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Graph Theory in Coq:

Minors, Treewidth, and Isomorphisms⋆

Christian Doczkal · Damien Pous

May 13, 2019

Abstract We present a library for graph theory in Coq/Ssreflect. This library
covers various notions on simple graphs, directed graphs, and multigraphs. We use
it to formalise several results from the literature: Menger’s theorem, the excluded-
minor characterization of treewidth-two graphs, and a correspondence between
multigraphs of treewidth at most two and terms of certain algebras.

Keywords graph theory, minor, treewidth, isomorphisms, Coq, Ssreflect

1 Introduction

Despite the importance of graph theory in mathematics and computer science,
there are only a few formalizations of graph theory results in interactive theorem
provers, and even fewer general purpose libraries.

In the 1990s, Chou formalized some basic undirected graph theory (paths,
connectedness, trees) in HOL [2] and used it for the verification of distributed
algorithms [3]. Nakamura and Rudnicki formalized Euler’s theorem in Mizar [24].
In the 2000s, several authors formalized results about planar graphs: in addition to
Gonthier’s celebrated formal proof of the Four-Color Theorem [17], planar graphs
were formalized in Isabelle/HOL for the Flyspeck project [25] and Durfourd and
Bertot employed a notion of graphs based on hypermaps embedded in a plane to
study Delaunay triangulations [14]. More recently, Noschinski developed a library
for both simple and multi-graphs in Isabelle/HOL [26].

⋆ This paper extends and revises the results presented in [11]; the underlying Coq library is
available from https://perso.ens-lyon.fr/damien.pous/covece/graphs/.
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2 Christian Doczkal, Damien Pous

All in all, a general purpose graph library in currently missing in Coq, and we
propose one in the present paper. The library deals with simple graphs, directed
graphs, and multigraphs; it currently includes basic notions like paths, trees, sub-
graphs, separators, and isomorphisms, as well as a few more advanced ones: minors,
and treewidth, whose theory was never formalized to the best of our knowledge.
We use the library to formalize three distinct results, which we discuss below.

Menger’s theorem. Menger’s Theorem [23] states that if one needs to remove at
least n vertices to disconnect two sets of vertices A and B of some graph, then
there exist n pairwise disjoint paths from A to B. Diestel [8, p. 50] calls Menger’s
Theorem [23] one of the cornerstones of graph theory and remarks that Hall’s
Marriage Theorem [20], a straightforward consequence of Menger’s Theorem, is
one of the most applied graph-theoretic results [8, p. 42].

Menger’s Theorem provides a good test-case for our graph library: it admits
a very short paper proof [18], but it nevertheless requires tools to work efficiently
with several basic concepts like paths (including collections of paths), and deleting
vertices and edges from graphs. We prove the theorem for directed graphs and use
it to derive several corollaries on simple graphs as well as multigraphs: this ensures
that its formulation is general enough and that our infrastructure makes it possible
to transfer results between different kinds of graphs with minimal effort.

Excluded-minor characterization for treewidth two. The notion of treewidth [8] mea-
sures how close a graph is to a forest. Graph homomorphism (and thus k-coloring)
becomes polynomial-time for classes of graphs of bounded treewidth [15,1,19], so
does model-checking of Monadic Second Order (MSO) formulae, and satisfiability
of MSO formulae becomes decidable, even linear [6,7].

Robertson and Seymour’s graph minor theorem [29], a cornerstone of algorith-
mic graph theory, states that graphs are well-quasi-ordered by the minor relation.
As a consequence, the classes of graphs of bounded treewidth, which are closed
under taking minors, can each be characterized by finitely many excluded minors.
While the graph minor theorem is nonconstructive and does not yield the excluded
minors, low-width instances where known before: the graphs of treewidth at most
one (the forests) are precisely those excluding the cycle with three vertices (C3);
those of treewidth at most two are those excluding the complete graph with four
vertices (K4) [13].

(C3) (K4)

We build on our library to present a constructive and formal proof of the latter
result in Coq/Ssreflect. Unlike in conference version of this paper [11], we present
here a direct proof relying on Menger’s Theorem.

Multigraphs of treewidth two seen as an algebra. Amongst the open problems related
to treewidth, there is the question of finding finite axiomatisations of isomorphism
for graphs of a given treewidth [7, page 118]. This question was recently answered
positively for treewidth two [22,12]:

Two-pointed K4-free multigraphs form the free 2p-algebra, (†)
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where 2p-algebras are algebraic structures characterized by twelve equational ax-
ioms. The proof is rather technical; it builds on a precise analysis of the structure
of K4-free graphs. Further, invalid proofs of related claims have already been pub-
lished in the literature (see [22]).

Our initial motivation for this work [11] was to formalize (†): not only will this
give us assurance about the validity of the proof in [22], it will also allow for the
development of automation tactics for certain algebraic theories (e.g., 2p-algebra,
allegories [16,28]).

We present three important steps towards the formalisation of this result:

1. graphs form a 2p-algebra;
2. graphs of treewidth at most two form a subalgebra;
3. every graph excluding K4 as a minor can be represented by a term.

These three steps cover different situations which are frequently encountered when
reasoning about graphs. The first point requires us to define several constructions
on graphs (e.g., disjoint unions and quotients), and to establish a number of iso-
morphisms. The second point requires us to show that these constructions preserve
treewidth. The third point requires us to analyse the structure of K4-free graphs
in order to decompose them recursively; for this we again make use of Menger’s
theorem.

The final step for (†) consists in proving that terms denoting isomorphic graphs
are equivalent modulo the axioms of 2p-algebras. We leave the formalisation of this
step for future work.

Outline. We discuss our representation choices for directed graphs, simple graphs,
and paths in Section 2. Then we proceed to proving Menger’s Theorem (Section 3).
We define minors, tree decompositions and treewidth in Section 4, so that we
can prove the minor-exclusion theorem for treewidth two in Section 5. We end
the presentation of the general purpose part of the library by defining labeled
multigraphs in Section 6, together with the associated notion of isomorphism.

In the remaining sections we apply our library to 2p-algebra: We define a 2p-
algebra of graphs and show that treewidth at most two graphs form a subalgebra
(Section 7). We then prove specific properties of K4-free graphs (Section 8), which
make it possible to recursively extract terms from connected K4-free graphs (Sec-
tion 9). We finally extend this extraction function to arbitrary K4-free graphs in
Section 10.

Differences with [11]. The Coq library accompanying this paper [10] evolved sig-
nificantly since [11] and continues to evolve, whence the different structure of the
present paper: the main contribution is the graph library itself, rather than the
application to 2p-algebras.

The most noticeable improvement is that we prove Menger’s Theorem and use
it both to provide a direct proof of the minor-exclusion theorem for treewidth two,
and to simplify the recursive analysis of K4-free graphs. (Lemma 8.9 follows easily
with Menger’s Theorem, while it was requiring a long series of ad-hoc lemmas
in [11].) We also prove that graphs satisfy the laws of 2p-algebra (Lemmas 7.2
and 7.3). This required us develop techniques for dealing with the complicated
isomorphisms arising with nested quotients and disjoint unions in a compositional
manner (Lemma 6.6).
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2 Graphs and Paths

In this section we describe how we represent finite graphs in Coq. The representa-
tion is based on finite types as defined in the mathematical components library [31].
We start by briefly introducing finite types and the notations we are going to use
in the mathematical development.

If X and Y are types, we write X + Y for the sum type (with elements inlx

and inr y), X ×Y for the product type (with elements (x, y)), and X⊥ for the option

type (with elements Somex and None). For indexed type families T : X → Type,
we write Σ(x : X). T x for the sigma type (i.e., the type of dependent pairs) with
elements 〈x, y〉 where x : T and y : T x.

As usual, we write g ◦ f for the composition of two functions f and g. For
functions f and g, we write f ≡ g to mean that f and g agree on all arguments.

A finite type is a type X together with a list enumerating its elements. Examples
of finite types are the type B of booleans, and the type In of natural numbers
smaller than n. Finite types are closed under many type constructors. In particular,
they are closed under sums, products, and sigma types. If X is a finite type, we
write 2X for the finite type of sets over X with decidable membership. For sets
A : 2X , we write A for complement of A in X. We slightly abuse notation and also
write X for the full set over some type X. In particular, we use | | to denote the
cardinality of both sets and finite types (e.g., |In| = n). Finite sets come with an
operation pick : 2X → X⊥ where pickA = Somex for some x ∈ A if A is nonempty
and pickA = None otherwise. If ≈ : X → X → B is a boolean equivalence relation,
the quotient [4] of X with respect to ≈, written X/≈, is a finite type as well.
The type X/≈ comes with functions π : X → X/≈ and π : X/≈ → X such that
π(π x) = x for all x : X/≈ and π(π x) ≈ x for all x : X.

We use finite types as the basic building block for defining (finite) graphs.1

Definition 2.1 A (finite) directed graph, or digraph for short, is a structure 〈V,R〉

where V is a finite type of vertices and R : V → V → B is a decidable (i.e., boolean)
edge relation. A simple graph is a digraph whose edge relation is symmetric and
irreflexive.

In Coq, we represent finite digraphs and simple graphs using dependently typed
records:

Record digraph := { vertex :> finType;

edge : rel vertex }.

Record sgraph := { svertex : finType;

sedge : rel svertex;

sg sym : symmetric sedge;

sg irrefl : irreflexive sedge }.

Note that for simple graphs two of the components are propositions. We introduce
a coercion from simple graphs to digraphs forgetting symmetry and reflexivity of
the edge relation. This allows us to define notations and notions like paths on
digraphs, the class of graphs with the least structure, and have simple graphs
inherit these notations and notions through the coercion. Declaring the vertex

1 Most of the “Definition” and “Lemma” and “Theorem” headers in this paper are links to
the corresponding entity in the Coq development.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.sgraph.html#sgraph
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field of digraphs as a coercion, allows us to write x : G to denote that x is a vertex
of G and |G| to denote the number of vertices of G (irrespective of whether G is a
digraph or a simple graph). For vertices x, y : G we write x−y if there is an edge
between x and y. We write G+xy for the graph G with an additional xy-edge and
G− xy for G with any potential xy-edge removed.

