]
• PRIMES [70]
• MESSAGE [71]
• WEM [72]

Top-down

• GEM-E3 [73]
• NEMS [74,75]

Hybrid

• MESSAGE-MACRO [76]
• MESSAGE-MAGICC [77]
• MESSAGE-Access [78]
• En-Roads [79,80]

Other assessment models
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• LEAP [61]
• Threshold21 [62]
• IMAGE [63]
• REMIND [67]

3. The Current Energy Paradigm and Arising Questions

In the Oxford English dictionary a scientific paradigm is referred to as “a world view underlying
the theories and methodology of a particular scientific subject.” This relates to Kuhn [19] who defines
it as a set of basic concepts and experimental practices of a scientific discipline. According to Kuhn,
a paradigm is not necessarily explicitly formulated and can be implicit revealing itself through the
assumptions shared by a disciplinary community. A central element of Kuhn’s theory is that of a
paradigm shift, which is defined as a process of changing from one set of concepts (assumptions) to
another within a discipline.

There are three main questions that this section seeks to explore: (1) What is meant by energy
paradigm? (2) Why has the energy paradigm changed? (3) How can the current energy paradigm
be defined?

In this paper, the energy paradigm is defined as a set of explicit and implicit assumptions about the
energy system. Whether or not energy studies can be related to a scientific discipline [81], Kuhn’s theory
of paradigm shift is applicable, if energy is seen as a field of study associated with a set of explicit
and implicit assumptions. Despite Kuhn´s discussion of the paradigm shift mainly in the context
of natural sciences, his concept has been used in many other contexts since his book was published,
also in the energy field [2,82]. According to Kuhn, new knowledge and crises can drive paradigm
change. The current energy system faces several challenges on the social and environmental sphere,
which can be understood as crises as well as technological advancements and a new political agenda
have been drivers of change [12,14,49,50]. Changes in fundamental assumptions about the energy
system eventually define the way it is designed in reality. An energy system paradigm shift has
occurred several times. The development of the current one is explained through to the emerging role
of energy in the sustainable development debate and addressed challenges within theoretical research
on energy [1].

To respond to the second question, a historical overview of the events and developments leading
to the change of the energy paradigm is provided in Table 1. The relevant events, debates and
corresponding literature for sustainable development (left column) and energy (right column) are
displayed. In the middle column, the concepts derived from those two columns are presented.
The concepts were obtained by conducting conceptual framework analysis (see Section 2 Method).

By integrating and synthesizing the concepts in Table 1 the answer to question number three
(i.e., How can the current energy paradigm be defined?) is developed. The current energy paradigm
can be described as the following: Energy is central for sustainable development and the goal of
sustainable development, as defined in the Brundtland report, is central for the current energy paradigm.
Three consequential aspects stem from this: (i) energy is essential for continuous socio-economic
development and well-being; (ii) the facilitation of energy should not threaten any generations’ quality
of life and therefore it needs to stay within all environmental limits; possible future environmental
impacts on the energy system need to be considered; and (iii) resource limitations for fossil fuels and
for renewable energies need to be accounted for.

The main question arising from the current energy paradigm is “How do different energy
system pathways impact (sustainable) development of the energy system and overall (sustainable)
development globally and nationally?”. The concepts presented in Table 1 translate into questions
arising from the current energy paradigm presented in Table 2:
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Table 1. Historical overview of the events and developments leading to the change of the energy paradigm and identified concepts (This table is based on a review of
the following references: [3,6,10,13,15–17,20–55]).

Year Sustainable Development Concepts Energy

1970s
Limits to Growth and WORLD3 model

Conference of the Human Environment in
Stockholm, Sweden

Limits of fossils and their implications
Environmental impact

Energy security

Oil crisis
Hubbert curve

Establishment of IEA
Establishment of OPEC

Energy Modelling Forum establishment

1980s Brundtland report
Creation of IPCC Sustainable development

World Energy Council establishment
Concept of the cost of conserved energy and energy

supply curves

1990s

United Nations Conference on Environment and
Development in Rio, Brazil

Signing of UNFCCC
Agenda 21

1st IPCC report

Climate change

Merge of energy and climate research
Energy researchers contribution to Special report on

Emission Scenarios
Global Energy Perspectives book

2000s

MDGs
9th Session report of UN Commission of Sustainable

Development
World Summit on Sustainable Development

Kyoto protocol
Creation of EU ETS

Energy is central for sustainable development
Link between energy and socio-economic

development (incl. energy relation to poverty,
urbanization, population dynamics)
Cross-scale energy systems impacts

(national/regional impact on global and vice versa)

IAEA, IEA, UNDESA,
Eurostat and EEA indicator set

World Energy Assessment - Energy and the
Challenge of Sustainability by UNDP

1st EU energy action plan (20/20/20 targets)

2010s SDGs
Paris Agreement

Short-term versus long-term goals
Synergies and trade-offs between different

development goals
Limits of renewables and their implications
Impact of climate change on energy system

Launch of Sustainable Energy for All
SDG 7

Critical material resource debate
Climate change mitigation strategies
Climate change adaptation strategies

Climate and energy justice debate
Deep Decarbonization Pathways Project
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Table 2. Questions arising from the current energy paradigm.

Number Question Explanation

1 How does the energy system affect climate change?
This question refers to the effect the energy system, from production (including resource harvesting) to
consumption, has on the climate. Hence, the model should provide greenhouse gas (GHG) emission
values as well as their implications in terms of climate change effects (e.g., degree Celsius increases).

2 What other negative environmental impacts of the energy system
exist?

This question refers to the pollutants that are not directly influencing the climate but have more local
effects on the environment (e.g., water, land, air), for example, particulate matter, nitrogen oxides.

