
HAL Id: hal-02127624
https://hal.science/hal-02127624v1

Submitted on 5 Dec 2019 (v1), last revised 25 Feb 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Plane bipolar orientations and quadrant walks
Mireille Bousquet-Mélou, Éric Fusy, Kilian Raschel

To cite this version:
Mireille Bousquet-Mélou, Éric Fusy, Kilian Raschel. Plane bipolar orientations and quadrant walks.
Seminaire Lotharingien de Combinatoire, In press. �hal-02127624v1�

https://hal.science/hal-02127624v1
https://hal.archives-ouvertes.fr


PLANE BIPOLAR ORIENTATIONS AND QUADRANT WALKS

MIREILLE BOUSQUET-MÉLOU, ÉRIC FUSY, AND KILIAN RASCHEL

Abstract. Bipolar orientations of planar maps have recently attracted some interest in
combinatorics, probability theory and theoretical physics. Plane bipolar orientations with
n edges are known to be counted by the nth Baxter number b(n), which can be defined
by a linear recurrence relation with polynomial coefficients. Equivalently, the associated
generating function

∑
n b(n)t

n is D-finite. In this paper, we address a much refined
enumeration problem, where we record for every r the number of faces of degree r. When
these degrees are bounded, the associated generating function is given as the constant
term of a multivariate rational series, and thus is still D-finite. We also provide detailed
asymptotic estimates for the corresponding numbers.

The methods used earlier to count all plane bipolar orientations, regardless of their face
degrees, do not generalize easily to record face degrees. Instead, we start from a recent
bijection, due to Kenyon et al., that sends bipolar orientations onto certain lattice walks
confined to the first quadrant. Thanks to this bijection, the study of bipolar orientations
meets the study of walks confined to a cone, which has been extremely active in the
past 15 years. Some of our proofs rely on recent developments in this field, while others
are purely bijective. Our asymptotic results also involve probabilistic arguments.

À Christian Krattenthaler à l’occasion de son 60e anniversaire,
avec admiration, reconnaissance et amitié

1. Introduction

A planar map is a connected planar multigraph embedded in the plane, and taken up
to orientation preserving homeomorphism (Figure 1). The enumeration of planar maps is
a venerable topic in combinatorics, which was born in the early sixties with the pioneering
work of William Tutte [77, 78]. It is also studied in theoretical physics, where planar
maps are seen as a discrete model of quantum gravity [21, 8]. The enumeration of maps
also has connections with factorizations of permutations, and hence representations of the
symmetric group [48, 49]. Finally, 40 years after the first enumerative results of Tutte,
planar maps crossed the border between combinatorics and probability theory, where they
are now studied as random metric spaces [2, 23, 55, 61]. The limit behaviour of large
random planar maps is now well understood, and gave birth to a variety of limiting objects,
either continuous [25, 56, 57, 66], or discrete [2, 22, 26, 65].

The enumeration of maps equipped with some additional structure (e.g. a spanning
tree, a proper colouring, a self-avoiding-walk, a configuration of the Ising model...) has
attracted the interest of both combinatorialists and theoretical physicists since the early
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S

N

Figure 1. Left: a planar map. Right: the same map, equipped with a
bipolar orientation with source S and sink N .

days of this study [34, 50, 68, 80, 79]. This paper is devoted to the enumeration of planar
maps equipped with a bipolar orientation: an acyclic orientation of its edges, having a
unique source and a unique sink, both incident to the outer face (Figure 1).

The number of bipolar orientations of a given multigraph is an important invariant in
graph theory [27, 69]. Given a multigraph G with a directed edge (S,N), the number of
bipolar orientations of G with source S and sink N is (up to a sign) the derivative of the
chromatic polynomial χG(λ), evaluated at λ = 1. It is also the coefficient of x1y0 in the
Tutte polynomial TG(x, y) [47, 54].

In fact, the first enumerative result on plane bipolar orientations, due to Tutte in 1973,
was stated in terms of the derivative of the chromatic polynomial [80] (the interpretation
in terms of orientations was only discovered 10 years later). One of Tutte’s main results
gives the number of bipolar orientations of triangulations of a digon having k + 2 vertices
(equivalently, 2k inner faces, or 3k + 1 edges), as

a(k) =
2(3k)!

k!(k + 1)!(k + 2)!
∼
√

3

π
27kk−4. (1)

For instance, the 5 oriented triangulations explaining Tutte’s result for k = 2 are the
following ones, where all edges are implicitly oriented upwards.

A more recent result, due to (Rodney) Baxter [4], gives the number of bipolar orienta-
tions of general planar maps with n edges as

b(n) =
2

n(n+ 1)2

n∑
m=1

(
n+ 1

m− 1

)(
n+ 1

m

)(
n+ 1

m+ 1

)
∼ 32√

3π
8nn−4. (2)

For instance, the 6 bipolar orientations obtained for n = 3 are the following ones, where
all edges are implicitly oriented upwards.
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Baxter stated his result in terms of the Tutte polynomial, and was apparently unaware of
its interpretation in terms of bipolar orientations. Amusingly, he was also unaware of the
fact that the above numbers b(n) were known in the combinatorics literature as... Baxter
numbers (after another Baxter, Glen Baxter).

Tutte’s and Baxter’s proofs both rely on a recursive description of the chromatic (or
Tutte) polynomial, which gives a functional equation defining the generating function of
maps equipped with a bipolar orientation. Both solutions were based on a guess-and-
check approach, but these equations can now be solved in a more systematic way [16, 15].
Moreover, several bijective proofs of Baxter’s result have been found, by constructing
bijections between plane bipolar orientations and various objects known to be counted by
Baxter numbers, like Baxter permutations, pairs of twin trees, or configurations of three
non-intersecting lattice paths [1, 9, 39, 43].

Tutte’s and Baxter’s results share some common features, for instance the exponent −4
occurring in the asymptotic estimate. Moreover, both sequences a(k) and b(n) are poly-
nomially recursive, that is, they satisfy a linear recurrence relation with polynomial coef-
ficients:

(k + 1)(k + 2)a(k) = 3(3k − 1)(3k − 2)a(k − 1),

(n+ 2)(n+ 3)b(n) = (7n2 + 7n− 2)b(n− 1) + 8(n− 1)(n− 2)b(n− 2).

Equivalently, the associated generating functions, namely A(t) =
∑

k>0 a(k)tk and B(t) =∑
n>0 b(n)tn are D-finite, meaning that they satisfy a linear differential equation with

polynomial coefficients.
In this paper, we prove universality of these features: for any finite set Ω and any

integer d, the generating function of plane bipolar orientations such that all inner faces have
their degree in Ω and the outer face has degree d is a D-finite series, given as the constant
term of an explicit multivariate rational function (for maps not carrying an orientation,
the corresponding series are known to be systematically algebraic [5, 19]). For instance,
if we consider bipolar orientations of quadrangulations of a digon, having k + 2 vertices
(equivalently, k inner faces, or 2k + 1 edges), then the corresponding numbers c(k) satisfy

(k + 2)(k + 1)2c(k) = 4(2k− 1)(k + 1)(k− 1)c(k− 1) + 12(2k− 1)(2k− 3)(k− 1)c(k− 2),

their asymptotic behaviour is

c(k) ∼ 9

4
√

3π
12kk−4, (3)

and their generating function
∑

k>0 c(k)t2k is the constant term (in x and z) of the following
rational series,

(1− x̄2z2 − 2x̄z3)(1 + 3x̄4 − x̄2/t)

1− t(xz̄ + x̄2 + x̄z + z2)
, (4)

expanded as a series in t whose coefficients are Laurent polynomials in x and z (we have
denoted x̄ := 1/x and z̄ := 1/z). The counterpart of the latter result for triangulations is:∑

k>0

a(k)t3k = [x0z0]
(1− x̄z2)(1 + 2x̄3 − x̄2/t)

1− t(xz̄ + x̄+ z)
. (5)

Constant terms (or diagonals) of multivariate rational functions form an important sub-
class of D-finite series, for which specific methods have been developed, for instance to
determine their asymptotic behaviour [62, 63, 70], or the recurrence relations satisfied by
their coefficients [12, 13, 53].
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But this paper is not only a paper on the enumerative properties of (decorated) maps.
It is also a paper on the enumerative and probabilistic properties of lattice walks confined
to a cone. The reason for that is that the first ingredient in our approach is a recent beau-
tiful bijection by Kenyon, Miller, Sheffield and Wilson [51], which encodes plane bipolar
orientations by lattice walks confined to the first quadrant of the plane. Among all known
bijections that transform bipolar orientations into different objects [1, 9, 39, 43, 51], the
KMSW one seems to be the only one that naturally keeps track of the degree distribution
of the faces. For instance, the above numbers c(k) that count oriented quadrangulations
also count quadrant walks starting and ending at the origin, and consisting of 2k steps
taken in {(−2, 0), (−1, 1), (0, 2), (1,−1)} (Figure 2).

S

N

Figure 2. A walk in the quadrant and the corresponding bipolar orienta-
tion, through the Kenyon-Miller-Sheffield-Wilson (KMSW) bijection.

As it happens, the enumeration of lattice walks confined to a cone is at the moment a
very active topic in enumerative combinatorics [7, 11, 14, 17, 32, 52, 71]. These efforts
have led in the past 15 years to a very good understanding of quadrant walk enumeration
— provided that all allowed steps are small, that is, belong to {−1, 0, 1}2. As shown
by the above example of quadrangulations, this is not the case for walks coming from
bipolar orientations (unless all faces have degree 2 or 3). It is only very recently that an
approach was designed for arbitrary steps, by the first author and two collaborators [10].
This approach will not work with any collection of steps, but it does work for the well
structured step sets involved in the KMSW bijection. In fact, the enumeration of bipolar
orientations provides a beautiful application, with arbitrarily large steps, of the method
of [10]. Hence this paper solves an enumerative problem on maps, and a quadrant walk
problem. Moreover, in order to work out the asymptotic behaviour of the number of
bipolar orientations, we go through a probabilistic study of the corresponding quadrant
walks, for which we derive local limit theorems and harmonic functions.

Outline of the paper. Our main enumerative results (both exact, and asymptotic) are
stated in Section 3, after a preliminary section where we describe the KMSW bijection
and recall its main properties (Section 2). We prove our exact results in Sections 4 to 6,
using the general approach of [10]. Section 7 is a bijective intermezzo, where we provide a
combinatorial explanation of our results in terms of bipolar orientations, using the KMSW
bijection. These combinatorial proofs are more elegant than the algebraic approach used
in the earlier sections, but they are also completely ad hoc, while the approach of [10] is
far more robust. In Section 8 we are back to quadrant walks, this time in a probabilistic
setting. By combining our enumerative results and probabilistic tools inspired by a recent
paper of Denisov and Wachtel [28], we obtain detailed global and local limit theorems for
random walks (related to bipolar orientations) conditioned to stay in the first quadrant.
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We also determine explicitly the associated discrete harmonic function. This allows us
to prove the asymptotic results stated in Section 3. We conclude in Section 9 with some
complements — among others, a combinatorial proof of Baxter’s result (2) based on the
KMSW walks, and a discussion on random generation, which leads to the uniform random
bipolar orientation of Figure 3. This figure suggests that drawing planar maps at random
according to the number of their bipolar orientations creates a bias in favour of “fatter”
maps. This has been recently confirmed by Ding and Gwynne [31, Fig. 2], who showed that
the number of points in a ball of radius r of a large bipolar-oriented map grows like rd, with
2.8 6 d 6 3.3, instead of r4 for uniform maps. One expects the corresponding diameter of
maps of size n to scale like n1/d.

Figure 3. A random bipolar orientation of an triangulation with 5000 faces
( c© Jérémie Bettinelli). The orientations of the edges are not shown.

2. The Kenyon-Miller-Sheffield-Wilson bijection

In this section, we recall a few definitions on planar maps, and describe the KMSW
bijection between bipolar orientations and certain lattice walks.

A planar map is a proper embedding of a connected multigraph in the plane, taken up
to orientation preserving homeomorphism. A map has naturally vertices and edges, but
defines also faces, which are the connected components of the complement of the underlying
multigraph. One of the faces, surrounding the map, is unbounded. We call it the outer
face. The other faces are called inner faces. The degree of a vertex or face is the number
of edges incident to it, counted with multiplicity. The degree of the outer face is the outer
degree. A (plane) bipolar orientation is a planar map endowed with an acyclic orientation
of its edges, having a unique source and a unique sink, both incident to the outer face.
We denote them by S and N respectively, as illustrated in Figure 4(a). We will usually
draw the source S at the bottom of the map, the sink N at the top, and orient all edges
upwards.

It is known [27] that bipolar orientations are characterized by two local properties (see
Figure 4(b)):
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E

N

S

W

N

S

(a) (b) (c)

N E

W S

(d)

f

v

Figure 4. (a) A plane bipolar orientation. (b) Local properties of plane
bipolar orientations. (c)–(d) A marked bipolar orientation, drawn in two
different ways.

• the edges incident to a given vertex v /∈ {S,N} are partitioned into a non-empty
sequence of consecutive outgoing edges and a non-empty sequence of consecutive
ingoing edges (in cyclic order around v),
• in a dual way, the contour of each inner face f is partitioned into a non-empty
sequence of consecutive edges oriented clockwise around f and a non-empty se-
quence of consecutive edges oriented counterclockwise; these are respectively called
the left boundary and right boundary of f . The edges of the outer face form two ori-
ented paths going from S to N , called left and right outer boundaries, with obvious
convention.

If an inner face f has i + 1 clockwise edges and j + 1 counterclockwise edges, then f is
said to be of type (i, j).

A marked bipolar orientation is a bipolar orientation where the right (resp. left) outer
boundary carries a distinguished vertex E 6= S (resp. W 6= N), such that:

• each vertex from E to N along the right outer boundary (N excluded) has outde-
gree 1 and the unique outgoing edge has an inner face on its left,
• similarly each vertex from W to S along the left outer boundary (S excluded) has
indegree 1 and the unique ingoing edge has an inner face on its right.

See Figure 4(c) for an example. Note that a bipolar orientation identifies to a marked
bipolar orientation, upon declaring E to be N and W to be S. The upper right boundary
(resp. lower right boundary) is the path from E to N (resp. from S to E) along the right
outer boundary; and similarly the lower left boundary (resp. upper left boundary) is the
path from S toW (resp. fromW to N) along the left outer boundary. Note that the upper
right and lower left boundaries do not share any vertex. A vertex or edge is called plain if
it does not belong to the upper right nor to the lower left boundary. In our figures, plain
vertices are shown in black and plain edges in solid lines. The non-plain vertices are white,
and the non-plain edges are dashed.

At the end of 2015, Kenyon et al. [51] introduced a bijection between certain 2-dimensional
walks and marked bipolar orientations. These walks, which we call tandem walks1, are de-
fined as sequences of steps of two types: South-East steps (1,−1) (called SE steps for

1The name tandem originates from the case where the only steps are (1,−1), (−1, 0) and (0, 1). Then
it can be seen that the corresponding walks describe the evolution of two queues in series — or in tandem.
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short) and steps of the form (−i, j) with i, j > 0, which we call face steps ; the level of such
a step is the integer p = i + j. Given a tandem walk w with successive steps s1, . . . , sn
in Z2, the bijection builds a marked bipolar orientation as follows. We start with the
marked bipolar orientation O0 consisting of a single edge e = {S,N} with E = N and
W = S. The marked vertex W will remain the same all along the construction, but the
source S will move from vertex to vertex. Then for k from 1 to n, we construct a marked
bipolar orientation Ok from Ok−1 and the kth step sk. Two cases occur:

• If sk is a SE step (Figure 5), we push E one step up; if E 6= N in Ok−1, this means
that one dashed edge of Ok−1 becomes plain in Ok; otherwise we also push N = E
one step up, thereby creating a new (plain) edge that is both on the left and right
outer boundary of the orientation. In this case, we still have E = N in Ok.
• If sk is a face step (−i, j), we first glue a new inner face f of type (i, j) to the right
outer boundary in such a way that the upper vertex of f is E and the lower vertex
of f lies on the right outer boundary of Ok (Figure 6); more precisely, if i+ 1 does
not exceed the length of the lower right boundary of Ok−1, then the i+ 1 left edges
of f are identified with the top i+ 1 edges on this boundary; otherwise, the lowest
left edges of f are dashed and become part of the lower left boundary in Ok, while
the lower vertex of f becomes the source of Ok. We finally choose E to be the end
of the first edge along the right boundary of f .

