
HAL Id: hal-02127691
https://hal.science/hal-02127691

Submitted on 3 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oblivious Robots on Graphs: Exploration
David Ilcinkas

To cite this version:
David Ilcinkas. Oblivious Robots on Graphs: Exploration. Paola Flocchini; Giuseppe Prencipe; Nicola
Santoro. Distributed Computing by Mobile Entities, 11340, Springer, pp.218-233, 2019, Lecture Notes
in Computer Science, 978-3-030-11071-0. �10.1007/978-3-030-11072-7_9�. �hal-02127691�

https://hal.science/hal-02127691
https://hal.archives-ouvertes.fr


CHAPTER 1

Oblivious Robots on Graphs: Exploration

David Ilcinkas

CNRS, LaBRI, Univ. Bordeaux, Talence, France
david.ilcinkas@labri.fr

Homepage: https://www.labri.fr/perso/ilcinkas/

Abstract. This chapter focuses on the problem of exploring a graph by
a team of mobile robots endowed with vision. More precisely, we consider
here mobile robots operating under the Look-Compute-Move paradigm in
discrete environments modeled as graphs. The goal for these robots is to
explore the graph in which they are, that is to visit all vertices of the
graph.

Keywords: Oblivious robots · Graph exploration · Terminating exploration ·
Exclusive perpetual exploration

1 Introduction

In this chapter, we consider mobile entities, called robots, operating under the
Look-Compute-Move paradigm. An activated robot starts first by taking an in-
stantaneous snapshot of its environment (the Look phase), then it computes
whether and where it wants to move (the Compute phase), and finally it moves
to the decided new position (the Move phase). Robots operating under the Look-
Compute-Move paradigm are classically considered in continuous environments,
usually the plane. The studies on these robots were however recently extended to
the case of discrete environments, modeled as graphs (see [6] and [24] for short
surveys on the subject). This chapter focuses on these discrete environments.
One motivation to consider discrete environments is to get rid of possibly an-
noying geometric considerations in order to focus on issues directly related to
the weaknesses of the robots (anonymity, obliviousness, etc.), to the symmetries
of the environment, and to the asynchrony. Another motivation is more practical
and comes from the fact that vision sensors do not have an infinite precision.
Considering discrete environments thus acknowledges the fact that many vision
sensors output digital and thus discrete snapshots of the environment.

We consider in this chapter the graph exploration problem, in which the
robots have to visit every vertex. More precisely, two variants of the problem
were studied so far in the literature (in the considered model). The first variant
is called terminating exploration and requires that, first, each vertex is visited
by at least one robot, and second, that eventually all robots stop moving. The
second variant is called exclusive perpetual exploration and requires that, first,



each robot visits every vertex of the graph infinitely often, and second, that no
two robots traverse the same edge at the same time nor visit the same vertex
at the same time. Exploring a graph is a fundamental task in mobile robot
computing and can be used, for example, to search for a specific information,
or to discover and list all the services provided by the vertices. Exploration
(perpetual in particular) is also interesting for maintenance purposes, where the
robots can check forever whether the vertices are properly functioning. Finally,
the exclusivity property models the physical constraints that the robots may
have if, for example, they operate in environments with limited available space
that prevent them from crossing each other or being at the same place.

The chapter is structured as follows. Section 2 defines more precisely the
model and the problems, and gives a first simple preliminary result. Sections 3
and 4 respectively consider the terminating exploration and the exclusive per-
petual exploration problems. In both cases, known results from the literature
are presented, and then the usual tools and techniques used in these works are
summarized. Finally Section 5 discusses what concerns the correctness of the
results, while Section 6 concludes the chapter.

2 Model and preliminaries

2.1 Model

The environment. We model the environment as a simple undirected connected
graph G = (V,E). The number |V | of vertices is usually denoted n, while the
number |E| of edges is usually denoted m. The graph is assumed to be anony-
mous: neither vertices nor edges are labeled (or, equivalently, such labels cannot
be seen by the robots).

The robots. On this graph operate mobile entities called robots. They can move
from vertex to vertex via the edges of the graph. The robots are all anonymous
and identical, i.e. they all execute the same algorithm. They have no direct means
of communication. Unless otherwise specified, the robots will be assumed to be
oblivious: they do not have persistent memory. When several robots occupy the
same vertex, we say that there is a tower on this vertex.