3 How does climate change affect the energy system?
This question refers to the potential feedbacks arising from climate change on the availability of

renewable resources due to changed weather conditions (e.g., solar radiation, changed precipitation
for hydropower).

4 What are the limits of fossil resource supplies and what are
their implications?

This question refers to the scarcity and depletion of fossil fuels and how this influences the energy
system in terms of availability and cost.

5 What are the limits of renewable resources and what are
their implications?

This question refers to temporal availability of renewables and to scarcity of materials needed for
harvesting technology and how this influences future renewable energy systems in terms of availability

and cost.

6 How can a secure energy system be provided?
This question refers to the short- and long-term supply. Hence, it is addressing the availability of

resources to meet the energy demand, considering the intermittencies for the short-term and potential
resource scarcities in the long-term.

7 How does the energy system affect socio-economic development
beyond GDP?

This question refers to the effects that the energy system has on human development, including its
influence on health, affordability and poverty eradication.

8
How will near future energy system developments shape the
long-term future energy system and how do long-term future

goals impact on short-term developments?

This question refers to the fact that achieving certain goals in the near future can have impacts in the
long-term and vice versa due to created path-dependencies and lock-ins.

9 What are the synergies and trade-offs between different energy
system development goals?

This question refers to the fact that the energy system is interlinked with the social, environmental and
economic system. Different goals with regards to each of the systems exist. Hence, it is important to
understand how those goals relate to each other and whether they are conflicting or complimentary.

10 How does the development of the energy system of one
country/region affect global development?

This refers to understanding whether the energy system development of a country/region can influence
another country’s/region’s development (e.g., distribution of scarce resources, climate effects).

11 How do global developments affect the development of the
energy system of a country/region?

This question refers to the influence globally negotiated goals (e.g., climate, energy, poverty eradication)
might have on a country’s/region’s energy system development.
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4. Model Analysis

Energy systems’ structures represented in a number of existing energy models capture the
assumptions about the energy systems they portray. Since the role of energy models is helping
decision-making at different levels [57], it is important that the models can answer the questions resulting
from the current energy paradigm. Thus, the modelling output can help feasible decision-making for
energy systems’ development.

The questions energy models aim to answer and the modelling tools have been constantly
changing depending on the context of different historical periods and the thereby changing paradigm,
advancement of knowledge and technologies. Hence, to explore to what extent the existing energy
system models can answer the questions associated with the current energy paradigm defined in
Part 3, the following aspects were analysed: (i) the methods used in energy models; (ii) the questions
addressed in the models; (iii) the context in which the models were built. This will be discussed for
every model (or family of models) within the three categories presented in the research design.

4.1. Bottom-Up Models

Bottom-up models aim to demonstrate the system’s components in detail. In these models,
structural elements are portrayed in a sophisticated manner using disaggregated data. Applying the
bottom-up modelling approach to energy models means focusing on the technological complexity of
the energy system. Bottom-up energy models normally ignore any interactions between the energy
sector and other sectors of the economy. Hence, bottom-up models are also referred to as partial
equilibrium models. For example, they seek for equilibrium in energy demand and energy supply.
Bottom-up models are highly disaggregated. Therefore, due to data availability and complexity, it
is hard to apply them to a large spatial scale (e.g., global). Such energy models are usually referred
to as sophisticated engineering models and are based on simplified market behaviour assumptions,
including rational behaviour of actors in the system [6,7,57,60].

Due to their equilibrium seeking nature, which often leads to modelling the energy system as
an optimization problem (e.g., MARKAL, TIMES, MESSAGE), those models can in theory address
questions related to resource limitations well. Constraints are put on available resources, which limits
their availability and impacts on market prices. This is done for fossil resources for all the models that
were analysed in more detail (i.e., MARKAL, MESSAGE, TIMES, PRIMES). No resource constraints
regarding the critical materials for renewable resources are addressed in these models. However, some
explicitly address constraints for biomass availability (i.e., MESSAGE & PRIMES). All of them consider
intermittencies to some extent (e.g., capacity factors or time series) and have resource cost-supply
curves for renewables. This means that those models, although in theory could provide answers to
questions 4 and 5, only answer question 4 and partly address question 5 [71,83].

Climate change questions (i.e., questions 1 and 3) are partly addressed in bottom-up models but
only in a linear manner, neglecting feedback between the components. The models are able to estimate
greenhouse gas (GHG) emissions based on the energy mix and if certain policies are in place they can
to constrain CO2 emissions through price effects (e.g., CO2 tax, CO2 certificates). However, beyond this
linear consideration of GHG-emissions, no feedback between the energy system and climate change
is modelled in any of the models explored (i.e., MARKAL, MESSAGE, PRIMES, TIMES). Also, they
usually do not consider any other environmental impacts associated with the energy system (i.e.,
question 2) [68,69,71,83].

As bottom-up energy system models are based on equilibria approaches. In these models, there is
no feedback between climate change and the energy system and no possibility to model synergies
and trade-offs between multiple energy system development goals. Such goals can include providing
a sufficient amount of energy, minimizing environmental impacts and securing a stable long- and
short-term energy supply. Thus, question 9 is not addressed by these types of models. However, this
becomes possible with hybrid/nexus models (see Section 4.3 Hybrid models).
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Regarding questions 10 and 11, models consider questions related to the impacts of global
developments on national ones and vice versa, as MARKAL and TIMES can model energy systems at
the local, regional and multinational levels. The MESSAGE model can represent the energy supply at
national or global level. At the global level, MESSAGE aggregates the world into 11 regions.