N

S

W

E

N

S

W

ESE step

N

S

W

N

S

W

E

SE step

E

or

Figure 5. Updating the marked bipolar orientation when a SE step is read.

N

S

W

E
face step

N

S

W
E

N

S

W

N

S

W

E

e.g.
face step
e.g.

E

or

Figure 6. Updating the marked bipolar orientation when a face step (−2, 3)
is read.

We denote by Φ(w) := On the marked bipolar orientation constructed from w. A
complete example is detailed in Figure 7.
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1 3 4 5

6 7 8 9 10

S

N=E

W2

N=E N=E

N=E

Figure 7. A tandem walk of length 10 and the associated marked bipolar
orientation, which is constructed step by step.

Theorem 1 (Kenyon et al. [51]). The mapping Φ is a bijection between tandem walks
with n steps and marked bipolar orientations with n + 1 plain edges. It transforms SE
steps into plain vertices, and face steps of level p into inner faces of degree p+ 2.

The boundary lengths of the orientation Φ(w) are also conveniently translated through
this bijection. Let us denote by a (resp. b+ 1, c+ 1, d) the length of the lower left (resp.
upper left, lower right, upper right) boundary of Φ(w) (see Figure 8, right). We call the
4-tuple (a, b; c, d) the signature of the marked bipolar orientation. Let us embed the walk w
in the plane so that it starts at some point (xstart, ystart). Let xmin and ymin be respectively
the minimal x- and y-coordinates along the walk, and let xend and yend be the x- and
y-coordinates of the final point of w. Then one easily checks that

a = xstart − xmin, b = ystart − ymin,

c = xend − xmin, d = yend − ymin, (6)

E

S

N

b+ 1

d

c+ 1
a

W

a

b

c

d
start

end

Figure 8. The correspondence between the coordinates of the endpoints
and the signature in the KMSW bijection.
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as illustrated in Figure 8. Indeed these quantities are initially all equal to 0 when we start
constructing Φ(w) (that is, for the initial orientation O0 and the empty walk), and then
the parameters in each pair (e.g., a and xstart− xmin) change in the same way at each step
of the construction (see Figures 5 and 6).

If we embed w in the plane so that xmin = ymin = 0, then it becomes a tandem walk
in the quadrant {x > 0, y > 0} starting at (a, b), ending at (c, d), constrained to visit at
least once the x-axis and the y-axis. For unmarked bipolar orientations (a = d = 0), the
constraint holds automatically, and we obtain the following corollary [51, Thm. 2.2].

Corollary 2. The mapping Φ specializes into a bijection between tandem walks of length n
in the quadrant, starting at (0, b) and ending at (c, 0), and bipolar orientations with n+ 1
edges, having b + 1 edges on the left outer boundary and c + 1 edges on the right outer
boundary.

Specializing further to excursions, that is, walks starting and ending at (0, 0), we obtain,
upon erasing the two outer edges, a bijection between excursions of length n and bipolar
orientations with n− 1 edges.

We now define two involutions on marked bipolar orientations.

b+1 c+1

a

d
N

S

E

W

mirror

mirror

a

d

c+1 b+1

d

a

b+1 c+1

d

mirror

mirror

b+1c+1

a
O

σ(O)

ρ ◦ σ(O)

ρ(O)

half-turn

Figure 9. The orbit of a marked bipolar orientation under the action of the
two involutions σ and ρ; the dashed edges are drawn as horizontal segments,
which makes it easier to see the mirror-effect of σ and ρ ◦ σ.
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Definition 3. Let O be a marked bipolar orientation of signature (a, b; c, d). We define
ρ(O) as the marked bipolar orientation obtained by reversing all edge directions in O. This
exchanges the roles of N and S on the one hand, of E and W on the other hand. The
signature of ρ(0) is (d, c; b, a).

We define σ(O) by first reflecting O in a mirror, then reversing the edge directions of
plain edges only. The new points S ′, N ′,W ′ and E ′ in σ(O) correspond respectively to
E,W,N and S. The signature of σ(O) is (d, b; c, a).

This description clearly shows that ρ and σ are involutions. Moreover, the marked
bipolar orientations ρ ◦ σ(O) and σ ◦ ρ(O) are both obtained by reflecting O in a mirror
and reversing the directions of all dashed edges, and thus they coincide. Hence ρ and
σ generate a dihedral group of order 4. Their effect is perhaps better seen if we draw
marked orientations with the rectangular convention adopted on the right of Figure 4: all
plain edges go upward, while dashed edges go left. Then we can forget edge directions, ρ
corresponds to a half-turn rotation, σ to a reflection in a horizontal mirror, and ρ ◦ σ to a
reflection in a vertical mirror. This is illustrated in Figure 9.

It is easy to describe the involution on tandem walks induced by ρ. This description is
used in the proof of Theorem 2.2 in [51].

Proposition 4. Let w = s1, . . . , sn be a tandem walk, and O = Φ(w) the corresponding
marked bipolar orientation. Let s̃k be (−j, i) if sk = (−i, j), for any i, j ∈ Z2, and define
w̃ = s̃n, . . . , s̃1. Then Φ(w̃) = ρ(O).

It seems more difficult to describe directly the involution on tandem walks induced by σ.
This involution will be used in Section 7.2 to prove bijectively some of our enumerative
results.

3. Counting tandem walks in the quadrant

The KMSW bijection described in the previous section relates two topics that are ac-
tively studied at the moment in combinatorics and probability theory: planar maps, here
equipped with a bipolar orientation, and walks confined to a cone, here the first quadrant.
In this section, we state our main results on the enumeration of these objects.

The enumeration of walks confined to the quadrant is well understood when the walk
consists of small steps, that is, steps taken in {−1, 0, 1}2. This is not the case here, unless
we only consider orientations with inner faces of degree 2 and 3. Recently, the first author
and two of her collaborators developed an approach to count quadrant walks with larger
steps, generalizing in particular the definition of a certain group that plays a key role in the
small step case [10]. This approach does not apply to all possible step sets; in particular,
it requires that the group (or what has replaced it for large steps, namely a certain orbit)
is finite. This is the case for tandem walks, and we will count them using the approach
of [10].

Given two points (a, b) and (c, d) in the first quadrant, we denote byQa,b
c,d ≡ Qa,b

c,d(t, z0, z1, . . .)
the generating function of tandem walks going from (a, b) to (c, d) in the quadrant, where
every edge is weighted by t, and every face step of level r by zr (which we take as an
indeterminate). For instance, the walk of Figure 7, once translated so that it becomes a
quadrant walk visiting both coordinates axes, contributes t10z3

1z
2
2z3 to the series Q3,2

1,2.
Returning to bipolar orientations, it follows from Corollary 2 that tQ0,b

c,0 counts bipolar
orientations with left (resp. right) outer boundary of length b+1 (resp. c+1) with a weight t
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per edge, and zr per inner face of degree r + 2. Also, 1
t
(Q0,0

0,0 − 1), specialized to zr = 1
for all r, simply counts bipolar orientations by edges. As recalled in the introduction, the
number of bipolar orientations having n edges is the nth Baxter number b(n), given by (2).
We will recover this result using the bijection with tandem walks in Section 9.1.

If we want to count marked bipolar orientations of signature (a, b; c, d), we must recall
that they are in bijection with tandem walks in the quadrant, joining (a, b) to (c, d) and
constrained to visit both coordinates axes. An inclusion-exclusion argument gives their
generating function as

t
(
Qa,b
c,d −Q

a,b−1
c,d−1 −Q

a−1,b
c−1,d +Qa−1,b−1

c−1,d−1

)
.

Here, every plain edge is weighted by t, and every inner face of degree r + 2 by zr.
Keeping a and b fixed, we group all the Qa,b

c,d into a bigger generating function that counts
quadrant walks starting at (a, b):

Q(a,b)(x, y) :=
∑
c,d>0

Qa,b
c,d x

cyd.

By Corollary 2, we are especially interested in the series Q(0,b)(x, 0), since txQ(0,b)(x, 0)
counts bipolar orientations with a left boundary of length b+ 1, by edges (t), face degrees
(zr for each inner face of degree r + 2) and length of the lower right boundary (x).

3.1. Preliminaries

3.1.1. Walk generating functions. It may be a bit unusual to involve in generating
functions infinitely many variables, as we do with the zr’s. Hence let us clarify in which
ring these series live.

We will often consider general tandem walks, not confined to the quadrant, and record
with variables x and y the coordinates of their endpoint. Then a natural option is to
choose formal power series in infinitely many variables t, z0, z1, . . . with coefficients in
Q[x, 1/x, y, 1/y], the ring of Laurent polynomials in x and y. However, it will some-
times be convenient to handle a finite collection of steps, and moreover to assign real
values to the zr’s. This is why we usually consider that zr = 0 for r > p, for some
arbitrary p, and take our series in the ring of formal power series in t with coefficients
in Q[x, 1/x, y, 1/y, z0, z1, . . . , zp]. We call this specialization the p-specialization, and the
corresponding walks, p-tandem walks. Both points of view can be reconciled by letting
p→∞. Indeed, if a walk starting at (a, b) and ending at (c, d) uses a face step of level r,
then (d − c) − (b − a) > r − 2(n − 1) (look at the projection of the walk on a line of
slope −1). That is, r 6 (d− c)− (b− a) + 2(n− 1). Hence a walk of length n going from
(a, b) to (c, d), when a, b, c, d, n are fixed, cannot use arbitrarily large steps. This means
that for p large enough, the coefficient of tnxcyd in any walk generating function (with a
fixed starting point) is a polynomial in the zr’s which is independent of p.

3.1.2. Periodicities. Throughout the paper, we will meet periodicity conditions, describ-
ing which points can be reached from say, the origin, in a fixed number of steps. So let
us clarify this right now. For a step set S, we call S-walk a walk consisting of steps taken
in S. The following terminology is borrowed from Spitzer [75, Chap. 1.5]. Take a finite
step set S ⊂ Z2, and denote by Λ the lattice of Z2 spanned by S. We say that S is strongly
aperiodic if, for any (i, j) ∈ Λ, the lattice generated by (i, j) + S coincides with Λ. In this
case, for (i, j) ∈ Λ, there exists N0 ∈ N such that for all n > N0, there exists an S-walk of
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length n going from (0, 0) to (i, j). We say that S has period 1. Otherwise, there exists an
integer p > 1 (the period), such that for all (i, j) ∈ Λ, there exists r ∈ J0, p− 1K such that
for n large enough, there exists an S-walk of length n from (0, 0) to (i, j) if and only if n
equals r modulo p.

Lemma 5. Let D be a non-empty finite subset of N, not reduced to {0}, and define

ι := gcd(r + 2, r ∈ D).

Let SD be the following set of steps:

SD = {(1,−1)} ∪
⋃
r∈D

{(−r, 0), (−r + 1, 1), . . . , (0, r)}.

Then the lattice ΛD spanned by SD is Z2 if ι is odd, and {(i, j) : i+ j even} otherwise.
If there exists an n-step walk from (0, 0) to (i, j) with steps in SD, then i−j ≡ 2n mod ι.

Conversely, if n satisfies this condition and is large enough, there exists an SD-walk from
(0, 0) to (i, j). This means that the step set SD has period ι if ι is odd, ι/2 otherwise. In
particular, SD is strongly aperiodic if and only if ι ∈ {1, 2}.

Proof. If ι is odd, then there exists an odd r in D, say r = 2s + 1 with s > 0. Then
(−s, s+ 1) belongs to SD, and

(−s, s+ 1) + s(1,−1) = (0, 1).

Hence ΛD contains the vectors (0, 1) and (1,−1) (which is always in SD), and thus coincides
with Z2.

If ι is even, then every r ∈ D is even, and for every step (i, j) ∈ SD, the difference
i− j is even: equal to 2 for a SE step, to −r for a step (−i, r − i). Hence the same holds
necessarily for any point (i, j) of ΛD, which is thus included in {(i, j) : i + j even}. Now
take r = 2s ∈ D with s > 1. Then (−s− 1, s− 1) ∈ SD, and

(−s− 1, s− 1) + s(1,−1) = (−1,−1).

Hence ΛD contains (−1,−1) and (1,−1), and thus all points (i, j) such that i+ j is even.
We have thus proved the first statement of the lemma.

Now consider an SD-walk of length n going from (0, 0) to (i, j), and let (ik, jk) be the
point reached after k steps. Then (ik − jk) − (ik−1 − jk−1) equals 2 mod ι for every k.
Hence after n steps, we find i− j ≡ 2n mod ι.

Let us now prove the next result for (i, j) = (0, 0). The set G of lengths n such that
there exists an n-step walk starting and ending at (0, 0) (we call such walks excursions) is
an additive semi-group of N. The structure of semi-groups of N is well understood: there
exists an integer p (the period), such that G ⊂ pN and mp ∈ G for all large enough m.
Clearly p = gcd(G). By the previous result, all elements n of G satisfy 2n ≡ 0 mod ι,
that is, ι|2n. Hence the period p is a multiple of ι if ι is odd, and of ι/2 otherwise. Now,
saying that for any large enough n such that ι|2n, there exists an n-step excursion, is
equivalent to saying that p equals ι if ι is odd, and ι/2 otherwise. So let us first prove
that p|ι. For each r ∈ D, there exists an excursion of length r + 2 (consisting of the
steps (0, r) and (−r, 0) followed by r SE steps). Hence D + 2 ⊂ G, and thus p := gcd(G)
divides ι := gcd(D+2). This proves that p = ι if ι is odd, but if ι is even, we can still have
p = ι or p = ι/2. So assume that ι is even. Then each r ∈ D is even, and there exists an
excursion of length 1 + r/2 (consisting of the step (−r/2, r/2) followed by r/2 SE steps).
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Hence 1 +D/2 ⊂ G, and thus p = gcd(G) divides ι/2 = gcd(1 +D/2). This concludes the
proof when (i, j) = (0, 0).

Once the period p is determined, the extension to general points (i, j) is standard. See
for instance the proof of [10, Prop. 9], and references therein.

Remark. The period was already determined in the original paper [51, Thm. 2.6], where
it is described as

gcd ({r + 1 : 2r ∈ D} ∪ {2r + 3 : 2r + 1 ∈ D}) .

Both descriptions are of course equivalent. The reason why we prefer to introduce ι is
that this is the quantity that naturally arises in asymptotic estimates (see for instance
Corollary 10).

3.1.3. Some definitions and notation on formal power series. Let A be a commu-
tative ring and x an indeterminate. We denote by A[x] (resp. A[[x]]) the ring of polynomials
(resp. formal power series) in x with coefficients in A. If A is a field, then A(x) denotes
the field of rational functions in x, and A((x)) the set of Laurent series in x, that is, series
of the form ∑

n>n0

anx
n,

with n0 ∈ Z and an ∈ A. The coefficient of xn in a series F (x) is denoted by [xn]F (x).
This notation is generalized to polynomials, fractions and series in several indetermi-

nates. For instance, the generating function of bipolar orientations, counted by edges (vari-
able t) and faces (variable z) belongs to Q[z][[t]]. For a multivariate series, say F (x, y) ∈
Q[[x, y]], the notation [xi]F (x, y) stands for the series Fi(y) such that F (x, y) =

∑
i Fi(y)xi.

It should not be mixed up with the coefficient of xiy0 in F (x, y), which we denote by
[xiy0]F (x, y). If F (x, x1, . . . , xd) is a series in the xi’s whose coefficients are Laurent series
in x, say

F (x, x1, . . . , xd) =
∑
i1,...,id

xi11 · · ·xidd
∑

n>n0(i1,...,id)

a(n, i1, . . . , id)x
n,

then the nonnegative part of F in x is the following formal power series in x, x1, . . . , xd:

[x>]F (x, x1, . . . , xd) =
∑
i1,...,id

xi11 · · ·xidd
∑
n>0

a(n, i1, . . . , id)x
n.

We denote with bars the reciprocals of variables: that is, x̄ = 1/x, so that A[x, x̄] is the
ring of Laurent polynomials in x with coefficients in A.

If A is a field, a power series F (x) ∈ A[[x]] is algebraic (over A(x)) if it satisfies a non-
trivial polynomial equation P (x, F (x)) = 0 with coefficients in A. It is differentially finite
(or D-finite) if it satisfies a non-trivial linear differential equation with coefficients in A(x).
For multivariate series, D-finiteness requires the existence of a differential equation in each
variable. We refer to [58, 59] for general results on D-finite series.