The Look-Compute-Move cycle. The robots operate by repeatedly executing
Look-Compute-Move cycles. In the Look phase, a robot takes an instantaneous
egocentric snapshot of its environment. This includes the structure of the graph
around it, and the presence of robots on the seen vertices. The structure of the
snapshot will be detailed later. Note however that all robots are perceived on
vertices, not on edges. In the Compute phase, the robot decides whether to move
or not, and in the first case to which neighboring vertex. For oblivious robots,
this computation is solely based on the last snapshot. Finally, in the Move phase,
the robot moves to the chosen neighbor, or stays idle if it decided to do so. Moves
are considered instantaneous, which is consistent with the fact that robots are
seen on vertices in the snapshots. Note nevertheless that this model has been



shown equivalent to the model with continuous moves (but still considering that
robots are always seen on vertices), and this equivalence is certified using the
Coq proof assistant [1].

Timing assumptions. Different levels of asynchrony are classically considered in
the literature. In the fully synchronous model Fsync, all robots execute their
Look-Compute-Move cycles simultaneously. Differently speaking, at each round,
every robot executes its full Look-Compute-Move cycle. In the semi-synchronous
model Ssync, at each round, a non-empty subset of the robots, chosen by an
adversary, execute a full Look-Compute-Move cycle. Finally, in the asynchronous
modelAsync, the timing between the different phases of the Look-Compute-Move
cycles performed by the different robots is arbitrary, with the only constraint
that, for each robot, the time between two consecutive phases is finite (but
possibly unbounded). As a consequence, a move can be performed based on an
outdated snapshot in this model.

The snapshot. During the Look phase, a robot perceives the structure of the
graph and the presence of robots around it within a visibility radius ρ given
by the model. More precisely, the snapshot taken by a robot consists of the
rooted subgraph induced by the vertices at distance at most ρ from the vertex
occupied by the robot and, for each seen vertex, of the perceived number of
robots on it. The accuracy of the perceived number of robots is given by another
model parameter called the multiplicity detection. If weak multiplicity detection
is assumed, a robot is only able to distinguish between the presence of “zero”,
“one”, or “more than one” robots on a seen vertex. On the contrary, strong
multiplicity detection assumes that a robot knows the exact number of robots
that are present on a seen vertex. Orthogonally, multiplicity detection can be
either local or global. In the case of local multiplicity detection, a robot only
knows the multiplicity of the vertex it occupies (whether in the weak or the
strong sense), while in the case of global multiplicity detection, a robot knows
the multiplicity of all vertices.

Configurations, Views, and Symmetries. The description of the graph, together
with the indication of the exact number of robots located on each vertex, con-
stitute a configuration. The view from vertex u is any rooted graph isomorphic
to the subgraph induced by the vertices at distance at most ρ (the visibility
radius) from u, and the corresponding perceived number of robots on these ver-
tices (depending on the multiplicity detection assumption). In the Look phase,
a robot is given a view from the vertex it is located on. Therefore, symmetries
of the graph are somehow still present in the snapshot. Indeed, for example in
a ring, if a robot lies on an axis of symmetry of the configuration, then it will
not be able to differentiate one direction from the other. Therefore, if it decides
to move to a neighboring vertex, the actual move will be to a neighbor chosen
by the adversary. More generally and more formally, we say that two vertices v
and v′ are similar with respect to u if there exists a view from vertex u such
that there exist two vertices w and w′ of the view and two isomorphisms φ and



φ′ such that φ(w) = φ′(w) = u, φ(w′) = v, and φ′(w′) = v′. Intuitively, v and v′

are similar with respect to u if v and v′ are indistinguishable for a robot located
in u (taking into account the visibility radius and the multiplicity detection). If
a robot decides in the Compute phase to move to a vertex v, then in the Move

phase it will actually move to any vertex v′ similar to v with respect to the robot
current position, and the choice of v′ is made by the adversary.

Terminating exploration. A team of robots solves the problem of terminating
exploration in a graph family G if, for any graph G ∈ G, for any behavior of
the adversary controlling the asynchrony and the choices between similar neigh-
bors, and starting from any initial configuration without towers, each vertex of
the graph is visited by at least one robot and the robots eventually reach a
configuration in which no robots ever move.

Exclusive perpetual exploration. A team of robots solves the problem of exclusive
perpetual exploration in a graph family G if, for any graphG ∈ G, for any behavior
of the adversary controlling the asynchrony and the choices between similar
neighbors, and starting from any initial configuration without towers, each vertex
of the graph is visited by every robot infinitely often and the exclusivity property
is satisfied. This property is satisfied if no two robots are ever located at the same
vertex at the same time, and no two robots ever cross the same edge at the same
time in opposite directions.