Since bottom-up models are partial equilibrium ones, they only search for an optimal solution in
the energy sector and do not address any aspects related to the overall socio-economic impacts of the
energy system (i.e., question 7). However, one of the main focuses of some of the models in this group
(e.g., MARKAL, TIMES, PRIMES) is energy system security. This means they answer question 6 within
the boundaries of the assumptions on resource limitations. They do not fully account for the impacts
of the limitations of renewables (i.e., question 5) on energy security.

It is argued that due to the technological innovation focus, bottom-up models can be applied for
building long-term scenarios for the energy system but are not looking at the interaction between short-
and long-term energy system developments (i.e., question 8) [60].

The characteristics presented above also reflect on how the models are used in decision-making.
MARKAL and TIMES are used by numerous countries and organizations for energy planning at
different geographical scales [68,69]. Both models belong to the linear programming-based optimization
group using GAMS as a programming language. Their main objective is finding a combination of
energy technologies ensuring energy security, energy affordability and reduction of CO2 emissions at
the lowest possible costs. MESSAGE is another widely used energy optimization model [71]. It is often
employed for determining cost efficient technological portfolios allowing for GHG emissions reduction.

PRIMES is another technology-rich partial equilibrium energy model. It looks for an equilibrium
solution for energy supply, demand, cross-border energy trade and emissions in European countries.
It is used by the European Commission as energy policy decision support tool. However, unlike the
aforementioned engineering models, some relationships between variables in PRIMES are based on
econometrics. Thus, they are derived from empirics rather than solely relying on economic theory.
With regards to the current energy paradigm, the main difference and strength of PRIMES is a detailed
presentation of energy supply and energy demand sectors, as well as the mechanism of energy price
formation. PRIMES incorporates a variety of policy instruments that can test the effects of different
regimes and regulations on energy markets [83].

Contrary to bottom-up optimization models discussed above, the World Energy Model (WEM) is
a bottom-up simulation model. The WEM is a large-scale simulation model which is used for energy
policy projections. The model covers the entire global energy system, which is divided into 24 regions
and includes several main modules: energy demand, power generation, refinery and transformation,
fossil fuel supply, CO2 emissions and investment [72].

In the WEM, the impact of the energy system on the climate is modelled in terms of emissions
in both parts—energy supply and energy demand (question 1). No feedback from climate change
to the energy system is present in the model (question 3). GHG emissions are modelled as the
only environmental effect of the energy system (question 2). However, the model differs between
GHGs (e.g., sulphur content). Resource limits for both fossil and renewable energy resources are
integrated in the model in the form of dynamic cost-resource curves. Renewables are limited by
regional resource capacities. No other limits for renewables, such as infrastructural materials, are
available in the WEM assumptions (questions 4 and 5). Simulation of different sets of technological
and investment solutions to secure region-by-region energy supply (including energy access provision
for the regions undersupplied with energy) is one of the main focuses of energy scenarios produced
(question 6). The World Energy Outlook 2017 [84] discusses the Sustainable Development Scenario
produced by WEM, which includes three integrated sustainable development objectives corresponding
to the goals of SDG 7 (affordable and clean energy), SDG 13 (climate action) and SDG 3 (good health
and well-being). Exploration of trade-offs between achieving different development goals is part of
the Sustainable Development Scenario (questions 7, 8, 9). Although the model’s structure does not
allow to assess country level effects, based on the available WEM documentation, it is difficult to say
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whether it is possible to identify trade-offs between regional and global energy system developments
(questions 10, 11).

4.2. Top-Down Models

Top-down models aim to provide a bigger picture of the modelled system. Applying the top-down
approach to energy system modelling usually implies that the energy system is part of a holistic
economic system. This means that these models are focused on demonstrating interactions between
different parts (sectors) of an economy rather than deeply analysing the systems’ structural elements,
such as energy technologies. They investigate how the energy sector interconnects with other sectors
of the economy. They study overall macroeconomic performance and seek for a big systemic goal.
Methods generally used for top-down energy models include macroeconomic and general economic
equilibrium modelling based on econometrics. In this section, GEM-E3 and NEMS are discussed.
NEMS can be classified as a modular hybrid model. It includes several supply and demand modules,
combining technologically-detailed bottom-up modules with economic top-down ones [85]. However,
in this paper, NEMS is classified as a top-down model. This is due to the fact that its modules are
not used as individual models (see Section 4.3. on hybrids) and the model itself is widely used for
macroeconomic projections, seeking to find general equilibrium across all sectors [86].

NEMS [74,75] is an economic and energy model developed by the Energy Information
Administration of the US Department of Energy. The model seeks to understand the effects of
alternative energy policies on the US economy by capturing the feedbacks between the energy sector
and other sectors. One of the main focuses of the model is to investigate the interrelation between
energy system development at the national and international level (i.e., questions 8, 10 and 11).
Regarding energy resource scarcities (i.e., question 4), the only fossil fuel in NEMS for which natural
resources depletion is explicitly addressed is shale gas [74].

Limits for renewable energy sources (i.e., question 5) in the model account for spatial and temporal
resource availability. For solar energy, NEMS’ assumptions acknowledge the dependency of solar
technologies on natural resources but do not include it in the model’s structure due to assumed
abundance of those resources [87]. Climate change is not explicitly addressed in the model (i.e.,
questions 1 and 3). No sophisticated emissions sector is present but GHG emissions and other
environmental pollutants (i.e., question 2) are included as a structural part of every economic sector,
enabling tracking the impact of economic growth on emission targets. There are no socio-economic
aspects beyond GDP, as well as the trade-offs between economic, social and environmental goals,
addressed in NEMS (i.e., questions 7 and 9).