For a set U : 2G of vertices of G, the subgraph induced by U , written G|U , has
as vertices the vertices in U and as edge relation the edge relation of G restricted
to U . This is formalized by taking Σx : G. x ∈ U as the type of vertices2 and lifting
the edge relation accordingly. While, technically, the vertices of G and G|U have
different types, we will ignore this in the mathematical presentation. In Coq, we
have a generic projection from G|U to G. For the converse direction we, of course,
need to construct dependent pairs of vertices x : G and proofs of x ∈ U .

Remark 2.2 The constructions G|U and G+ xy (for a given graph G) behave very
differently in proofs. As mentioned above, the type of vertices of G|U is different
from the type of vertices of G. This is not the case for G+xy (or any construction
changing only the edge relation). As a consequence, x : G iff x : G + xy and
likewise for sets or lists of vertices. This makes an explicit conversion of the vertices
unnecessary.

Almost every argument in graph theory involves paths in one form or another.
Consequently, finding the right representation of paths is of utmost importance
when formalizing graph theory.

Definition 2.3 Let G be a digraph. An xy-path is a nonempty sequence of ver-
tices p beginning with x and ending with y such that z−z′ for all adjacent elements
z and z′ of p (if any). A path is irredundant if all vertices on the path are distinct.

The Mathematical Components library includes a predicate and a function

path : ∀ T : Type. rel T → T → seq T → B last : ∀ T. T → seq T → T

such that path e x q holds if the list x :: q represents a path in the relation e, and
lastx q returns the last element of x :: q. The functions path and last account for
the nonemptiness of paths though the use of two arguments: the first vertex x and
the (possibly empty) list of remaining vertices q.

Thus, the notion of an xy-path (in some fixed digraph G) can be formalized as
a predicate on lists:

pathpx y p := path (edgeG)x p ∧ lastx p = y

However, this is cumbersome to use for several reasons: First it leads to many
different assumptions, i.e., both p : seqG and pathpx y p for a single xy-path. This
is inconvenient since a single lemma can easily involve six or more different paths,
thus cluttering the context. Second, “u is a vertex of the xy-path p” would be
written as u ∈ x :: p, i.e., requiring explicit mention of the first vertex. Lastly and
most importantly, the asymmetric definition gets in the way of symmetry reason-
ing by path reversal (in simple graphs). For instance, consider some p satisfying

2 To be fully precise, we use the type Σx : G. x ∈ U = true, exploiting that set membership
is decidable. Since equality between booleans is proof irrelevant (i.e., there is at most one proof
of x ∈ U = true), this ensures that |G|U | = |Σx : G. x ∈ U | = |U |. This is a standard technique
used pervasively in the mathematical components library.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.digraph.html#Path
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pathpx y p. Then the corresponding p′ satisfying pathp y x p′ is obtained by remov-
ing the last element of x :: p and reversing the result. In particular p′ cannot be
computed from p alone.

We solve these problems by packaging the predicate pathp into an indexed
family of types:

Record Path x y := { pval : seq G ; pvalP : pathp x y pval }

This allows us to endow paths with their own membership operation taking care
of the fact that the list representing a path does not contain the first vertex.
Moreover, it abstracts from the asymmetry in the definition of the path predicate,
easing symmetry reasoning. In the following we write x y for the type Pathx y.

Indexing paths by their endpoints also allows us to define a dependently typed
concatenation function “++” for paths, i.e., for π1 : x y and π2 : y  z we have
π1 ++π2 : x  z as one would expect. We prove various trivialities about paths
(e.g., x ∈ π whenever π : x  y) that are then added to the hint databases
of standard automation tactics. We also prove a number of lemmas for splitting
paths or transferring paths between graphs. For instance, the lemma below, which
allows splitting paths at the first vertex satisfying some criterion, is used more
than twenty times throughout the development.

Lemma 2.4 Let G be a digraph, x, y : G, A : 2G, and π : x y such that π ∩A 6= ∅.

Then there exist z : G and π1 : x  z and π2 : z  y such that π = π1 ++π2 and

π1 ∩A = {z}.

Note that a path is always a path in some specific graph, i.e., if x, y : G then
there is an implicit G in the type x y. On the other hand, a sequence of vertices
can give rise to paths in different graphs, e.g., if π : x y is a path in G, then the
underlying sequence of vertices uniquely determines a path in G+uv. Therefore, we
introduce a function, seq of : ∀G(x y : G). x y → seqG returning the underlying
sequence of vertices.

Lemma 2.5 Let G be a digraph, let x, y, u, v : G, and let π : x  y be a path in G.

Then there exists path ρ : x y in G+ uv such that seq of ρ = seq of π.

The lemma above exploits that adding an edge does not change the type of
vertices. In the case of induced subgraphs, where the type of vertices does change,
the corresponding lemma takes a slightly different form. Writing ⌊ ⌋ for the natural
injection from an induced subgraph to the full graph, we have:

Lemma 2.6 Let G be a digraph, let U : 2G and let π : x y be a path in G|U . Then

there exists a path ρ : ⌊x⌋ ⌊y⌋ such that seq of ρ = map ⌊ ⌋ (seq of π).

The preceding lemmas can be seen as algorithmic constructions on paths. We
follow the general design of the mathematical components library and prove these
lemmas as propositions corresponding to the wording given (i.e., using existential
quantification), allowing us to rely on existential statements from the library.

We remark that we are dealing almost exclusively with decidable properties,
and for all the properties we define (e.g., connectedness of sets), we provide a
boolean decider and use it when necessary (e.g., in the definition of finite sets or
to justify case distinctions). Hence, if one needs to obtain a path in a computational
context (i.e., when constructing inhabitants of types that are not propositions) one

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.digraph.html#split_at_first
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.sgraph.html#add_edge_Path
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.digraph.html#Path_from_induced
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can use the constructive choice operator to obtain a concrete witness; this is almost
never necessary.

Paths give rise to a number of auxiliary notions. One path-based notion that
is used pervasively throughout the development is that of a connected set.

Definition 2.7 Let G be a simple graph and let A,B : 2G.
– A and B are neighboring if there exist vertices a ∈ A and b ∈ B, such that a−b.
– A is connected if for every x, y ∈ A there exists an xy-path contained in A.
– The graph G is connected if the full set of vertices is connected.

We prove a number of lemmas allowing us to establish connectedness of sets.
In addition to a number of trivial lemmas (e.g., {x, y} is connected whenever x−y)
we also prove closure properties such as:

Lemma 2.8 Let G be a simple graph and let A : 2G and B : 2G be connected.

1. If A ∩B 6= ∅, then A ∪B is connected.

2. If A and B are neighboring, then A ∪B is connected.

The purpose of the auxiliary notion of neighboring sets is to avoid having to
explicitly mention edges in certain situations and we use it repeatedly. For instance,
we show once and for all that the interior of an irredundant path (i.e., the set of
vertices different from the end-points) neighbors every set containing one of the
end-points.

3 Menger’s Theorem

Before we turn to the proof of the excluded minor characterization of treewidth-
two graphs, we first prove Menger’s Theorem [23]. Informally, Menger’s Theorem
states that if one needs to remove at least n vertices to disconnect two sets of
vertices A and B of some graph, then there exist n pairwise disjoint paths from A

to B. The formal statement makes use of the following definition:

Definition 3.1 Let G be a digraph and A,B : 2G. A set S : 2G is an AB-separator

if every path starting in A and ending in B contains a vertex from S. An AB-

connector is a collection of pairwise disjoint irredundant paths such that every
path starts at a vertex in A, ends at a vertex in B and has no other vertices in
common with either A or B.

Menger’s Theorem now formally states that the minimum size for AB-separators
is also the maximum size for AB-connectors.

In Coq, there is a complication when defining the notion of connector: indexing
the type of paths by the first and last vertex on the path means that in order to
form a collection of paths with different endpoints we need to abstract from these
endpoints. Thus we define a type of G-paths and projection functions yielding
respectively the first vertex, the last vertex, and the encapsulated path:

G-path :=Σ(x, y) : G×G. x y

fst 〈〈x, y〉, π〉 :=x

lst 〈〈x, y〉, π〉 := y

pth 〈〈x, y〉, π〉 :=π

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.sgraph.html#connected
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.sgraph.html#connectedU_common_point
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.menger.html#connector
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Note that pth : ∀π : G-path. fstπ  lstπ, i.e., the return type of pthπ depends
on the value of π. This is mainly useful in combination with predicates that are
parametric in the index-vertices (e.g., irred : ∀xy : G. x y → B) or when viewing
paths as sets.

With this in place, AB-connectors of size n can be defined as predicates on
functions X : In → G-path. Writing Xi for the application X i, we have:

AB-connectorX := ∀i : In. irred(Xi) (1)

∧ ∀i : In. Xi ∩A = {fstXi} (2)

∧ ∀i : In. X i ∩B = {lstXi} (3)

∧ ∀i j : In. i 6= j → Xi ∩Xj = ∅ (4)

Before we can prove Menger’s Theorem, we need two technical lemmas that
respectively allow the extension of a connector with a single edge and the concate-
nation of two connectors.

Lemma 3.2 Let G be a digraph, A and B sets of vertices of D, j : In and X : In →

G-path an AB-connector. If x /∈
⋃

iXi, fst (Xj) = y, x−y and x /∈ B, then there exists

an ({x} ∪ Y \ {y})B-connector of size n.

Proof Follows by prepending x to Xj . ⊓⊔

Lemma 3.3 Let G be a digraph, A and B sets of vertices of G, and P an AB-separator

with |P | = n. Further let X : In → G-path an AP -connector and Y : In → G-path a

PB-connector. Then there exists an AB-connector of size n.

Proof Since all Xi (as well as all Yi) are mutually disjoint and each contain a single
vertex from P , there is for every i : In a uniquem(i) : In such that lst (Xi) = fst (Yj).
Since P is an AB-separator, any Xi and Yj can intersect at most at a single vertex
of P (in this case j = m(i)). Thus, the function Zi :=Xi++Ym(i) is a connector as
required.