For a series F in several variables, we denote by F ′i the derivative of F with respect to
the ith variable.

In the next three subsections we state our main enumerative results, both exact and
asymptotic.
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3.2. Quadrant walks with prescribed endpoints

We give here an explicit expression for the generating function Q(0,b)(x, y) that counts
tandem walks starting at height b on the y-axis. We define the step generating function
S(x, y), which counts all tandem steps, as

S(x, y) := xȳ +
∑
r>0

zr

r∑
i=0

x̄r−iyi, (7)

and we letK(x, y) := 1−tS(x, y). In the p-specialization, S(x, y) is a (Laurent) polynomial.
We let Y1 ≡ Y1(x) be the unique power series in t satisfying K(x, Y1) = 0, that is,

Y1 = t
(
x+ Y1

∑
r>0

zr

r∑
i=0

x̄r−iY i
1

)
. (8)

This series has coefficients in Q[x, x̄, z0, z1, . . .], and starts

Y1 = tx+ t2x
∑
r>0

zrx̄
r +O(t3).

In the p-specialization, this series is algebraic. We observe that H(x) := Y1(x)
tx

is the
generating function of tandem walks starting at the origin, ending on the x-axis and
staying in the upper half-plane {y > 0}, where as usual t marks the length, x marks the
final abscissa and zr marks the number of face steps of level r. Indeed, upon considering
the first step, say (−r+ i, i), of such a walk, and the first time it comes back to the x-axis,
it is standard [60, Ch. 11] to establish

H = 1 +
∑
r>0

r∑
i=0

(tzrx̄
r−i)(tx)iH i+1,

which is equivalent to (8) with txH = Y1.

Proposition 6. Let Y1 ≡ Y1(x) and K(x, y) be defined as above. The generating function
Q(0,b)(x, y) can be expressed as the nonnegative part in x of an explicit series2:

Q(0,b)(x, y) = [x>]
−Y1

yK(x, y)
(Y b

1 + · · ·+ x̄b)
(

1− 1

tx2
+
∑
r>0

zr(r + 1)x̄r+2
)
, (9)

where the argument of [x>] is expanded as an element of Q[x, x̄, z0, z1, . . .]((t))[[y]]. In
particular, the generating function of bipolar orientations of left outer boundary b + 1 is
txQ(0,b)(x, 0), where

Q(0,b)(x, 0) = [x>]
Y1

tx
(Y b

1 + · · ·+ x̄b)
(

1− 1

tx2
+
∑
r>0

zr(r + 1)x̄r+2
)
. (10)

In the p-specialization, these series are D-finite in all their variables.

We will provide two different proofs of this expression: in Section 4 using the method
developed in [10] for quadrant walks with large steps, and in Section 7 using the KMSW bi-
jection and local operations on marked bipolar orientations. This second approach explains
combinatorially why the enumeration of quadrant walks is related to the enumeration of
walks in the upper half-plane, that is, to the series Y1(x).

2Throughout the paper, we use the notation ua + · · ·+ va for
∑a

k=0 u
kva−k.
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Remarks
1. We will give another D-finite expression of Q(0,b)(x, y), and more generally of Q(a,b)(x, y),
in Section 4.5 (Propositions 12 and 19), again as the positive part of an algebraic generating
function. In this alternative expression, the expansion has to be done (more classically)
in t first.

2. Since yK(x, y) is a formal power series in y, with constant term (−tx), the expres-
sion (10) is clearly the special case y = 0 of (9). Conversely, a simple argument involving
factorizations of walks allows us to derive (9) from (10). Indeed, upon expanding the
right-hand side of (9) in y, what we want to prove is that, for all d > 0,

Qb
d(x) := [yd]Q(0,b)(x, y) = [x>]

Y1

tx
(Y b

1 + · · ·+ x̄b)
(

1− 1

tx2
+
∑
r>0

zr(r + 1)x̄r+2
)
Pd, (11)

where
Pd = [yd]

−tx
yK(x, y)

= [yd]
1

1− y(x̄/t−
∑

r>0 zr
∑r

i=0 x̄
r−i+1yi)

.

Note that Pd is a polynomial in 1/t, x̄, and the zr’s, which can alternatively be described
by the following recurrence relation:

P0 = 1, Pd+1 =
x̄

t
Pd −

∑
r>0

zr

r∑
i=0

x̄r−i+1Pd−i for all d > 0, (12)

where Pd = 0 for d < 0. We will now prove (11) by induction on d > 0. The case d = 0 is
precisely (10). Assume that (11) holds for Qb

0, . . . , Q
b
d, and let us prove it for Qb

d+1. A last
step decomposition of quadrant walks ending at height d gives:

Qb
d = 1d=b + txQb

d+1 + t[x>]
∑
r>0

zr

r∑
i=0

x̄r−iQb
d−i,

withQb
d = 0 for d < 0. ExtractingQb

d+1, and observing that [x>](x̄[x>]G(x)) = [x>](x̄G(x)),
yields

Qb
d+1 = [x>]

( x̄
t
Qb
d −

∑
r>0

zr

r∑
i=0

x̄r−i+1Qb
d−i

)
.

We now use the induction hypothesis (11) to replace Qb
0, . . . , Q

b
d by their respective expres-

sions in terms of P0, . . . , Pd, observe that for e > 0, [x>](x̄e[x>]G(x)) = [x>](x̄eG(x)), and
finally use the recurrence relation (12) to conclude that (11) holds for Qb

d+1.

It is well known that algebraic series, in particular Y1 and its powers, can be expressed
as constant terms of rational functions. Hence we can also express Q(0,b)(x, y) in terms of
a rational function, this time in three variables x, y, z. The following result is proved in
Section 5.

Corollary 7. As above, let S(x, y) be defined by (7), and let K(x, y) = 1− tS(x, y). The
series Q(0,b)(x, y) can alternatively be expressed as

Q(0,b)(x, y) = [x>][z0]
tz2

y

S ′2(x, z)

K(x, y)K(x, z)
(zb + · · ·+ x̄b)

(
1− x̄2

t
+
∑
r>0

zr(r + 1)x̄r+2
)
,

where the argument of [x>][z0] is expanded as a series in Q[x, x̄, z, z̄, z0, z1, . . .]((t))[[y]].
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In particular,

Q(0,b)(x, 0) = −[x>][z0]
z2

x

S ′2(x, z)

K(x, z)
(zb + · · ·+ x̄b)

(
1− x̄2

t
+
∑
r>0

zr(r + 1)x̄r+2
)
. (13)

This result, specialized to p-tandem walks, yields an expression of [xc]Q(0,b)(x, 0) as
the constant term in x and z of a rational expression of t, x, z and the zr’s. From
expressions of this form, recent algorithms based on “creative telescoping” can construct
efficiently polynomial recurrences satisfied by the coefficients [12, 13, 53]. For instance, let
us specialize (13) to x = 0, b = 0, zp = 1 and zr = 0 if r 6= p. We obtain:

Q(0,0)(0, 0) = −[x0][z0]
z2

x

S ′2(x, z)

K(x, z)

(
1− x̄2

t
+ (p+ 1)x̄p+2

)
. (14)

By Corollary 2, the series tQ(0,0)(0, 0) counts (by edges) bipolar orientations of outer de-
gree 2 with all inner faces of degree p+2. By Lemma 5, such orientations have n+1 edges,
where (p + 2) divides 2n. By counting adjacencies between edges and faces, it is easy to
see that they have 2n

p+2
inner faces. If p is odd, this number is necessarily even. Retaining

only non-zero coefficients in Q(0,0)(0, 0), we write

Q(0,0)(0, 0) =
∑
k>0

a(k)tck(p+2)/2,

where c = 2 if p is odd, and c = 1 otherwise. In this way, a(k) counts orientations with ck
inner faces. In particular, when p = 3 and p = 4, we recover from (14) the expressions (5)
and (4) given in the introduction. One can also derive from the above expression the
following recurrence relations, which were computed for us by Pierre Lairez (in all cases,
a(0) = 1).

• For p = 1 (triangulations):

(k + 3)(k + 2)a(k + 1) = 3(3k + 2)(3k + 1)a(k).

This gives the number of bipolar triangulations with outer degree 2 and 2k inner
faces (equivalently, k + 2 vertices) as

a(k) =
2(3k)!

k!(k + 1)!(k + 2)!
,

which is Tutte’s result (1).
• For p = 2 (quadrangulations), a(k) gives the number of bipolar orientations of a
quadrangulated digon with k inner faces, and

(k+ 4)(k+ 3)2a(k+ 2) = 4(2k+ 3)(k+ 3)(k+ 1)a(k+ 1) + 12(2k+ 3)(2k+ 1)(k+ 1)a(k),

as announced in the introduction.
• For p = 3 (pentagulations), a(k) gives the number of bipolar orientations of a
pentagulated digon with 2k inner faces, and

27(3k+8)(3k+4)(5k+3)(3k+5)2(3k+7)2(k+2)2a(k+2) =

60(5k+7)(3k+5)(5k+9)(5k+6)(3k+4)(8+5k)(145k3+532k2+626k+233)a(k+1)

− 800(5k + 6)(5k + 1)(5k + 7)(5k + 2)(5k + 3)(5k + 9)(5k + 4)(8 + 5k)2a(k).
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Starting from (13), similar constructions can be performed for a prescribed starting point
(0, b) and a prescribed endpoint (c, 0), in order to count bipolar orientations of signature
(0, b+ 1; c+ 1, 0).

3.3. Quadrant walks ending anywhere

We now consider the specialization Q(a,b)(1, 1), which counts tandem walks in the quad-
rant starting at (a, b), and records the length (variable t), the number of face steps of each
level r (variable zr), but not the coordinates of the endpoint. For this problem, we can
either consider Q(a,b)(1, 1) as a series in infinitely many variables t, z0, z1, . . ., or apply the
p-specialization and count p-tandem walks only.

Let W be the unique formal power series in t satisfying

W = t
(

1 +
∑
r>0

zr
(
W + · · ·+W r+1

) )
. (15)

Note that W = Y1(1), where Y1 ≡ Y1(x) is given by (8). In the p-specialization, this series
is algebraic.

Proposition 8. For a, b > 0, the generating function of quadrant walks starting at (a, b)
and ending anywhere in the quadrant is

Q(a,b)(1, 1) =
W

t
·

a∑
i=0

Ai ·
b∑

j=0

W j,

where Ai is a series in W and the zr’s:

Ai = [ui]
1

W

ū− 1

S(ū,W )− S(1,W )

= [ui]
1

1− uW
∑

i,k>0 u
iW k

∑
r>i+k zr

, (16)

with S(x, y) given by (7). In particular Q(0,0)(1, 1) = W/t.
In the p-specialization, each Ai and thus the whole series tQ(a,b)(1, 1), become a polyno-

mial in W and z0, . . . , zp.

We will provide a first proof in Section 6 using functional equations and algebraic ma-
nipulations. A bijective proof will then be given in Section 7.2. It involves the KMSW
bijection and the involution σ, both described in Section 2.

Remarks
1. In our combinatorial proof, the term W

t
AiW

j will be interpreted as the generating
function of tandem walks that start at (0, j), remain in the upper half-plane {y > 0},
touch the x-axis at least once and end on the line {y = i} (see Lemma 26). In particular,
when a = b = 0, this proof gives a length preserving bijection between tandem walks in
the quadrant that start at the origin, and tandem walks in the upper half-plane that start
at the origin and end on the x-axis. Moreover, this bijection preserves the number of SE
steps.

In the case where zp = 1 and zr = 0 for r 6= p, three such bijections already appear in the
literature. The first two are only valid for p = 1: one is due to Gouyou-Beauchamps [46],
and uses a simple correspondence between 1-tandem walks and standard Young tableaux
with at most 3 rows, and then the Robinson-Schensted correspondence; the second, more
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recent one is due to Eu [37] (generalized in [38] to Young tableaux with at most k rows).
The third bijection, due to Chyzak and Yeats [24], is very recent and holds for any p.
It relies on certain automata rules to build (step by step) a half-plane walk ending on
the x-axis from a quarter plane excursion. These three constructions do not seem to be
equivalent to the correspondence presented in Section 7.2.
2. Let us define double-tandem walks as walks with steps N,W, SE,E, S,NW : these are
the three steps involved in 1-tandem walks, and their reverse. With these steps too, it is
known that walks in the quadrant that start at the origin are equinumerous with walks (of
the same length) in the upper half-plane that start at the origin and end on the x-axis [17,
Prop. 10]; see [67] for an intriguing refinement involving walks confined to a triangle. A
bijection between these two families of walks was recently given by Yeats [82], and then
reformulated using automata in [24]. We do not know of any bijection for these walks that
would generalize the KMSW map, but we conjecture that there exists an involution on
double-tandem walks having the same properties as the involution σ of Section 2 (once
defined on 1-tandem walks). See the remark at the end of Section 7.2 for details.

3.4. Asymptotic number of quadrant walks with prescribed endpoints

We now fix p > 1, and focus on the asymptotic enumeration of p-tandem walks with
prescribed endpoints confined to the quadrant. Precisely we aim at finding an asymptotic
estimate of the coefficients [tn]Qa,b

c,d(t, z0, . . . , zp) as n→∞, for any prescribed a, b, c, d and
nonnegative weights z0, . . . , zp with zp > 0. As it turns out, a detailed estimate can be
derived by combining recent asymptotic results by Denisov and Wachtel [28] (or rather, a
variant of these results that apply to our periodic walks) and the algebraic expression of
Q(a,b)(1, 1) given in Proposition 8.

Let
D := {r ∈ J0, pK, zr > 0}, and ι := gcd(r + 2, r ∈ D). (17)

It follows from Lemma 5 that there can only exist a walk of length n from (a, b) to (c, d)
if c − d ≡ a − b + 2n mod ι (and n is large enough). Our main asymptotic result is the
following.

Proposition 9. Fix p > 1. Let a, b, c, d be nonnegative integers and let z0, . . . , zp be
nonnegative weights with zp > 0. Let ι be defined by (17). Then, as n → ∞ conditioned
on c− d ≡ a− b+ 2n mod ι, we have

[tn]Qa,b
c,d ∼ κ γnn−4,

where the growth rate γ is explicit and depends only on the weights zr, while the multi-
plicative constant κ, also explicit, depends on these weights and on a, b, c, d as well.

The explicit values of κ and γ are given in Section 8.2, together with the proof of the
proposition. When specialized to bipolar orientations (a = d = 0), this proposition will
give (once the constants are explicit) the following detailed asymptotic estimate for the
number of orientations with prescribed face degrees and boundary lengths.

Corollary 10 (Bipolar orientations with prescribed face degrees). Let Ω ⊂ {2, 3, 4, . . .}
be a finite set such that max(Ω) > 3, and let ι be the gcd of all elements in Ω. Let α be
the unique positive solution of the equation

1 =
∑
s∈Ω

(
s− 1

2

)
α−s,
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and let

γ =
∑
s∈Ω

(
s

2

)
α−s+2.

Then, for 2n ≡ b+c mod ι, the number B(Ω)
n (b, c) of bipolar orientations with n+1 edges,

left boundary length b + 1, right boundary length c + 1, and all inner face degrees in Ω,
satisfies

B(Ω)
n (b, c) ∼ κγnn−4 as n→∞,

where the constant κ is

κ :=
ιγ2

4
√

3πα4σ4
(b+ 1)(b+ 2)(c+ 1)(c+ 2)α−b−c,

with σ2 = α2

γ

∑
s∈Ω

(
s
3

)
α−s.

The proof is given in Section 8.2. Specializing further to the case of bipolar d-angulations
(Ω = {d}, with d > 3), we have

ι = d, α =

(
d− 1

2

)1/d

, γ =
d

d− 2

(
d− 1

2

)2/d

,

so that σ2 = (d− 2)/3. Hence the number of bipolar orientations having n+ 1 edges (for
2n− b− c divisible by d), left (resp. right) boundary b+ 1 (resp. c+ 1), satisfies

B(d)
n (b, c) ∼ 9(b+ 1)(b+ 2)(c+ 1)(c+ 2)

4
√

3πd

(
d

d− 2

)n+4(
d− 1

2

)f
n−4,

where f = (2n − b − c)/d is the number of inner faces. When b = c = 0 and d = 3 or
d = 4, this estimate is in agreement with (1) and (3).