2.2 Preliminaries

Let us first start by giving some justifications about the choice of the set of initial
configurations, which is defined as the set of configurations without towers for
both problem variants. First, note that the exclusivity property of the exclusive
perpetual exploration problem is violated in any configuration with at least one
tower. The set of configurations without towers is thus the maximal set of ini-
tial configurations that is meaningful for this problem. Concerning terminating
exploration, note that its definition implies the existence of a configuration in
which all robots decide not to move. If not all vertices are occupied by a robot,
then this configuration must not be an initial configuration for the problem to
be solvable, if the robots are oblivious. Differently speaking, for terminating
exploration, the set of initial configurations must not contain all possible config-
urations when the robots are oblivious and are less than the number of vertices
(which is the case in all the papers of the literature considered here). Taking as
initial configurations the configurations without towers is thus also rather nat-
ural for this problem. Finally, one may also look for universal algorithms [23].
Given a number of robots in a specified model, a universal algorithm is an al-
gorithm solving the problem from any initial configuration which is solvable in
the considered setting.

Most papers in the literature on the subject concern specific families of
graphs. The most commonly studied family is the family of all rings. Other
studied graphs are the trees, the grids, the tori and some variations of these



graphs. Given such a family, the usual focus is then on the smallest and/or
largest exploring teams, that is on the numbers κ−(n) and κ+(n) defined as the
respectively smallest and largest numbers of robots that can explore any n-vertex
graph of the given family. In the following, the considered family and exploration
type will be clear from the context.

We now present a first simple technical result, inspired from Lemma 2.1
in [20], which allows nevertheless to already draw some conclusions on the value
κ−(n) in the case of the rings.

Lemma 1. Let n ≥ 3 and k < n/2 be two positive integers such that k di-
vides n. Then both terminating exploration and perpetual exclusive exploration
of an n-vertex ring are not deterministically solvable by a team of k (possibly
non-oblivious) robots, even with full visibility, global strong multiplicity detection,
and in the Fsync model.

Proof. Let us fix any algorithm for a team of k robots. Consider as initial con-
figuration a configuration in which the k robots are regularly scattered around
the ring. The configuration being perfectly periodic, all robots have the same
view. If a robot decides to move to a neighbor (both neighbors are similar with
respect to the robot’s current position), then all robots decide to move (they
have the same initial state), and the adversary makes them move in the same
direction. Therefore, the configuration stays periodic and all robots still have the
same state (which may be different from the initial state if the robots are non-
oblivious). We make the adversary continue to act that way. More specifically,
the adversary makes them move in some fixed direction for each odd round, and
in the other direction for each even round (forgetting about rounds in which the
robots decide to stay idle). In such an execution, and until they decide to stay
idle, each robot keeps going back and forth between its initial location and one
specific neighbor. Since n/k ≥ 3, there exist k vertices which are never visited
by the robots. Thus exploration (whatever its type) is not solved by this algo-
rithm. ut

As a corollary, a ring of size n equal to three times the least common multiple
of 1, 2, · · · , k−1 cannot be deterministically explored by less than k robots. Some
calculations using the Prime Number Theorem show that k = Θ(log n) in that
case, see [20]. Therefore, there exists a positive constant c such that, for infinitely
many n, we have κ−(n) ≥ c log n for deterministic algorithms.

3 Exploration with stop

In this section, we will almost only consider oblivious robots, that is robots using
in the Compute phase only the snapshot taken in the preceding Look phase.
In particular, the robots do not have access to time, and thus they do not
know whether this is the beginning of the execution or not when they see a
configuration without towers.



3.1 Known results

In the rings.

As already noted in Section 2.2, and already proven by Flocchini et al.
in [20], there exists a positive constant c such that, for infinitely many n, we
have κ−(n) ≥ c log n for deterministic algorithms. This in fact remains true
for probabilistic algorithms [15], but only for the asynchronous model Async.
Indeed, in the semi-synchronous model Ssync, a constant number of robots,
namely 4 probabilistic robots, are necessary and sufficient to solve the terminat-
ing exploration problem in any n-vertex ring with n > 4, see [15].

Let us now focus on deterministic algorithms. The lower bound 4 on κ−(n)
still holds in Ssync (in Fsync, only 3 is a clear lower bound for every n, in
particular when n is odd). When n is even, κ−(n) ≥ 5 in the Ssync model [22].
These values are somehow optimal. Indeed, 4 robots can explore the rings of odd
size in Ssync [21], and provided that n is not a multiple of 5, a team of 5 robots
can explore the n-vertex ring even in the Async model [22]. As pointed out,
κ−(n) may be logarithmic in n for infinitely many values of n, but this cannot
go worse in the sense that κ−(n) is always in O(log n). Indeed, for any k ≥ 17
that is co-prime with n, a team of k robots can explore the n-vertex ring [20].

