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Abstract

This paper describes two results within the context of Petri net synthesis from la-

belled transition systems. We consider a set of structural properties of transition

systems, and we show that, given such properties, it is possible to re-engineer

a Petri net realisation into one which lies inside the set of marked graphs, a

well-understood and useful class of Petri nets.

The first result originates from Petri net based workflow specifications, where

it is desirable that k customers can share a system without mutual interferences.

In a Petri net representation of a workflow, the presence of k customers can be

modelled by an initial k-marking, in which the number of tokens on each place

is a multiple of k. For any initial k-marking with k ≥ 2, we show that other

desirable assumptions such as reversibility and persistence suffice to guarantee

marked graph realisability. For the case that k = 1, we show that the existence of

certain cycles, along with other properties such as reversibility and persistence,

again suffices to guarantee marked graph realisability.
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1. Introduction

In order to be useful, a system is normally required to be well-behaved. For

example, in a business workflow [1], a customer’s activity should not impede

other customers’ concurrent (or future) activities [2, 3]. Similarly, in a security

operating system [4], it should be possible for several users to share a system

without being aware of each other. Often, such systems are also required to be

reversible, meaning that their initial states always remain reachable. If several

such well-behavedness properties are postulated simultaneously, it may happen

that they entail strong consequences. The present paper studies two such im-

plications in the context of systems modelled by persistent Petri nets [5, 6, 7].

Persistence disallows true conflicts and is sometimes, but not always, required

of workflow models [3].

In a Petri net representation of a workflow, the presence of k customers can

be modelled by initial markings in which the number of tokens on each place

is a multiple of k. Such markings are called k-markings and are written as

k·M0. For instance, Figure 1 depicts a Petri net Σ1 with an initial 4-marking.

Intuitively, this might model four individual customers who are using a workflow

simultaneously.

Σ1 a

b

TS1 s2
s3

s4

s1

s0

a

b

a

b
abba

Σ1/4 a

b

Figure 1: A 4-marked Petri net Σ1 (left-hand side) and its reachability graph (i.e., state

space), represented by a labelled transition system (middle) with initial state s0 (encircled).

The system Σ1/4 (defined structurally as Σ1 , but with a quarter of the initial marking) is

shown on the right-hand side.

Such a system should be separable, that is, it should behave in the same
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way as if its initial state is divided by k and the resulting system is executed

k times concurrently. For instance, in Figure 1, Σ1 has the same state space

as four disjoint parallel instances of Σ1/4. It has been proved in [8] that plain,

bounded, reversible, and persistent Petri nets2 are already guaranteed to be

separable. It is also known [3, 9] that marked graphs are separable. In the

present paper, we shall augment this work by the following two results:

• Let a system be described by a persistent Petri net which is plain, bounded,

reversible, and has an initial k-marking with k ≥ 2. Then there exists a

marked graph Petri net [10] with an isomorphic state space.

• Let a system be described by a persistent Petri net which is plain, safe,3

reversible, and has, in its reachability graph, a cycle containing each tran-

sition once. Then there exists a marked graph Petri net with an isomorphic

state space.

These results enrich the domain of Petri net synthesis from a labelled tran-

sition system, the latter being given as a specification to be implemented by a

Petri net. Indeed, one can first check the existence of a Petri net realisation

and build one when possible, and then exploit these new conditions to deter-

mine the existence of a marked graph solution satisfying the same specification.

Moreover, both methods are constructive, the k-marked case (first item above)

needing a prior result, and the safe case (second point above) being described in

the sequel, so that they provide algorithms that re-engineer a Petri net solution

into a marked graph satisfying the same specification.

The main part of the paper is organised as follows. Section 2 presents the

technical background (labelled transition systems and Petri nets). In Section 3,

we introduce some key behavioural notions necessary to understand the rest

of the paper. Section 4 contains the proof of our first main theorem, and in

2Plainness means that there are no arc weights > 1 in the Petri net. Boundedness means

that the state space is finite. Reversibility means that the initial state can be reached from

every reachable state.
3Safeness means that the places of the net are binary: they may contain either 0 or 1 token.
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Section 5, we proceed to proving the second main result, as sketched above.

Section 6 concludes and presents some ideas for further research.

2. Transition systems and Petri nets

2.1. Labelled transitions systems

A labelled transition system (lts, for short) with initial state is a tuple TS =

(S, T,→, s0) with nodes (states) S, edge labels T , edges →⊆ (S × T × S), and

an initial state s0 ∈ S. It is called finite when S and T (and hence also →) are

finite sets. A label t is enabled at s ∈ S, written as s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈ →.

We also write s[t〉s′ if (s, t, s′) ∈ →. A walk of length ` ∈ N is a sequence

η = r0[t1〉r1 . . . r`−1[t`〉r`

where r0, . . . , r` ∈ S, and for 1 ≤ j ≤ `, rj−1[tj〉rj . The walk η is elementary if

it does not contain the same node twice, except perhaps r0 = r`, in which case

the walk forms a cycle. We write r0[σ〉r` (or r0
σ−→ r`), where σ = t1 . . . t` ∈ T ∗,

and say that σ is enabled (or firable, or feasible) at r0, and that r` is reachable

from r0 by σ (or by η, in order to emphasise the intermediate states). The set

of states reachable from r0 is denoted by [r0〉.

A function Φ is called a T -vector if Φ: T → N, and a binary T -vector if

Φ: T → {0, 1}. The support of a T -vector Φ is supp(Φ) = {t ∈ T | Φ(t) > 0}.

We denote by 1|T | (or by 1 when no confusion is possible) the binary T-vector

whose support is T . Two T -vectors Φ1,Φ2 are label-disjoint if ∀t ∈ T : Φ1(t) =

0∨Φ2(t) = 0. For a sequence σ ∈ T ∗, the Parikh vector Ψ(σ) of σ is a T -vector

defined by Ψ(σ)(t) = the number of occurrences of t in σ.

An lts TS = (S, T,→, s0) is called totally reachable if [s0〉 = S (i.e., every

state is reachable from s0); (forward) deterministic if for any states s, s′, s′′ ∈ [s0〉

and label t ∈ T , (s[t〉s′ ∧ s[t〉s′′) ⇒ s′ = s′′ (i.e., the state reached from s after

firing t is unique); backward deterministic if for any states s, s′, s′′ ∈ [s0〉 and

label t ∈ T , (s′[t〉s ∧ s′′[t〉s) ⇒ s′ = s′′; live if ∀t ∈ T ∀s ∈ [s0〉 ∃s′ ∈ [s〉 : s′[t〉

(i.e., transitions remain eventually firable); reversible if ∀s ∈ [s0〉 : s0 ∈ [s〉 (i.e.,
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s0 always remains reachable); (forward) persistent if for all reachable states

s, s′, s′′, and labels t, t′, if s[t〉s′ and s[t′〉s′′ with t 6= t′, there is some state

r ∈ [s0〉 such that both s′[t′〉r and s′′[t〉r (i.e., once two different labels are both

enabled, neither can disable the other, and executing both, in any order, leads

to the same state); and backward persistent if for all reachable states s, s′, s′′,

and labels t, t′, if s′[t〉s and s′′[t′〉s and t 6= t′, then there is some state r ∈ [s0〉

such that both r[t′〉s′ and r[t〉s′′ (i.e., persistence in backward direction).

Two lts TS1 = (S1, T,→1, s01) and TS2 = (S2, T,→2, s02) are isomorphic,

denoted by TS1
∼= TS2, if there is a bijection ζ : S1 → S2 with ζ(s01) = s02 and

(s, t, s′) ∈→1⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1 and t ∈ T .

2.2. Petri nets

An initially marked Petri net (also called a Petri net system) is denoted

by Σ = (P, T, F,M0) or, equivalently, by Σ = (N,M0) with N = (P, T, F ),

where P is a finite set of places, T is a finite set of transitions, F is the flow

function F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and M0 is

an initial marking, where a marking is a P -vector M : P → N indicating the

number of tokens in each place. M0 is called a k-marking if k divides all numbers

M0(p), for p ∈ P . Σ is a k-net if M0 is a k-marking, in which case Σ is also

denoted by (P, T, F, k ·M ′0), where M ′0 results from the division of M0 by k. If

Σ = (P, T, F,M0) and Σ′ = (P ′, T ′, F ′,M ′0) satisfy (P ∪T )∩ (P ′∪T ′) = ∅, then

the disjoint sum Σ⊕ Σ′ is defined as (P ∪ P ′, T ∪ T ′, F ∪ F ′,M0 ∪M ′0).