4. A functional equation approach: First expression of Q(a,b)(x, y)

Let p > 1. In this section, we apply to p-tandem walks confined to the quadrant the
general approach to quadrant walk enumeration described in [10]. It yields an expression
of Q(a,b)(x, y) as the nonnegative part (in x and y) of an algebraic series. This expression
is not the one of Proposition 6, which will be derived later in Section 5. The algebraic
ingredient in this new expression is a new series x1, involving the indeterminates x, y and zr,
and defined as follows.

Lemma 11. Recall the definition (7) of S(x, y). The equation S(x, y) = S(X, y), when
solved for X, admits p + 1 roots x0 = x, x1, . . . , xp, which can be taken as Laurent se-
ries in ȳ := 1/y with coefficients in C[z1, . . . , zp, 1/zp, x, x̄]. Exactly one of these roots,
say x1, contains some positive powers of y in its series expansion. It has coefficients in
Q[z1, . . . , zp, x, x̄] and reads x1 = zpx̄y

p(1 +O(ȳ)). The other roots are formal power series
in ȳ with no constant term.

Examples. For p = 1 we have

S(x, y) = xȳ + z0 + z1(x̄+ y),

and the equation S(X, y) = S(x, y) has two solutions, x0 = x and x1 = z1x̄y.
For p = 2 we have

S(x, y) = xȳ + z0 + z1(x̄+ y) + z2(x̄2 + x̄y + y2),
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and the equation S(X, y) = S(x, y) has three solutions. One of them is x0 = x and the
other two satisfy a quadratic equation:

x2X2 − yX(xz1 + z2(1 + xy))− xyz2 = 0.

Hence

x1,2 =
xz1 + z2(1 + xy)±

√
(xz1 + z2(1 + xy))2 + 4x3ȳz2

2x2ȳ
.

(We take x1 to correspond to the + sign.) We expand both solutions as Laurent series in
ȳ (not y!), and find:

x1 = z2x̄y
2 + x̄(z1 + x̄z2)y + ȳ − (z1/z2 + x̄)ȳ2 +O(ȳ3),

x2 = − ȳ + (z1/z2 + x̄)ȳ2 +O(ȳ3).

2

We prove Lemma 11 in Section 4.2. It implies that y1 := x̄1 = 1/x1 is a power series
in ȳ whose coefficients lie in Q[z1, . . . , zp, 1/zp, x, x̄] (this comes from the monomial form
of the first coefficient of x1). We can now give our first expression of Q(a,b)(x, y), in the
case a = 0. The general case is solved by Proposition 19.

Proposition 12. Fix p > 1, and let y1 = 1/x1, where x1 is defined in Lemma 11. The
generating function of p-tandem walks confined to the first quadrant and starting at (0, b)
is the nonnegative part (in x and y) of an algebraic function:

Q(0,b)(x, y) = [x>y>]
(1− x̄ȳ)S ′1(x, y)

1− tS(x, y)

b∑
k=0

(
yk+1 − yk+1

1

)
x̄b−k,

where the argument of [x>y>] is expanded as a series of Q[x, x̄, z0, . . . , zp, 1/zp]((ȳ))[[t]].

4.1. A functional equation

The starting point of our approach is a functional equation that characterizes the series
Q(x, y) := Q(a,b)(x, y), and simply relies on a step-by-step construction of quadrant walks.
It reads:

Q(x, y) = xayb+tS(x, y)Q(x, y)−txȳQ(x, 0)−t
p∑
r=1

zr

r∑
i=1

x̄iyr−i
(
Q0(y)+· · ·+xi−1Qi−1(y)

)
,

where S(x, y) is the step polynomial given by (7), and Qi(y) counts quadrant walks starting
at (a, b) and ending at abscissa i. We call Q(x, 0) and the series Qi(y) sections of Q(x, y).
Equivalently,

K(x, y)Q(x, y) = xayb − txȳQ(x, 0)−
p∑
j=1

x̄jGj(y), (18)

where K(x, y) = 1− tS(x, y) and

Gj(y) = t

p∑
r=j

zr
(
Q0(y)yr−j +Q1(y)yr−j−1 + · · ·+Qr−j(y)y0

)
.
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4.2. The orbit of p-tandem walks

The aim of this subsection is to prove the following result.

Proposition 13. Let x0, . . . , xp be defined as the roots of S(X, y) = S(x, y), as in Lemma 11.
Let us denote xp+1 = ȳ. For 0 6 i 6 p + 1, denote moreover yi = x̄i := 1/xi, so that in
particular, yp+1 = y. Then for 0 6 i, j 6 p+ 1 and i 6= j, we have

S(xi, yj) = S(x, y).

In the terminology of [10], the pairs (xi, yj) with i 6= j form the orbit of (x, y) for the
step set Sp := {(1,−1)} ∪ {(−i, j) : i, j > 0, i+ j 6 p}.

Our first task is to prove Lemma 11.

Proof of Lemma 11. Recall the expression (7) of the step polynomial S(x, y). We refer
the reader to [76, Ch. 6] for generalities on algebraic series. Clearly one of the roots of
S(X, y) = S(x, y) (solved for X) is x0 = x. The others satisfy

0 =
S(x, y)− S(X, y)

x−X
= ȳ − x̄X̄

∑
i,j,k>0
i+j+k<p

zi+j+k+1x̄
iX̄jyk. (19)

This expression is a polynomial in X̄, and is thus well suited to determine the roots xi
such that x̄i = 1/xi is a formal power series in ȳ (or in a positive power of ȳ). The other
series x̄i will involve positive powers of y, hence their reciprocals will be formal power series
in (a positive power of) ȳ. More precisely, upon multiplying the above identity by xȳp−1

and expanding in powers of ȳ, we have

0 = xȳp − zpX̄ −
p−1∑
`=1

ȳ`
∑
i+j6`

zi+j+p−` x̄
iX̄j+1. (20)

The coefficient of ȳ0 is −zpX̄. It has degree 1 in X̄, hence there is a unique x̄i, say x̄1,
that only involves nonnegative powers of ȳ. This series can be computed iteratively from
the above equation. It is a power series in ȳ, reads

x̄1 =
xȳp

zp
+O(ȳp+1),

and its coefficients belong to Q[z1, . . . , zp, 1/zp, x, x̄]. This proves the claimed properties
of x1.

To understand the nature of the other roots x2, . . . , xp, we now write X = ȳU , and
multiply (19) by ȳpUp. Then

0 = ȳp+1Up − x̄
∑

i+j+k<p

zi+j+k+1x̄
iUp−1−j ȳp−1−j−k. (21)

The coefficient of ȳ0 is

−x̄zp
p−1∑
k=0

Uk.

It has degree p − 1 in U , hence (21) admits p − 1 solutions u2, . . . , up that expand in
nonnegative powers of ȳ only. Their constant terms are the pth roots of unity distinct
from 1. All of them are power series in ȳ, and their expansions can be computed recursively



22 MIREILLE BOUSQUET-MÉLOU, ÉRIC FUSY, AND KILIAN RASCHEL

using (21). Their coefficients lie in C[z1, . . . , zp, 1/zp, x, x̄] (in fact we could replace in the
lemma C by the extension of Q generated by pth roots of unity).

We then need the following symmetry properties of S(x, y).

Lemma 14. The step polynomial S(x, y), defined by (7), satisfies S(x, y) = S(ȳ, x̄) and

x
S(x, y)− S(X, y)

x−X
= −X̄ S(x, y)− S(x, X̄)

y − X̄
.

Proof. The first point is easy, using

S(x, y) = xȳ +
∑
r

zr
x̄r+1 − yr+1

x̄− y
.

For the second, we recall from (19) that
S(x, y)− S(X, y)

x−X
= ȳ − x̄X̄

∑
i,j,k>0
i+j+k<p

zi+j+k+1x̄
iX̄jyk, (22)

and we compute from (7) that

S(x, y)− S(x, X̄)

y − X̄
= −xXȳ +

∑
i,j,k>0
i+j+k<p

zi+j+k+1x̄
iX̄jyk. (23)

The result follows by comparing these two expressions.

We can now prove Proposition 13.

Proof of Proposition 13. By definition of the series xi, for 0 6 i 6 p, we have S(x, y) =
S(xi, y). So the claimed identity holds for j = p+ 1. The first identity in Lemma 14 then
gives

S(xi, y) = S(ȳ, x̄i),

hence the claimed identity holds as well for i = p+ 1.
Now we specialize the second identity in Lemma 14 to x = xi, X = xj, with 0 6 i 6=

j 6 p. This reads

xi
S(xi, y)− S(xj, y)

xi − xj
= −yj

S(xi, y)− S(xi, yj)

y − yj
.

Since the left-hand side is zero, we conclude that

S(xi, yj) = S(xi, y) = S(x, y)

for 0 6 i 6= j 6 p, which concludes the proof of Proposition 13.

4.3. A section-free functional equation

In the functional equation (18), we can replace the pair (x, y) by any element (xi, yj)
of the orbit. The series that occur in the resulting equation are series in t with algebraic
coefficients in x and y (and the zr’s). By Proposition 13, the kernel K(x, y) = 1− tS(x, y)
takes the same value at all points of the orbit. We thus obtain (p + 1)(p + 2) equations.
Our aim is to form a linear combination of these equations in which the right-hand side
does not contain any section Q(xi, 0) nor Gk(yj). As soon as p > 1, the vector space
of such linear combinations has dimension larger than 1. We choose here a section-free
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combination that only involves the pairs (xi, yj) for j ∈ {0, 1, p + 1}. That is, yj will be
either y, or x̄, or y1 := 1/x1. We focus on the case a = 0 until Section 4.5.

Lemma 15. Let x0, . . . , xp be defined by Lemma 11, and take xp+1 = ȳ as before. For
Q(x, y) ≡ Q(0,b)(x, y), the following identity holds:

Q(x, y)− x̄
p∑
i=1

(
xpi Q(xi, y)

∏
j 6=0,i,p+1

1− x̄xj
xi − xj

)

− y1ȳ

p+1∏
i=2

(1− x̄xi)
∑
i 6=1

xpi Q(xi, y1)∏
j 6=i,1(xi − xj)

+ x̄2ȳ(x1 − ȳ)

p∏
i=2

(1− x̄xi)
∑
i 6=0

xpi Q(xi, x̄)∏
j 6=i,0(xi − xj)

=
(1− x̄ȳ)S ′1(x, y)

1− tS(x, y)

b∑
k=0

(yk+1 − yk+1
1 )x̄b−k.

In order to prove this lemma, we need two other lemmas that involve classical symmetric
functions. We recall the definition of complete and elementary homogeneous symmetric
functions of degree k in m variables u1, . . . , um:

hk(u1, . . . , um) =
∑

16i16···6ik6m

ui1 · · ·uik , ek(u1, . . . , um) =
∑

16i1<···<ik6m

ui1 · · ·uik .

In this subsection, we only apply the following lemma to polynomials P (u, v1, . . . , vm) ∈
Q[u], but we use it in full generality in the next subsection.

Lemma 16. Let P (u, v1, . . . , vm) ∈ Q[u, v1, . . . , vm] be a polynomial, symmetric in the vi’s.
Take m+ 1 variables u0, u1, . . . , um, and define

E(u0, . . . , um) :=
m∑
i=0

P (ui, u0, . . . , ui−1, ui+1, . . . , um)∏
j 6=i (ui − uj)

. (24)

Then E(u0, . . . , um) is a symmetric polynomial in u0, . . . , um, of degree at most deg(P )−m.
In particular, E(u0, . . . , um) = 0 if P has degree less than m.

If P (u, v1, . . . , vm) = um+a with a > 0, then

E(u0, . . . , um) =
m∑
i=0

ui
m+a∏

j 6=i (ui − uj)
= ha(u0, . . . , um), (25)

with ha the complete homogeneous symmetric function.
Finally, for a > 0 we have

m∑
i=0

ui
−a−1∏

j 6=i (ui − uj)
=

(−1)m∏m
i=0 ui

ha(1/u0, . . . , 1/um).

Proof. Let E(u) denote the expression (24), where we use the shorthand notation u for
the (m+ 1)-tuple (u0, . . . , um). Multiplying E(u) by the Vandermonde

∆(u) :=
∏

06i<j6m

(ui − uj)

gives a polynomial in the ui’s, which is antisymmetric in the ui’s (that is, swapping ui
and uj changes the sign of the expression): this comes from the fact that E is symmetric,
while ∆ is antisymmetric. Hence E(u)∆(u), as a polynomial, must be divisible by the
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Vandermonde, and E(u) itself is a polynomial. Its degree is obviously deg(P ) − m (at
most).

Next, in order to prove (25), note that ha is the Schur function of the Ferrers diagram
consisting of a single line of length a, and therefore, by definition of Schur functions [74,
Ch. 4]:

ha(u0, . . . , um) =
det
(
u
a·δj,0+m−j
i

)
06i,j6m

∆(u0, . . . , um)
.

Upon expanding the determinant according to the first column (j = 0), we find

ha(u)∆(u) = det
(
u
a·δj,0+m−j
i

)
06i,j6m

=
m∑
i=0

(−1)iua+m
i ∆(u0, . . . , ui−1, ui+1, . . . , um).

But for any 0 6 i 6 m we have

∆(u0, . . . , ui−1, ui+1, . . . , um) =
∆(u0, . . . , um)

(−1)i
∏

j 6=i(ui − uj)
,

which yields (25).
To prove the last statement, we let vi = 1/ui and note that 1

ui−uj = − vivj
vi−vj , hence

m∑
i=0

u−a−1
i

∏
j 6=i

1

ui − uj
= (−1)m(v0 · · · vm)

m∑
i=0

vm+a
i

∏
j 6=i

1

vi − vj
= (−1)m(v0 · · · vm)ha(v0, . . . , vm) by (25).

Lemma 17. Let x1, . . . , xp be the series defined in Lemma 11. Their elementary symmetric
functions are:

e`(x1, . . . , xp) =


1 if ` = 0,

(−1)`−1x̄y
∑
i,k>0

i+k6p−`

zi+k+` x̄
iyk for 1 6 ` 6 p.

In particular, they are x-nonpositive and y-nonnegative (meaning that in every monomial
that they contain, x has a nonpositive exponent and y a nonnegative one). Moreover, every
monomial x̄iyj occurring in them satisfies i > j/p.

Finally,
p∏
i=1

(1− x̄xi) = yS ′1(x, y). (26)

Proof. It follows from (22) that (S(x, y) − S(X, y))/(x − X) is a polynomial in X̄ with
constant term ȳ. Hence

S(x, y)− S(X, y)

x−X
= ȳ

p∏
i=1

(1− xiX̄) = ȳ

p∑
`=0

(−1)`e`(x1, . . . , xp)X̄
`.

Comparing with (22) gives the expression of e`(x1, . . . , xp). The next statement is then
obvious. Letting X tend to x in the above identity finally gives (26).
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Proof of Lemma 15. As already noted, we can replace in the basic functional equation (18)
the pair (x, y) by any element (xi, yj) of its orbit. By Proposition 13, this does not change
the value of K(x, y) = 1− tS(x, y). Recall that for the moment, we take a = 0.

Using the elements (xi, y) of the orbit, with 0 6 i 6 p, we first construct a linear
combination avoiding all series Gj(y):

K(x, y)

p∑
i=0

xpi Q(xi, y)∏
j 6=i,p+1(xi − xj)

= yb − tȳ
p∑
i=0

xp+1
i Q(xi, 0)∏

j 6=i,p+1(xi − xj)
. (27)

Lemma 16 explains the simplicity of the right-hand side, namely the fact that all sections
Gj(y) disappear, and that the constant term is just yb.