Note that all the results presented here so far for the case of the rings are
strong with respect to multiplicity detection in the following sense. All lower
bounds (impossibility results) are valid even with global strong multiplicity de-
tection, while all upper bounds (algorithms) are assuming global weak multi-
plicity detection. Moreover, note that the results are valid for sufficiently large
values of n, and may vary for small values of n.

Limited visibility has also been considered, for deterministic algorithms, and
in the case of global (up to the visibility radius) strong multiplicity detection.
When the visibility radius ρ is 1, even a limited amount of asynchrony renders
the problem impossible to solve: there are no deterministic algorithms working
in the Ssync model, for any number k < n of robots [11]. In the same paper,
the authors show that 5 robots are necessary in the Fsync model, and they
present an algorithm for 5 robots working when all robots are on consecutive
vertices in the initial configuration. If robots however have 1 bit of persistent
memory which is visible/accessible by any robot within their visibility radius (the
LUMINOUS model), then three (in Fsync) or four (in Ssync and Async)
robots are necessary and sufficient to solve terminating exploration [23] (for spe-
cific initial configurations). These numbers are reduced by one for (non-exclusive)
perpetual exploration.

The cases ρ = 2 and ρ = 3 are considered by Datta et al. in [12]. For ρ = 2,
there exists an algorithm in the Async model for 7 robots when all robots are
on consecutive vertices in the initial configuration. The number of robots can be
reduced to 5 when ρ = 3. Finally, for ρ = 3, there exists an Async algorithm
for 7 robots that can handle more general initial configurations: the robots start
in a position such that they are “connected by vision” but need not to be on
consecutive vertices.



In the trees.
The trees [18], and the sub-case of the lines [19], have only been considered

in the deterministic setting and assuming global weak multiplicity detection.
In trees, the absence of port numbers (the anonymous graph assumption)

makes empty leaves having the same parent indistinguishable (they are similar
with respect to the parent). Therefore, in order to explore sibling leaves despite
any choice of the adversary concerning similar vertices, at least one robot must
be sent to each leaf attached to a given parent. If a vertex has more than two
leaves attached to it and all of them are occupied by robots, then at least two
of them are similar, having both either a single robot or a tower. The adversary
can thus make these robots merge if the algorithm decides to move them. There-
fore, one can prove that Ω(n) robots are necessary in some trees (at least in
complete ternary trees) in the Ssync model. Note that this lower bound heavily
relies on the weak multiplicity assumption. For trees of maximum degree 3, less
robots may be used: O(log n/ log log n) robots are sufficient in such trees, even
in the Async model. This number is actually necessary for some trees because
Ω(log n/ log log n) robots are necessary to explore complete binary trees, even
with global strong multiplicity detection and in the Fsync model.

In lines, symmetries are much more limited, and the solvable cases are fully
characterized. A team of k < n robots can solve terminating exploration in the
n-vertex line if and only if k = 3, or k ≥ 5, or k = 4 and n is odd. The lower
bounds are proved in the Ssync model while the upper bounds hold even in the
Async model.

In the grids and tori.
The situation for grids [13] and tori [14] resembles the situation for lines and

rings.
In grids, where symmetries are limited, we have κ−(i, j) = 3 for all (i, j)-

grids (except the (2, 2)-grid and the (3, 3)-grid for which we have κ−(2, 2) = 4
and κ−(3, 3) = 5). The lower bound holds even for probabilistic algorithms, in
the Ssync model, and assuming global strong multiplicity detection, while the
algorithm proving the upper bound is deterministic, works in the Async model,
and assumes global weak multiplicity detection.

Tori have much more symmetries and thus require more robots. Indeed,
κ−(i, j) ≥ 5 for deterministic algorithms solving the terminating exploration
problem in (i, j)-tori. Allowing probabilistic algorithms, we have κ−(i, j) = 4
(for sufficiently large tori). The lower bounds assume global strong multiplicity
detection while the upper bound assumes global weak multiplicity detection. All
results for tori are proved in the Ssync model.

In the general graphs.
The case of arbitrary graphs has been considered by Chalopin et al. in [10].