GEM-E3 [73] is a general equilibrium model which presents the world as a combination of
37 regions. It models the whole macro-economic system aggregated into 26 production sectors.
As a general equilibrium model, GEM-E3 looks for simultaneous balance across all markets.

A large number of questions related to the current energy paradigm are addressed in GEM-E3.
Question 1 is addressed by including a structure of energy system-caused emissions, which allows
to track climate damage. However, the climate feedback to the energy system (question 3) is absent.
Environmental impacts of the energy system beyond CO2 emissions (question 2) are integrated into the
model’s structure. Apart from the possibility of better assessing environmental damages, this structure
allows for a detailed analysis of climate change policies.

Limits for fossil fuels (question 4) are addressed but limits on renewable energies (question 5)
are only included as exogenously defined constraints. One of the main focuses of GEM-E3 is energy
security (question 6), which is represented by several indicators in the model. GEM-E3 addresses
the energy system’s impact on socio-economic development beyond GDP (question 7) by looking, in
particular, at air quality and health impacts [88]. Being focused on exploring the role of the energy
system in overall sustainable growth paths, GEM-E3 to some extent addresses the question of how the
currently existing energy system shapes the future energy system (question 8). Trade-offs between
development and environmental damages (question 9) are not explicitly addressed in the model but
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the mechanism of decision rules related to abatement cost and environmental damages are modelled
in detail. Questions 10 and 11 are addressed in GEM-E3 and global as well as regional development
dynamics can be tracked by, for example, exploring the changes in bilateral trade.

GEM-E3 is used by the European Commission as a decision support tool for tax, climate, energy,
transport and employment policies. In particular, it was used for the EU 2030 Climate and Energy
Framework and for the EU’s preparation for the COP21 negotiations [73].

4.3. Hybrid Models

Top-down and bottom-up energy models are often contrasted as two extremes - “pessimistic
economic paradigm” and “optimistic engineering paradigm” [89]. Hybrid models try to address the
limitations of both types of models by connecting bottom-up and top-down approaches. Thereby, they
combine technology-rich and macroeconomic model structures.

“The whole should exceed the sum of its parts: integrating aspects and functionality from
top-down and bottom-up modelling approaches results in ‘hybrid’ models, which may provide more
insight than the individual models could on their own” [90]. This is one of the latest definitions of this
hybrid models. They are composed of fully working individual models and comprise two or more
separate models, which can be integrated with each other to different extents. A common distinction
of hybrid models is made depending on the extent to which the models are linked. They can be
soft-linked (i.e., no integration of models, only external exchange of input or output data) or hard-linked
(i.e., integration of models, including their structures and endogenous data exchange). The category
of modelling systems, which combine multiple modules, is added to the classification of hybrids.
However, in this paper, this category is not included in the hybrid section (see Section 4.2. Top-down
models). [90]

Hybrid models can use more than one modelling technique. Those can include macroeconomic
modelling, general economic equilibrium, linear optimization and partial equilibrium [7,60,91], as well
as system dynamics.

Since hybrid models are not one coherent group of models but vary in their characteristics, it is
difficult to generalize what questions related to the current energy paradigm are addressed by this
model group and which ones are not. This depends on the models and indeed the techniques used to
build the hybrid. Each of the hybrid models addresses a particular question, often relating different
aspects of energy system development on different scales (e.g., the connection between large scale
energy price developments and its impact on energy use and consumer health). Therefore, each model
has certain strengths and weaknesses, as well as it makes it possible to address and answer different
questions of the current energy paradigm. The following examples will illustrate the broad range of
their scope.

MESSAGE-MACRO [76] is an energy partial equilibrium model connected to a general equilibrium
macroeconomic model. The solution method of this model combines linear optimization for the
MESSAGE module and non-linear optimization for the MACRO module. Inputs for the model are
very detailed on the energy supply side (MESSAGE) and very aggregated for the energy demand side
(MACRO). The main goal of this hybrid is examining the interrelations between energy supply costs
as well as technologies and major macroeconomic parameters in order to provide the best short- and
especially long-term policy. Hence, it is focused on addressing question 8 [76].

MESSAGE-MAGICC [77] is not a pure energy model but it is still seen as a relevant hybrid energy
climate model. It is a hybrid that combines the bottom-up energy system structure with a more
macro-level climate model structure. MESSAGE-MAGICC estimates the effects of the energy-use-caused
GHG emissions on the global climate system; hence, its primary objective is providing answers to
question 1. Outputs of this model, together with the other models, are used as inputs for assessments
and scenario studies by the Intergovernmental Panel on Climate Change (IPCC), the World Energy
Council (WEC) and other organizations. The MAGICC module represents the climate and is based on
a global average energy balance equation integrating atmosphere and ocean climate dynamics [77].



Energies 2019, 12, 1584 11 of 22

MESSAGE-Access [78] also does not correspond to the commonly understood definition of a hybrid
energy model and Access could be seen as a simple extension of MESSAGE. However, if a hybrid is
broadly defined as two or more fully functioning individual models that produce more insightful results
when combined [90], MESSAGE-Access can be counted as a hybrid. The Access module represents a
choice of energy technologies in the residential sector. The output of MESSAGE-Access [78] looks at
the consequences of a transition to clean cooking fuels and electricity in the poorest world regions
and implications of this for the global energy supply. The model particularly looks at the costs of
health, environmental and economic consequences of different energy transition pathways. Currently,
MESSAGE-Access is used by the United Nations Secretary General’s Sustainable Energy for All (SE4All)
initiative aiming at meeting Goal 7 of the SDGs of clean and affordable energy [92]. By allowing for the
assessment of access to modern energy and its related costs, in-house pollution and health implications
of it, this model clearly addresses question 7 of the current energy paradigm. However, it still does
not provide a full answer to this question, since the impact of the energy system on other related
socio-economic indicators is not investigated (e.g., relation to poverty eradication). Furthermore, it
looks at the connection between regional and global development, which relates to question 10 and
11 [78].