For an element x ∈ (P ∪ T ), we write •x = {w ∈ P ∪ T | F (w, x) > 0}

and x• = {w ∈ P ∪ T | F (x,w) > 0}. For a sequence τ ∈ T ∗, we write
•τ = {p ∈ P | ∃t ∈ T : Ψ(τ)(t) > 0 ∧ F (p, t) > 0} and τ• = {p ∈ P | ∃t ∈

T : Ψ(τ)(t) > 0∧F (t, p) > 0}. Σ is called plain if F : ((P×T )∪(T×P ))→ {0, 1};

connected if it is weakly connected as a graph; and a marked graph if it is plain

and ∀p ∈ P : |p•| = 1 = |•p|. Σ is called choice-free [11] if ∀p ∈ P : |p•| ≤ 1.

A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if ∀p ∈

P : M(p) ≥ F (p, t). The firing of t from M leads to M ′, denoted by M [t〉M ′,

if M [t〉 and M ′(p) = M(p) − F (p, t) + F (t, p). The reachability graph RG(Σ)
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of an initially marked net Σ = (P, T, F,M0) is the labelled transition system

with the set of vertices [M0〉, initial state M0, label set T , and set of edges

{(M, t,M ′) |M,M ′ ∈ [M0〉 ∧M [t〉M ′}.

All notions defined for labelled transition systems, such as the enabledness

of sequences at states, or the set of reachable markings [M〉, apply verbatim to

Petri nets through their reachability graphs. For instance, a net Σ is called live

if its reachability graph is live.

Σ is bounded if and only if an integer n exists such that for every marking

M reachable in Σ and every place p, M(p) ≤ n. In the particular case in which

n = 1, Σ is called safe. A system Σ is called pbrp if it is plain, bounded,

reversible, and persistent; and psrp if it is plain, safe, reversible, and persistent.

In Petri net synthesis [12], an lts is a specification to be implemented by a

Petri net system. For an lts TS and a Petri net system Σ, we say that Σ solves

TS if TS ∼= RG(Σ), i.e., if TS is isomorphic to the reachability graph of Σ.

Next, we recall relationships between some of the notions defined above.

Proposition 1. Classic theory [7, 13]

Let Σ be a Petri net system. Then RG(Σ) is totally reachable and deterministic.

Σ is bounded iff RG(Σ) is finite. If Σ is choice-free, then RG(Σ) is persistent,

and if Σ is a marked graph, then RG(Σ) is also backward persistent. ♦

In the rest of the paper, all nets are assumed to be bounded and all transition

systems are assumed to be finite.

3. Cyclic decomposition of persistent systems

Every live and bounded marked graph is plain by definition and generates

a finite and persistent state space by Proposition 1. By known theory [6, 10],

it is also reversible, hence a pbrp system. However, there exist pbrp (even

psrp) nets which are not marked graphs, for example Σ2, shown in Figure 2.

Also, transition systems which are not solvable by marked graphs may still be

solvable choice-freely; for instance, Σ′2 is choice-free but – as we shall see later –
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no marked graph can have an isomorphic state space. In the remainder of this

section, we list some of the salient properties of persistent lts (and hence also

of choice-free nets) which we will need.

Σ2

a b c

TS2
∼= RG(Σ2) ∼= RG(Σ′2)

M0

a

c

b

c

Σ′2

a b

c

2 2

Figure 2: A psrp system Σ2 (left-hand side) and its reachability graph RG(Σ2) (middle). A

choice-free, non-plain, bounded, reversible and persistent system Σ′2 (right-hand side) also

solving TS2.

Definition 1. Small cycles, 1-cycles, P{Υ1, . . . ,Υn}, and P1

Let TS = (S, T,→, s0) be a transition system. A nontrivial (i.e.: non-empty)

cycle s[σ〉s around a state s ∈ [s0〉 is small if there is no nontrivial cycle s′[σ′〉s′

with s′ ∈ [s0〉 and Ψ(σ′) � Ψ(σ), where � = (≤ ∩ 6=).4 A cycle whose

Parikh vector equals 1 is called a 1-cycle. TS will be said to have property

P{Υ1, . . . ,Υn} (for Parikh vectors of small cycles) if there exist a number n

and a set of mutually label-disjoint T -vectors Υ1, . . . ,Υn : T → N such that

{Υ1, . . . ,Υn} = {Ψ(β)| there is a reachable state s and a small cycle s[β〉s}.

The special case that n = 1 and Υ1 = 1 (i.e.: all small cycles are 1-cycles) will

be abbreviated by P1. ♦

For example, TS1 (depicted in Figure 1) satisfies P1 with Parikh vector

Υ1 = 1 = (1 1) (since any small cycle has a unique Parikh vector mapping a to

4Small cycles do not have proper non-trivial subcycles, but this condition is not sufficient

for smallness: no proper non-empty subset of a small cycle may form a cycle anywhere in TS,

not even in a permuted way.
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1 and b to 1). TS2, as shown in Figure 2, satisfies P{(1 1 2)} (since any small

cycle has a unique Parikh vector mapping a to 1, b to 1 and c to 2).

Theorem 2. Small cycle and pbrp net decomposition [14]

Let Σ=(P, T, F,M0) be a pbrp system and RG=(S, T,→,M0) its reachability

graph.

(1) There are a number n ≤ |T | and Parikh vectors Υ1, . . . ,Υn such that

P{Υ1, . . . ,Υn} holds in RG.

(2) There are n pbrp nets Σ1, . . . ,Σn satisfying RG ∼= RG(Σ1 ⊕ . . . ⊕ Σn),

such that for every 1 ≤ i ≤ n, Σi has transition set Ti = supp(Υi) and

satisfies P{Υ′i}, where Υ′i is Υi restricted to Ti. ♦

In (2), every Σi can be defined by a fresh copy of the same places and the

same marking as Σ, except that transitions t satisfying Υi(t) = 0, and their

surrounding arcs, are omitted. For example, in Figure 3, the pbrp system Σ3

generates two label-disjoint cycles with binary Parikh vectors in its reachability

graph. A decomposition into two transition- (and place-) disjoint systems Σ31

and Σ32, as guaranteed by Theorem 2(2), is also shown in the figure.

Σ3 a

b

c

d

Σ31a

b

Σ32 c

d

Figure 3: A pbrp Petri net Σ3 satisfying P{(1 1 0 0), (0 0 1 1)}, and its decomposition into Σ31,

satisfying P1, and Σ32, also satisfying P1. Formally, RG(Σ3) ∼= RG(Σ31 ⊕ Σ32).

Note that small cycles may have non-binary Parikh vectors even in psrp

systems. For instance, Σ2 (shown in Figure 2) generates a single small cycle

with a non-binary Parikh vector (1 1 2). By a result in [10], this implies that no

marked graph can have an isomorphic reachability graph. However, for initial

k-markings with k ≥ 2, Theorem 2 can be strengthened to show that all Parikh

vectors in the decomposition are actually binary.
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Theorem 3. Binary T -vector decomposability when k ≥ 2 [8]

Let Σ = (N, k·M0) be a pbrp system with an initial k-marking. Assume, in

addition, that k ≥ 2. Then Σ satisfies P{Υ1, . . . ,Υn} with mutually label-

disjoint binary T -vectors Υ1, . . . ,Υn. ♦

Our subsequent proofs will be built upon a series of auxiliary facts about

persistent systems, presented below in Proposition 5. We use Keller’s theorem

[15], based on the notion of residues. For sequences σ, τ ∈ T ∗, let τ−• σ denote

the sequence left after erasing successively in τ the leftmost occurrences of all

symbols from σ, read from left to right. For example, for τ = abcabad and

σ = ddaab, we get τ−• σ = cba.

Theorem 4. Keller’s theorem [15]

In a deterministic and persistent transition system, if s[τ〉 and s[σ〉 for some

s ∈ [s0〉, then Ψ(τ(σ−• τ)) = Ψ(σ(τ−• σ)), and s[τ(σ−• τ)〉ŝ and s[σ(τ−• σ)〉ŝ for

some state ŝ ∈ [s0〉. ♦

Proposition 5. Pushing cycles, and backward cyclic extensions

Let TS = (S, T,→, s0) be a deterministic, persistent transition system.