We sketch the argument that Zi ∩A = {fst (Zi)}. Assume Xi is an xy-path and
Ym(i) is a yz-path. The inclusion from right to left is trivial, as is showing that
Xi ∩ A ⊆ {fst (Zi)}. So assume some u ∈ Ym(i) ∩ A. It suffices to show u = y for
then u ∈ Xi. This follows since the uz-part of Ym(i) is an AB-path and therefore
must contain a vertex v ∈ P . But y is the only vertex in P ∩ Ym(i), so v = y = u

since Ym(i) is irredundant. ⊓⊔

The use of “++” in the definition of Zi is a slight abuse of notation since so far
we only defined concatenation for vertex-indexed paths with matching ends. In
the case of G-paths, we extend the usual concatenation function with a check
ensuring that the two paths do compose and only perform the concatenation in
this case (using the equality generated by the check to align the types). In the
above construction, this is always the case and we can establish this once and for
all. Thus, the verification that Zi is indeed a connector closely follows the provided
proof sketch.

Theorem 3.4 (Menger’s Theorem) Let G be a digraph and let A, B be sets of

vertices of G such that every AB-separator has at least size n. Then there exists an

AB-connector of size at least n.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.menger.html#connector_extend
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.menger.html#connector_cat
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.menger.html#Menger
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x yy

A B

S

P Q

Fig. 1: Objects occuring the the proof of Menger’s Theorem

Proof By induction on | {(x, y) : G×G | x−y} |. If G has no edges, then A∩B (seen
as a collection of single-vertex paths) is a sufficiently large AB-connector. Hence,
we can assume there are vertices x, y : G such that x−y. Let G′ :=G−xy. Without
loss of generality, G′ has an AB-separator S with |S| < n. [Otherwise, we obtain
an AB-connector by induction.] Let P :=S ∪ {x} and Q :=S ∪ {y}. Both P and
Q are AB-separators of G. [Assume there was some AB-path π in G avoiding x

or y. Then π cannot use the xy-edge, hence π is a G′-path and visits S.] Thus,
n = |P | = |Q| = |S|+1, i.e., x, y /∈ S and the situation looks as depicted in Figure 1.
Now, every AP -separator (or QB-separator) of G′ is an AB-separator of G. [To see
this, let T be an AP -separator of G′ and assume some AB-path π in G avoiding T .
Then π visits the AB-separator P , and therefore must use the xy-edge. Splitting π
at x yields an AP -path in G′ avoiding T . Contradiction.] Thus, every AP -separator
(or QB-separator) of G′ has size at least n. By induction hypothesis, we obtain
an AP -connector X and a QB-connector such that |X| = |Y | = n. The required
AB-connector is then obtained using Lemmas 3.2 and 3.3. ⊓⊔

The above proof is almost exactly the proof given by Göring [18], we merely add
some additional elaborations (i.e., the sentences enclosed in “[...]” and the two
lemmas). Several important theorems (e.g, Hall’s Marriage Theorem and Kőnig’s
Theorem) can be obtained as simple consequences of Menger’s Theorem. For addi-
tional detail, we refer to [9] or the accompanying Coq development. In this paper
we will only make use of a variant of Menger’s Theorem establishing the existence
of n independent paths between a pair of vertices x and y provided one needs to
remove at least n vertices to disconnect x and y.

Definition 3.5 Let x, y be vertices of some digraph G. Two irredundant xy-paths
π1 and π2 are independent if π1 ∩ π2 = {x, y}. A set of vertices S separates x and y
if {x, y} ∩ S = ∅ and every xy-path contains a vertex from S.

Note that “S separates x and y” is a stronger statement than “S is a {x} {y}-
separator”. In particular, {x} is always a {x} {y}-separator and never separates x
and y.

Corollary 3.6 Let G be a digraph, and let x, y : G such that x 6= y and there is no

xy-edge. If n ≤ |S| for every set S separating x and y, then there exist n irredundant

and pairwise independent xy-paths.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.menger.html#separates
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.menger.html#theta
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1 5

2 3

4

6

7 8
1,7,8 1,5,8 1,5,3

3,4,6

1,2,3

Fig. 2: A graph of treewidth two (left) with tree decomposition (right)

Proof Let G′ :=G|
{x,y}

by the subgraph of G induced by the complement of {x, y}.

Let A :=
{

z : G′ | x−z
}

and B :=
{

z : G′ | z−y
}

. Then every AB-separator of G′ also
separates x and y in G and therefore has size at least n. By Menger’s Theorem,
we obtain an AB-connector X of size n. Adding x at the start and y at the end of
every path in X yields n independent xy-paths. ⊓⊔

4 Treewidth and Minors

We now define the notions of treewidth and minors. Both notions appear in the
literature with slight (but equivalent) variations. We choose variants that yield
reasonable proof principles.

Definition 4.1 A forest is a simple graph where there is at most one irredundant
path between any two nodes.

In Coq, this is formalized by requiring that for every pair of vertices x and y, all
irredundant xy-paths are equal.

Definition 4.2 Let G be a simple graph and let A : 2G. A is a clique if x−y
whenever {x, y} ⊆ A and x 6= y.

Definition 4.3 A tree decomposition of a simple graph G is a forest F together
with a function B : F → 2G such that:
T1. for every vertex x : G, there exists some t : F , such that x ∈ B(t).
T2. for every x : G, the set {t : F | x ∈ B(t)} is connected in F ;
T3. if x−y, then there exists a node t, such that {x, y} ⊆ B(t);
The width of a tree decomposition is the size of the largest set B(t) minus one; the
treewidth of a graph is the minimal width of a tree decomposition.

An example of a graph together with a tree decomposition certifying that the
graph has treewidth at most two is given in Figure 2.

The minus one in the definition of treewidth is there solely to ensure that trees
have treewidth one. In the formalization we take the width so be the size of the
largest bag (without substracting one) and adapt the statements accordingly.

Note that we define the notion of tree decomposition using forests rather than
trees as is done for instance in [8]. The two notions are equivalent since every
forest can be turned into a tree by connecting arbitrary nodes of disconnected
trees. Using forests rather than trees has the advantage that tree decompositions
for the disjoint union of two graphs G and H can be obtained as the disjoint union
of tree decompositions for G and H.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.sgraph.html#forest
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.sgraph.html#clique
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.minor.html#sdecomp
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≺

Fig. 3: Exhibiting K4 as a minor

Definition 4.4 Let G and H be simple graphs. We write G + H for the disjoint
union of G and H (i.e., the graph with vertices inlx for x : G and inr y for y : H
such that inlx−inl y iff x−y in G and likewise for H.)

Lemma 4.5 Let G1 and G2 be simple graphs, T1 and T2 forests, B1 : T1 → 2G1 a

tree decomposition of G1, and B2 : T2 → 2G2 a tree decomposition of G2. Then

λu : T1 + T2.

{

B1(x) u = inlx

B2(x) u = inr x

is a tree decomposition of G1 +G2.

The minors of a graph G are customarily defined to be those graphs that can be
obtained by a series of the following operations: remove a vertex, remove an edge,
or contract an edge. We use instead a monolithic definition in terms of functions
to sets inspired by [8].

Definition 4.6 Let G and H be simple graphs. A function φ : H → 2G is called a
minor map if:
M1. φ(x) is nonempty and connected for all x : H,
M2. φ(x) ∩ φ(y) = ∅ whenever x 6= y for all x, y : H.
M3. φ(x) neighbors φ(y) for all x, y : H such that x−y.
H is a minor of G, written H ≺ G if there exists a minor map φ : H → 2G.

Intuitively, for every vertex x : H, φ(x) is the set of vertices being collapsed to x by
contracting edges in φ(x). Consequently we will refer to φ(x) as the inflation of x.

In [11], we employed an equivalent definition using functions of type G → H⊥

instead of H → 2G and expressing the conditions on the preimages. For the results
in this paper, we found Definition 4.6 more convenient; the Coq development
contains both definitions and establishes their equivalence.

Definition 4.7 We write K4 for the complete graph with four vertices. A graph G
is called K4-free, if K4 6≺ G.

As an example, consider the graph obtained by adding an edge between vertices
4 and 7 of the graph in Figure 2. This graph (depicted on the right of Figure 3)
admits K4 as minor by collapsing the circled sets of vertices. Note that there are in
general many ways to contract a connected set to a single vertex and our definition
abstracts from these unimportant variations.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.minor.html#join_decomp
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.minor.html#minor_rmap
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.minor.html#K4_free
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Lemma 4.8 If φ : G → 2H and ψ : H → 2I are minor maps, then λx.
⋃

y∈φ(x) ψ(y)

is a minor map of type G→ 2H .

As a consequence of the lemma above, we obtain that ≺ is transitive. Moreover,
we have that the class of graphs with treewidth below a certain threshold is closed
under taking minors.

Lemma 4.9 If H ≺ G, then the treewidth of H is at most the treewidth of G.

Proof Let (T,B) be a tree decomposition of G and let φ : H → 2G be a minor map.
Then D(t) := {x : H | φ(x) ∩B(t) 6= ∅} is a tree decomposition of H. Moreover, φ(x)
and φ(y) are disjoint whenever x 6= y, so |D(t)| ≤ |B(t)|. ⊓⊔

One of our main results is a formal proof that the K4-free graphs are precisely
those graphs that have tree decompositions of width at most two. One direction,
showing that a graph cannot both have a tree decompositon of width at most
two and K4 as a minor, is relatively straightforward. It is an easy consequence
of Lemma 4.9 and the theorem below. The converse direction, constructing low-
width tree decompositions for K4-free graphs is more involved; we defer the proof
to Section 5.

Theorem 4.10 Let T be a (nonempty) forest and let B : T → 2G be a tree decompo-

sition of G. Then every clique of G is contained in B(t) for some t : T .