En-Roads [79,80] is a feedback-driven global scale system dynamics model. It explores
interrelations between the energy and the climate system on an aggregated level focusing on some areas,
which are represented in more detail (e.g., technology, innovation, price mechanisms). The model
allows simulating different scenarios to explore how taxes, subsidies, economic growth, energy
efficiency, technological innovation, carbon pricing, fuel mix and other factors affect global carbon
emissions and temperature. Therefore, it is possible to investigate synergies and trade-offs between
different policies, which explicitly addresses question 9. Another insight the model provides relates to
understanding of how today’s decisions on energy policy will affect the energy and climate system in
the long-term (i.e., question 1 and 8) [79,80].

Together, all these models make it possible to say that hybrid models and their methods address
most of the relevant questions of the current energy paradigm. However, it is obvious that although
hybrid models often provide answers to many of the questions posed, no individual model can provide
answers to all of the relevant questions. Nevertheless, it is expected that if energy system models do not
answer all the questions related to the current energy paradigm, they should provide comprehensive
assumptions and reasoning for not dealing with them (e.g., if some of the questions are beyond the
scope or data is missing).

4.4. Energy in Other Assessment Models

This group of models contains models that cannot be qualified as energy models but are,
nevertheless, of interest.

Four models were selected to be discussed in this section: Threshold 21 [62], LEAP [61], IMAGE [63]
and REMIND [67]. The first two are system dynamics models. Neither Threshold 21 nor LEAP are
energy models. In fact, they are macroeconomic models. They are considered relevant for the current
discussion because, despite being focused on overall system sustainability rather than on the energy
system only, they integrate a substantial energy component in their structures. This is strongly in line
with the current energy paradigm, which sees energy as one of the main contributors to all pillars of
sustainable development.

Threshold 21 [62] is a national, country level model. It integrates economic, social and
environmental aspects. The model is used for designing and supporting long-term development
planning in developing countries based on the SDGs priorities (question 7, question 9) [93]. The structure
of Threshold 21 does not have an elaborated climate module but it includes a GHG emission module
connected to the technological, energy and production sectors (i.e., question 1). No feedbacks between
energy sector and climate change are modelled. The environmental impacts of pollution are present
in Threshold 21 (i.e., question 2). However, the documentation of the model does not illustrate how
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detailed the environmental impact sector is. The limits for any fossil or renewable energy sources
(i.e., questions 4 and 5) are not explicitly mentioned in the model’s documentation. Threshold 21 is
particularly focused on the trade-offs and controversies between achieving different SDGs, looking
for the best national sustainable development paths. The most valuable insights from the model’s
simulation relate to identifying the best policy mixes for sustainable development by finding leverages
for synergetic policy interventions for an integrated approach. Many of the leverages of this kind
relate to energy system development. However, since Threshold 21 is not an energy system model,
it does not answer specific energy-system-related questions. In particular, there are neither energy
security aspects (i.e., question 6) nor short-term versus long-term energy system developments (i.e.,
question 8) explicitly addressed in the model’s structure. In terms of policy impact, the model is
widely used in developing countries as a tool for supporting sustainable development. Since the model
has a strong national focus, it does not give insights on the connections between the national and
international sustainable development (i.e., questions 10 and 11). In general, the structure of Threshold
21 is adaptable and customizable to a particular country’s needs and priorities additional questions
related to the current energy paradigm can be addressed.

LEAP [61] models energy production, consumption and associated GHG emissions in all main
sectors of an economy. Its original design implies that the model combines different methods (e.g.,
optimization, partial equilibrium) and allows for the optional use of connected components (e.g.,
energy, water use, land use). LEAP has flexible data requirements and allows simulations with different
types of output depending on the selected methodologies. The model supports running cost optimizing
energy production and consumption scenarios, for which the OSeMOSYS (The Open Source Energy
Modelling System) optimization model is used. Currently LEAP is used in more than 190 countries as
a tool for integrated energy planning and greenhouse gas mitigation assessment (i.e., question 1), as
well as a tool for energy assessments and Low Emission Development Strategies. Additionally, LEAP
incorporates land use and water constraints with regards to renewable resources, which addresses
question 5, as well as it is possible to model the impacts of the energy system on the environment
beyond climate change (i.e., question 2) [61].

IMAGE [63] and REMIND [67] stand out from other models, because they belong to the model
group called Integrated Assessment Models (IAMs). IAMs were initially intended to bring together the
dynamics of natural and social systems in order to have better understanding of how human activities
impact on natural systems, with particular emphasis on climate change [94]. They have played a major
role in the scenarios developed in IPCC reports [95]. Most IAMs contain an energy system structure as
the principle component, since it is one the main contributor to climate change. The current generation
of IAMs contain relatively complex social system modules and aim at answering a wider range of
questions related to sustainable development. Several IAMs exist developed and are used for assessing
sustainable system pathways, including for example the Global Change Assessment Model (GCAM)
(e.g., [96]), the Asian-Pacific Integrated Model (AIM) (e.g., [97]), the Emission Prediction and Policy
Analysis Model (EPPA) (e.g., [98]) and others (e.g., [99,100]). For the purposes of this study, IMAGE
and Remind were chosen as a representative models of the group.