(1) If s ∈ [s0〉 and s[κ〉s[γ〉s′, then there is some sequence κ′ ∈ T ∗ with

Ψ(κ′) = Ψ(κ) and s′[κ′〉s′.

(2) Suppose that TS is also reversible. If s, s′ ∈ [s0〉 and s[κ〉s, then there is

some sequence κ′ ∈ T ∗ with Ψ(κ′) = Ψ(κ) and s′[κ′〉s′.

(3) Suppose that TS is also reversible and satisfies P{Υ1, . . . ,Υn}.

If q, q′ ∈ [s0〉 and q′[τ〉q with Ψ(τ) ≤ Υi, for some i ∈ {1, . . . , n}, then

there is some sequence τ ′ ∈ T ∗ with q′[ττ ′〉q′ and Ψ(ττ ′) = Υi.

(4) Suppose that TS is also reversible and satisfies P1.

If q, q′ ∈ [s0〉 and q[τ〉q′ with Ψ(τ) ≤ 1, then there is some sequence

τ ′ ∈ T ∗ with q′[τ ′τ〉q′ and Ψ(τ ′τ) = 1. ♦
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Items (1) and (2) indicate that cycles can be transported Parikh-equivalently

along paths. Item (3) indicates that any initial segment of a realisable small

cycle can be completed to a cycle. Item (4) indicates that any final segment of

a realisable binary cycle can be completed in backward direction to a cycle.

Proof. (1): Keller’s theorem, applied to s[κγ〉s′ and s[γ〉s′, yields

s[κγ〉s′[γ−• (κγ)〉ŝ and s[γ〉s′[(κγ)−• γ〉ŝ

The first conjunct yields s′ = ŝ, and the second conjunct yields s′[κ′〉s′ with

κ′ = (κγ)−• γ.

(2): Consequence of (1) and reversibility.

(3): Using (2), let κ be such that q′[κ〉q′ is a small cycle with Parikh vector

Υi. By Keller’s theorem, q′[κ〉q′[τ−•κ〉q̂ and q′[τ〉q[κ−•τ〉q̂. By Ψ(τ) ≤ Υi = Ψ(κ),

τ−• κ = ε, and thus, q̂ = q′. With τ ′ = κ−• τ , we get q′[ττ ′〉q′ and Ψ(ττ ′) = Υi.

(4): Using (2), let κ be such that q[κ〉q is a small cycle with Parikh vector

1. By Keller’s theorem, q[τ〉q′[κ−• τ〉q′′. By Ψ(τ) ≤ 1 = Ψ(κ) (the equality

being due to P1), Ψ(κ) = Ψ(τ(κ−• τ)). By determinism and the cyclicity of κ,

q′′ = q. With τ ′ = (κ−• τ), we get q[τ〉q′[τ ′〉q[τ〉q′. By Ψ(τ) ≤ Ψ(κ), we obtain

Ψ(τ ′τ)=Ψ(κ)=1. � 5

4. First main result: marked graph equivalents of k-marked pbrp nets

We consider the class of pbrp Petri nets which are initially k-marked with

k ≥ 2. Our aim is to prove that for every such net, there exists a marked

graph with an isomorphic state space. In the proof, we shall rely heavily on two

previous results. The first one, described below in Subsection 4.1, states that

the nets in this class are k-separable. Not just this fact, but also its proof, will

be useful for our purposes. The second result we need, described in Subsection

4.2, provides a characterisation of the state spaces of marked graphs. It turns

out that the missing link is backward persistence, the proof of which – in case

P1 holds – is the main contribution of Subsection 4.3. Subsection 4.4 extends

the proof to the case that P1 does not hold. Finally, in Subsection 4.5, we show
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that this first main result is sharp by providing a counter-example each time a

single premise is dropped.

4.1. Separability

In the following, we formalise the notion of separability and recall the sepa-

rability of some k-marked systems.

Definition 2. Separability

Let k ≥ 1 and let Σ = (N, k·M) be any net with a k-marking k·M . A firing

sequence (k·M)[σ〉 is called k-separable from k·M if there exist k sequences

σ1, . . . , σk such that

( ∀j, 1≤j≤k : M [σj〉 in (N,M) ) and σ ∈
⊔
|
k
j=1 σj

where t⊥ denotes the shuffle product (“arbitrary interleaving”) operator [16], de-

fined inductively on words u,v and letters a,b by uat⊥ vb = (ut⊥ vb)a∪ (uat⊥ v)b.

A k-net is separable if every sequence firable in its initial marking is k-separable

from this k-marking. ♦

As an example, consider k = 4 and the system Σ1 shown on the left-hand

side of Figure 1. Σ1 has a firing sequence σ = aaabbbaaaabbb which can be

4-separated as follows:

σ : (4 ·M0) [aaabbbaaaabbb〉 in Σ1

σ1 : M0 [ab〉M1 in Σ1/4

σ2 : M0 [ab〉M1 [a〉M2 in Σ1/4

σ3 : M0 [ab〉M1 [a〉M2 [b〉M3 in Σ1/4

σ4 : M0 [ab〉M1 [a〉M2 [b〉M3 in Σ1/4

(1)

Theorem 6. Separability of k-marked systems [8]

Let Σ = (N, k·M0) be a pbrp system. Then every firing sequence k·M0[σ〉 is

k-separable. ♦
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4.2. Marked graph reachability graphs

The following theorem gives a sufficient condition for an lts to be the state

space of a connected, live, and bounded marked graph. Actually, its reverse is

also true, but we do not need this in our upcoming proof.

Theorem 7. Marked graph synthesis [13]

Assume that a finite transition system TS is totally reachable, deterministic,

persistent, backward persistent, reversible, and satisfies P1. Then there is a

connected, live and bounded marked graph Σ′ with RG(Σ′) ∼= TS. ♦

[13] contains an algorithm constructing a (minimal and unique, up to iso-

morphism of Petri nets) marked graph when the conditions of Theorem 7 are

satisfied. For instance, just dropping the output-branching place in Σ3 (Figure

3) yields a reachability-graph-equivalent marked graph. However, erasing re-

dundant places does not always work, as demonstrated by the example depicted

in Figure 4.

s1

q1

s

q2

s2

a1 b1 a2b2d1 d2

c1 c2

Σ4 a1 b1

a2b2

d1 d2

c1

c2

Σ5

Figure 4: A pbrp and backward persistent 2-system Σ4 which is not a marked graph (l.h.s.),

and a marked graph Σ5 (r.h.s.) with RG(Σ4) ∼= RG(Σ5). Dropping places in Σ4 cannot yield

a marked graph with isomorphic reachability graph since all the places with several inputs

and/or several outputs must be dropped, namely the places s1, q1, s2, q2 and s: this implies

that c1 has no more input place in the system obtained, which is consequently unbounded.

4.3. Backward persistence of k-marked pbrp nets satisfying P1

In this subsection, we prove the backward persistence of k-marked pbrp

systems satisfying P1 with k ≥ 2. Combining this with the result of the previous
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subsection, we then infer the existence of a marked graph with an isomorphic

reachability graph. In the proof, we use a systematic way of exploiting the proof

of Theorem 6, as specified in Proposition 8 and Table 1.

Proposition 8. Ordered separation of a firing sequence [8]

Let σ be a firing sequence firable at k·M0 in a pbrp system (N, k·M0) with k ≥ 2.

For a transition t, let #t(σ) denote the number of occurrences of t in σ. Let

qt(σ) = #t(σ) div k (the quotient) and rt(σ) = #t(σ) mod k (the remainder).

Then σ is separable into k sequences σ1, . . . , σk as shown in Table 1. ♦

The general idea is that if an initially enabled transition occurs at least k

times in a firing sequence, k instances of it can be moved to the front, i.e. fired

initially, leading again to a k-marking. Inductively, we can reorder the sequence

to a block where all transitions occur a multiple of k times, followed by a second

block where all transitions occur less than k times. The latter block can then be

reordered and split into smaller blocks where the most frequent transitions come

first. Multiple consecutive firings of a transition in a k-marking mean concurrent

enabledness, i.e. we can distribute such instances into separate subsequences.