More precisely, the paper considers arbitrary graphs with port numbers, that is
graphs for which, at each vertex, the incident edges are distinguished by local
port numbers from 1 to the degree of the vertex. The class Hk is then defined



as the class of rigid configurations of k robots, i.e. the class of configurations
of k robots (the graphs with port numbers and the positions of the k robots)
such that there is no non-trivial automorphism preserving the port numbers
and the robots locations. Chalopin, Flocchini, Mans, and Santoro studied the
terminating exploration problem in the Async model in these classes, assuming
global weak multiplicity detection. They proved that exploration is impossible
for k < 3 robots, they characterized the graphs that are explorable in H3, and
they show that all graphs are explorable in H4 and in every Hk with an odd
k > 3. The case of even k > 4 is left open but can be reduced to the existence
of a gathering algorithm for Hk.

3.2 Usual tools and techniques

Impossibility results.

The lower bounds on the number of robots that is necessary to solve termi-
nating exploration are of similar flavor for the different considered topologies,
and use the following arguments.

First of all, since the specification of the problem requires termination, there
must exist a configuration in which no robot decides to move. When k < n, and
because of obliviousness, this configuration cannot be an initial configuration,
and thus at least one tower must be formed. This already proves that a single
robot is never sufficient (if n > 1).

Then note that any suffix of a valid execution must remain valid as long as
the first configuration of the truncated execution has no towers. Indeed, such
a configuration can be an initial configuration, and, because of obliviousness,
these two executions (the initial one and the truncated one) both respect the
algorithm. Exploration must thus be performed after a tower is formed and
keeping at least one tower in each configuration.

The next observation is that towers are difficult to move in asynchronous
environments. Indeed, even in the semi-synchronous Ssync model, if the robots
in a tower decide to move, then only one may be activated and the tower may be
destroyed. As this is often the case (in particular for a small number of robots),
let us assume that it is impossible to move towers. Therefore exploration must be
performed by at least another robot and thus 2 robots are not sufficient either.

In order to obtain a larger lower bound, one generally needs a further obser-
vation about the suffix of the execution in which all configurations contain at
least one tower. This observation is the fact that any two configurations in this
suffix must be distinguishable from the point of view of the robots. Indeed, if this
is not the case, the adversary can make the execution periodic by repeating the
same choices, and the termination requirement is not fulfilled. Besides, at each
step of the execution, at most k new vertices are explored, and possibly even
less if some robots are blocked in a stationary tower. Therefore, there must exist
sufficiently many distinguishable configurations with a tower for the problem to
be solvable with k robots. Such a counting argument is generally sufficient to
obtain rather good lower bounds.



Algorithmic techniques.

The algorithms presented in the different papers also have some similari-
ties. Indeed, as previously seen, exploration must be performed after a tower is
formed, and at least a tower must be kept until termination. Therefore, the algo-
rithms for terminating exploration by oblivious robots generally consist of three
phases: a set-up phase in which no tower is created but a special configuration
is reached, a tower-creation phase in which a tower is created, and finally the
exploration phase in which some of the robots explore the graph.

The first phase is usually the most complex one. Indeed, this phase starts
from an arbitrary initial configuration while the two other phases start from
specific configurations (or classes of configurations). The special configurations
that the robots try to reach in the set-up phase are generally configurations
without towers where robots are gathered next to each other. In the rings, a
special configuration is typically a configuration in which all robots form a block
by positioning themselves on consecutive vertices. In the trees, all robots go
toward the leaves. In the grids, the robots go towards one of the corners.

Reaching such a special configuration is generally highly non trivial, in par-
ticular because robots are oblivious. This constraint prevents the robots from
remembering what their plan was at the beginning of the execution. Intuitively,
if one constructs a directed graph whose vertices are the possible configurations
and in which there is an arc between two configurations if one can reach the
second configuration from the first one by applying one step of the algorithm,
then this directed graph must be acyclic. This may be not too hard to achieve
in graphs for which there are no non-trivial automorphisms, but it can be very
tricky in graphs with a lot of symmetries.

The issue with symmetries is that it may be hard, or even impossible, to
break them. Therefore, an algorithm may be forced to schedule several robots
having the same view of the environment to move in the current configuration.
Combined with the asynchrony, several different configurations can be obtained
depending on the choices made by the adversary. In the ring for example, it may
happen that from a symmetric configuration only one robot is scheduled to move
by the adversary and the obtained configuration is again symmetric but with a
different axis of symmetry. Even worse, in the asynchronous Async model, one
robot may decide to move but the adversary decides to delay this move while
the other robots are progressing. The delayed move is said to be pending in this
case. When this move is finally allowed by the adversary, it does not necessarily
correspond to the current situation and may create issues. It is thus often very
difficult to design an algorithm that avoids cycling among the configurations.