IMAGE is a global/multiregional simulation model, which implies exploring the simulation
of alternative scenarios of human and natural system development in the long run. IMAGE has a
detailed emissions module, which accounts for the emissions to air, water and soil from the energy
and the agricultural sector (i.e., questions 1 and 2). Climate change is modelled as temperature and
precipitation changes, which feedback to water availability and land systems. Therefore, even though
no direct feedbacks from climate change to the energy system are modelled, those feedbacks are
indirectly available for hydro- and bioenergy (i.e., question 3). On the level of technological choice, no
feedback from water scarcity to energy decisions is considered. Long-term fossil resource limits on
the regional level are modelled as cost-supply curves (i.e., question 4). In a similar manner limits for
renewable energy sources are modelled. The only exception is bioenergy, its production is limited
by land availability and is connected to the agricultural land use (i.e., question 5). Energy security
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(i.e., question 6) is addressed in the model through resource depletion, energy resource trade and
energy resource diversity. In its scenarios IMAGE explores possible impacts of climate policy on energy
security. GDP is the main economic indicator but additional aspects relevant to human development
are in the model, such as pollution impact on health and inequality in the form of GINI coefficient (i.e.,
question 7). IMAGE is positioned more suitable for exploring the long-term rather than short-term
dynamics of it (i.e., question 8). As for the synergies and trade-offs between different development
goals, the latest version of IMAGE is explicitly driven by questions related to reaching multiple SGDs
and associated policy trade-offs (i.e., question 9). However, most of the insights related to those
trade-offs are focused on the interrelations between energy and agricultural sectors. Among the evident
trade-offs there are the ones related to land use, fertilizers, emissions, use of groundwater and their
impact on prices, undernourishment and health. IMAGE is structured as a multiregional (26 regions)
model. Therefore, it is possible to explore how changes in one region affect the development in other
regions and where driving factors for major global changes are located geographically. However, there
are limits for examining country-specific trends and policy changes, since most of the countries are
modelled as part of the bigger regions (i.e., questions 10 and 11).

REMIND is a global multi-regional model incorporating the economy, the climate system and a
detailed representation of the energy sector [67]. The model’s structure includes limits of non-renewable
energy sources as well as potentials of renewable energies (i.e., questions 4 and 5). In addition to the
primary energy resource limits, land use limits for energy system developments are taken into account.
Dynamics of land use and agriculture are based on the MAgPIE [101] model. It is often coupled with
REMIND to provide insights on the connection between the energy system and land use, which is
especially relevant for bioenergy. The limits for the non-renewable energy resources are modelled in the
form of the region-specific extraction cost-curves. Similarly, the limits for the renewable energies are
modelled in REMIND as the maximum technical resource potentials in different regions. The feedback
from climate change to energy resource availability is not modelled in REMIND (i.e., question 3).
REMIND incorporates a sophisticated emissions sector which includes those of aerosols and ozone
precursors (i.e., question 1). Also, additional land use CO2 and agricultural non-CO2 emissions
are incorporated in the MAgPIE module. In addition to already mentioned environmental impacts
considered a water sector is present in REMIND. It aims for accounting the water use associated with
different energy technologies (i.e., question 2). The issue of energy security in terms of intermittencies
of the renewable energy sources is addressed in the model structure in the form of a detailed energy
storage sector (i.e., question 6). The social dimension and complexity of energy system development is
not addressed in REMIND. Neither is socio-economic development beyond GDP, nor the trade-offs
between energy system development and other development goals (i.e., question 7 and 9). Overall,
social system projections are exogenous in REMIND and are based on SSPs [102]. Regarding the
interplay between regional and global energy system dynamics, it is largely addressed by a detailed
modelling of energy investment and trade (i.e., questions 10 and 11).

5. Discussion

The analysis shows questions addressed by different types of energy models. It is important
to acknowledge that although a question might be addressed by some part of the model, it is not
necessarily the case that the model provides a complete answer to the question (e.g., by including
GHG emissions as an output parameter, it does not specify what the impact of the energy system’s
development on climate change dynamics is). Hence, many of the aspects are addressed but the extent
to which the model answers the question needs to be considered more carefully. Table 2 provides an
aggregated overview of the main strengths and weaknesses associated with different model types that
have been derived from the literature and described in more detail above. Because models were built
for different purposes it cannot be expected that one model all questions. Therefore, in the context of
the current energy paradigm, it is important to understand what type of models are better at handling
what questions and where there is room for improvement.



Energies 2019, 12, 1584 14 of 22

While Table 3 gives a general view on the strengths and weaknesses of particular model types
related to answering the questions related to the current energy paradigm, it is important to provide a
more detailed summary of the models’ analysis results.

The first and second question of the current energy paradigm concerning climate change is
addressed in many energy models of different types. However, the way it is integrated in the structures
of most models is not aimed at addressing feedbacks and complex interrelations between the energy
system and the climate. The climate sector in the energy models is often presented in the form of a GHG
emissions-accounting units, demonstrating atmospheric GHG emissions and concentrations caused by
different energy mixes. By modelling the climate sector this way, energy models do not aim to address
the impact of the energy system on the environment. The main goal of addressing GHG emissions in
energy models is cost optimization. Every ton of GHG emissions in such energy models is associated
with monetary cost, which is taken into account when considering total cost of energy production and
use. Thus, minimizing GHG emissions in such models is driven by the logic of minimizing costs from
the supply and the demand side. This consequently leads to reducing negative impacts on the climate.
From the modelling perspective, the presence of GHG-emission modules in energy system models
makes it possible to connect them to climate models to arrive at more sophisticated assessment results.

As for the question referring to environmental impacts beyond climate change (i.e., question 2),
it is mainly addressed by hybrid models. This is due to their different focus in general, which is
exploring the effects between different systems. Other assessment models are especially concerned
with this type of question as they are more explicitly addressing nexus questions and environmental
issues such as the impact of pollution, land use and/or water. These issues are also often addressed
by regional projects and research [103]. Due to the increasing interest of the policy and scientific
field in understanding individual issues and especially the nexuses between food, water and energy,
their relevance in energy system planning is growing [104,105]. Hence, their role in energy system
modelling is gaining more relevance [48,106].