For instance, in (1) above, k takes the value 4, and for σ = aaabbbaaaabbb,

we get #a(σ) = 7 and #b(σ) = 6, as well as

qa(σ) = #a(σ) div 4 = 1 and ra(σ) = #a(σ) mod 4 = 3

qb(σ) = #b(σ) div 4 = 1 and rb(σ) = #b(σ) mod 4 = 2

Indeed, a and b occur four times (4 = k ·qa(σ) = k ·qb(σ)) in the column between

M0 and M1, while a occurs three times in the column between M1 and M2 and

b occurs twice in the column between M2 and M3.

Theorem 9. Backward persistence

Suppose that Σ = (N, k·M0) is a pbrp system satisfying P1 and that k ≥ 2.

Then Σ is backward persistent. ♦

13
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σ1: M0 −→ M1

+ +

σ2: M0 −→ M1 −→ M2

+ + +

...
...

...
... · · · −→ Mk−1

+ + + +

σk: M0 −→ M1 −→ M2 · · · −→ Mk−1 −→ Mk

t occurs:
︸︷︷︸

k · qt(σ) times
︸ ︷︷ ︸

rt(σ) times in the corresponding column

Table 1: A tableau explaining the separation of a firing sequence σ firable from k·M0 in a

pbrp system (N, k·M0), according to Theorem 6 and Proposition 8. For 1 ≤ i ≤ k, line i

describes a sequence σi which can be fired from M0, and we have Ψ(σ) =
∑k

i=1 Ψ(σi). The

first k · qt(σ) occurrences of a transition t appear in the column between M0 and M1, while

any remaining 1 ≤ rt(σ) ≤ (k−1) occurrences appear in the corresponding later column, once

on every line k−rt(σ)+1, . . . , k, and in no other column. Starting with k·M0, any line can

arbitrarily be interleaved with other lines, but the ordering within a line cannot, in general,

be changed.

Proof. Let N = (P, T, F ). Assume that there are two transitions a, b ∈ T and

states s, s1, s2 ∈ [k·M0〉 such that s1[a〉s and s2[b〉s in Σ. We want to show that

there is a state s′ ∈ [k·M0〉 such that s′[a〉s2 and s′[b〉s1. For that purpose,

in the following, we exploit Proposition 8 to separate two fireable sequences

leading to the same state s, one of them ending with the letter a and the other

one ending with b.

By Proposition 5(4) (letting q = s1, τ = a, and q′ = s), we find a cycle

s[α〉s1[a〉s with Ψ(αa) = 1. A similar cyclic extension can be done at state s for

b yielding s[βb〉s. By total reachability, s can be reached from the initial state

by some firing sequence γ resulting in k·M0[γ〉s[αa〉s and k·M0[γ〉s[βb〉s.

By separability (by definition and Theorem 6) and by Proposition 8, we can
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separate γαa into k sequences α1, . . . , αk ordered as in Proposition 8, replacing

σ with γαa and σi with αi, i ∈ {1, . . . , k}, such that γαa ∈
⊔
|
k
i=1αi. Similarly,

we can separate γβb into k sequences β1, . . . , βk also ordered as in Proposition 8,

such that γβb ∈
⊔
|
k
i=1βi.

Since Ψ(γαa) = Ψ(γβb), the occurrences of each transition t are split up

in the same way over the αi’s and βi’s. Summing up over all transitions, the

Parikh vectors of αi and βi must be the same for each i. Now, we can name

markings according to Table 1: we get M0[αi〉Mi and M0[βi〉Mi for 1 ≤ i ≤ k,

and each αi,βi forms one line in the table. From the above, we reach the same

marking Mi in both cases, since Ψ(αi) = Ψ(βi) for 1 ≤ i ≤ k.

Since γαa is some interleaving of the αi’s and ends with an a, so must one of

the αi, i.e. we find j1 with 1 ≤ j1 ≤ k and α′ such that αj1 = α′a. Analogously,

there are j2 and β′ with βj2 = β′b. We distinguish two cases:

Case 1: j1 6= j2 (which implies k ≥ 2). So, the lines in Table 1 where a

and b occur as the last transition are different ones. Essentially, we can find an

interleaving of these two lines where a and b occur as the last two transitions.

Let γ′ ∈ T ∗ be the sequence obtained by concatenation of all αi except αj1
and αj2 . Then we can fire k·M0[γ′αj1βj2〉s as each αi and βi can be fired

from M0 and Ψ(αj2) = Ψ(βj2). Thus, we can also fire k·M0[γ′α′β′〉s′[ab〉s and

k·M0[γ′α′β′〉s′′[ba〉s. By backward determinism at s, s′ = s′′, and we conclude

s′[b〉s1[a〉s and s′[a〉s2[b〉s, which was to be proved for backward persistence.

Case 2: j1 = j2. When separating k·M0[γαa〉s and k·M0[γβb〉s we can fire

either M0[αj1〉Mj1 with last letter a or M0[βj1〉Mj1 with last letter b in the j1th

line of Table 1, but we do not know where the letter a or b will show up in the

other sequence. Especially, we cannot directly guarantee that a and b will be

the last two letters. To see that this is possible, we need to visit the state k·Mj1 .

We reach k·Mj1 from k·M0 by firing αj1 k times simultaneously, or alterna-

tively by firing the Parikh-equivalent interleavings k·M0[(αj1)k−2α′β′ab〉k·Mj1

and k·M0[(αj1)k−2α′β′ba〉k·Mj1 (since k ≥ 2). By Proposition 5(4) (with q′ =

k·Mj1 and τ = ab or τ = ba), we find (small, by P1) 1-cycles k·Mj1 [τ ′ab〉k·Mj1

and k·Mj1 [τ ′ba〉k·Mj1 . Since Ψ(τ ′ab) = 1 = Ψ(τ ′ba), separability implies
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Mj1 [τ ′ab〉Mj1 and Mj1 [τ ′ba〉Mj1 . (By Theorem 6, for k·Mj1 [τ ′ab〉 separation

is possible and will result – with a new instantiation of Table 1 – in some se-

quences σ1, . . ., σk. Since σ1, . . ., σk−1 may only contain letters which occur

more than once in τ ′ab, σ1 = . . . = σk−1 = ε, and consequently, σk = τ ′ab and

Mj1 [τ ′ab〉. Since τ ′ab does not change the token distribution in the net, even

Mj1 [τ ′ab〉Mj1 holds. The same argument can be used for τ ′ba.)

Now we need to remember that s was the goal marking in k·M0[γαa〉s, which

the separation previously decomposed such that s =
∑k
i=1Mi (the sum of the

rightmost markings of each line in Table 1). AsMj1 occurs in this sum,Mj1 ≤ s,

and by monotonicity of the firing rule, s[τ ′〉s′[ab〉s as well as s[τ ′〉s′′[ba〉s with

some intermediate states s′, s′′. By backward determinism at s, we obtain once

again s′ = s′′ and s′[b〉s1[a〉s and s′[a〉s2[b〉s. � 9

In order to illustrate some steps of this proof, notably in Case 2, we apply

the same reasoning to the following example. Let us assume that there is a pbrp

system Σ = (N, k·M0), satisfying k ≥ 2 and P1, with TS6 from Figure 5 as its

reachability graph. Since s1[a〉s0 and s2[b〉s0, we can find the cyclic extensions

αa = cbda and βb = cadb firable at s = s0. Separating these sequences leads to

αi = ε = βi for i < k, αk = cbda, and βk = cadb (since every transition occurs

exactly once), so we enter Case 2 with j1 = j2 = k. Since k ≥ 2, we should

find k·M0[(cbda)k−2(cbd)(cad)ab〉k·Mk and k·M0[(cbda)k−2(cbd)(cad)ba〉k·Mk.

By Proposition 5(4), we should find small cycles k·Mk[τ ′ab〉k·Mk[τ ′ba〉k·Mk.

Unfortunately, since s0
αk−→ s0 and k·M0[(αk)k〉k·Mk, the marking k·Mk is

represented by s0 in TS6. Due to the missing backward persistence for a and

b at s0, there are no sequences τ ′ab or τ ′ba ending in k·Mk, no matter how we

choose τ ′. The assumed net system Σ cannot exist.