Proof We prove by induction on n that every clique S with |S| ≤ n is contained in
B(t) for some t. If |S| ≤ 1 this follows with (T1). Thus, we can assume {v0, v} ⊆ S

with v0 6= v. We define

S0 :=S \ {v} T0 := {t : T | S0 ⊆ B(t)}

By induction hypothesis, T0 is nonempty. Suppose by contradiction that v /∈ B(t)
for all t ∈ T0. Since S is a clique, there exists some t : T such that {x, y} ⊆ B(t)
for every set {x, y} ⊆ S (T3). Let c be such that {v, v0} ⊆ B(c) and let C be the
component of c in T \ T0, i.e.:

C := {t : T | ∃π : c t. π ∩ T0 = ∅}

Then C is connected, disjoint from T0 and contains c. Since v0 occurs both in T0
and in C, there exist t0 ∈ T0 and c0 ∈ C such that t0−c0 (T2) and, since T is a
forest, every path starting in C and ending in T0 must use this edge. We obtain a
contradiction by showing c0 ∈ T0.

Fix some u ∈ S0; it suffices to show u ∈ B(c0). We have u ∈ B(t0). By (T3) we
also have {u, v} ⊆ B(cu) for some cu. Since v ⊆ B(c)∩B(cu) the unique irredundant
ccu-path avoids T0 (T2). Thus cu ∈ C and therefore u ∈ B(c0) since the unique
t0cu-path must go through c0 and (again by T2) every bag along the way must
contain u. ⊓⊔

Corollary 4.11 If G has treewidth at most two, then G is K4-free.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.minor.html#minor_map_comp
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.minor.html#width_minor
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.minor.html#decomp_clique
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U V

Fig. 4: Separation of a graph with a smallest separator of size two.

[π1] ∪ [ρ]

{x}
[π2]

[π3] ∪ {y}

Fig. 5: Constructing K4 from a separator of size three: The filled vertices are
distinct, unfilled vertices may coincide with the filled vertices they are connected
to by dashed lines.

5 Tree Decompositions for K4-free Graphs

We now prove the converse of Corollary 4.11, i.e. that every K4-free graph has a
tree decomposition of width at most two. For this, we need to construct an object
(a low-width tree decomposition) from the knowledge that a certain substructure
(the minor K4) does not occur.

The proof we give is inspired by the argument in [8]; it is structured as follows:
We first show that every sufficiently large K4-free graph can be covered by two
sets U and V whose intersection contains at most two vertices (cf. Figure 4).
This part makes use of Menger’s Theorem. We then show that if U ∩ V does
contain two vertices, we can assume without loss of generality that there is an edge
between them. This allows us to obtain a tree decomposition of G by obtaining
tree decompositions of the subgraphs G|U and G|V , identifying a bag containing
U ∩ V in each of the decompositions (Theorem 4.10), and adding a link between
those two bags. Arguing that G+xy is still K4-free in the case where U∩V = {x, y}

but x and y are not adjacent (the nontrivial part of the without loss generality
argument) requires analyzing a hypothetical minor map exhibiting K4 as a minor
of G + xy and showing that this would yield K4 ≺ G. This is the most technical
part of the proof.

Definition 5.1 (Separators and Connectivity) Let G be a simple graph. A sep-

arator is a set S disconnecting G, i.e., separating two distinct vertices of G. The
graph G is k-connected if |G| > k and every separator has at least k vertices.

In order to prove the next lemma, we need an auxiliary notion. If π is an xy-
path, we write [π] for the set π\{x, y}. Note that if π is irredundant, then [π] is con-
nected; if [π] is also nonempty, then [π] neighbors any set containing either x or y.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#separator


14 Christian Doczkal, Damien Pous

Lemma 5.2 Every 3-connected graph includes K4 as a minor.

Proof Let G be 3-connected. If G is complete, we clearly have K4 ≺ G. Otherwise
let x and y be two vertices such that there is no xy-edge. By Corollary 3.6, we
obtain three independent xy-paths π1, π2 and π3. Moreover, all these paths have a
non-empty interior. Since {x, y} is not a separator, there exists a path ρ connect-
ing, without loss of generality, [π1] and [π2] such that [ρ]∩ (π1 ∪ π2 ∪ π3) = ∅. The
minor map mapping the four vertices of K4 to the following four sets establishes
K4 as a minor of G: {x}, [π1] ∪ [ρ], [π2], and [π3] ∪ {y} (cf. Figure 5). ⊓⊔

As an immediate consequence of the lemma above we obtain the existence of small
separators in K4-free graphs.

Lemma 5.3 Let G be a simple K4-free graph with at least four vertices. Then there

exists a smallest separator S of G with |S| ≤ 2.

We want to view the separators obtained using the lemma above as separating
the graph into exactly two components (cf. Figure 4). This motivates the notion
of separation.

Definition 5.4 (Separation) Let G = 〈V,R〉 be a simple graph. A pair of sets
(V1, V2) is a separation (of G) if V1 ∪ V2 = V and V2 and V1 are not neighboring.3

A separation is proper, if both V1 and V2 are nonempty. The order of a separation
is the size of V1∩V2. A minimal separation is a separation whose order is minimal.

The main difference between a separator and a proper separation is that the latter
specifies for every vertex which “side” of the separator the vertex is on.

Lemma 5.5 1. If (V1, V2) is a separation, then V1 ∩ V2 separates all elements of V1
from all elements of V2. Thus, V1 ∩ V2 is a separator whenever (V1, V2) is proper.

2. For every separator S, there exists a proper separation (V1, V2), with V1 ∩ V2 = S.

Next, we show that a separation whose shared part is a clique allows us to
combine tree decompositions for the two parts.

Lemma 5.6 Let G be a graph and let (V1, V2) be a separation of G such that V1 ∩ V2
is a clique. Further let (Ti, Bi) be a tree decomposition of G|Vi

for i ∈ {1, 2}. Then

there exists a tree decomposition of G of width max(width(B1),width(B2)).

Proof Since S := V1 ∩ V2 is a clique, there exist tree nodes ti : Ti such that
S ⊆ Bi(ti) for i ∈ {1, 2} (Theorem 4.10). We obtain a tree decomposition of G by
taking the disjoint union of the tree decompositions of G|V1

and G|V2
and then

adding a t1t2-edge. ⊓⊔

In order to use the aforementioned small separators to decompose graphs in
such a way that their respective tree decompositions yield a tree decomposition of
the full graph, we need to show that if {x, y} is a smallest separator, then adding
an xy-edge preserves K4-freeness. We first establish two auxiliary lemmas.

Lemma 5.7 Let K4 ≺ G and let (V1, V2) be a minimal separation of G such that

V1 ∩ V2 is a clique of size at most two. Then there exists a minor map φ such that

either φ(x) ⊆ V1 for all x : K4 or φ(x) ⊆ V2 for all x : K4

3 Note that V2 = V1 \ V2 if V1 ∪ V2 = V .

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#K4_of_separators
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#no_K4_smallest_separator
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#separation
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#separator_separation
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#separation_decomp
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#separation_K4side
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Proof Let G = 〈V,E〉 and let φ : K4 → 2G be a minor map. We first show that,
without loss of generality, we can assume φ(i)∩V1 6= ∅ for all i. To see this, consider
i, j such that φ(i)∩V1 = ∅ and φ(j)∩V2 = ∅. If i = j, we have a contradiction since
φ(i) is nonempty and V1∪V2 = V . Similarly, i 6= j contradicts the assumption that
V1 does not neighbor V2. Now, since (V1, V2) is a separation, every φ(i) containing a
vertex from V1 must also contain a vertex from S :=V1∩V2. Thus, φ

′(i) :=φ(i)∩V1
is a minor map as required (using the fact that S is a clique to ensure that the
various φ(i) are connected and neighboring). ⊓⊔

Lemma 5.8 If (V1, V2) is a minimal proper separation, then every vertex x ∈ V1 ∩V2
is adjacent to a vertex in V1 and a vertex in V2.

The following lemma is the central construction of this section.

Lemma 5.9 Let G be K4-free and let S = {x, y} (with x 6= y) be a smallest separator.

Then G+ xy is K4-free.

Proof Assume K4 ≺ G+ xy and let φ : K4 → 2(G+xy) be a minor map. Further, let
(V1, V2) be a proper separation with S = {x, y}. By Lemma 5.7, we can assume,
without loss of generality, that φ(i) ⊆ V1 for all i. Since G is K4-free, the xy-edge
must be used in one of two ways: (A) to ensure that φ(i) and φ(j) are neighboring
(in G+xy) for some φ(i) and φ(j) not neighboring in G; or (B) to ensure that φ(i)
is connected (in G+ xy) for some φ(i) not connected in G.
Case A: Without loss of generality, we have x ∈ φ(i) and y ∈ φ(j). By Lemma 5.8,

there exists a vertex z /∈ V1 such that x−y. Since {x} is not a separator, we
obtain an irredundant zy-path π avoiding x. Since S is a separator, π∩V1 = {y}.
Thus, φ[j :=φ(j) ∪ π] : K4 → G is a minor map, contradicting the assumption
that G is K4-free.

Case B: Let C(v) be the component of v in φ(i) (seen as a set in G). Then φ(i) =
C(x)∪C(y) and C(x) and C(y) are disjoint. If all φ(j) for j 6= i are neighboring
one of the two components (say C(x)), then φ[j :=C(x)] is a minor map not
using the xy-edge, again contradicting the K4-freeness of G. Otherwise, we
obtain without loss of generality some j such that φ(j) neighbors C(x) while
φ(k) neighbors C(y) for k /∈ {i, j}. Setting φ′ :=φ[j :=φ(j) ∪ C(x), i :=C(y)]
yields a minor map where the xy-edge is used to connect φ(i) and φ(j), reducing
the problem to case A. ⊓⊔

Note that the monolithic definition of minor maps (Definition 4.6) allows for a
straightforward analysis of how the xy-edge must be used by the minor map φ.
Also note that the notion of neighboring sets is used pervasively throughout this
section, allowing us to avoid having to explicitly exhibit edges in many cases.
Putting everything together, we obtain:

Theorem 5.10 Every K4-free graph has a tree decomposition of width at most two.