The questions concerning limits of natural resources (question 4 and 5) as defined by the current
energy paradigm, which addresses the following two aspects: limits of fossil energy resources (e.g.,
oil, coal) and limits of renewable resources (i.e., needed for harvesting certain types of energy and
resources themselves). The results show that it is common for energy models to address fossil energy
resource scarcity. In fact, the question regarding fossil fuel limitations has already been asked in the
past as part of the peak-oil debate [38,107] and therefore answers to it are presented in all types of
energy system models. Limits for renewable energy resources are addressed rarely and mostly for
bioenergy, which is a stock-based renewable energy source. Usually, limits for solar or wind energy
are modelled considering spatial and temporal aspects of sun and wind availability. As for the limits
of resources, such as scarce materials (e.g., Neodymium) and for harvesting flow-based renewable
energy (i.e., solar and wind energy), there are no energy system models addressing them among
those that were investigated. However, other assessment approaches, which rely on more biophysical
concepts such as stock-flow modelling [108], the GEMBA (Global energy modelling—a biophysical
approach) [109] EROI based calculations [110] consider those aspects. Question 6 is often addressed
in relation to question 4, as long-term security of the energy system depends on the availability of
resources. This is addressed for fossil fuels (question 4) in most models but not for renewables and
materials needed to harvest them (question 5). With regards to the short-term security, which refers
to the intermittencies, this is only addressed by limiting the allowed renewable capacity but is not
assessed in more detail.
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Table 3. Strengths and weaknesses of different model types.

Model Type Strengths Weaknesses

Bottom-up

• detailed and technology-rich structure allows to incorporate various resource constraints, cost implications
of different technological developments and resulting emissions

• national/regional modelling approach allows to assess interconnectedness between energy systems on
country/regional/global level

• socio-economic aspects are addressed to a limited
extent and the assumptions about socio-economic
system are often simplified

Top-down

• broader scope makes it possible to examine feedbacks between the energy sector and other sectors of
the economy

• holistic approach for modelling economic system allows for climate change policies’ analysis
• socio-economic dynamics is modelled in relatively detailed manner

• simplified representation of the energy system
makes it difficult to understand the implications of
the different energy technologies’ development

Hybrid models

• flexibility of the modelling approach allows to combine different models with different orientations in
accordance with the research questions asked

• it is possible to use models for different questions without changing model itself/developing new model
• by combining bottom-up and top-down models the methodological limitations of both approaches can

be reduced
• the approach is suitable for modelling different nexuses related to energy system (i.e.,

water-energy, water-land-energy)
• by combining bottom-up structures with macroeconomic structures models allow to examine

policy-making in the short- and especially in the long-term

• the models’ structures can be very complex, which
may make interpretation of the modelling
output difficult

• connection of models of different scales and using
different modelling techniques can be a
time-consuming and
high-technical-skills-demanding process

Other assessment models

• explicitly focused on overall system sustainability
• design allows for exploring energy system contribution to the diverse aspects of sustainable development
• explicit focus the trade-offs and synergies between achieving different SDGs
• possible to model different nexuses relevant to energy system development
• address a broad variety of environmental questions that allow to explore energy systems’ impact beyond

climate changes

• energy systems are modelled in a very simplified
manner, which does not allow to answer specific
energy-system-related questions

IAMs

• focus on exploring cost and benefits resulting from the interrelations between economic and climate
systems make them best suited for analysing climate change mitigation and adaptation policies

• approach allows for freedom in coupling different models and nexuses depending on research
question needs

• in many models the energy system structure is the principle component and is modelled in a
detailed manner

• new generation of models contain relatively complex social system modules and aim at answering a wider
range of questions related to sustainable development
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The socio-economic aspect of the current energy paradigm is not addressed by bottom-up models
as it is beyond their focus. It is mainly addressed by top-down and hybrid models. A more detailed
review of models and tools that especially deal with rural electrification can be found in Reference [111].
Due to the nature of those aspects, socio-economic development factors, especially arising from
rural electrification, are often dealt with in more detail on a smaller scale by qualitatively evaluating
individual cases, for example [112] or analytically assessing and mapping the impacts of rural energy
access and its effects [16,113,114]. However, the models often do not provide any answers concerning
the socio-economic implications of the energy system beyond GDP. Hence, question 7 is only addressed
and partly answered by few models.

It is possible to address the interrelation between long- and short-term developments when
bottom-up and top-down models are connected, as each of them is focused on a different time
scale (see Section 4.3 Hybrid models). Thereby, hybrids can provide answers to question 8.
Question 9. The synergies and trade-offs between different energy system goals (e.g., energy access vs.
environmental implications), is addressed and in some respects answered mostly by hybrid models, as
their focus is on looking at different components of the energy system and relations between them.
However, the example of WEM, which addresses questions 7, 8 and 9 in the Sustainable Development
Scenario, demonstrates the potential that bottom-up simulation models have for exploring the trade-offs
between different system goals.

Questions 10 and 11, regarding energy system development on different scales (local, regional,
national, global), are mainly addressed through the aspect of trade and overall resource availabilities of
fossil fuels. Trade of different energy sources defines supply and demand dynamics, through this price
is affected. Potentially, trade of resources needed for harvesting energy could also be included in the
energy models’ structures, influencing prices for different energy sources. However, as was mentioned
before, natural resources needed for harvesting energy are not addressed in the investigated energy
models at all.