Corollary 10. Existence of simulating marked graphs, assuming P1

Suppose that Σ = (N, k·M0), with N = (P, T, F ) and k ≥ 2, is a pbrp system

satisfying P1. Then there exists a connected, live and bounded marked graph Σ′

with RG(Σ) ∼= RG(Σ′). ♦
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TS6

s2

s1

s0

s3

s4

s5

s6

s7

b

a
c
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b
c
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b
d

d

d Σ6 a b

c d

Figure 5: A reversible and persistent transition system TS6 (l.h.s.) with initial state s0 (en-

circled). TS6 is not backward persistent at s0. A non-2-marked pbrp Petri net Σ6 generating

TS6 (r.h.s.).

Proof. RG(Σ) is totally reachable and deterministic by virtue of being a Petri

net reachability graph. Σ is persistent and reversible because it is a pbrp sys-

tem, and it satisfies P1 by assumption. Moreover, Σ is backward persistent by

Theorem 9. Hence Theorem 7 applies, and we can find a suitable marked graph

by this theorem. � 10

4.4. Marked graph representation of k-marked pbrp nets

We are now able to develop the main theorem of this section, getting rid of

the assumption P1 of Corollary 10.

Theorem 11. Existence of simulating marked graphs

Let Σ = (N, k·M0) be a pbrp system, with N = (P, T, F ) and k ≥ 2. Then there

is a live and bounded marked graph Σ′ such that RG(Σ) ∼= RG(Σ′). ♦

Proof. We reduce the problem by decomposing Σ. Let Σ1, . . . ,Σn be the sys-

tems defined just after Theorem 2. Then, according to Theorem 2(2), RG(Σ) ∼=

RG(Σ1 ⊕ . . .⊕ Σn). Let Ti be the set of transitions of Σi. The sets Ti are mu-

tually disjoint, since the small cycles they stem from are also mutually disjoint.

Σi is k-marked by definition, and by RG(Σ) ∼= RG(Σ1 ⊕ . . . ⊕ Σn), its firing

sequences are precisely the firing sequences of Σ restricted to T ∗i .

By k ≥ 2, and by Theorem 3, Σi satisfies P1, for every 1 ≤ i ≤ n. We

can apply Corollary 10, proving that there exists a connected, live and bounded
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marked graph Σ′i with RG(Σ′i)
∼= RG(Σi). Define Σ′ = Σ′1 ⊕ . . .⊕ Σ′n. Now we

get

RG(Σ) ∼= RG(Σ1 ⊕ . . .⊕ Σn) (by Theorem 2(2))

∼= RG(Σ′1 ⊕ . . .⊕ Σ′n) (by the definition of Σ′i and Corollary 10)

∼= RG(Σ′) (by the definition of Σ′)

Hence RG(Σ) ∼= RG(Σ′) by the transitivity of isomorphism. Moreover, Σ′ is

a live and bounded (not necessarily connected) marked graph since a disjoint

sum of live and bounded marked graphs is again a live and bounded marked

graph. � 11

For an example, see Figure 4. The reachability graph of the system shown

on the left-hand side is backward persistent. Theorem 11 applies, allowing us

to construct a live and bounded marked graph with an isomorphic reachability

graph. Such a marked graph is shown on the right-hand side of Figure 4 (Σ5).5

4.5. Sharpness of the first main theorem

We stress that Theorem 11 is sharp, in the sense that if one of the premises

is lifted (but not any of the others), then the conclusion becomes wrong. That

is, the reachability graphs of all of the following examples are not solvable by a

(live and bounded) marked graph.

• If only plainness is lifted, then Σ7 (shown in Figure 6) is an example.

• If only boundedness is lifted, one cannot obtain an equivalent bounded

net.

• If only reversibility is lifted, one cannot obtain a live and bounded marked

graph with isomorphic reachability graph since each live and bounded

marked graph is necessarily reversible [17]. (This property actually also

5In fact, according to the results of [13], it is the only place-minimal such graph (up to

isomorphism).
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applies to the larger class of T-systems, which contains marked graphs,

and is studied through the notion of home states in [17]).

• If only persistence is lifted, then Σ8 (shown in Figure 6) is an example.

More generally, every marked graph is (structurally) persistent, cf. Propo-

sition 1.

• If k ≥ 2 is weakened to k ≥ 1, then Σ2 (shown in Figure 2) is an example.

Σ7 a b

2

2

Σ8

a

b

c

d

Figure 6: Some counterexamples to (attempted) generalisations of Theorem 11.

5. Second main result: safe marked graph equivalents of psrp1 nets

In Section 4, we developed results for k-marked pbrp systems with k ≥ 2.

When k = 1, however, it may happen that the reachability graph of the system

considered is not isomorphic to the reachability graph of any marked graph

system, even if safeness is assumed; this is the case for the psrp system Σ2 since

it does not satisfy P1 [10].

In this section, we focus on reachability graphs of psrp1 nets, defined as plain

and safe marked nets with a reversible, persistent reachability graph containing

a 1-cycle.6 We prove the second main result of this paper, embodied by Theorem

12: the reachability graph of a psrp1 Petri net is isomorphic to the reachability

graph of a safe marked graph.

To simplify our reasoning, we introduce the following notions. A node x1 ∈

P ∪ T is a true input (respectively a true output) of a node x2 if x1 ∈ •x2 \ x•2
(respectively x1 ∈ x•2 \ •x2). A node x1 is purely connected to a node x2 if x1

6In this case, by Proposition 5(2), every state and every edge belong to some 1-cycle.
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is a true input or a true output of x2, meaning that these two nodes do not

form a loop. When two nodes x1 and x2 form a loop, we say that x1 forms a

self-loop with x2. A system Σ is pure or side-place free if ∀p ∈ P : (p• ∩ •p) = ∅,

meaning that no pair of nodes forms a loop. A place p ∈ P is output-branching

if |p•| > 1, i.e. if it has at least two outgoing transitions.

We achieve the proof through the next four steps.

We show first in Subsection 5.1 that all plain, safe, live and persistent systems

share a correspondence property over walks in their reachability graphs, stating

an order of appearance of the transitions connected to the same place in any

two walks starting from the same state.

Second, we show in Subsection 5.2 that any plain system whose reachability

graph contains a 1-cycle satisfies the following for every place p: |•p| = |p•|,

which implies that the number of true inputs of p equals the number of true

outputs of p. Based on this property and the structure of some 1-cycle of the

reachability graph, we define, for each place p, a partial mapping αp from •p to

P(p•)7 which associates to each true input t of p a subset of the outputs of p.

Third, in Subsection 5.3, for any psrp1 system Σ, we show that every 1-

cycle induces the same mappings αp for each place p of Σ. Combining this

with the correspondence result, we prove that every token produced in some

place p by some true input transition t is necessarily used exactly once by every

transition of αp(t). Thus, these mappings induce a kind of determinism between

the productions and the consumptions in the places.

In Subsection 5.4, we exploit the relative determinism captured by the partial

mappings to remove the output-branching places of any psrp1 system Σ as

follows: for any place p of Σ with |p•| ≥ 2, one can split p into several non-

output-branching places that simulate the constraints captured by αp, leading

to a safe marked graph with isomorphic reachability graph. This is the second

main result of this paper.

Finally, in Subsection 5.5, we show that this second main result is sharp by

7P denotes the power set.
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providing a counter-example each time a single premise is dropped.

Before detailing these steps, we stress that we have to develop a reasoning

dedicated to non-pure nets, since transforming a non-pure net into a pure one

may destroy fundamental properties of the system. Indeed, consider the example

of Figure 7 below. The psrp1 system Σ9 on the left is not pure. By splitting

transitions forming self-loops with p and by adding places in between, we obtain

the pure system Σ10 on the right. However, persistency is lifted in doing so.

Σ9

p

a

b c

d

Σ10

ppb pc

a

b1

b2

c1

c2

d

Figure 7: The psrp1 system on the left is not pure. Splitting the self-looping transitions

b and c into b1, b2 and c1, c2 respectively leads to the pure system on the right, which is

unfortunately non-persistent. Indeed, on the left, firing b does not disable c, while on the

right, firing b1 disables c1. Thus, we cannot easily infer properties of a non-pure net from its

transformation into a pure net.