One can nevertheless express two guidelines that algorithm designers should
try to follow. The first one is to minimize the numbers of robots that decide to
move in a given configuration. Typically, in an asymmetric configuration, the
algorithm should designate a single robot to move. The second guideline could
be expressed as follows. In a given configuration, if a robot may have a pending
move (for example because the current configuration may come from a symmetric
configuration where several robots with the same view were designated to move),



then the algorithm should choose this robot to move. Indeed, this would force
the adversary to execute the pending move.

Once a special configuration is reached, it is however rather easy to form a
tower, since robots are located on contiguous vertices. In rings for example, the
robot in the middle of an odd block of robots can simply move in an arbitrary
direction to form a tower with its neighbor.

In the exploration phase, usually just a few robots, 1 or 3, are actually ex-
ploring the graph. The other robots are used to keep track of the process and
to break symmetries. In rings, grids and tori, a tower and a few stationary
robots are sufficient to break symmetries. The logarithmic number of robots
that may be needed in some rings, see Section 2.2, is only due to the fact that
smallest numbers of robots allow periodic configurations. On the contrary, the
Θ(log n/ log log n) robots used in the trees are really used by the algorithm. In-
deed, in very regular trees (typically the complete binary trees), there are many
a priori indistinguishable leaves and the robots need a way to distinguish them.
For this purpose, the robots maintain a counter that stores the number of ex-
plored leaves. This allows the exploration team (two robots forming a tower, and
an isolated robot) to know which leaf is the next one to explore. This counter
is visually implemented in the tree by locating the Θ(log n/ log log n) robots at
carefully chosen positions.

4 Exclusive perpetual exploration

In this section, we will only consider deterministic algorithms. Recall that con-
trary to terminating exploration, exclusive perpetual exploration requires that
each vertex is visited by every robot, and so infinitely often. Moreover, the ex-
clusivity property forbids the robots to cross each other on an edge or to be on
the same vertex at the same time.

4.1 Known results

With memory.

The exclusive perpetual exploration problem has first been investigated in
the case of robots having memory, in the fully synchronous Fsync model. In [3],
given any graph, a labeled mobility tree is defined and a parameter q is associated
to it. The authors then prove that κ+(n) ≤ n − q for any n-vertex graph of
associated parameter q, even with infinite visibility radius.

It turns out that this bound is tight for the partial grids with sense of direc-
tion. These are subgraphs of the grids such that edges are locally labeled by the
cardinal points N, S, E, W. More precisely, a graph can be explored if and only
if the number k of robots is less than or equal to this bound n− q, in the case of
an infinite visibility radius. For a null visibility radius, the problem is impossible
to solve. For visibility radius 1, the problem is solvable if and only if k ≤ n− q
except when q = 0, in which case the condition is k ≤ n− 1, see [4].



In the rings.
As already noted in Section 2.2, exclusive perpetual exploration cannot be

solved when the number k of robots divides the number n of vertices. Since
towers are not permitted, the same reasoning can be applied to configurations in
which vertices without robots are regularly spaced. Therefore, the problem for
k = n − k′ robots cannot be solved as well when k′ divides n, see [5]. Because
of symmetries and of the exclusivity property, the problem cannot be solved
either when the number of robots is even. All these results hold even in the
Fsync model. Finally, in the same paper, the authors claim that for n and k co-
prime, in the Async model, κ−(n) = 3 if n ≥ 10 (and is larger otherwise), and
κ+(n) = n− 5 (for k odd). The algorithm in [5] justifying κ−(n) = 3 is actually
not correct for n = 10, but a corrected version is given in [9], see Section 5.2 for
details.

Focusing on rigid initial configurations, i.e. on initial configurations such
that there is no non-trivial automorphism preserving the robots locations, the
situation is a bit different. In [17], the authors present an algorithm for k robots
solving the exclusive perpetual exploration problem in n-vertex rings in the
Async model when n ≥ 10 and 5 ≤ k ≤ n− 3, except for k = 5 and n = 10.

This latter case has been investigated by Bonnet et al. in [7], where a generic
method is proposed, and implemented, to list all possible protocols using only
rigid configurations of a given number k of robots in a given graph, in the semi-
synchronous Ssync model. The authors used this method to prove that exclusive
perpetual exploration is impossible for k = 5 robots in a ring of n = 10 robots.
The proof uses the full specification of the problem in the sense that, if one
relaxes the definition of the problem by allowing vertices to be visited by only
some robots and not all of them, then the problem becomes solvable for this case
(still in the Ssync model).