The current paradigm as defined here will evolve and change over time. Due to the importance of
energy and its role for sustainable development, as also shown by the multiple links of SDG 7 to the
other SDGs, it is likely that this will continue to shape the energy paradigm [11]. This would imply
more widespread calls for holistic analysis of energy systems, making multi-dimensional analysis the
rule rather than the exception.

The main limits of this study arise from its research design, which implied analysing model
categories and only a number of models as representative examples within each modelling category,
rather than discussing a large number of individual models in detail. Lopion et al. for example
analysed models with regards to their strengths and weaknesses focusing on environmental and
technical aspects of models. However, in their analysis they did not encompass all aspects of the
current energy paradigm [5]. Thus, future research may analyse an extended number of energy system
and integrated assessment models in terms of their correspondence to the current energy paradigm.

6. Conclusions

The aim was to understand what kind of energy models are needed today to help answer the most
important questions related to energy system development in light of the current energy paradigm
and thereby, facilitate more sustainable (energy) system planning and development. This study, first,
formulated the current energy paradigm and the questions arising from it. Second, the study analysed
to what extent those questions are answered by current energy system models.

The current energy paradigm, as formulated in this study, arises from the link between energy
and sustainable development. Thus, energy models that serve the purpose of helping decision-making
in designing energy systems for sustainable development, should be able to answer the questions
arising from this paradigm and the relevant questions for specific purposes.

Understandably, it was found that none of the models chosen to be analysed can answer all of
the questions related to the current energy paradigm, because they were built for different purposes.
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However, most of the questions are to a bigger or lesser extent addressed by at least one of the energy
models explored. Therefore, it is necessary to choose the right model for relevant questions in a
specific context.

It was often difficult to make a clear distinction on whether or not a particular model answers
or addresses the questions posed. However, there is clear evidence of aspects of the current energy
paradigm that are most and least represented by existing energy models. Regardless of the scale or
method of modelling applied, the natural systems’ interrelation with the energy system is addressed in
most of the models as well as fossil fuels resource limits and energy-system-caused GHG emissions.
In contrast, the limits for renewable energy as well as the feedbacks from the climate to energy systems
are not present. The reason for exclusion of these aspects may be caused by a high level of uncertainty
of potential environmental and cost impacts.

The question of trade-offs and synergies between different energy systems goals (i.e., social,
economic, environmental), which is especially important in the context of understanding the role of
energy systems in sustainability pathways, is not explicitly addressed by energy models currently used
for policy making. Still, there are models of a new generation that explicitly look at such sustainable
development trade-offs and synergies. Those models, in spite of presenting the energy sector in
a simplified manner, can bring interesting insights to the role of the energy system in sustainable
development and can support the design of sustainable energy pathways.

Overall, this analysis showed that in order to better understand how to improve energy modelling
tools and support better decision-making related to the sustainable development of energy systems,
models need to be approached critically. Even though most models address aspects of the current
energy paradigm, they might do so in a simplified way. It is necessary to reflect on the questions
needed to be answered and in what way the model can help answer them. It is believed that in order
to answer some of the questions of the current energy paradigm in more depth, it might be necessary
to depart from traditional methodological approaches and ways of thinking and use complementary
methods. It can be argued that discussion on it is relevant to a community of energy researchers and
practitioners, including energy modelers and policy-makers as it influences their work.

Author Contributions: Conceptualization, G.G. and N.S.; methodology, N.S.; formal analysis, N.S. and G.G.;
writing—original draft preparation, G.G. and N.S.; writing—review and editing, N.S. and G.G.; supervision, A.D.
and B.D.

Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 675153.

Conflicts of Interest: The authors declare no conflict of interest.

Acronyms and Abbreviations

C-Roads Climate Simulation Model
CO2 Carbon dioxide
DDPP Deep Decarbonization Pathways Project
DICE Dynamic Integrated model of Climate and the Economy
EEA European Environment Agency
En-Roads Energy Simulation Model
EROI Energy Return on Investment
EU ETS European Union Emission Trading System
EU European Union
Eurostat European Statistics
FELIX Functional Enviro-economic Linkages Integrated neXus
GAMS General Algebraic Modelling System
GDP Gross Domestic Product
GEM-E3 General Equilibrium Modelling for Energy-Economy-Environment
GEMBA Global Energy Modelling—a Biophysical Approach
GHG Greenhouse Gas
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GINI Measure of statistical dispersion to represent income/wealth distribution
IAEA International Atomic Energy Agency
IAM Integrated Assessment Model
IEA International Energy Agency
IMAGE Integrated Model to Access Global Environment
IPCC International Panel on Climate Change
LEAP Long range Energy Alternatives Planning system
MAgPIE Model of Agriculture Production and its Impact on the Environment
MARKAL Market Allocation
MDGs Millennium Development Goals
MESSAGE Model for Energy Supply Strategy Alternatives and their General Environmental impact
MESSAGE-Access MESSAGE Energy Access Model
MESSAGE-MACRO MESSAGE Macroeconomic Model
MESSAGE-MAGICC Model for the Assessment of Greenhouse-gas Induced Climate Change
NEMS National Energy Modelling System
OPEC Organization of the Petroleum Exporting Countries
OSeMOSYS The Open Source Energy Modelling System
PRIMES A computable price-driven equilibrium model of the energy system and markets for Europe
REMIND Regional Model for Investment and Development
SDGs Sustainable Development Goals (SDGs)
SE4All Sustainable Energy for All
SSPs Shared Socio-Economic Pathways Scenarios
TIMES Integrated MARKAL-EFOM system
UN United Nations
UNDESA United Nations Department of Economic and Social Affairs
UNFCCC United Nations Framework Convention on Climate Change
WEC World Energy Council
WEM World Energy Model
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