5.1. Structure of the reachability graph relative to a single place

The next lemma unveils the structure of walks starting from some state

in the reachability graph of a plain, safe, live, and persistent system, relative

to transitions connected to a given place. Since psrp1 systems are live (some

reachable 1-cycle in their reachability graph is reachable from the initial state,

the latter remaining reachable from each reachable state by reversibility), they

can also benefit from this result.

Informally, Lemma 1 states that for any state s and any place p with at least

one true input or output, if two walks start at s and contain the same number

of occurrences of transitions connected to p, then, in these walks,
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• the transitions purely connected to p (i.e. true inputs or outputs) appear

in the same order (Part 1 of Lemma 1 below);

• the other transitions connected to p (i.e. forming self-loops with p) appear

as permuted sub-sequences which cannot be analysed quite so easily (Part

2 of Lemma 1 below). Intuitively, this additional difficulty stems from the

fact that the net cannot be transformed into a pure equivalent by splitting

self-loop transitions and creating new places in between, as highlighted

earlier in Figure 7.

The statement is exemplified in Figure 8 and its proof is illustrated in

Figure 9.

Lemma 1. Correspondence

Let Σ be any plain and safe Petri net system solving a live and persistent lts TS.

From any state s in TS and for any place p with at least a true input or output,

suppose that two walks µ′ = s . . . s′, µ′′ = s . . . s′′ exist, each containing exactly `

occurrences of transitions connected to p, with ` ≥ 0. Denoting these occurrences

by t′1, . . . , t
′
` and t′′1 , . . . , t

′′
` respectively, so that µ′ = s . . . [t′1〉 . . . [t′`〉 . . . s′ and

µ′′ = s . . . [t′′1〉 . . . [t′′` 〉 . . . s′′, then, for every i, 1 ≤ i ≤ `, one of the following

conditions is satisfied:

1) either t′i = t′′i

2) or t′i 6= t′′i : these two transitions form a self-loop with p. There ex-

ist h, k ∈ N, 1 ≤ h ≤ i ≤ k, such that for every two finite walks

ν′ = s′ . . . [t′`+1〉 . . . [t′k〉 . . . and ν′′ = s′′ . . . [t′′`+1〉 . . . [t′′k〉 . . . (with exactly

the max(0, k − `) occurrences of transitions with indices from ` + 1 to k

being connected to p), the sequences t′h . . . t
′
k and t′′h . . . t

′′
k have the same

Parikh vector and these transitions form only self-loops with p. ♦

Proof. We prove the claim by induction on `. The base case, with ` = 0, is

clear. The inductive case, with ` > 0, involves the next main steps illustrated

in Figure 9.
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TS11

s

s′

s′′

e

f

a
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t′1

t′′1

b

t′2

f c

t′3

g e c

t′′2

b

t′′3

µ′ ν′

µ′′ ν′′

Figure 8: The system Σ11 = (N,M) on the left is plain, safe, live, and persistent. The lts

TS11 on the right represents a subgraph of RG(Σ11), where s designates the markingM . Two

walks µ′ = . . . eabf . . . and µ′′ = . . . fagec . . . are feasible at s, leading respectively to states s′

and s′′ (all three states are emphasised). The only true input transition of place p in these

paths, viz. a, occurs in the same position in both paths, namely initially (relative to p). The

upper path also contains a side transition b, and the lower path another side transition c, but

both can be prolonged to yield two Parikh-equivalent (relative to p) paths. Anticipating the

notation of the lemma, we have for the place p: ` = 2, t′1 = t′′1 = a, t′2 = b, t′′2 = c. Two possible

extensions ν′ and ν′′ of these walks contain respectively t′3 = c and t′′3 = b. Hence, with h = 2

and k = 3 = ` + 1, Ψ(t′h . . . t
′
k) = Ψ(t′2t

′
3) = Ψ(bc) = Ψ(cb) = Ψ(t′′2 t

′′
3 ) = Ψ(t′′h . . . t

′′
k), both b

and c forming a self-loop with p. Each of the extensions ν′ and ν′′ contains max(0, k− `) = 1

occurrence of a transition connected to p.

Suppose that ` > 0, and that the inductive hypothesis is true for ` − 1,

meaning that the transitions met in µ′ and µ′′ before t′` and t
′′
` respectively are

either not connected to p or satisfy one of the two conditions. Denote by s′`

(respectively s′′` ) the state from which t′` (respectively t
′′
` ) is fired in µ′ (respec-

tively µ′′). Denote by σ′` (respectively σ′′` ) the sequence of labels (transitions)

appearing in µ′ (respectively µ′′) between s and s′` (respectively s
′′
` ).

Case 1. If t′` = t′′` , we obtain the claim.

Case 2. Otherwise, let us assume in the following that t′` 6= t′′` .

Case 2a. If for some `′ < ` we find h0, k0 ∈ N with h0 ≤ `′ < ` ≤ k0 such

that t′h0
. . . t′k0 and t′′h0

. . . t′′k0 have the same Parikh vector and all form self-loops
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Figure 9: This generic lts illustrates the main steps of the proof.

with p, we can just lift the induction hypothesis from `′ to ` and are done.

Case 2b. Otherwise, t′`−1 = t′′`−1 holds or there are h0, k0 ∈ N with

h0 ≤ `− 1 = k0 such that t′h0
. . . t′k0 and t′′h0

. . . t′′k0 have the same Parikh vector

and all these transitions form self-loops with p. In both subcases, we need to

show that new, permuted sub-sequences of p-self-loop transitions start at index

`. We prove that

• both t′` and t
′′
` form a self-loop with p,

• there exists an integer k > ` such that, for all walks ν′ and ν′′ starting re-

spectively from s′ and s′′, each of which containing exactly k−` transitions

connected to p, denoted respectively by t′`+1, . . . , t
′
k and t′′`+1, . . . , t

′′
k , the

sequences t′` . . . t
′
k and t′′` . . . t

′′
k have the same Parikh vector and contain

only transitions forming self-loops with p.

On the first point, if k0 = `− 1 or t′`−1 = t′′`−1, the number of occurrences of
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the transitions connected to p is the same in σ′` as in σ
′′
` . Thus, the transitions

of σ′′`−
•σ′` and σ

′
`−
•σ′′` are not connected to p. Since TS is persistent, let us apply

Keller’s theorem as follows: the sequence σ′′`−
• σ′` is feasible at s′`, leading to a

reachable state s′′′, and the sequence σ′`−
•σ′′` is feasible at s′′` , leading to the same

state s′′′. Thus, one can reach s′′′ without firing any of the two transitions t′` and

t′′` , which remain both enabled at s′′′ by persistence. If at least one transition

among t′` and t′′` does not form a self-loop with p, firing it in s′′′ contradicts

either persistence or safeness. Thus, we have asserted that both transitions

form a self-loop with p.

On the second point, let us consider any walk ν′ from s′ to some state s′u
and any walk ν′′ from s′′ to some state s′′u such that: s′u enables a transition t′u,

s′′u enables a transition t′′u, t′u and t′′u are purely connected to p, and ν′ and ν′′ do

not contain transitions purely connected to p. Such walks exist by liveness and

the fact that each place p considered here is assumed to have at least one true

input or output transition.8 Let us denote by t′m the last transition connected

to p in ν′ and by t′′n the last transition connected to p in ν′′. We shall deduce

in the following that n = m and choose k = m = n. Let us define τ ′ = t′` . . . t
′
m

and τ ′′ = t′′` . . . t
′′
n.

Now, it remains to prove that Ψ(τ ′) = Ψ(τ ′′). For that purpose, assume

that some transition t′ connected to p appears more times in µ′ν′ than in µ′′ν′′.

We show next that this assumption leads to a contradiction, and that the same

reasoning applies to the symmetric case, i.e. when such a transition appears

more times in µ′′ν′′ than in µ′ν′.

Select the first occurrence of t′ to appear in µ′ν′. Denote by s′t the state of

µ′ν′ that enables this occurrence of t′. Necessarily, s′t lies between s′` and s′u.

By definition of these walks, t′ forms a self-loop with p. Denote by σ′ν and σ′′ν
the sequences defined respectively by ν′ from s′ and ν′′ from s′′. Denote by γ′

the sub-sequence of µ′ν′ induced by the sub-walk s . . . s′t and by γ′′ the sequence

8Otherwise, if marked initially, the place could simply be removed from the net without

changing the reachability graph. If unmarked, all adjacent transitions can be removed.
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induced by µ′′ν′′.