In the grids.
Similarly as for terminating exploration, exclusive perpetual exploration has

also been considered in grids [8]. Contrary to the papers considering the partial
grids with sense of direction, this paper considers grids without holes and without
any edge labels or port numbers (and thus without sense of direction), focuses
on oblivious algorithms, and assumes the Async model. The main result of the
paper is a proof that κ−(n) = 3 in all n-vertex grids having at least two rows and
two columns, except for the (2, 2)- and (2, 3)-grids in which exclusive perpetual
exploration is impossible for any k.

4.2 Usual tools and techniques

The labeled mobility tree and its associated parameter q.
We now describe in more details how the labeled mobility tree and its asso-

ciated parameter q are defined from any graph. Recall that this parameter q is
used to bound the maximal number of robots that can solve exclusive perpetual
exploration in a graph.



Consider any graph G. The first step is to label the vertices with labels from
the set {0, 1, 2} as follows. Label a vertex with 0 when it is of degree 2 and
it does not belong to any non-singleton bridge-less subgraph of G (i.e. it does
not belong to any 2-edge-connected component of G of size at least 2). Label a
vertex with 1 if it is a leaf of G or if it belongs to a non-singleton bridge-less
subgraph of G. Label a vertex with 2 in any remaining case.

The second step consists in compressing each maximal non-singleton bridge-
less subgraph of G (i.e. each non-singleton 2-edge-connected component of G)
into a single vertex with label 1. The obtained tree is called the labeled mobility
tree associated to G.

A mutual exclusion path in this labeled mobility tree is then a path whose
extremities have a label different from 0 but whose internal vertices (if they exist)
have label 0. The length of such a path is defined as the number of edges of the
path plus the number of extremities with label 2. The parameter q associated to
the labeled mobility tree, and thus to the graph G, is then simply the maximal
length of a mutual exclusion path.

Intuitively, a mutual exclusion path is a sequence of bridges of G acting as a
long bridge of the graph separating two parts of it. If a robot wants to move from
one part to the other (which it has to do infinitely often to solve the problem),
then it must traverse this long bridge without crossing or meeting any other
robot. This more or less explains why exclusive perpetual exploration cannot be
solved by more than n− q robots.

Algorithmic techniques for oblivious robots in rings and grids.
Similarly as for terminating exploration, an algorithm roughly defines a di-

rected graph of configurations. In the case of exclusive perpetual exploration,
instead of having a DAG (directed acyclic graph) pointing to a set of terminal
configurations (configurations without outgoing edges), the DAG points toward
some (generally just one) cycles of configurations achieving exploration. Differ-
ently speaking, the robots try to enter a cycle of configurations such that every
vertex is explored by every robot when this cycle of configurations is performed
forever.

In general grids with three robots for example, the robots gather towards a
corner and then two robots become more or less stationary, mainly acting as
symmetry breakers, while the third robot explores a large part of the grid (at
least half of it). When the explorer terminates its part, the robots are in the
same position as before but near the opposite corner and with permuted roles.
After six such phases, every robot has explored the whole grid.

In rings with three robots, the exploration is performed simultaneously by
all the robots. The purpose of the algorithm is to make the robots form a small
asymmetric pattern that moves along the cycle forever like a worm. More pre-
cisely, the basic pattern consists of two robots on consecutive vertices and the
third robot, marking the tail of the worm, a little bit further (two vertices are
left empty between the head and the tail). Let us denote such a pattern by 11001
(1 denotes an occupied vertex while 0 denotes an empty vertex). The worm is



then moved by moving repeatedly each robot at a time in one direction from
the head to the tail. Hence, from a pattern 11001, the pattern 101001 is formed,
then the pattern 110001, and finally the tail moves forming back the pattern
11001, but all robots are now shifted by one vertex in the same direction.

Obviously, as for terminating exploration, the difficult part is the initial phase
in which the robots have to deal with asynchrony and symmetries while forming
a predefined pattern of the exploration phase.

5 Correctness and related questions

As it is often the case in distributed computing, proving impossibility results
and the correctness of algorithms may be challenging. This section discusses the
related techniques used in the literature.