Proof By induction on |G| for some K4-free graph G. If |G| ≤ 3, the claim is trivial;
so assume 4 ≤ |G|. By Lemma 5.3, we obtain a smallest separator S such that
|S| ≤ 2. We can assume without loss of generality that S is a clique: if S = {x, y}

but x 6−y, then G + xy is K4-free by Lemma 5.9, and any tree decomposition for
G+ xy is also a tree decomposition for G. We extend S into a proper separation
(V1, V2) with S = V1 ∩ V2 (Lemma 5.5). By induction hypothesis, we obtain tree
decompositions for G|V1

and G|V2
of width at most two. Thus, we obtain the

desired tree decomposition by Lemma 5.6. ⊓⊔

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#sseparator_neighbours
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#K4_free_add_edge_sep_size2
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.separators.html#TW2_of_K4F
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Note that Lemma 5.6 uniformly deals with the cases of disconnected graphs,
graphs that are separated by a single vertex and graphs with separators of size
two. In the latter case, Lemma 5.9 is needed to establish the clique condition. That
is Lemma 5.9, the main construction underlying Theorem 5.10, is merely used to
justify a “without loss of generality” step.

6 Labeled multigraphs

The initial motivation of this work was the characterisation of K4-free graphs as
the free 2p-algebra [22]. There, graphs have labeled edges, and parallel edges are
allowed. We define labeled multigraphs accordingly, with labels in a fixed alphabet Σ.

Definition 6.1 A (labeled directed) multigraph is a structure G = 〈V,E, s, t, l〉, where
V is a finite type of vertices, E is a finite type of edges, s, t : E → V are functions
indicating the source and target of each edge, and l : E → Σ is function indicating
the label of each edge. If G is a multigraph, we write x : G to denote that x is a
vertex of G.

Note that self-loops are allowed, as well as parallel edges with the same label.
This definition is rather different from the previous ones for directed and simple

graphs: edges are represented explicitely as a (finite) type. This corresponds to the
standard representation of graphs in category theory and this makes it possible to
use the following notion of isomorphism, where the identity of edges is taken into
account.

Definition 6.2 A homomorphism from the graph G = 〈V,E, s, t, l〉 to the graph
G′ = 〈V ′, E′, s′, t′, l′〉 is a pair 〈f, g〉 of functions f : V → V ′ and g : E → E′ that
respect the various components: s′ ◦ g ≡ f ◦ s, t′ ◦ g ≡ f ◦ t, and l ≡ l′ ◦ g.

An isomorphism is a homomorphism whose two components are bijective func-
tions. We write G ≃ G′ when there exists an isomorphism between graphs G and G′.

The corresponding Coq definitions require some care. Indeed, more than the
existence of isomorphisms, we often need to keep track of their action on vertices
and edges. This is typically the case in the following section, where we work with
multigraphs with distinguished vertices. To this end, we define isomorphisms in
Type rather than Prop, and we rely on the following notion of bijection between
types, where the inverse function is given explicitly.

Record bij (A B: Type): Type := {

fwd :> A → B;

bwd : B → A;

bijK : ∀ a, bwd (fwd a) = a;

bijK’ : ∀ b, fwd (bwd b) = b }.

Record iso (F G: graph): Type := {

iso v :> bij (vertex F) (vertex G);

iso e : bij (edge F) (edge G);

src iso : ∀ e, src (iso e e) = iso v (src e);

tgt iso : ∀ e, tgt (iso e e) = iso v (tgt e);

lbl iso : ∀ e, lbl (iso e e) = lbl e }.

By declaring the first fields of those structures as coercions, we can freely use a
bijection as a function, and an isomorphism as a function on vertices. In addition,
we setup specific notations to use the inverse of a bijection, as well as the edge
component of an isomorphism.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.multigraph.html#graph
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.multigraph.html#iso
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Even though these definitions are computational, it is convenient to think of
them as equivalence relations on types and graphs. We use for that the extension
of Coq’ setoid rewriting tactics [30] to Type valued relations (a proof relevant
extension inspired by homotopy type theory [32]).

Every labeled multigraph can be seen as a directed graph by forgetting labels
as well as edge identities and multiplicities. By further forgetting edge directions
and removing self-loops, we obtain a simple graph which we call the skeleton.

Definition 6.3 Let G = 〈V,E, s, t, l〉. The skeleton of 〈V,E, s, t, l〉 is the simple
graph 〈V,R〉 where xRy iff x 6= y and there exists an edge e : E such that s(e) = x

and t(e) = y or vice versa.

Skeletons allow us to reuse our definitions and results about simple graphs on
multigraphs, e.g., those about minors and treewidth. That taking the skeleton of
a graph does not change the type of vertices greatly simplifies lifting properties of
the skeleton to the graph and vice versa. In practice, we turn the construction of
taking the skeleton into a coercion from multigraphs to simple graphs.

In addition to comparing labeled multigraphs up to isomorphism, we will need
to compose them in various ways to show that they form an algebra. This usually
involves taking two graphs and merging (or identifying) some vertices in their
disjoint union. To this end, we define the generic operations of taking the disjoint
union of two graphs and quotienting a graph:

Definition 6.4 Let G = 〈V,E, s, t, l〉 and G′ = 〈V ′, E′, s′, t′, l′〉. The disjoint union

of G and G′, written G+G′, is defined to be the graph

〈V + V ′, E + E′, s+ s′, t+ t′, l+ l′〉

Here, f + f ′ (for f ∈ {s, t, l}) is the pointwise lifting of f and f ′ to the sum type
E + E′ (with result in V + V ′ or Σ).

Definition 6.5 Let G = 〈V,E, s, t, l〉 and let ≈ : G → G → B be an equivalence
relation. The quotient of G modulo ≈, written G/≈, is defined to be the graph

〈V/≈, E, π ◦ s, π ◦ t, l〉

In order to prepare the ground for the following section, we prove several
isomorphism lemmas about those operations. Here is a non-exhaustive list:

Lemma 6.6 For all multigraphs F, F ′, G,G′, H, we have:

1. F +G ≃ G+ F and F + (G+H) ≃ (F +G) +H.

2. If F ≃ G and F ′ ≃ G′, then F + F ′ ≃ G+G′.

3. If ≈, ≈′ are two pointwise equivalent equivalence relations on (the vertices) of F ,

then F/≈ ≃ F/≈′ .

4. If F ≃ G then F/≈ ≃ G/≈′ , where ≈′ is the equivalence relation on G induced

through the given isomorphism by a given equivalence relation ≈ on F .

5. F + G/≈ ≃ (F + G)/≈′ where ≈ is an equivalence relation on G and ≈′ is its

extension to F +G (leaving all vertices of F in singleton classes).

6.
(

F/≈

)

/≈′
≃ F/≈′′ , where ≈ is an equivalence relation on F , ≈′ is an equivalence

relation on F/≈, and ≈′′ is the equivalence relation on F obtained by composing ≈

and ≈′.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.skeleton.html#skeleton
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.multigraph.html#union
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.multigraph.html#merge
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7. (F +G)/≈ ≃ F/≈′ when G has no edge, ≈ is an equivalence relation on F +G, ≈′

is its restriction to F , and for all x : G there exists y : F with inr x ≈ inl y.

The first three items are straightforward. Item (2) makes it possible to rewrite
isomorphims in contexts composed of disjoint unions; Item (4) extends this to
rewriting isomorphisms under quotients. The latter illustrates the need to work
with computational definitions: the induced equivalence relation ≈′ depends on
the concrete behaviour of the given isomorphism. The last three items are more
involved; they make it possible to move quotients out of disjoint unions and to
compress them: this is convenient to obtain ‘normal forms’ for nested quotients
(on disjoint unions) occurring in the laws to be proved in the following section.

The proofs for establishing the various points in the above lemma follow the
same pattern: we first exhibit the appropriate bijections on the underlying types,
and then show that they can be extended into graph isomorphisms.

7 The 2p-algebra of two-pointed multigraphs

Using the operations on multigraphs defined in the previous section, we can con-
struct a 2p-algebra [22] whose elements are multigraphs. The syntax of 2p-algebras
is as follows.

u, v, w ::= u·v
∣

∣ u ‖ v
∣

∣ u◦
∣

∣ dom(u)
∣

∣ 1
∣

∣ ⊤
∣

∣ a (a ∈ Σ)

This syntax makes it possible to denote labeled multigraphs with two designated
vertices (the input and the output).

Definition 7.1 A two-pointed graph (or 2p-graph for short) is a structure 〈G, ι, o〉

where G is a multigraph and ι : G and o : G are two vertices called input and output

respectively.

The notions of homomorphism and isomorphism are extended accordingly: on 2p-
graphs, they should map the input to the input, and likewise for the outputs.

The algebra of 2p-graphs is defined in Figure 6, formally on the left, and in-
formally on the right. The binary operations of the syntax correspond to series
and parallel composition. We use the previous operations of disjoint union and
quotient in their formal definition, where Aeqv denotes the equivalence relation
generated by the pairs in A. The first unary operation, converse, exchanges input
and output; the second one, domain, relocates the output to the input. The con-
stant 1 represents the graph with just a single vertex; ⊤ is the disconnected graph
with two vertices (one being the input and the other the output). Letters represent
single edges.