Applying Keller’s theorem, the sequence γ′′−• γ′ is feasible at s′t and leads to

some state sd. Also, the sequence γ′−• γ′′ is feasible at s′′u and leads to sd. The

sequence γ′′−• γ′ does not contain t′. The sequence γ′−• γ′′ does not contain t′′u. 9

By persistence, both t′ and t′′u are enabled at sd. Since t′ forms a self-loop with

p and t′′u does not, either persistence or safeness is contradicted.

In all cases, we obtain a contradiction, meaning that all the occurrences of

transitions connected to p in the walk considered above from s′` to s
′
u are present

in the walk from s′′` to s′′u; we obtain the double inclusion by symmetry of the

reasoning, and we deduce Ψ(τ ′) = Ψ(τ ′′). Thus, we have k = m = n.

Moreover, we can apply the same argumentation to any other finite walk

extending µ′ from s′ or extending µ′′ from s′′: keeping the same ν′′ and defining

another ν′ leads again to the Parikh-equivalence between t′′` . . . t
′′
n and the new

sub-sequence t′` . . . t
′
m induced by the new ν′ between s′ and the new s′u (and

symmetrically if we keep ν′ and define another ν′′).

We proved the inductive step, and the claim remains true for `. We deduce

that the claim is true for every `, hence the lemma. � 1

5.2. Arity of places p and construction of mappings αp

The following simple property on the arity of places paves the way to the

construction of the partial mappings mentioned earlier.

Lemma 2. Arity of places

Consider any plain system Σ whose reachability graph contains a 1-cycle. Then,

for every place p of Σ, |•p| = |p•|. ♦

Proof. Since a 1-cycle exists from some state s in the reachability graph, firing

exactly one occurrence of each transition, following this cycle from s, leads to s.

9If t′′u appears in γ′, it can only appear in its sub-sequence σ′`. By the inductive hypothesis,

t′′u appears the same number of times in σ′` as in σ′′` .
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Thus, the marking of each place remains the same after all these firings. Since

Σ is plain, the number of inputs equals the number of outputs. � 2

We are now able to formalise the partial mappings.

A set of partial mappings αΣ based on places and 1-cycles. Consider

any plain system Σ whose reachability graph contains some 1-cycle C. Without

loss of generality, we suppose that each place has at least one true input or

output transition (since, otherwise, due to plainness and the existence of a

1-cycle, the place does not modify the behaviour of the system and can be

removed). One can define a set αΣ of partial mappings {αp : •p→p P(p•) | p ∈

P} based on C as follows: for every place p of Σ and every true input transition

ti of p (hence not forming a self-loop with p), denote by Si the maximal subset

of self-loop transitions on p appearing in C between ti and the first true output

t′i of p in C after ti. We set αp(ti) = Si ∪{t′i}. By definition of a 1-cycle and by

Lemma 2, each output of p belongs to the image of exactly one true input of p.

In the following, we say that a 1-cycle induces αΣ if αΣ is obtained from it

as in the construction above. Figure 10 illustrates such mappings.

t0

t1

t2

t3 t4

t5

t6

p0

p1

p2

p3

p4

p5

p6

p7

s0

s1

s2

s3

s4

s5

s6

s7
s8

s9

t0

t2

t1

t1

t2
t3

t6

t4

t4

t6

t5
t6

t5

Figure 10: The lts on the right represents the reachability graph of the psrp1 system Σ on

the left. The sequence t0t1t2t3t4t5t6, feasible from s0 (encircled), delineates a 1-cycle. It can

be seen that every arc of the lts is part of a 1-cycle and every 1-cycle induces the following

set of mappings αΣ = {αp0 , . . . , αp7}, where: αpi (t) = {t′} for i 6= 1, 5 with {t} = •pi and

{t′} = pi
•, αp1 (t2) = {t3}, αp1 (t5) = {t0}, αp5 (t4) = {t5}, αp5 (t1) = {t3}. Notice that every

other 1-cycle induces the same αΣ.
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5.3. Properties related to the mappings in psrp1 systems

The two following results focus on any psrp1 system Σ in which each place

has some true input or output transition. The next one, exemplified by Figure

10, reveals a covering of RG(Σ) by 1-cycles inducing the same mappings.

Lemma 3. 1-cycles cover RG(Σ) and all 1-cycles induce αΣ

Consider any psrp1 system Σ, any 1-cycle C of its reachability graph and the

set of partial mappings αΣ induced by C for the places of Σ. Then, every arc in

the reachability graph is part of a 1-cycle and every 1-cycle induces αΣ. ♦

Proof. Consider the following situation in the reachability graph: two different

1-cycles C ′ and C ′′ start from some state s. Let us suppose that C ′ induces

αΣ. Consider any place p with some true input or output transition. Using

the correspondence of Lemma 1, which applies to psrp1 systems (since they are

also live), all the transitions connected to p appear in the same order in both

cycles up to permutations of the consecutive self-loops. Consequently, since C ′

induces αΣ, C ′′ also induces αΣ.

By reversibility and total reachability, the reachability graph is strongly con-

nected, which implies the existence, for every reachable state s, of an elementary

walk from a state of C to s. Then, the states and labels on this walk belong to

1-cycles (Proposition 5(3)) each inducing αΣ (by applying the first part of the

proof to every state on the elementary walk, in the order of appearance). We

deduce that the reachability graph is covered by 1-cycles, each of which induces

αΣ. � 3

The next result, illustrated in Figure 11, relates the set of mappings αΣ to

the shape of walks in the reachability graph of a psrp1 system Σ.

Lemma 4. The mappings restrict the next choices on each walk

Let Σ be a psrp1 system and αΣ the set of mappings induced by some 1-

cycle of RG(Σ). Consider any place p of Σ and any elementary walk ν =

sx[x〉s′xµsy[y〉s′y of RG(Σ), where sx, s′x, sy, s′y are states, x is a true input of p,
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y is purely connected to p, and µ does not contain any occurrence of a transition

purely connected to p. Then, y is the transition of αp(x) that is a true output

of p and exactly one occurrence of each other transition of αp(x) (different from

y, thus forming self-loops with p) appears in µ. ♦

Proof. By Lemma 3, there exists in RG(Σ) a 1-cycle Cx inducing αΣ and

starting with the walk sx[x〉s′x. Applying the correspondence of Lemma 1 to Cx

and ν, we obtain the claim. � 4

Σ13

p

a

b c

d e

f

g

TS13

b

f

c

g

sx s′x

s′y

sy

x = a

f

g

cb

y = d

e

Figure 11: The system Σ13 on the left is psrp1. For the sake of simplicity, the lts on the

right represents only a subgraph of RG(Σ13). From state sx, the input transition x = a of

p can be fired, leading to state s′x from which the walk µ starts, induced by the sequence

bfcg. The transitions of µ connected to p, namely b and c, form self-loops with p. The next

transition purely connected to p is y = d, fireable from sy . The order of appearence and

the occurrence count of transitions connected to p in a walk ν respect the constraints of the

mappings defined by any 1-cycle, such as Cx, which starts with sx and is highlighted with

dotted arrows. Indeed, an occurrence of a is always followed by one occurrence of b and one

occurrence of c in any order, the latter two preceeding an occurrence of d.

5.4. Re-engineering of psrp1 systems into safe marked graphs

The main result of this section is embodied by Theorem 12. The idea is to

use the mappings αΣ to split the places, and to compute a new initial marking,

so as to obtain an equivalent safe marked graph. This concept is illustrated by

Figure 12.
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p

t1 t2

t3 t4

t5 t6

splitting−−−−−−−−→
based on αp

t1 t2

t3 t4

t5 t6

Figure 12: On the left, a subsystem induced by the place p of a larger psrp1 system. The

dashed arrows stand for possible connections with non-depicted nodes. We assume here the

existence of a mapping αp such that: αp(t1) = {t3, t4, t5} and αp(t2) = {t6}. A splitting of

p based on αp leads to the system on the right with an isomorphic reachability graph. This

transformation shall be applied to each output-branching place to obtain a safe marked graph

equivalent. Notice that no state enables a self-loop transition connected to p and a purely

connected transition connected to p, by persistency: on the left, t3 and t5 cannot be both

enabled at some state. This means that some places are not pictured that prevent any firing

of t5 until t3 disables itself. Also, when t4 is enabled, it must fire (and disable itself) before

t6. On the right, the same hidden places ensure that t3 and t4 fire before t5: the splitting

operation preserves the constraints on transitions.