More generally, for 0 6 k 6 p + 1, we can similarly eliminate all series Gj(yk) in the
equations obtained from the elements (xi, yk) of the orbit, for i 6= k. After multiplying
by yk, this gives:

ykK(x, y)
∑
i 6=k

xpi Q(xi, yk)∏
j 6=i,k(xi − xj)

= yb+1
k − t

∑
i 6=k

xp+1
i Q(xi, 0)∏
j 6=i,k(xi − xj)

,

where the natural range of the indices i and j is 0, . . . , p + 1. Note that the equation
rewrites as

ykK(x, y)
∑
i 6=k

xpi Q(xi, yk)∏
j 6=i,k(xi − xj)

= yb+1
k − t

p+1∑
i=0

xp+1
i Q(xi, 0)∏
j 6=i(xi − xj)

(xi − xk). (28)

We now take an appropriate linear combination of three of these p+ 2 equations, namely
those obtained for k = p+ 1, k = 1 and k = 0, with respective weights

x0 − x1, xp+1 − x0, x1 − xp+1. (29)

(Of course these weights can be written in a simpler way as x− x1, ȳ − x and x1 − ȳ, but
the above notation makes the symmetry clearer.) Then, writing the three equations as
in (28), it is easy to show that all terms involving Q(xi, 0) vanish from the right-hand side.
Hence the only remaining term in the right-hand side is

(x0 − x1)yb+1
p+1 + (xp+1 − x0)yb+1

1 + (x1 − xp+1)yb+1
0

= x0x1xp+1

(
(y1 − y0)yb+2

p+1 + (y0 − yp+1)yb+2
1 + (yp+1 − y1)yb+2

0

)
.

With the notation (24) and P (u, v1, v2) = ub+2, this can be rewritten as

−x0x1xp+1∆(y0, y1, yp+1)E(y0, y1, yp+1)

= −x0x1xp+1∆(y0, y1, yp+1)hb(y0, y1, yp+1) by (25)

= x0x1xp+1(y0 − y1)(y0 − yp+1)
b∑

k=0

(yk+1
p+1 − yk+1

1 )yb−k0

= (1− x̄ȳ)(x− x1)
b∑

k=0

(yk+1 − yk+1
1 )x̄b−k. (30)
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The left-hand side in our linear combination is

K(x, y)

(
(x− x1)y

∑
i 6=p+1

xpi Q(xi, y)∏
j 6=i,p+1(xi − xj)

+ (ȳ − x)y1

∑
i 6=1

xpi Q(xi, y1)∏
j 6=i,1(xi − xj)

+(x1 − ȳ)x̄
∑
i 6=0

xpi Q(xi, x̄)∏
j 6=i,0(xi − xj)

)
.

The term Q(x, y) only occurs in the first sum, with coefficient

xpy
K(x, y)(x− x1)∏p

j=1(x− xj)
=
K(x, y)(x− x1)

S ′1(x, y)
, (31)

by (26). Dividing our linear combination by this expression gives Lemma 15.

4.4. Extracting Q(0,b)(x, y): proof of Proposition 12

We will now derive from Lemma 15 the expression of Q(0,b)(x, y) given in Proposition 12.
In the identity of Lemma 15, both sides are power series in t whose coefficients are algebraic
functions of x and y (and the zr’s). More precisely, these coefficients are written as polyno-
mials in x, x̄, y, ȳ, y1 and in x1, . . . , xp (thanks to Lemma 16), symmetric in x2, . . . , xp (but
not x1). We think of them as Laurent series in C[z0, . . . , zp, 1/zp, x, x̄]((ȳ)) (Lemma 11).
We will now extract from each coefficient the monomials that are nonnegative in x and y,
and show that Q(x, y) is the only contribution in the left-hand side — this is exactly what
Proposition 12 says. We proceed line by line.

In the first line, the term Q(x, y) is clearly nonnegative in x and y. Then, the coefficient
of tn in the sum over i is a polynomial in y, x̄ and x1, . . . , xp, symmetric in the xi’s. Since
the symmetric functions of the xi’s are x-nonpositive (Lemma 17), the second term of the
first line only involves negative powers of x (because of the factor x̄ before the sum), and
thus the contribution of the first line reduces to Q(x, y).

Let us show that the second line only involves negative powers of y. The coefficient
of tn in it is, up to a factor ȳ, a polynomial in y1, x̄, and x0 = x, x2, . . . , xp, xp+1 = ȳ,
symmetric in the latter p variables x2, . . . , xp, xp+1. By Proposition 13, the series x0 =
x, x2, . . . , xp, xp+1 = ȳ are the solutions of the equation S(X, y1) = S(x, y1) (solved for X),
x0 = x being the trivial solution. By Lemma 17, applied with y replaced by y1, the
symmetric functions of x2, . . . , xp+1 are polynomials in x̄ and y1. In particular, they are
y-nonpositive as y1 itself, and so is the whole second line. It is even y-negative due to the
factor ȳ. Hence the second line does not contribute in the extraction.

Let us finally consider the last term of the right-hand side. Things are a bit more
delicate here: we are going to prove that every y-nonnegative monomial that occurs there
is x-negative. We need the following lemma.

Lemma 18. Let A = Q(z0, . . . , zp). For a series G(x, ȳ) ∈ A[x, x̄]((ȳ)), we say that G
satisfies property P if all monomials xkȳ` (with k, ` ∈ Z) that occur in G(x, ȳ) satisfy
k 6 `/p. Equivalently, G(x̄p, xȳ) ∈ A[x]((ȳ)).

Then the series x1 defined in Lemma 11 satisfies P, as well as all its (positive or negative)
powers.

Note that Lemma 17 says that the symmetric functions of x1, . . . , xp satisfy P . Also, any
sum or product of series satisfying P still satisfies P , and the “series” x̄ and ȳ satisfy P .
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We delay the proof of this lemma to complete the proof of Proposition 12. We get back
to the identity of Lemma 15. The coefficient of tn in the sum∑

i 6=0

xpi Q(xi, x̄)∏
j 6=i,0(xi − xj)

is a polynomial in x̄ and x1, x2, . . . , xp+1 = ȳ, symmetric in the latter p + 1 variables. By
the above observations, it satisfies P . Now consider the product

∏p
i=2(1 − x̄xi): it is a

polynomial in x̄ and x2, . . . , xp, symmetric in the latter p − 1 variables. If pk is the kth
power sum, we have of course

pk(x2, . . . , xp) = pk(x1, . . . , xp)− xk1.
We recall that power sums generate (as an algebra) all symmetric polynomials. Hence the
above product is a polynomial in x̄, x1, and the elementary functions of x1, . . . , xp. By
the above observations and Lemma 18, it satisfies P . So does the factor (x1 − ȳ). Hence
every monomial occurring in the last part of the left-hand side in Lemma 15 reads x̄2ȳxkȳ`

with k 6 `/p. If it is nonnegative in y, it is x-negative, and thus cannot contribute in the
extraction.

Proof of Lemma 18. Recall that X = x1 = zpx̄y
p(1 + O(ȳ)) satisfies S(x, y) = S(X, y),

which we write as (20). Then we see that G(x, ȳ) := X̄ = 1/x1 satisfies P . Indeed,
denoting G̃ = G(x̄p, xȳ), we have:

zpG̃ = ȳp +

p∑
`=1

∑
i,j>0
i+j6`

zi+j+p−` x
ip+`ȳ`G̃j+1,

from which it is recursively clear that G̃ = ȳp/zp(1 +O(ȳ)) is a series in ȳ with polynomial
coefficients in x. Moreover, since the first coefficient of G̃, being 1/zp, does not depend
on x, property P holds as well for the reciprocal of G, which is X = x1.

4.5. Quadrant walks starting at (a, b): the series Q(a,b)(x, y)

We finally generalize the expression for Q(0,b)(x, y) given in Proposition 12 to quadrant
walks starting at an arbitrary position (a, b).

Proposition 19. Fix p > 1, and let y1 = 1/x1, where x1 is defined in Lemma 11. The
generating function of p-tandem walks confined to the first quadrant and starting at (a, b)
is the nonnegative part (in x and y) of an algebraic function:

Q(a,b)(x, y) = [x>y>]
(1− x̄ȳ)S ′1(x, y)

1− tS(x, y)

(
σbρa − σb−1ρa−1

)
, (32)

where σb :=
∑b

k=0(yk+1 − yk+1
1 )x̄b−k and ρa is the Laurent polynomial in x and y (with

coefficients that are polynomial in z1, . . . , zp) defined by∑
a>0

ρau
a =

1

uy(1− uȳ)(S(ū, y)− S(x, y))

=
1

(1− ux)(1− uȳ)(1− ux̄y
∑

i+j+k<p zi+j+k+1uix̄jyk)
.

The argument of [x>y>] in (32) is meant as a series of Q[x, x̄, z0, . . . , zp, 1/zp]((ȳ))[[t]].
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Proof. We start from the functional equation (18), and adapt to the case where a is not
necessarily zero the solution presented earlier in this section.

First, let us generalize the section-free equation of Lemma 15. We follow step by step
the proof of this lemma, given in Section 4.3. By Lemma 16, the linear combination (27)
becomes

K(x, y)

p∑
i=0

xpi Q(xi, y)∏
j 6=i,p+1(xi − xj)

= ha(x0, . . . , xp)y
b − tȳ

p∑
i=0

xp+1
i Q(xi, 0)∏

j 6=i,p+1(xi − xj)
. (33)

Hence, denoting x̂k = (x0, . . . , xk−1, xk+1, . . . , xp+1) for 0 6 k 6 p + 1, the counterpart
of (28) is obtained by replacing yb+1

k by ha(x̂k)yb+1
k . We will now express these homogeneous

symmetric functions. Recall that xp+1 is defined to be ȳ, while x0, x1, . . . , xp are the roots
of S(X, y)− S(x, y) (Lemma 11). In particular,

S(ū, y)− S(x, y) = ūȳ

p∏
i=0

(1− uxi),

so that for k = 0, . . . , p+ 1,

ha(x̂k) = [ua]
1− uxk∏

06i6p+1(1− uxi)
= [ua](1− uxk)C(u), (34)

where we have defined

C(u) :=

p+1∏
i=0

1

1− uxi
=

1

uy(1− uȳ)(S(ū, y)− S(x, y))
(35)

=
1

(1− ux)(1− uȳ)(1− ux̄y
∑

i+j+k<p zi+j+k+1uix̄jyk)
,

by (19).
Then we take the same linear combination of three equations as in the case a = 0, with

weights given by (29). The left-hand side keeps the same form, while the right-hand side
reads:

(x0 − x1)ha(x̂p+1)yb+1
p+1 + (xp+1 − x0)ha(x̂1)yb+1

1 + (x1 − xp+1)ha(x̂0)yb+1
0

= [ua]
[(

(x0 − x1)(1− uxp+1)yb+1
p+1 + (xp+1 − x0)(1− ux1)yb+1

1

+(x1 − xp+1)(1− ux0)yb+1
0

)
C(u)

]
=
(
(x0 − x1)yb+1

p+1 + (xp+1 − x0)yb+1
1 + (x1 − xp+1)yb+1

0

)
[ua]C(u)

−
(
(x0 − x1)ybp+1 + (xp+1 − x0)yb1 + (x1 − xp+1)yb0

)
[ua−1]C(u).

Let us denote ρa := [ua]C(u). We now return to the derivation (30) and conclude that the
above expression is

(1− x̄ȳ)(x− x1)
(
σbρa − σb−1ρa−1

)
,

where σb :=
∑b

k=0(yk+1 − yk+1
1 )x̄b−k as defined in Proposition 19 (note that σ−1 = 0).

We then isolate Q(x, y) by dividing the whole equation by (31), and thus obtain the
counterpart of Lemma 15: the left-hand side is unchanged, while the right-hand side is

(1− x̄ȳ)S ′1(x, y)

K(x, y)

(
σbρa − σb−1ρa−1

)
.
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It remains to apply the operator [x>y>]. Again, the only term that survives in the
left-hand side is Q(x, y), and this concludes the proof.

5. Final expressions of Q(0,b)(x, y)

We still fix p > 1. Our aim is now to derive from Proposition 12 the expressions of
Q(0,b)(x, y) given in Proposition 6 and Corollary 7. We begin with Proposition 6. As
explained in the second remark following this proposition, it suffices to prove the case
y = 0. By linearity, it is enough to prove the following lemma.

Lemma 20. For k > 0,

[y0]
(1− x̄ȳ)S ′1(x, y)

K(x, y)
(yk+1 − yk+1

1 ) =
Y k+1

1

tx

(
1− 1

tx2
+

p∑
r=0

zr(r + 1)x̄r+2

)
+

1

tx2
1k=0.

The proof that we will give is closely related to the proof of the equivalence of Proposi-
tions 18 and 19 in [10].

Recall that Y1 = xt + O(t2) is the unique power series in t that cancels K(x, Y ). We
will also need to handle the other roots of K(x, Y ) = 1− tS(x, Y ).

Lemma 21. The equation tS(x, Y ) = 1, when solved for Y , admits p+1 roots Y1, Y2, . . . , Yp+1,
taken as Puiseux series in t. Only Y1 is a power series in t. The other roots are Lau-
rent series in t1/p that contain some negative powers in t. They have coefficients in
C[z0, . . . , zp−1, z

1/p
p , 1/zp, x, x̄].

Proof. The equation tS(x, Y ) = 1 reads

Y = t

(
x+

∑
i+j6p

zi+jx̄
iY j+1

)
.

When t = 0 this reduces to Y = 0, hence Y1 is the unique power series solution. Its
expansion in t can be computed iteratively from the equation, and its coefficients lie in
Q[z0, . . . , zp, x, x̄]. The other roots Y2, . . . , Yp+1 thus involve negative powers of t. Denoting
V = 1/Y , the equation tS(x, Y ) = 1, once multiplied by V p+1, reads

V p = txV p+1 + tzp + t
∑

i+j6p,j<p

zi+jx̄
iV p−j. (36)

The Newton polygon method allows us to conclude that the p solutions V2, . . . , Vp+1 read

Vj = ξjz1/p
p t1/p (1 + o(1)) ,

where ξ is a primitive pth root of unity, and have coefficients in C[z0, . . . , zp−1, z
1/p
p , 1/zp, x, x̄].

The claimed properties of Yj = 1/Vj follow.

Going back to Lemma 20, we need to extract the constant term in y from a series of the
form N(x, y)/K(x, y), where N(x, y) is a Laurent series in ȳ. In our case

N(x, y) = (1− x̄ȳ)S ′1(x, y)(yk+1 − yk+1
1 ), (37)

but we first focus, in the following lemma, on the case where N is a monomial in y.
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Lemma 22. Upon expanding 1/K(x, y) as a power series in t with coefficients in the ring
Q[z0, . . . , zp, x, x̄, y, ȳ], we have, for k > 0,

[y0]
yk

K(x, y)
= − 1

tzp
Y k

1

∏
j 6=1

1

Y1 − Yj
,

while for k < 0,

[y0]
yk

K(x, y)
=

1

tzp

p+1∑
i=2

Y k
i

∏
j 6=i

1

Yi − Yj
,

where the natural range of j is J1, p+ 1K.

Proof. The partial fraction expansion of 1/K(x, y) reads
1

K(x, y)
= − y

tzp

∏
j

1

y − Yj
= − 1

tzp

∑
i

Yi
y − Yi

∏
j 6=i

1

Yi − Yj

= − 1

tzp

ȳY1

1− ȳY1

∏
j 6=1

1

Y1 − Yj
+

1

tzp

p+1∑
i=2

1

1− yY −1
i

∏
j 6=i

1

Yi − Yj
.

Recall that Y1 = O(t) while for i > 2, 1/Yi = O(t1/p). Hence, in the ring of series in t1/p,

1

K(x, y)
= − 1

tzp

∑
k>1

Y k
1 ȳ

k
∏
j 6=1

1

Y1 − Yj
+

1

tzp

∑
k>0

p+1∑
i=2

Y −ki yk
∏
j 6=i

1

Yi − Yj
.

For k 6= 0 this gives the claimed expression of [y0](yk/K) = [ȳk](1/K). For k = 0 it gives

[y0]
1

K
=

1

tzp

p+1∑
i=2

∏
j 6=i

1

Yi − Yj
.

However, by Lemma 16, we have
∑p+1

i=1

∏
j 6=i

1
Yi−Yj = 0, hence the claimed expression also

holds for k = 0.

Proof of Lemma 20. ForN(x, y) a Laurent series in ȳ we denote byN<(x, y) := [y<]N(x, y)
the negative part of N in y, and by N>(x, y) := [y>]N(x, y) the nonnegative part. Then
Lemma 22 gives:

[y0]
N(x, y)

K(x, y)
= − 1

tzp
N>(x, Y1)

∏
j 6=1

1

Y1 − Yj
+

1

tzp

p+1∑
i=2

N<(x, Yi)
∏
j 6=i

1

Yi − Yj
. (38)

For N(x, y) given by (37), it is easy to express N< and N>. Recall that S ′1(x, y) has
valuation −1 and degree p− 1 in y, while y1 = xȳp/zp(1 +O(ȳ)) by Lemma 11. This gives

N>(x, y) = yk+1(1− x̄ȳ)S ′1(x, y) + 1k=0 x̄ȳ,

N<(x, y) = −yk+1
1 (1− x̄ȳ)S ′1(x, y)− 1k=0 x̄ȳ.