This algebra allows us to recursively interpret every term t as a 2p-graph g(t).
For instance, the graphs of the terms a·(b ‖ c◦) ‖ d and 1 ‖ a·b are the following ones:

a

d

b

c

a b

The second graph is also represented by the term dom(a ‖ b◦).
We remark that the definition of the function g works seemlessly in our setting

where graphs are represented using finite types. More precisely, we make use of

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.ptt_graph.html#graph2
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〈G, ι, o〉·〈G′, ι′, o′〉 ,〈(G+G′)/≈, π(inl ι), π(inr o′)〉 G H

where ≈ ,
{

(inl o, inr ι′)
}eqv

〈G, ι, o〉 ‖ 〈G′, ι′, o′〉 ,〈(G+G′)/≈, π(inl ι), π(inl o)〉
G

H
where ≈ ,

{

(inl ι, inr ι′), (inl o, inr o′)
}eqv

〈G, ι, o〉◦ ,〈G, o, ι〉 G

dom(〈G, ι, o〉) ,〈G, ι, ι〉 G

1 ,〈〈{∗} , ∅, ∅, ∅, ∅〉, ∗, ∗〉

⊤ ,〈〈{0, 1} , ∅, ∅, ∅, ∅〉, 0, 1〉

a ,〈〈{0, 1} , {∗} , λ . 0, λ . 1, λ . a〉, 0, 1〉 a

Fig. 6: The algebra of 2p-graphs.

the fact that the type of vertices is not part of the type of graphs and the fact that
finite types are closed under disjoint union and quotients. Defining the function g

in a setting where the vertices of graphs are given as subsets of some fixed type
(as is the case in [26]) would require either a type closed under these operations
(e.g., hereditarily finite sets as used by Paulson to formalize finite automata in
Isabelle/HOL [27]) or an explicit encoding.

Two show that 2p-graphs form a 2p-algebra, we need to prove that the opera-
tions preserve isomorphisms, and satisfy the twelve axioms of 2p-algebras [22].

Lemma 7.2 Let F ≃ F ′ and G ≃ G′. Then we have F ‖G ≃ F ′ ‖G′, F ·G ≃ F ′·G′,

and F ◦ ≃ (F ′)◦.

Proof The first two points follow by using items 2 and 4 from Lemma 6.6: parallel
and sequential composition are both defined as a quotient of a disjoint union. The
third point is straightforward: the given isomorphism can be reused directly. ⊓⊔

Lemma 7.3 For all 2p-graphs F,G,H, we have

1. F ‖G ≃ G ‖F ;

2. (F ‖G) ‖H ≃ F ‖ (G ‖H);
3. (F ·G)·H ≃ F ·(G·H);
4. F ·1 ≃ F ;

5. F ◦◦ ≃ F ;

6. (F ‖G)◦ ≃ F ◦ ‖G◦;

7. (F ·G)◦ ≃ G◦·F ◦;

8. dom(F ) ≃ 1 ‖F ·⊤;

9. 1 ‖ 1 ≃ 1;
10. 1 ‖F ·G ≃ dom(F ‖G◦);
11. F ·⊤ ≃ dom(F )·⊤;

12. (F ‖ 1)·G ≃ (F ‖ 1)·⊤ ‖G;

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.ptt_graph.html#par2_iso2
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.ptt_graph.html#par2C
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(Those laws are equivalent to those of 2p-algebras [22] and slightly easier to prove;
that ⊤ is a neutral element for parallel composition follows from items 9 and 12.)

Proof All laws are easily checked informally by drawing pictures. Formalizing them
however requires some non-trivial work. In particular, laws like associativity of
parallel composition (2) do not follow directly from Lemma 6.6(1): parallel and
sequential compositions involve quotients in addition to disjoint unions.

For most laws, we use Lemma 6.6(4,5,6) in order to rewrite both sides into a sin-
gle quotient of a disjoint union of the starting graphs. Then we use Lemma 6.6(1,2,4,7)
to align the disjoint unions and prune useless components (those appear when the
starting expressions contain the constants 1 or ⊤). We finally conclude by using
Lemma 6.6(3) and comparing the obtained equivalence relations.

For item (8) for instance, ignoring the inputs and outputs, the multigraph in the
right-hand side is successively rewritten into expresions of the form (1+(F+2))/≈,

(F + (1 + 2))/≈′ , and F/≈′′ ; it then suffices to show that ≈′′ is the discrete equiv-
alence relation. The equivalence relations used to define parallel and sequential
compositions are easily described as the equivalence closures of short lists of pairs;
we use variants of Lemma 6.6(4-7) maintaining this explicit representation so that
it is straightforward to compare the final equivalence relations. ⊓⊔

Putting everything together, we obtain:

Theorem 7.4 The set of 2p-graphs form a 2p-algebra (up to isomorphism).

While the set of all 2p-graphs form a 2p-algebra, we need to restrict to graphs
of treewidth at most two to obtain the free 2p-algebra. We show that those form a
subalgebra, and in particular that the graph of every term has treewidth at most
two. To be more precise, we need to restrict to 2p-graphs whose strong skeleton has
treewidth at most two:

Definition 7.5 The (weak) skeleton of a 2p-graph 〈G, ι, o〉 is the skeleton of G; its
strong skeleton of is the skeleton of G with an additional ιo-edge.

The following lemma makes it possible to show that both series and parallel
composition preserve treewidth two.

Lemma 7.6 Let G1 = 〈G′
1, ι, o〉 and G2 = 〈G′

2, ι
′, o′〉 be 2p-graphs and let 〈Ti, Bi〉

(i ∈ {1, 2}) be tree decompositions of the strong skeletons of G1 and G2 respectively.

Further let ≈ be an equivalence relation on G1 + G2 identifying at least two vertices

from the set P ,
{

inl ι, inr ι′, inl o, inr o′
}

and no other vertices. Then there exists a tree

decomposition of the skeleton of (G1 + G2)/≈ of width at most two having a node t

such that P/≈ ⊆ B(t).

Proof We use the three following facts. 1) A tree decomposition for a disjoint union
of simple graphs can be obtained by taking the disjoint union of tree decomposi-
tions for those graphs. 2) Two trees of a tree decomposition can be joined through
a new node containing the vertices of its neighbors. 3) A tree decomposition can
be quotiented (to give a tree decomposition of a quotiented graph) as soon as it
has nodes for all equivalence classes. ⊓⊔

Theorem 7.7 For every term u, the strong skeleton of g(u) has a tree decomposition

of width at most two.

Proof By induction on u. The cases for ‖ and · follow with Lemma 7.6. All other
cases are trivial. ⊓⊔

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.ptt_graph.html#graph2_laws
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.skeleton.html#sskeleton
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.subalgebra.html#decomp_quot
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.subalgebra.html#graph_of_TW2
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(a) (b) (c)

Fig. 7: The three main cases for extracting a term from a K4-free graph.

8 Checkpoints

In the following two sections we show that Theorem 7.7 is sharp in the sense
that all graphs whose strong skeleton has treewidth two can, up to isomorphism,
be constructed as g(u) for some term u. We prove this by defining an extraction

function taking as input some K4-free graph and returning a term describing the
graph. (Such a function is not unique since different terms may denote the same
graph, and there are several ways of defining such a function. In particular a
natural and possibly simpler idea would be to proceed by induction on the tree
decomposition. We follow the approach from [22] because the resulting function
makes it possible to obtain (†); alternatively, we could use the rewriting system
from [12].)

We focus on connected graphs first: they form a subalgebra when removing
⊤ from the signature, and they can be decomposed recursively; we extend the
extraction function to handle all graphs in a second step (Section 10). Before we
can define the extraction function, we need a number of results on simple graphs.
These will allow us to analyze the structure of 2p-graphs (via their skeletons),
facilitating the termination and correctness arguments for the extraction function.

We use the concept of checkpoint to extract terms from graphs; those are the
vertices which every path between input and output must visit. Using those, we get
that every connected graph with distinct input and output has the shape depicted
in Figure 7(a), where the checkpoints are the only depicted vertices. One can parse
such a graph as a sequential composition and proceed recursively once we have
proved that the strong skeletons of the green and yellow components are K4-free
whenever this is the case for the starting graph.

If there are no proper checkpoints between input and output, we exploit a
key property of K4-free graphs: in such a case, either the graph is just an edge
or it consists of at least two parallel components, making it possible to proceed
recursively (cf. Figure 7(b)).

The last case to consider is when the input and the output of the graph coincide.
Then the graph either consists only of a single vertex (possibly with self loops) or
one can recursively extract a term for the graph obtained by relocating the output
to one of the neighbors of the input and use the domain operation to recover the
starting graph (cf. Figure 7(c)).

For the remainder of this section, G refers to some connected simple graph.

Definition 8.1 The checkpoints between two vertices x, y are the vertices which
every xy-path must visit:

cpx y , {z | every xy-path crosses z}

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.checkpoint.html#cp
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Fig. 8: Link graph, checkpoint graph, and decomposition into intervals and bags.

A checkpoint z ∈ cpx y is called proper if z /∈ {x, y}. Two vertices x, y are linked,
written x♦y, when x 6= y and cpx y = {x, y}, i.e., when there are no proper check-
points between x and y. The link graph of G is the graph of linked vertices.

Note that the link graph of G includes all the edges of G. Consider the graph
on the left in Figure 8; its link graph is obtained by adding the three dotted edges
to the existing ones.

Fact 8.2 Let x, y, z : G. Then z is a proper checkpoint between x and y iff {z} separates

x and y.

Lemma 8.3 1. cpxx = {x}

2. {x, y} ⊆ cpx y = cp y x

Definition 8.4 Let U be a set of vertices of G. The checkpoints of U , written CPU ,
are the vertices which are checkpoints of some pair in U .

CPU ,
⋃

x,y∈U

cpx y

The checkpoint graph of U is the subgraph of the link graph induced by this set.
We also denote this graph by CPU .

The graph in the middle of Figure 8 is the checkpoint graph of the one of the left,
when U consists of the blue square vertices.

Lemma 8.5 Let x, y ∈ CPU . Then cpx y ⊆ CPU .

Proof We have x ∈ cpx1 x2 and y ∈ cp y1 y2 for some vertices {x1, x2, y1, y2} ⊆ U

by the definition of CP. Fix some z ∈ cpx y. If z ∈ {x, y}, the claim is trivial, so
assume z /∈ {x, y}. Hence, we obtain either an xx1-path or an xx2-path not con-
taining z by splitting some irredundant x1x2-path at x. Without loss of generality,
the xx1-path avoids z. Similarly, we obtain, again w.l.o.g., a yy1-path avoiding z.
Thus z ∈ cpx1 y1 since the existence of an x1y1-path avoiding z would contradict
z ∈ cpx y (by concatenation with the paths obtained above). ⊓⊔

Definition 8.6 Let x, y : G. The strict interval Kx; yJ is the following set of vertices.