5.1 Hand-written proofs

Because of asynchrony and of the symmetries, many executions are possible given
an initial configuration and an algorithm. Proofs of correctness are thus often
based on a case-by-case analysis, usually rather tedious. This can also be the
case for impossibility proofs, where a wide variety of possible algorithms may be
explored. In both cases, this is especially true for small graphs, for which general
arguments may be more difficult to find.

The situation can sometimes be summarized by exhibiting a DAG (directed
acyclic graph) of configurations allowing to visualize the different cases and jus-
tifying the convergence to a specific configuration (or a class of configurations).
This may be convenient for small graphs but, again, may be intractable for
arbitrarily large graphs.

As a consequence, potential functions may also be used to prove convergence.
It is however not always simple to find such a potential function and one solution
consists in combining all these approaches. Typically, one can use a case-by-
case analysis to distinguish several classes of configurations, construct a directed
graph of accessibility among these classes and prove that this directed graph is
almost a DAG, except for few cycles for which a potential function allows to
prove that such a cycle is used a finite number of times.

Such a combined approach gives a proof in which one can have some confi-
dence, but even such proofs are prone to human errors. In particular, it is usually
very difficult to convince oneself that no tricky sub-cases have been forgotten.
This lack of confidence in human-written (and human-checked) proofs gave rise
in the recent years to papers using formal verification tools.

5.2 Formal verification

The first use of automated tools for studying the graph exploration problem in
the Look-Compute-Move paradigm concerns the exclusive perpetual exploration
of small rings [7]. As already mentioned in Section 4.1, a generic method is



proposed, and implemented, to list all possible protocols of a given number k
of robots in a given graph, in the semi-synchronous Ssync model. The authors
use this method to prove that exclusive perpetual exploration is impossible for
k = 5 robots in a ring of n = 10 robots, and to list all algorithms solving the
weaker version of the problem for the same setting (k = 5 and n = 10).

A more general formal verification tool was introduced a few years later by
Bérard et al [9]. This one is compatible with all three models of (a)synchrony,
and can handle both variants of the exploration problem. First, the terminating
exploration algorithm for rings from [20] has been studied. The first and most
difficult phase of the algorithm, the set-up phase, is proved correct for small
values of k (at most 21), and small values of n (at most 22), and even for some
settings not covered by the hand-written proof in [20]. Second, the exclusive
perpetual exploration algorithm for rings from [5] has been studied. This time,
a counter-example is found, for the case of k = 3 robots in a ring of size n =
10. This counter-example is a particular execution starting from a symmetric
configuration and using the asynchronous model Async to maintain pending
moves (i.e. moves that are already computed but not yet executed) even when
the symmetry has already been broken. Basically, the worm that we described
in Section 4.2 has been stretched in such a way that the two robots forming its
head do not agree on which direction the worm is moving. This eventually leads
to a collision between these two robots. Note that the existence of an ambiguity
on the moving direction of the worm heavily relies on the small size of the ring.
Besides, the same paper presents a corrected version of the algorithm, which is
formally proved correct for n up to 16 and manually proved correct for larger
values of n.

Finally, Doan et al. [16] also study the exclusive perpetual exploration al-
gorithm for 3 robots in rings from [5], and the same counter-example is found.
However, the model checker is different as well as the modeling details, allowing
for potentially different performance of the verification.

6 Conclusion and perspectives

The two variants of the graph exploration problem have been well studied in
rings, and in some other topologies. Not surprisingly, the amount of asynchrony
and of symmetries influences the amount of robots needed to solve the problem,
especially for the terminating exploration problem. Probabilistic approaches may
also help, but further studies are needed on this aspect. Also, it would be inter-
esting to extend the investigation to larger families of graphs, typically to planar
graphs.

An interesting research axis concerns the limited visibility. Indeed, having a
limited vision sounds much more realistic, and the first results on this subject
seem to indicate that interesting performance can still be achieved despite this
limitation. Another direction of research concerning vision could be to consider
non-egocentric views, but with sense of direction. This corresponds to the sit-



uations in which a camera can see the whole theater of operation, for example
when it is attached to the ceiling in a room or embedded in a satellite.

Finally, some effort is required to further formalize and verify the results in
the domain. Recent papers showed that hand-written proofs could be flawed,
because of the many cases to be considered due to asynchrony and symmetries.
Formal verification through model checking seems to also bear some limitations,
due to the combinatorial explosion of the problems. An interesting but chal-
lenging alternative would consist in using proof assistants like Coq in order
to formally prove the results for arbitrary values of the parameters, and not
just for small values like in model checking so far. Simple impossibility results
in the flavor of Lemma 1 have recently been certified using the Pactole Coq
framework [2].
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