According to (38), we have to evaluate N<(x, y) at y = Yi, for i > 2, and hence to evaluate
the series y1 = 1/x1 at y = Yi. In the following lemma, we emphasize the fact that y1

depends on y (it is a power series in ȳ) with the notation y1(y).

Lemma 23. Fix i ∈ J2, p+ 1K. The series 1/Yi is a power series in t1/p with no constant
term. Hence y1(Yi) is a formal power series in t1/p, which in fact equals Y1.
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Proof. The first statement follows from Lemma 21, so it remains to identify y1(Yi). Recall
that S(x, y1(y)) = S(x, y). Replacing y by Yi gives S(x, y1(Yi)) = S(x, Yi). Since Yi is a
root (in y) of K(x, Y ) = 1−tS(x, Y ), it follows that K(x, y1(Yi)) = 1−tS(x, y1(Yi)) = 0 as
well. Hence y1(Yi) is one of the Yj’s. But Y1 is the only Yj that does not contain negative
powers of t (Lemma 21), and we conclude that y1(Yi) = Y1.

We can now apply (38). This gives

[y0]
N(x, y)

K(x, y)
= − 1

tzp

p+1∑
i=1

(
Y k+1

1 (1− x̄/Yi)S ′1(x, Yi) + 1k=0 x̄/Yi
)∏
j 6=i

1

Yi − Yj
.

We will evaluate this sum thanks to Lemma 16. The Laurent polynomial P (y) := (1 −
x̄/y)S ′1(x, y) has degree p− 1 in y, and valuation −2. Moreover,

P−2 := [ȳ2]P (y) = −x̄, and P−1 := [ȳ]P (y) = 1 +

p∑
r=0

zrrx̄
r+2.

Hence, by Lemma 16,

[y0]
N(x, y)

K(x, y)
= − 1

tzp

(−1)p∏
i Yi

(
Y k+1

1 P−1 + x̄1k=0 + Y k+1
1 P−2h1(1/Y1, . . . , 1/Yp+1)

)
.

The elementary symmetry functions of 1/Y1, . . . , 1/Yp+1 are easily computed using the fact
that each of them is a root V of (36). One finds:

ep+1(1/Y1, . . . , 1/Yp+1) =
1∏
i Yi

= (−1)p−1x̄zp

and

e1(1/Y1, . . . , 1/Yp+1) =
1

tx

(
1− t

p∑
r=0

zrx̄
r

)
.

Since e1 = h1, this gives the expression of Lemma 20.

Proof of Corollary 7. We start from the expression of Q(0,b)(x, y) given in Proposition 6.
By linearity, it suffices to prove that, for 0 6 k 6 b,

− Y k+1
1 = [z0]

tzk+2S ′2(x, z)

K(x, z)
. (39)

The numerator occurring in the right-hand side is a polynomial in z, because S ′2(x, z) has
valuation −2 in z. Hence the first part of Lemma 22 tells us that

[z0]
tzk+2S ′2(x, z)

K(x, z)
= − 1

zp
Y k+2

1 S ′2(x, Y1)
∏
j 6=1

1

Y1 − Yj
. (40)

Upon writing

S(x, z)− 1/t = S(x, z)− S(x, Y1) = −1

t
K(x, z) = zpz̄

p+1∏
i=1

(z − Yi),

we can compute

S ′2(x, Y1) =
zp
Y1

p+1∏
i=2

(Y1 − Yi),
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which, combined with (40), gives (39). An alternative, purely combinatorial proof of (39)
in terms of one-dimensional lattice walks is given in Section 9.4.2.

6. Quadrant walks with arbitrary endpoint: algebraic solution

We are now going to prove Proposition 8, which gives an explicit algebraic expression
for the series Q(a,b)(1, 1). We still work in the p-specialization, for p > 1. We denote
Q(x, y) ≡ Q(a,b)(x, y).

The proof that we give generalizes the proof given for p = 1 in [17, Sec. 5.2]. In our
basic functional equation (18), let us replace the pair (x, y) by (xi, x̄), with 1 6 i 6 p. By
Proposition 13, K(xi, x̄) = K(x, y). We thus obtain

K(x, y)Q(xi, x̄) = xai x̄
b − txixQ(xi, 0)−

p∑
k=1

x̄kiGk(x̄). (41)

We now consider the linear combination (33). It involves, on the right-hand side, the series
Q(x, 0), and then Q(xi, 0) for 1 6 i 6 p. By taking a linear combination with (41), for
1 6 i 6 p, we can eliminate the latter p series — upon introducing the series Gk(x̄). More
precisely,

K(x, y)

(
y

p∑
i=0

xpi Q(xi, y)∏
j 6=i,p+1(xi − xj)

− x̄
p∑
i=1

xpi Q(xi, x̄)∏
j 6=i,p+1(xi − xj)

)

= ha(x0, . . . , xp)y
b+1 − t xp+1Q(x, 0)∏

j 6=0,p+1(x− xj)

− x̄
p∑
i=1

xpi∏
j 6=i,p+1(xi − xj)

(
xai x̄

b −
p∑

k=1

x̄kiGk(x̄)

)
. (42)

We will now simplify the right-hand side. The coefficient of Q(x, 0) can be rewritten in
terms of S ′1(x, y) thanks to (26). The sums over i can be evaluated in closed form using (26)
again, and Lemma 16. First, since a > 0,

p∑
i=1

xp+ai∏
j 6=i,p+1(xi − xj)

=

p∑
i=0

xp+ai∏
j 6=i,p+1(xi − xj)

− xp+a∏p
j=1(x− xj)

= ha(x0, x1, . . . , xp)−
xp+a∏p

j=1(x− xj)
by Lemma 16

= ha(x0, x1, . . . , xp)−
xaȳ

S ′1(x, y)
by (26).

Similarly, for 1 6 k 6 p,
p∑
i=1

xp−ki∏
j 6=i,p+1(xi − xj)

=

p∑
i=0

xp−ki∏
j 6=i,p+1(xi − xj)

− xp−k∏p
j=1(x− xj)

= − xp−k∏p
j=1(x− xj)

by Lemma 16

= − x̄kȳ

S ′1(x, y)
by (26).
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Hence the right-hand side of (42) simplifies as

ha(x0, . . . , xp)
(
yb+1 − x̄b+1

)
+

x̄ȳ

S ′1(x, y)

(
xa−b − tx2Q(x, 0)−

p∑
k=1

x̄kGk(x̄)

)
.

The rightmost term can be expressed in terms of Q(x, x̄). Indeed, specializing the main
functional equation (18) to the case y = x̄ gives

K(x, x̄)Q(x, x̄) = xa−b − tx2Q(x, 0)−
p∑

k=1

x̄kGk(x̄).

We can thus rewrite the right-hand side of (42) as

ha(x0, . . . , xp)
(
yb+1 − x̄b+1

)
+

x̄ȳ

S ′1(x, y)
K(x, x̄)Q(x, x̄). (43)

Recall from (34) and (35) that

ha(x0, . . . , xp) = ha(x̂p+1) = [ua]
1

uy(S(ū, y)− S(x, y))

= [ua]
1

(1− ux)(1− ux̄y
∑

i+j+k<p zi+j+k+1uix̄jyk)

:= Da(x, y). (44)

Eq. (42), with its right-hand side written as (43), holds for indeterminates x and y,
where x1, . . . , xp are the roots of S(X, y) = S(x, y) distinct from x. By Lemma 13, the xi’s
can also be described as the roots X of S(x, 1/X) = S(x, y) distinct from ȳ. Observe that
we have not used the fact that we usually take them as Puiseux series in ȳ. We can choose
them in any algebraic closure of Q(z1, . . . , zp, x, y), and (42) still holds. We now specialize
y to Y1, which is the unique power series in t satisfying K(x, y) = 1− tS(x, y) = 0. Then
the corresponding values x1, . . . , xp are the roots X of S(x, 1/X) = S(x, Y1) distinct from
1/Y1, or equivalently the roots X of K(x, 1/X) = 0 distinct from 1/Y1. We choose to take
them as Puiseux series in t, hence they are in fact the series 1/Y2, . . . , 1/Yp+1, with the
Yi’s defined in Lemma 21. Note that each 1/Yi, for i > 2, is a formal power series in t1/p
with no constant term.

With these values of x1, . . . , xp, the series Q(xi, Y1) and Q(xi, x̄) occurring in (42) (spe-
cialized to y = Y1) are well defined power series in t1/p. But since K(x, Y1) = 0, the
left-hand side of (42) vanishes, and so does its right-hand side, which we have simplified
into (43). We thus obtain

K(x, x̄)Q(x, x̄) = Da(x, Y1)
(
x̄b+1 − Y b+1

1

)
xY1S

′
1(x, Y1). (45)

We now want to express S ′1(x, Y1). Since the series x1, . . . , xp are 1/Y2, . . . , 1/Yp+1 when
y = Y1, the specialization of (26) at y = Y1 reads

Y1S
′
1(x, Y1) =

p+1∏
i=2

(1− x̄/Yi).

On the other hand, K(x, y) factors as

K(x, y) =
tx

Y1

(1− ȳY1)

p+1∏
i=2

(1− y/Yi),
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so that

K(x, x̄) =
tx

Y1

(1− xY1)

p+1∏
i=2

(1− x̄/Yi).

With these two identities, (45) gives

Q(x, x̄) =
Y1

tx
Da(x, Y1)

x̄b+1 − Y b+1
1

x̄− Y1

.

When x = 1, the series Y1 specializes to W , and we obtain

Q(1, 1) =
W

t
Da(1,W )

1−W b+1

1−W
,

where Da(x, y) is defined by (44). This gives the expression of Proposition 8.

Remark. We have first obtained an expression for the series Q(x, x̄), which counts tan-
dem walks starting at (a, b) with a weight xi−j for walks ending at (i, j). Then we have
specialized this expression to x = 1. There is no loss of information in this specialization.
Indeed, since every SE step lets i− j increase by 2 and each face step of level r lets i− j
decrease by r, the series xb−aQ(x, x̄) is equal to Q(1, 1) where t is replaced by tx2 and zr
by zrx−r−2.

7. Bijective proofs

In this section we give combinatorial proofs of the expression of Q(0,b)(x, 0) given in
Proposition 6 and of the expression of Q(a,b)(1, 1) given in Proposition 8. In both cases we
use the KMSW bijection to interpret our series as generating functions of marked bipolar
orientations, and perform simple transformations on these orientations to establish the
identities.

7.1. The expression of Q(0,b)(x, 0)

For i, b > 0 let us denote by Q(b)
i := [xi]Q(0,b)(x, 0) the generating function of tandem

walks starting at (0, b), staying in the quadrant, and ending at (i, 0). The variable t records
the number of steps, x the final x-coordinate, and zr the number of face steps of level r.
Similarly, let H(b)

i be the series that counts tandem walks starting at (0, b), staying in the
half-plane {y > 0}, and ending at (i, 0). As explained after the definition (8) of Y1, we
have

Y1 = tx
∑
i∈Z

xiH
(0)
i ,

so that Y1 counts tandem walks starting at the origin, ending on the line {y = −1}, but
staying on or above the x-axis until this last step. By concatenating b+ 1 such walks, and
translating the resulting walk b steps up, we see that Y b+1

1 counts tandem walks starting
at (0, b), ending on the line {y = −1} and staying in {y > 0} up to the last step. In other
words,

Y b+1
1 = tx

∑
i∈Z

xiH
(b)
i =: txH(b)(x). (46)

Through the KMSW bijection described in Section 2 (see in particular Figure 8), the series
H

(b)
i counts marked bipolar orientations of signature (a, b; a+ i, 0), for some a > 0, where t

records the number of plain edges minus 1 — called the size of the orientation — and zr
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Figure 10. Left: sliding the bottom-right boundary edge from right to left.
Right: erasing the inner face incident to the bottom-right edge.

the number of inner faces of degree r+ 2. These orientations have no dashed edge on their
right boundary. The series Q(b)

i counts those that, in addition, have no dashed edge on the
left boundary. That is, those for which a = 0.

We now consider an orientation O counted by H(b)
i . Let e be the bottom edge of the

right outer boundary of O, directed from S to a vertex v. Then e is necessarily plain.
Let f be the face on its left. Three cases occur:

(0) f is the outer face,
(1) f is an inner face and e is the unique ingoing edge at v,
(2) f is an inner face and there are several ingoing edges at v.

Accordingly, O will be said to be of type 0, 1 or 2. The associated generating functions
are denoted H(b)

0,i , H
(b)
1,i and H(b)

2,i . Clearly,

H
(b)
i = H

(b)
0,i +H

(b)
1,i +H

(b)
2,i . (47)

Lemma 24. For i > 0, the above defined series satisfy:

H
(b)
0,i = 1i=b=0 + tQ

(b−1)
i−1 , (48)

H
(b)
1,i+2 = t

(
H

(b)
i −Q

(b)
i

)
, (49)

H
(b)
2,i = t

∑
r>0

(r + 1)zrH
(b)
i+r. (50)

Proof. We adopt in the proof the notation (e, f) used above in the definition of the types.
Let O be an orientation of type 0, counted by H

(b)
0,i . By definition e is plain, so that

a = 0. Erasing e leaves a bipolar orientation of signature (0, b− 1; i− 1, 0), or just a single
point if O is reduced to the edge e (in which case b = i = 0). This gives the first identity.

Now let O be a marked bipolar orientation of type 1 counted by H(b)
1,i+2. Its signature is

of the form (a, b; a+i+2, 0) for some a > 0. Let O′ be obtained by reversing the orientation
of e, and transforming it into a dashed edge (Figure 10, left). Graphically, we “slide” the
bottom edge e from the right to the left boundary. It is easy to see that we thus obtain
a marked bipolar orientation with source v, of signature (a+ 1, b; a+ 1 + i, 0), containing
at least one dashed edge (on the left boundary). Conversely, let us start from a marked
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bipolar orientation O′ of signature (α, b;α + i, 0) for some α > 1. Such orientations are
counted by H(b)

i −Q
(b)
i . Since the vertex lying just above the source on the left boundary

has indegree 1, we can reverse the direction of the bottom dashed edge, and make it plain:
this gives a marked bipolar orientation O of type 1, of signature (a, b; a + i + 2, 0) with
a = α− 1, and thus counted by H(b)

1,i+2. This correspondence yields the second identity of
the lemma.

Finally let O be a marked bipolar orientation of type 2 counted by H(b)
2,i , of signature

(a, b; i + a, 0) for some a > 0. Let r + 2 be the degree of the face f and let h > 0 be
the number of dashed edges on the left boundary of f . Since v has indegree at least 2,
the top edge of the left boundary of f cannot be dashed, by definition of marked bipolar
orientations. Hence h 6 r. If h > 0 then the h dashed edges of f form a path P of length h
on the left boundary of f , starting from S; we call P the bottom-left path of f .

Let O′ be obtained by erasing e and P , thereby choosing the top vertex of P as the
new source (Figure 10, right). The size has decreased by one, and the signature of O′ is
(a− h, b; a− h+ i+ r, 0). Thus O′ is a marked bipolar orientation counted by H(b)

i+r.
Conversely, consider a marked bipolar orientation O′ counted by H(b)

i+r, and let (α, b;α+
i + r, 0) be its signature. For 0 6 h 6 r consider the operation of attaching a path P
of h dashed edges below the source S of O′, choosing the bottom vertex of P as the new
source, and then adding a new edge e so that it becomes the bottom-edge of the right
outer boundary and encloses an inner face of degree r + 2. We obtain a marked bipolar
orientation O counted by H(b)

2,i , of signature (a, b; a+ i, 0), where a = α+ h. The resulting
correspondence thus gives

H
(b)
2,i = t

∑
r>0

r∑
h=0

zrH
(b)
i+r = t

∑
r>0

(r + 1)zrH
(b)
i+r,

which concludes the proof of the lemma.