Kx; yJ , {p | there is an xp-path avoiding y

and a py-path avoiding x}

The interval Jx; yK is obtained by adding x and y to that set. We abuse notation
and also write Jx; yK for the subgraph of G induced by the set Jx; yK.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.checkpoint.html#CP
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.checkpoint.html#CP_closed
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.checkpoint.html#sinterval
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Definition 8.7 The bag of a checkpoint x ∈ CPU is the set of vertices that need
to cross x in order to reach the other checkpoints.

JxKU , {p | ∀y ∈ CPU. every py-path crosses x} .

As before, we also write JxKU for the induced subgraph of G.

Note that JxKU depends on U and differs from Jx;xK (which is always the singleton
{x}). The main purpose of bags and intervals is to aid in decomposing graphs
for the term extraction function, as depicted on the right in Figure 8: the green
components are intervals and the yellow components are bags. We first show that
distinct bags, adjacent bags, and strict intervals are disjoint.

Lemma 8.8 1. If y ∈ CPU , then JxKU ∩ Kx; yJ = ∅.

2. If x, y ∈ CPU and x 6= y, then JxKU ∩ JyKU = ∅.

3. If z ∈ cpx y, then Jx; yK = Jx; zK ∪ JzK{x,y} ∪ Jz; yK.
4. If z ∈ cpx y, then Kx; zJ, JzK{x,y} and Kz; yJ are pairwise disjoint.

The following proposition is crucial for term extraction; it allows us to split
graphs into parallel components provided the graph cannot be split into to sequen-
tial components (case (b) in Figure 7; this is the only place in the extraction where
K4-freeness of the input graph is being used rather than just being transferred to
subgraphs).

Lemma 8.9 Let ι, o : G such that G+ ιo is K4-free and ι♦o, but not ι−o. Then Kι; oJ
has at least two connected components.

Proof Since ι♦o, we have that every set S separating ι and o has size ≥ 2. By Corol-
lary 3.6, we obtain two independent ιo-paths π1 and π2 with nonempty interior.
Fix x1 ∈ [πi] and x2 ∈ [π2]. It suffices to show that x1 and x2 are not connected
in Kι; oJ. Assume there exists an x1x2-path ρ in Kι; oJ. Let z be the first vertex on
ρ that is in [π2] and let z′ be the last vertex before z. Taking π3 to be a one-edge
ιo-path, we obtain the same situation as in Figure 5 (except that [π3] = ∅, which
doesn’t influence the proof), so we reuse the construction underlying Lemma 5.2

⊓⊔

Lemma 8.9 corresponds to [22, Proposition 20(i)], where it is proved by building
on a long series of additional lemmas about checkpoints; this is also the approach
followed in [11]. Thanks to Corollary 3.6 of Menger’s theorem, which we used to
prove the minor exclusion theorem for treewidth at most two (Theorem 5.10), these
lemmas are no longer required in the present formalisation. This should not come
as a surprise since thanks to Theorem 7.7, the extraction function we are defining
eventually leads to an alternative proof of Theorem 5.10. In a sense, Corollary 3.6
captures the central graph-theoretic argument.

In order to apply Lemma 8.9 to the various intervals in the sequential decom-
position of a 2p-graph, we need to show that the strong skeletons induced by these
intervals are again K4-free.

Lemma 8.10 Let ι, o : G such that G + ιo is K4-free and let x, y ∈ cp ι o such that

x 6= y. Then Jx; yK + xy is K4-free.

Proof Without loss of generality x appears before y on every ιo-path. We obtain
that Jx; yK + xy is a minor of G+ ιo by collapsing JxK{x,y} (which contains ι) to x

and JyK{x,y} (which contains o) to y. The claim then follows by transitivity of the
minor relation. ⊓⊔

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.checkpoint.html#bag
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.checkpoint.html#interval_bag_disj
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.cp_minor.html#ssplit_K4_nontrivial
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.cp_minor.html#igraph_K4F
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9 Extracting Terms from K4-free Graphs

We say that a 2p-graph G is CK4F if its skeleton is connected and its strong
skeleton is K4-free. We now define a function extracting terms from CK4F graphs.
Defining this function in Coq is challenging for a number of reasons. First, its
definition involves ten cases, most with multiple recursive calls. Second, we need
to argue that all the recursive calls are made on smaller graphs which are CK4F.

To facilitate the definition, we construct our own operator for bounded recur-
sion. The reason for this is that none of the facilities for defining functions in Coq
(e.g., Fixpoint, Function and Program) are suited to deal with the kind of complex
function definition we require. We define a bounded recursion operator with the
following type:

Fix : ∀ aT rT : Type, rT → (aT → N) → ((aT → rT) → aT → rT) → aT → rT

Here the argument of type aT → N is a measure on the input to bound the number
of recursive calls, and the argument of type rT is the default value to be returned
when no more recursive calls are allowed.

We only need one lemma about the recursion operator, namely that the opera-
tor satisfies the usual fixpoint equation provided that the functional it is applied to
calls its argument only on smaller arguments in the desired domain of the function
(here, CK4F).4 That is, we have the following lemma:

Fix eq : ∀ (aT rT : Type) (P : aT → Prop) (x0 : rT) (m : aT → N)
(F : (aT → rT) → aT → rT),
(∀ (f g : aT → rT) (x : aT),
P x → (∀ y : aT, P y → m y < m x → f y = g y) → F f x = F g x) →

∀ x : aT, P x → Fix x0 m F x = F (Fix x0 m F) x

While its proof is straightforward, this lemma is useful in that it allows us to
abstract from the fact that we are using bounded recursion (i.e., neither the default
result nor the recursion on N are visible in the proofs).

We now define the extraction function using the recursion operator. The various
cases of the definition roughly correspond to the cases outlined in Figure 7. The
main difference is that in case (a), rather than partitioning the graph as shown in
the picture, we only identify a single nontrivial bag or a single proper checkpoint
between input and output. This is sufficient to make recursive calls on smaller
graphs. In the case where input and output coincide (case (c)), we relocate the
output and proceed recursively. This requires a measure that treats graphs with
shared input and output as larger than those with distinct input and output:

Definition 9.1 Let G = 〈〈V,E, s, t, l〉, ι, o〉 be a 2p-graph. The measure of G is 2|E|

if ι 6= o and 2|E|+ 1 if ι = o.

The term extraction function is then defined as

t , Fix 1measure F

where the definition of F is given in Figure 9. This definition makes use of a number
of auxiliary constructions which we define below. For a set of vertices U and a set
of edges E (of some graph G) such that {s(e), t(e)} ⊆ U for all e, the subgraph of G

4 To be precise, F may call its argument on anything. However, the result of F may only
depend on calls to smaller arguments in the domain.

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_def.html#term_of_measure
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1: Definition F(t : 2p-graph → term)(G : 2p-graph) ,
2: let 〈〈V,E′, s, t, l〉, ι, o〉 := G in

3: if ι = o then

4: let E := E({ι}) in

5: if E = ∅ then

6: if pick(components (V \ {i})) is SomeC then

7: dom(t(redirectC)) ‖ t(G[C])
8: else 1
9: else (* E 6= ∅ *)

10:
(f

e∈E tm(e)
)

‖ G[V,E]

11: else (* i 6= o *)
12: if E(JιK{ι,o}) = ∅ ∧ E(JoK{ι,o}) = ∅ ∧ cp ι o = {ι, o} then

13: let P := components ( Kι; oJ ) in

14: let E := E({ι, o}) in

15: if E = ∅ then

16: if pickP is SomeC then

17: t(component(C)) ‖ t(G[C])
18: else 1 (* never reached *)

19: else (* E 6= ∅ *)
20: if P = ∅ then

21:
f
e∈E tm(e)

22: else

23:
(f

e∈E tm(e)
)

‖ t(G[V,E])

24: else (* nontrivial ι or o-bag or proper checkpoint between ι and o *)
25: if E(JιK{ι,o}) 6= ∅ ∨ E(JoK{ι,o}) 6= ∅ then

26: t(G[ι])·t(G[ι, o])·t(G[o])
27: else

28: if pick (cp ι o \ {ι, o}) is Some z then

29: t(G[ι, z])·t(G[z])·t(G[z, o])
30: else 1 (* never reached *)

Fig. 9: The term extraction function

with vertices U and edges E is written G[U,E]. We write E(U) for the set of edges
with source and target in U and the induced subgraph for U , written G[U ], is defined
as G[U, E(U)]. For 2p-graphs G, G[U ] and G[U,E] are only defined if {ι, o} ⊆ U . In
this case, G[U ] and G[U,E] have the same input and output as G.

When instantiating the definitions above, U will sometimes be an interval or a
bag. In this case, the intervals and bags are computed on the weak skeleton of G
(not the strong skeleton). For a given 2p-graph G = 〈G′, ι, o〉, we also define:

components(U) , {C | C connected component of U in the skeleton of G}

component(C) , G[C ∪ {ι, o}]

redirect(C) ,〈G′[C ∪ {ι}], ι, x〉 where x is some neighbor of ι in C

G[x, y] ,〈G′[Jx; yK , E(Jx; yK) \ (E({x}) ∪ E({y})]), x, y〉

G[x] ,〈G′[JxK{ι,o}], x, x〉

tm(e) ,

{

l(e) s(e) = ι ∧ t(e) = o

l(e)◦ otherwise

Note that component(C) is obtained as an induced subgraph of G whereas the other
constructions are obtained as subgraphs of G′ (with new inputs and outputs).
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Before we can establish properties of t, we need to establish that all (relevant)
calls to t in F are made on CK4F graphs with smaller measure.

Lemma 9.2 Let t, t′ be functions from graphs to terms. If t and t′ agree on all CK4F

graphs with measure smaller than a CK4F graph G, then F tG = F t′G.