Theorem 12. Psrp1 systems have safe marked graph equivalents

For every psrp1 system, there exists a psrp1 marked graph system with isomor-

phic reachability graph. ♦

Proof. Consider any psrp1 system that is not choice-free. As usual, by plain-

ness and existence of a 1-cycle, the places without any true input or true output

are removed, leading to a system with isomorphic reachability graph, noted Σ.

Now, for any output-branching place p (meaning |p•| ≥ 2) of Σ with transi-

tions x, y connected to p and x is a true input of p, consider an elementary

walk sx[x〉s′x µ sy[y〉s′y having the properties defined in Lemma 4. Applying this

lemma, y is the only transition of αp(x) that is purely connected to p while ex-

actly one occurrence of every other transition of αp(x)\{y} appears in µ. Hence,

the token produced in p by x is used to activate the transitions in αp(x) \ {y}

(which form self-loops with p and must all fire before y) and is finally consumed

by y, which is a true output of p.

Now, we use αp to split the output-branching place p as follows: denoting
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by t1, . . . , tk the true input transitions of p, we replace p with n = |p•| new

places as follows: for each i = 1 . . . k, writing αp(ti) = {ti,1, . . . , ti,q}, we define

the places pi,j , with 1 ≤ j ≤ q, as new output places of ti, such that pi,j is the

unique input place of ti,j .

So as to determine the initial marking of these new places, we consider

in the reachability graph all the elementary walks µ1 = s0 . . . sa1 , . . ., µm =

s0 . . . sam that do not contain transitions purely connected to p, where s0 denotes

the initial state, and sa1 , . . . , sam enable respectively the transitions a1, . . . , am

purely connected to p. By liveness (of psrp1 systems), there exists at least

one such walk (which is possibly empty). These walks may contain transitions

forming self-loops with p. By Lemma 1, all the transitions a1, . . . , am denote

the same transition t.

If t is an input of p, then no initial token is present in the new places.

Otherwise, t is an output of p, meaning that p contains initially a single token.

On each such possible walk from s0, since t represents the same transition, we

know that the initial token of p may be used only by self-loops before being

consumed by t finally. Thus, an initial token marks the new input place of t.

Moreover, for every transition forming a self-loop with p in one of these walks

(e.g. µ1), we put an initial token in its new input place. By Lemmas 1 and 4,

each of these self-loop transitions occurs at most once in µ1 and as many times

as in each of the other walks µ2, . . . , µm.

The new psrp1 system obtained has an isomorphic reachability graph with

fewer output-branching places and preserving the property |•pi| = |pi•| for every

place pi. Iterating this process leads to a psrp1 marked graph with isomorphic

reachability graph. � 12

To illustrate the construction in the proof of Theorem 12, take a look back

at Figure 10 depicting a pure psrp1 system with output-branching places p1 and

p5. It constitutes a very particular case of the transformation, since no self-loop

exists. For p1, a token produced by t2 is consumed by t3 and one produced by

t5 is consumed by t0. For p5, we have the transition pairs t1 and t3 as well as
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t4 and t5. Both places can be split to obtain a safe marked graph equivalent

shown in Figure 13. Another example, with self-loops, is given in Figure 14.

We derive a variant of this non-pure example in Figure 15 for a different initial

marking.

t0

t1

t2

t3 t4

t5

t6

p0

p1

p′1

p2

p3

p4

p5 p′5

p6

p7

Figure 13: A safe marked graph solution for the lts of Figure 10, obtained as in the proof of

Theorem 12.

p
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b c

d e

f

g
p′

p′′ p′′′

a

b c

d e

f

g

Figure 14: On the left, the psrp1 system of Figure 8. On the right, a safe marked graph

equivalent, based on the construction of Theorem 12. From the initial marking on the left,

every shortest sequence that contains d meets one occurrence of a first, then one occurrence

of b and c in any order, and fires d finally. On the right, the first firing of a produces one

token in every new place, implying that b, c and d can fire at most once before the next firing

of a. By Lemma 4, we know that b, c and d will be fired exactly once before the next a since,

in the initial system, αp(a) = {b, c, d}.

Theorem 12 is constructive: it provides an algorithm that transforms any

psrp1 system Σ into a psrp1 marked graph system Σ′ with isomorphic reacha-

bility graph. The main steps of this algorithm consist in finding a 1-cycle in the

32



p

a

b c

d e

f

g
p′

p′′ p′′′

a

b c

d e

f

g

Figure 15: A modification of the initial marking of the example on the left of Figure 14 leads

to the different transformation on the right. Since, from the initial marking, every shortest

walk that contains a single d meets a single c before this occurrence of d, the new place p′′′

must contain an initial token. Since no a fires before the next occurrence of d, the new place

p′ must contain an initial token. Since no b appears before the next d, no initial token is

present in p′′.

reachability graph of Σ, deducing from it the mappings αΣ, splitting all output-

branching places with the help of αΣ, which induces the underlying structure

of Σ′, and finally determining the initial marking of Σ′ as in the proof. Thus,

this algorithm can be used in the context of marked graph synthesis.

5.5. Sharpness of the second main theorem

We stress that Theorem 12 is sharp, in the sense that if one of the premises

is lifted, but not any of the others, then the conclusion becomes wrong. That

is, the reachability graphs of all of the following examples are not solvable by a

psrp1 marked graph.

• If only plainness is lifted, some weight must exceed 1, in which case the

system cannot be safe, a contradiction.

• If only safeness is lifted, then Figure 16 is an example. Indeed, the reach-

ability graph of this pbrp system contains a 1-cycle, but it is not back-

ward persistent, implying, by Proposition 1, the non-existence of a marked

graph equivalent.

• If only reversibility is lifted, one cannot expect a reversible equivalent.
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• If only persistence is lifted, one cannot expect a persistent equivalent.

• If only the existence of a 1-cycle in the reachability graph is lifted, then

the psrp system Σ2, shown in Figure 2, is an example. It is known that

every live and bounded marked graph has a 1-cycle [10].
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t2 t3
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s6
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t1

t3

t2

t0

t2

t2

t3

t0

t3
t2

t3 t1

t3

t1

t2

Figure 16: The Petri net system Σ14 on the left is plain, pure, bounded, reversible and

persistent. Its reachability graph, represented by the lts on the right, contains 1-cycles, e.g.

the cycle starting at s0 (encircled state) and defined by the sequence of transitions t0, t1,

t2, t3. In fact, TS14 contains such cycles everywhere, and no small cycles with other Parikh

vectors, i.e., P1 is satisfied. However, TS14 is not backward persistent: t2 and t3 lead to state

s5 from s2 and s9 respectively, wheareas s2 does not have an ingoing t3. Hence, it cannot be

solved by a marked graph.

6. Concluding remarks

The first main theorem 11 proved in this paper strengthens Theorems 3 and

6, in the sense that plain, bounded, reversible, and persistent Petri nets with

an initial marking satisfying gcd(M0) ≥ 2 not only exhibit some of the charac-

teristics of live and bounded marked graphs, but can completely be simulated

by them. The exact characterisation of marked graph reachability graphs con-

tained in [13] has been instrumental in getting this result, the essential property

proved in the present paper being backward persistence. The second main the-

orem 12 proved in this paper derives the same result for the case that k = 1,

when the additional assumptions of safeness and the existence of a 1-cycle are

considered. None of the two latter conditions can be dropped, as highlighted by

our dedicated counter-examples.
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These results have direct consequences for Petri net synthesis, since they

provide conditions for the existence of a marked graph realisation of the speci-

fication. Moreover, the proofs of both results are constructive, the second one

directly, and the first one by means of Theorem 7 and the algorithm described in

[13]. They provide synthesis algorithms that re-engineer a Petri net realisation

into a marked graph solution.

To extend this work, there are various ways in which one might proceed. It

is not clear what happens if reversibility is weakened to liveness, and another

interesting problem is to lift structural limitations (in particular, plainness).

There are also other interesting open questions related to separability. It is

easily possible to extend the notion of separability to unbounded Petri nets in

general, but its decidability status seems to be unknown, at this point in time.
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