Proof of Proposition 6. We will now establish the expression (10) of Q(0,b)(x, 0). As ex-
plained below Proposition 6, this suffices to prove the entire proposition. For i, b > 0,

Q
(b)
i = H

(b)
i − (H

(b)
i −Q

(b)
i ) = H

(b)
i −

1

t
H

(b)
1,i+2 by (49)

= H
(b)
i −

1

t

(
H

(b)
i+2 − tQ

(b−1)
i+1 −H

(b)
2,i+2

)
by (47) and (48)

= Q
(b−1)
i+1 +H

(b)
i −

1

t
H

(b)
i+2 +

∑
r>0

zr(r + 1)H
(b)
i+r+2 by (50).

By convention, Q(−1)
i+1 = 0. Recall that Q(0,b)(x, 0) =

∑
i>0 x

iQ
(b)
i . Recall the definition

of H(b)(x) in (46), and let A(x) := 1 − 1
tx2

+
∑

r>0 zr(r + 1)x̄r+2. Multiplying the above
identity by xi, and summing over i > 0 gives

Q(0,b)(x, 0) = [x>]
(
x̄Q(0,b−1)(x, 0) + A(x)H(b)(x)

)
= [x>]

(
x̄Q(0,b−1)(x, 0) + A(x)

Y b+1
1

tx

)
.

The case y = 0 of Proposition 6 then follows by induction on b > 0, thanks to the property,
already used in Section 3, that [x>](x̄[x>]G(x)) = [x>](x̄G(x)) for any series G.
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Remark. There is an analogy between the combinatorial proof given above and an ar-
gument used by Bouttier and Guitter in [20, Sec. 3.3]. Their aim is to determine the
generating function Mi of rooted planar maps with outer degree i, with t recording the
number of edges and zr the number of inner faces of degree r (the notation is ours). They
consider the generating function Ni of a larger class: rooted planar maps of outer degree i
with an additional marked vertex v (with the condition that the root-vertex minimizes the
distance to v among all outer vertices). The generating function Ni is easy to compute
using a bijection with certain labelled trees (called mobiles). Then they express Mi as
Ni − (Ni −Mi), and determine Ni −Mi using a local operation consisting in “opening”
the first edge on the leftmost geodesic path from the root-vertex to the marked vertex
(Figure 6 in [20]).

Similarly, to determine the generating function Q(b)
i of bipolar orientations, we consider

the larger class of marked bipolar orientations counted by H(b)
i . We express Q(b)

i as H(b)
i −

(H
(b)
i − Q

(b)
i ). Then H

(b)
i is computable thanks to the bijection with tandem walks in

the upper half-plane, while H(b)
i −Q

(b)
i is determined via the local operation consisting in

“sliding” the lower left outer edge to the right boundary (Figure 10, left).

7.2. The expression of Q(a,b)(1, 1)

We will now give a combinatorial proof of Proposition 8 using the involution σ on
marked bipolar orientations defined in Definition 3, and illustrated in Figure 9. We recall
the expression of Proposition 8 here, but for convenience we exchange the roles of the
indices (i, j) and (a, b): for i, j > 0,

Q(i,j)(1, 1) =
W

t
·

i∑
a=0

Aa ·
j∑
b=0

W b, (51)

where W = Y1(1) satisfies (15) and Aa is the series in W and the zr’s defined by (16).
Let Q(i,j) be the family of tandem walks starting at (i, j) and staying in the quadrant.

For a, b > 0, let Hb→a be the family of tandem walks starting at (0, b), staying in the upper
half-plane {y > 0}, reaching the x-axis at least once, and ending on the line {y = a}.

Recall from Section 2 that for a walk w, the signature of the marked bipolar orientation
Φ(w), where Φ is the KMSW bijection, is given by (6). Recall also the definition of the
involution σ on marked bipolar orientations (Definition 3).

Proposition 25. The mapping Φ−1◦σ◦Φ is an involution on non-embedded tandem walks
(seen as sequences of steps), which exchanges a = xstart − xmin and d = yend − ymin, while
preserving b = ystart− ymin and c = xend− xmin. It also preserves the length, the number of
SE steps, and the number of face steps of each level r.

Upon embedding walks appropriately, it induces a bijection between Q(i,j) and ∪06a6i∪06b6j

Hb→a, preserving the same statistics.

Proof. The first part directly follows from the properties of Φ and σ (see Theorem 1, Eq. (6)
and Definition 3).

For the second part, we simply fix i and j and restrict Φ−1 ◦ σ ◦Φ to paths w such that
a = xstart − xmin 6 i and b = ystart − ymin 6 j. We embed them so that they start at (i, j):
then they are exactly the walks of Q(i,j). Then we embed the walks obtained by applying
Φ−1 ◦ σ ◦ Φ so that they start at (0, b). This gives the announced result, illustrated by
Figure 11.
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Figure 11. The bijection of Proposition 25 (derived from σ) between Q(i,j)

and ∪06a6i ∪06b6j Hb→a.

Thanks to the above proposition, in order to prove (51) it now suffices to prove a half-
plane result dealing with Hb→a. But half-plane problems are in essence problems of walks
on a half-line, and hence much simpler and perfectly understood.

Lemma 26. For a, b > 0 the generating function of Hb→a (with t recording the length
and zr the number of face steps of level r) is W

t
AaW

b, with Aa defined by (16).

Proof. Each walk of Hb→a can be uniquely factored into a walk of Hb→0 hitting the x-
axis only once, followed by a walk of H0→a. With the notation used at the beginning of
Section 7.1, walks ofHb→0 hitting the x-axis only once are counted by txH(b−1)(x) = Y1(x)b

if we keep track of the abscissa of the endpoint (with the variable x), and thus by W b =
Y1(1)b if we don’t. It thus suffices to prove that half-plane walks going from the origin to
ordinate a are counted by W

t
Aa. However, it is a classical one-dimensional result [3, 18, 44],

obtained in one line using the so-called kernel method, that their generating function is∑
a>0

H0→aua =
1− ūW
K(1, u)

. (52)

But

K(1, u) = K(1, u)−K(1,W )

= t(S(1,W )− S(1, u))

= t(u−W )

(
ū

W
−
∑
i,j,k>0

zi+j+k+1W
juk

)
by (23).

Combined with (52), this gives∑
a>0

H0→aua =
W

t
· 1

1− uW
∑

j,k>0W
juk
∑

r>j+k zr
, (53)

which concludes the proof of the lemma and of Proposition 8. We have relied on a clas-
sical one-dimensional result to obtain (53), but we also give in Section 9.4.1 a purely
combinatorial proof of the latter identity.

Remark. Let us return to the double-tandem walks defined just before Section 3.4. Based
on extensive Maple computations, we conjecture that the first statement of Proposition 25
also holds for these walks: there exists a length-preserving involution on (non-embedded)
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double-tandem walks that exchanges a = xstart−xmin and d = yend−ymin, while preserving
b = ystart− ymin and c = xend − xmin. Moreover, this involution preserves the total number
of steps in {N,W, SE}. For a = b = 0, this involution would give a new bijective proof
for the equi-enumeration of double-tandem walks in the quadrant ending anywhere and
double-tandem walks in the upper half-plane ending on the x-axis. It would also extend
the involution of Proposition 25 for p = 1 (by taking all steps in {N,W, SE}). We have
not found any counterpart of this conjecture for p > 2.

8. Asymptotic enumeration

This section is devoted to the proof of Proposition 9 on the asymptotic enumeration of
p-tandem walks with prescribed endpoints (a, b), (c, d), with a weight zr for face steps of
level r (for 0 6 r 6 p). We proceed by a reduction to a random walk model with zero
drift. We first compute (thanks to the expression of Q(a,b)(1, 1) given in Proposition 8) an
asymptotic estimate of the probability that a random walk starting from (a, b) stays in the
quadrant at least up to time n. Then we adapt to our setting recent results of Denisov
and Wachtel [28] to derive an asymptotic estimate of the probability that a random walk
starting at (a, b) stays in the quadrant at least up to time n and ends at a prescribed point
(c, d). The reason why an adaptation is required is that the results of Denisov and Wachtel
require an aperiodicity condition which does not hold for p-tandem walks.

An alternative approach would be to apply analytic combinatorics in several variables
(ACSV) [70] to the explicit expression of Q(a,b)(x, y) given in Proposition 19 as the non-
negative part of an algebraic series; this would yield, in theory, full asymptotic expansions,
but these techniques are highly involved, especially with the complicated algebraic expres-
sion that we have. When a = 0, a more convenient starting point would be Corollary 7,
where Q(0,b)(x, y) is expressed in terms of a rational function. For instance, Marni Mishna
was able to work out from the expression (14) of Q(0,0)(0, 0) the asymptotic number of
excursions when all face steps have level p, for p = 3 and p = 4, and it is possible that this
could be extended to arbitrary p (personal communication). We refer to [10, 63, 64] for
recent applications of ACSV to the enumeration of walks confined to cones.

In Section 8.1 we state our probabilistic results. We then derive from them asymptotic
estimates for the weighted number of tandem walks in Section 8.2. We finally prove the
results of Section 8.1 in Sections 8.3 and 8.4.

8.1. Random tandem walks and discrete harmonic functions

In this section, we fix a (p + 2)-tuple (z, z0, . . . , zp) of nonnegative reals (with zp > 0)
such that

z +

p∑
r=0

(r + 1)zr = 1. (54)

We define a step distribution in Z2 by

P((X, Y ) = (i, j)) =


z if (i, j) = (1,−1),

zr if j = i+ r and 0 6 j 6 r,

0 otherwise.
(55)

To avoid trivialities, we assume throughout the section that p > 1. We then consider the
random tandem walk that starts at (a, b) and takes each step independently under the
above distribution. The point reached by the walk after n steps is denoted by S(a,b)(n),



40 MIREILLE BOUSQUET-MÉLOU, ÉRIC FUSY, AND KILIAN RASCHEL

and we let τ (a,b) ∈ N∪{∞} denote the first time that the random walk exits the quadrant.
The drift (E(X),E(Y )) of this walk is given by

E(X) = −E(Y ) = z −
p∑
r=0

zr

r∑
i=0

i = z −
p∑
r=0

zr

(
r + 1

2

)
.

Hence the drift vanishes if and only if

z =

p∑
r=1

zr

(
r + 1

2

)
. (56)

Lemma 27. Under the zero-drift assumption (56), the covariance matrix of the step dis-
tribution is

M =

(
E(X2) E(XY )
E(XY ) E(Y 2)

)
= σ2

(
2 −1
−1 2

)
, (57)

where

σ2 =

p∑
r=1

zr

(
r + 2

3

)
. (58)

Proof. Using (56), we compute

E(X2) = E(Y 2) = z +

p∑
r=0

zr

r∑
i=0

i2 =

p∑
r=0

zr

r∑
i=0

(i+ i2) = 2

p∑
r=0

zr

(
r + 2

3

)
= 2σ2,

and

−E(XY ) = z +

p∑
r=0

zr

r∑
i=0

i(r − i) =

p∑
r=0

zr

r∑
i=0

i(r + 1− i) =

p∑
r=0

zr

(
r + 2

3

)
= σ2.

Our first result is an estimate for the probability that the walk remains in the quadrant
until time n at least.

Proposition 28. Let a, b > 0. Under the zero-drift assumption (56),

P
(
τ (a,b) > n

)
∼ 1

4
√
π
V (a, b)n−3/2 as n→∞,

where the constants V (a, b) have generating function

V(u, v) :=
∑
a,b>0

V (a, b)uavb =
2

σ
· 1− uv

(1− u)3(1− v)3Λ(u)
, (59)

with

Λ(u) =

p−1∑
k=0

uk
p∑

r=k+1

zr

(
r − k + 1

2

)
and σ > 0 defined by (58).

We will prove Proposition 28 in Section 8.3. The proof consists in applying Flajolet and
Odlyzko’s singularity analysis [40, 41] to the expression ofQ(a,b)(1, 1) given in Proposition 8.

Remarks
1. We admit that the factor 2 in the expression of V (a, b) looks strange in sight of
the denominator 4 occurring in the estimate of P

(
τ (a,b) > n

)
. However, this is the right
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convention in terms of the limit behaviour of V (a, b). See the discussion in Section 9.3.2.
2. By considering the first step of a tandem walk starting at (a, b), we see that the function
V (a, b) of Proposition 28 has to satisfy

V (a, b) = z V (a+ 1, b− 1) +

p∑
r=0

zr

r∑
i=0

V (a− i, b+ r − i), (60)

with the convention that V (a, b) = 0 if a < 0 or b < 0. In other words, V (a, b) is equal to
the expected value of V (·, ·) over the neighbours of (a, b) after one random step, i.e.,

V (a, b) = E (V ((a, b) + (X, Y ))1τ (a,b)>1) .

Such a function is called a discrete harmonic function for the walk model (here random
p-tandem walks in the quadrant). We discuss more aspects of the above property in
Section 9.3.1.

3. Except in a few particular cases, it is very rare to obtain an explicit expression for a
discrete harmonic function (or for its generating function). The most remarkable features
of the above result are the following:

• it deals with a random walk with large steps, thus going beyond the results of [72]
which only apply to walks with steps in {−1, 0, 1}2,
• the generating function (59) is rational, and moreover its denominator factors
as a product of two univariate polynomials: this implies that V (a, b) admits a
polynomial-exponential expression.

Let us give two examples, with zr = 0 unless r = p, for some fixed p. Then the condi-
tions (54) and (56) force

zp =
2

(p+ 1)(p+ 2)
and z =

p

p+ 2
,

so that σ2 = p/3. If p = 1, then z = z1 = 1/3, and

V(u, v) =
6
√

3 (1− uv)

(1− u)3(1− v)3
,

which gives
V (a, b) = 3

√
3 (a+ 1)(b+ 1)(a+ b+ 2). (61)

When p = 2, z2 = 1/6, z = 1/2 and

V(u, v) =
2
√

6 (1− uv)

(1− u)3(1− v)3(1 + u/3)
,

which gives

V (a, b) =
3
√

6

4
(b+ 1)

(
(a+ 1)(a+ b+ 2) +

a

2
+
b

4
+

5

8
− 2b+ 1

8

(
−1

3

)a+1
)
. (62)

4. The form of the estimate in Proposition 28 follows from a general result of Denisov and
Wachtel [28, Thm. 1], which implies that for a zero-drift quadrant walk, P(τ (a,b) > n) ∼
Ṽ (a, b)n−q/2 for some discrete harmonic function Ṽ (a, b). The exponent q is π/ arccos(−ρ),
where ρ is the correlation factor

ρ :=
E(XY )√

E(X2)E(Y 2)
.
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From Lemma 27 we see that ρ = −1/2 and q = 3 for any tandem step distribution.
However, the results of [28] do not seem to yield any explicit expression of Ṽ (a, b) (nor of
its generating function).
5. Note that Λ(u) has nonnegative coefficients, and Λ(1) = σ2. Hence, as a, b → ∞,
V (a, b) admits the asymptotic estimate

V (a, b) ∼ 2

σ
· 1

Λ(1)
[ua][vb]

1− uv
(1− u)3(1− v)3

=
1

σ3
(a+ 1)(b+ 1)(a+ b+ 2) ∼ ab(a+ b)

σ3
. (63)

The asymptotic behaviour of V (a, b) can be interpreted as a scaling limit of the discrete
harmonic function; the limit function V∞(a, b) := ab(a + b) is continuous harmonic in the
classical sense:

E(X2)
∂2V∞
∂a2

+ 2E(XY )
∂2V∞
∂a∂b

+ E(Y 2)
∂2V∞
∂b2

= 2σ2

(
∂2V∞
∂a2

− ∂2V∞
∂a∂b

+
∂2V∞
∂b2

)
= 0,

where we have used (57). We discuss further in Section 9.3.2 the connections between V
and V∞.

We now turn to the probability that S(a,b)(n) reaches the point (c, d) at time n, without
having ever left the quadrant. Recall that this is only possible if 2n ≡ (c − d) − (a − b)
mod ι, where the periodicity index ι is defined by (17).

Proposition 29. Let a, b, c, d ∈ N. Under the zero-drift assumption (56), we have, for
2n ≡ (c− d)− (a− b) mod ι,

P
(
S(a,b)(n) = (c, d), τ (a,b) > n

)
∼ ι

4
√

3πσ2

V (a, b)V (d, c)

n4
as n→∞,

where σ2 is given by (58), ι is the periodicity index, and V (a, b) is the discrete harmonic
function of Proposition 28.