The proof of this lemma boils down to a number of lemmas for the various branches
of F. For each recursive call, we need to establish both that the measure decreases
and that the graph is indeed CK4F. When splitting of a parallel component (line
17), Lemma 8.9 ensures that there are at least two nonempty components, thus
ensuring that the remainder of the graph is both smaller and connected. Note
that the case distinction in line 20 is required since if P = ∅, removing the ιo-edges
disconnects the graph (the remaining graph would be isomorphic to ⊤). In the
case where there is a proper checkpoint z between input and output (line 29),
Lemma 8.10 ensures that the strong skeletons of G[ι, z] and G[z, o] are K4-free.

As a consequence of Lemma 9.2, we obtain:

Lemma 9.3 Let G be CK4F. Then tG = F tG.

We finally show that interpreting the term extracted from a 2p-graph G yields
a graph that is isomorphic to G. Together with the formal proof of Thm 7.4, this
is where the difference of what one would find in a detailed paper proof and what
is required in order to obtain a formal proof is greatest: the various isomorphisms
have to be presented explicitely in the formal proof while they are left to the reader
in a paper proof.

The extraction function decomposes the graph into smaller graphs in order to
extract a term. The interpretation of this term then joins the graphs extracted
by the recursive calls back together using the graph operations ‖ and ·. We need
to establish that the decomposition performed during extraction is indeed correct
(i.e., that no vertices or edges are lost or misplaced). This requires establishing a
number of additional isomorphism properties.

Among others, we establish the following isomorphism lemmas:

Lemma 9.4 Let G = 〈G′, ι, o〉 such that ι 6= o and the skeleton of G is connected.

Then G ≃ G[ι]·G[ι, o]·G[o].

Lemma 9.5 Let G = 〈G′, ι, o〉 such that E(JιK{ι,o}) = ∅, E(JoK{ι,o}) = ∅, and ι 6= o,

and let z ∈ cp ι o \ {ι, o}. Then G ≃ G[ι, z]·G[z]·G[z, o].

Lemma 9.6 Let G = 〈G′, ι, o〉 with E({ι, o}) = ∅ and let C ∈ components({ι, o}).
Then G ≃ component(C) ‖G[C].

For the following, let Ex,y , {e | s(e) = x, t(e) = y}.

Lemma 9.7 Let G = 〈V,E, s, t, l〉, let x, y : G and let E′ , Ex,y ∪ Ey,x Then G ≃

G[{x, y} , E′] ‖G[V,E′].

Theorem 9.8 Let G be CK4F. Then g(tG) ≃ G.

Proof By induction on the measure of G. We use Lemma 9.3 to unfold the definition
of t. Each of the cases follows with the induction hypothesis (using the lemmas
underlying the proof of Lemma 9.2 to justify that that the induction hypothesis
applies) and some isomorphism lemmas (e.g., Lemmas 9.4 to 9.7). ⊓⊔

Note that Lemma 9.6 justifies both the split in line 7 and the split in line 17 (in
the latter case Kι; oJ = {ι, o}).

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_def.html#term_of_rec_eq
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_def.html#term_of_eq
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_iso.html#split_pip
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_iso.html#split_cp
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_iso.html#split_component
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_iso.html#split_io_edges
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_iso.html#term_of_iso
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10 Handling disconnected graphs

Once we have obtained terms for graphs that are CK4F, it is straightforward
to extend this result to (possibly) disconnected graphs. We define a function t⊤

extracting terms from arbitrary 2p-graphs with K4-free strong skeleton.

Definition 10.1 If x : G, we write Gx for the subgraph induced by the connected
component of x (in G) with input and output set to x. We slightly abuse notation
and also write Gx for the underlying set of vertices of G. We then define:

t⊤(G) :=











⊤·t(Gx)·⊤ ‖ t⊤(G[Gx]) x /∈ Gι ∪Go

t(Gι)·⊤·t(Go) ι and o disconnected

t(G) otherwise

The three cases are to be read as ordered. That is, if there exists some x /∈ Gι∪Go

we arbitrarily choose one; if not, we check whether ι and o disconnected and make
the appropriate calls to t. The function t⊤ terminates since G[Gx] has fewer vertices
than G.

Theorem 10.2 Let G be a 2p-graph with K4-free strong skeleton. Then g(t⊤(G)) ≃ G.

Proof By induction on |G|. If G has some component C containing neither ι nor o,
it suffices to show ⊤·G[C]·⊤ ‖C[C] ≃ G, which follows with Lemma 7.3. Similarly,
we have Gι · ⊤ · Go ≃ G whenever Gι and Go are distinct and there are no other
components. ⊓⊔

Recall that g(u) has treewidth at most two for all terms u (Theorem 7.7).
Hence, Theorem 10.2 provides an alternative proof of Theorem 5.10. Note how-
ever, that the two theorems share essential constructions. As noted in Section 8,
Menger’s Theorem and the construction of K4 from three independent paths (Fig-
ure 5) are shared between the two results (cf. Lemmas 5.2 and 8.9).

11 Directions for future work

We presented a library for graph theory built using Coq and the mathemati-
cal components library. The library contains formalizations of several interdepen-
dent results: Menger’s Theorem [23,18], the excluded-minor characterisation for
treewidth two [13], and a characterization of K4-free 2p-graphs through the syntax
of 2p-algebra [22,12].

Concerning the completeness of the axioms of 2p-algebras for isomorphism of
2p-graphs (†) [22], there is still substantial work to be done. Formalising the proof
from [22] was our initial motivation, and while developing the formalization we
found various simplifications. As described here, we have found that we can use
Menger’s Theorem to simplify the analysis of checkpoint graphs. However, we also
found a completely different proof for the completeness of the axioms [12]. In [12],
extraction of terms from graphs is done using a terminating and confluent rewrite
system on term-labeled 2p-graphs. This approach is much simpler on paper. In
particular, it does not reprove the excluded-minor characterization for treewidth-
two. However, formalizing it brings its own challenges: we need to find an efficient

https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_top.html#term_of_rec'
https://perso.ens-lyon.fr/damien.pous/covece/graphs/coq/graphs.extraction_top.html#term_of_iso'
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way of representing the rewriting system, whose confluence needs to be established
in order to obtain completeness of the axioms.

The library keeps evolving, and many results from graph theory would be
interesting to formalise as a next step. The excluded-minor characterizations of
planar graphs [21] and outer-planar graphs [8] are natural candidates.

A different direction would be to use the library for the verification of graph
algorithms. For instance, we do not currently provide functions for computing the
treewidth of a graph or to check for graph isomorphisms. In the same vein, it
would be nice to develop certified implementations of standard graph algorithms.
It should be noted that the definitions in the library are geared towards declarative
proofs and not towards the extraction of efficient code. We envision verifying algo-
rithms in this abstract setting and then applying algorithmic and data refinements
along the lines of [5].

Acknowledgements. We would like to thank Guillaume Combette, with whom we
developped the first version of the library. We are also grateful to Nicolas Trotignon
for his wonderful insights on graph theory.
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5. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free! In: G. Gonthier, M. Norrish

(eds.) Certified Programs and Proofs (CPP 2013), Lecture Notes in Computer Science,
vol. 8307, pp. 147–162. Springer (2013). DOI 10.1007/978-3-319-03545-1 10. URL https:

//doi.org/10.1007/978-3-319-03545-1_10
6. Courcelle, B.: The monadic second-order logic of graphs. I: Recognizable sets of finite

graphs. Inf. and Comp. 85(1), 12–75 (1990). DOI 10.1016/0890-5401(90)90043-H
7. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A

Language-Theoretic Approach, Encyclopedia of mathematics and its applications, vol. 138.
CUP (2012)

8. Diestel, R.: Graph Theory (2nd edition). Graduate Texts in Mathematics. Springer (2000)
9. Doczkal, C.: Short proof of Menger’s Theorem in Coq (Proof Pearl) (2019). URL https:

//hal.archives-ouvertes.fr/hal-02086931. Working paper or preprint
10. Doczkal, C., Combette, G., Pous, D.: Coq formalization accompanying this paper. https:

//perso.ens-lyon.fr/damien.pous/covece/graphs/
11. Doczkal, C., Combette, G., Pous, D.: A formal proof of the minor-exclusion prop-

erty for treewidth-two graphs. In: J. Avigad, A. Mahboubi (eds.) Interactive The-
orem Proving (ITP 2018), LNCS, vol. 10895, pp. 178–195. Springer (2018). DOI
10.1007/978-3-319-94821-8 11. URL https://doi.org/10.1007/978-3-319-94821-8_11

12. Doczkal, C., Pous, D.: Treewidth-two graphs as a free algebra. In: MFCS, LIPIcs, vol.
117, pp. 60:1–60:15. Dagstuhl (2018). DOI 10.4230/LIPIcs.MFCS.2018.60

13. Duffin, R.: Topology of series-parallel networks. Journal of Mathematical Analysis and
Applications 10(2), 303–318 (1965). DOI 10.1016/0022-247X(65)90125-3

14. Dufourd, J., Bertot, Y.: Formal study of plane Delaunay triangulation. In: ITP, LNCS,
vol. 6172, pp. 211–226. Springer (2010). DOI 10.1007/978-3-642-14052-5 16

15. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: NCAI,
pp. 4–9. AAAI Press / The MIT Press (1990)

https://doi.org/10.1093/comjnl/38.2.152
https://doi.org/10.1093/comjnl/38.2.152
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-319-03545-1_10
https://hal.archives-ouvertes.fr/hal-02086931
https://hal.archives-ouvertes.fr/hal-02086931
https://perso.ens-lyon.fr/damien.pous/covece/graphs/
https://perso.ens-lyon.fr/damien.pous/covece/graphs/
https://doi.org/10.1007/978-3-319-94821-8_11


Graph Theory in Coq: Minors, Treewidth, and Isomorphisms 29

16. Freyd, P., Scedrov, A.: Categories, Allegories. NH. Elsevier (1990)
17. Gonthier, G.: Formal proof — the four-color theorem. Notices Amer. Math. Soc. 55(11),

1382–1393 (2008)
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