Again, the form of the above estimate resembles a general formula of Denisov and
Wachtel [28, Thm. 6]. However, our result is more precise because all constants are explicit,
and moreover Theorem 6 in [28] requires a strong aperiodicity assumption, which does not
hold in general for tandem walks (Lemma 5). We will explain in Section 8.3 how to adapt
to our periodic walk the main arguments of [28]. This is also briefly discussed in [35, p. 3].

8.2. Asymptotic enumeration of weighted tandem walks

Our aim here is to derive the asymptotic result of Proposition 9 from the above proba-
bilistic results, and to make all constants in this proposition explicit. For convenience, we
change the notation, and replace the weights z0, . . . , zp of Proposition 9 by w0, . . . , wp (SE
steps have weight 1). The weight of a p-tandem walk having nr face steps of level r for
0 6 r 6 p is defined as

∏p
r=0w

nr
r ; and we denote by qn(a, b; c, d) the weighted number of

walks of length n staying in the quadrant, starting at (a, b) and ending at (c, d). With the
notation introduced at the beginning of Section 3,

qn(a, b; c, d) = [tnxcyd]Q(a,b)(x, y) = [tn]Q
(a,b)
c,d .

By a suitable normalization, we will now relate qn(a, b; c, d) to a probability of the form
P (S

(a,b)
n = (c, d), τ (a,b) > n), as considered in Proposition 29. For two positive parame-

ters α, γ (to be fixed later), we let

z = α2/γ, zr = wrα
−r/γ for 0 6 r 6 p. (64)
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As in Section 8.1, we want these values to describe the step distribution of a random walk
with zero drift. Then the probability of a step (i, j) will be its weight, multiplied by αi−j/γ.
The zero-drift condition (56) is satisfied if and only if the following condition holds:

α2 =

p∑
r=1

(
r + 1

2

)
wrα

−r. (65)

This equation in α has a unique solution; indeed, as α increases from 0 to +∞, the left-
hand side increases from 0 to +∞, while the right-hand side decreases from +∞ to 0.
Once α has been adjusted, the normalization condition (54) forces

γ = α2 +

p∑
r=0

(r + 1)wrα
−r =

p∑
r=0

(
r + 2

2

)
wrα

−r. (66)

With this choice of α and γ, the values z, z0, . . . , zp define indeed a probability distribution
on tandem steps, having zero drift. Now the probability of a quadrant walk of length n
going from (a, b) to (c, d) is equal to its weight, multiplied by α(c−a)−(d−b)/γn. Hence,

P
(
S(a,b)(n) = (c, d), τ (a,b) > n

)
=
α(c−a)−(d−b)

γn
qn(a, b; c, d).

Proposition 9 now follows from Proposition 29.

Proposition 9 (with explicit constants). Let a, b, c, d be nonnegative integers and let
w0, . . . , wp be nonnegative weights with wp > 0. Define α > 0 and γ by (65) and (66). Let

D = {r ∈ J0, pK, wr > 0} and ι = gcd(r + 2, r ∈ D}.

Then, as n→∞ conditioned on c− d ≡ a− b+ 2n mod ι, we have

qn(a, b; c, d) ∼ κ γnn−4, (67)

where
κ :=

ι

4
√

3πσ2
V (a, b)V (d, c)α(d−b)−(c−a),

with V (·, ·) the harmonic function of Proposition 28 and σ2 given by (58), both taken with
zr = wrα

−r/γ.

We can now go back to the number of bipolar orientations with prescribed face degrees.

Proof of Corollary 10. It follows from the KMSW bijection that B(Ω)
n (b, c) = qn(0, b; c, 0),

taken for wr = 1 if r + 2 ∈ Ω, and wr = 0 otherwise. With the notation of the above
proposition, this gives D = Ω− 2,

1 =
∑
s∈Ω

(
s− 1

2

)
α−s and γ =

∑
s∈Ω

(
s

2

)
α−s+2,

which fits with the values of α and γ given in Corollary 10. One easily checks that the
value (58) of σ2 is also in agreement with the corollary. Then we only need to determine
the values V (0, b) and V (0, c). By Proposition 28,

V(0, v) =
∑
i>0

V (0, i)vi =
2

σ

1

(1− v)3Λ(0)
,
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and, by (56) and then (64),

Λ(0) =

p∑
r=1

zr

(
r + 1

2

)
= z =

α2

γ
.

Hence

V (0, i) =
1

σΛ(0)
(i+ 1)(i+ 2) =

γ

σα2
(i+ 1)(i+ 2).

Putting all pieces together completes the proof.

8.3. The probability to stay in the quadrant till time n: proof

We return to the probabilistic setting of Proposition 28, where we consider a zero-drift
random tandem walk with step distribution given by (55). The probability that the walk
S(a,b) remains in the quadrant till time n is closely related to the coefficient of tn in the series
Q(a,b)(1, 1) given in Proposition 8. However, we need to incorporate a positive weight z
for each SE step: this amounts to replacing t by zt and zr by zr/z for 0 6 r 6 p. Let us
emphasize the dependence of Q(a,b) in the variables t and zr by denoting

Q(a,b)(x, y) ≡ Q(a,b)(t, z;x, y),

with z = (z0, . . . , zp). Then

P
(
τ (a,b) > n

)
= [tn]Q(a,b)(tz, z/z; 1, 1).

It now follows from Proposition 8 that∑
n>0

P
(
τ (a,b) > n

)
tn =

W

t

a∑
i=0

Ai

b∑
j=0

Wj, (68)

where W = W (tz,z/z) (see (15)) is the unique series in t satisfying W = tφ(W), with

φ(w) = z +

p∑
r=0

zr(w + · · ·+ wr+1), (69)

and Ai = 1
z
Ai(tz, z/z) is a polynomial in W:

Ai = [ui]
1

z − uW
∑

i+k<r6p u
iWkzr

Starting from (68), we observe that Proposition 28 follows by linearity if we can prove
the following lemma.

Lemma 30. For i, j > 0, we have, as n tends to infinity:

[tn]
W

t
AiW

j ∼ 1

4
√
π
U(i, j)n−3/2,

where ∑
i,j>0

U(i, j)uivj =
2

σ
· 1− uv

(1− u)2(1− v)2Λ(u)
,

with σ and Λ(u) as in Proposition 28.
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Proof. We will prove this lemma using Flajolet and Odlyzko’s singularity analysis [40, 41].
Our first task is to determine the dominant singularities, and the singular behaviour of

W ≡ W(t). The equation W = tφ(W), with φ defined by (69), fits in the smooth aperiodic
inverse function schema of [41, Thm. VII.2, p. 453] (see also Thm. IV.6 p. 404 in the same
reference; aperiodicity comes for instance from the term zpw in the transformation φ).
Consequently, W has a unique singularity tc > 0 on its circle of convergence, and tc
is the unique positive solution of φ(tc) = tcφ

′(tc). Recall that z and the zi’s satisfy
the normalization condition (54), and that we assume that the zero-drift condition (56)
holds. This means that φ(1) = φ′(1) = 1, so that the radius of W is tc = 1. Moreover,
W(tc) = tc = 1 as well. Still using the above cited results of [41], we conclude that W
admits a square-root singular expansion around tc = 1:

W = 1− d
√

1− t+O(1− t),

where d =
√

2/φ′′(1) = 1/σ, with σ2 given by (58). Consequently, for any k > 1, the series
Wk also has a unique singularity on its circle of convergence, and

Wk = 1− k

σ

√
1− t+O(1− t),

and more generally, for any polynomial P (w) having nonnegative coefficients,

P (W) = 1− 1

σ
P ′(1)

√
1− t+O(1− t). (70)

Recall that the series AiW
j+1 can be expressed as a polynomial in W. More precisely,

AiW
j+1 = Pi,j(W), where

Pi,j(w) := [uivj] (A(u,w)B(v, w)) ,

with

A(u,w) :=
1

z − uw
∑

i+k<r6p u
iwkzr

and B(v, w) :=
w

1− vw
.

It then follows from (70) that

AiW
j+1 = 1− 1

σ
P ′i,j(1)

√
1− t+O(1− t),

with

P ′i,j(1) = [uivj]
∂ (A(u,w)B(v, w))

∂w

∣∣∣∣
w=1

. (71)

Since tc = 1, we have the same singular expansion for AiW
j+1/t, and thus, using the

transfer theorem of [41, Cor. VI.1, p. 392], we find

[tn]
1

t
AiW

j+1 ∼ 1

2σ
√
π
P ′i,j(1)n−3/2 ∼ 1

4
√
π
U(i, j)n−3/2, (72)

where we define
U(i, j) := 2P ′i,j(1)/σ. (73)

It remains to express P ′i,j(1), that is, the derivative in (71). Clearly, we have

B(v, 1) =
1

1− v
and B′2(v, 1) =

1

(1− v)2
.
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Moreover,

A(u, 1) =
1

z − u
∑

06i<r6p u
izr(r − i)

.

Upon rewriting z as in (56), this gives

A(u, 1) =
1∑

06i<r6p(1− ui+1)zr(r − i)
=

1

(1− u)Λ(u)
,

where Λ(u) is defined as in Proposition 28. Finally

A′2(u, 1) = A(u, 1)2 u

( ∑
i+k<r6p

ui(k + 1)zr

)
= A(u, 1)2uΛ(u) =

u

(1− u)2Λ(u)
.

Hence, getting back to (71) and (73), we have

P ′i,j(1) =
σ

2
· U(i, j) = [uivj] (A(u, 1)B′2(v, 1) + A′2(u, 1)B(v, 1))

= [uivj]
1− uv

(1− u)2(1− v)2Λ(u)
,

as claimed in the lemma.

8.4. The local limit theorem: proof

We now explain how to go from Proposition 28 to Proposition 29. We follow the steps
in [28], with which some familiarity is assumed, and explain how to deal with periodicity
issues. We refer to Spitzer’s book [75] for several classical results on random walks.

Let S(n) denote the point reached after n steps of the random tandem walk (starting at
the origin). Recall that S(a,b)(n) := (a, b) + S(n) denotes the point attained after n steps,
when starting from (a, b).

1. Local limit theorem for unconstrained walks. Lemma 27 gives the covariance
matrix of the step distribution. By the central limit theorem (in its vectorial formulation),
the random variable 1

σ
√
n
S(n) converges in law to the random variable on R2 of density

f(x, y) =
1

2π
√

3
exp

(
− 1

3
(x2 + y2 + xy)

)
.

Obviously, the same limit holds for the random variable 1
σ
√
n
S(a,b)(n), for any fixed starting

point (a, b). Let us now state the corresponding Gnedenko local limit theorem. LetR(a,b)(n)
be the set of points reachable from (a, b) in n steps, for n large (Lemma 5):

R(a,b)(n) = {(i, j) ∈ Z2 : i− j ≡ 2n+ (a− b) mod ι}. (74)

Then, with (a, b) fixed and n tending to infinity,

sup
(i,j)∈R(a,b)(n)

∣∣∣∣n · P(S(a,b)(n) = (i, j)
)
− ι

σ2
f

(
i

σ
√
n
,

j

σ
√
n

)∣∣∣∣→ 0. (75)

The proof is classically done by a saddle-point argument, after diagonalization of the
covariance matrix (we refer to Proposition P9 in [75, p. 75-77], and the remark that follows
it); moreover, as discussed in Example 2 in [75, p. 78-79], a periodicity ι > 2 of the step
set results in ι saddle-points, each giving the same asymptotic contribution, with the effect
that the asymptotic constant is multiplied by ι for points of the reachable sublattice.
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2. Local limit theorem for walks confined in the quadrant. We begin with the
following central limit theorem under the quadrant constraint.

Proposition 31. The random variable 1
σ
√
n
S(a,b)(n) conditioned on {τ (a,b) > n} converges

in law to the random variable on R2
+ of density

g(x, y) =
1√
3π

xy(x+ y) exp
(
− 1

3
(x2 + y2 + xy)

)
. (76)

There is a natural link between the function xy(x + y) occurring in the density above,
and the limit V∞ of the discrete harmonic function (see (63)), which we discuss further in
Section 9.3.2.

Proof. We use a normalization that transforms the random walk S(a,b)(n) into a walk with
uncorrelated x- and y-projections. This also transforms the quarter plane into a different
cone, to which we then apply Theorem 3 in [28]. This classical argument has been used
recently in a similar context in [28, Sec. 1.5] and [14, Thm. 4].

Let us now give details. Let L be the linear mapping of matrix
√

2

σ
√

3

(
1 1

2

0
√

3
2

)
.

Then it is easy to check that if (X, Y ) is the step distribution of our random tandem
walk, given by (55), then the covariance matrix of L(X, Y ) is the identity. Moreover, L
maps the quadrant {reiθ : r > 0 and θ ∈ [0, π/2]} to the cone Kπ/3 = {reiθ : r >
0 and θ ∈ [0, π/3]}. Let S̃(a,b) := L(S(a,b)) denote the transformed walk. By [28, Thm. 3],
S̃(a,b)(n)/

√
n, conditioned on {τ (a,b) > n}, converges in law to the random variable S̃ having

the following density (expressed in polar coordinates):

ρ(r, θ) = H0 · 1θ∈[0,π/3] · u(r, θ) · r exp(−r2/2),

where H0 is the normalizing constant and the function u(r, θ) is given by Eq. (3) in [28].
This function may be interpreted as the unique harmonic function that is nonnegative in
the cone Kπ/3 and vanishes on the boundary.

Let us now show that u(r, θ) = r3 sin(3θ). By Eq. (3) in [28], we need to solve the
eigenvalue problem stated in Eq. (2) of that same paper. In dimension d = 2, the Laplace-
Beltrami operator LSd−1 involved in this problem is simply ∂2

∂θ2
, and the eigenvalue problem

becomes ∂2mj
∂θ2

= −λjmj. This is easily solved in mj(θ) = a cos(
√
λjθ) + b sin(

√
λjθ) for

arbitrary constants a and b. The boundary conditions mj(0) = mj(π/3) = 0 yield a = 0
and force λj = (3j)2 (as in [28], we take 0 < λ1 < λ2 6 · · · ). In particular, λ1 = 9, the
function m1 reads m1(θ) = b sin(3θ), which together with [28, Eq. (3)] proves that (up to
a multiplicative constant) u(r, θ) = r3 sin(3θ). The value of the normalizing constant H0

in the above expression of ρ(r, θ) is then found to be 1/
√

2π, since ρ must be a density.
In (x, y)-coordinates, one has

u(r, θ) = r3 sin(3θ) = y(3x2 − y2),

hence the density of S̃, expressed in cartesian coordinates, is:

g̃(x, y) =
1√
2π
· 1(x,y)∈Kπ/3 · y(3x2 − y2) · exp

(
−1

2
(x2 + y2)

)
.
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Getting back to S(a,b)(n) and the quadrant, we conclude that 1
σ
√
n
S(a,b)(n) conditioned on

{τa,b > n} converges to the random variable 1
σ
L−1(S̃), and by a routine change of variable

we find that it has density g(x, y).

Let us now state the corresponding Gnedenko local limit theorem, that is, the counter-
part of (75). In the aperiodic case this would be Theorem 5 in [28].

Proposition 32. Let R(a,b)
> (n) := R(a,b)(n) ∩ N2. For a, b fixed and n tending to infinity,

we have:

sup
(i,j)∈R(a,b)

> (n)

∣∣∣∣n5/2 · P
(
S(a,b)(n) = (i, j), τ (a,b) > n

)
− ιV (a, b)

4
√
πσ2

g

(
i

σ
√
n
,

j

σ
√
n

)∣∣∣∣→ 0.

Proof. (sketched) Given the estimate of P(τ (a,b) > n) given in Proposition 28, the above
proposition is equivalent to:

sup
(i,j)∈R(a,b)

> (n)

∣∣∣∣n · P(S(a,b)(n) = (i, j) | τ (a,b) > n
)
− ι

σ2
g

(
i

σ
√
n
,

j

σ
√
n

)∣∣∣∣→ 0.

The proof is mimicked on the proof of [28, Thm. 5]. In the typical case where i and j are
of the order of

√
n, it proceeds by a well chosen splitting of quadrant walks from (a, b)

to (i, j) into two parts, to which one applies respectively Proposition 31 (convergence in
law of the constrained walk to the density (76)), and the domain-unconstrained local limit
theorem (75). The factor ι propagates from (75) to the final result.

3. Conclusion. We will now derive Proposition 29 from Proposition 32, as Theorem 6
is derived from Theorem 5 in [28]. For n > 0 let n1 := bn/2c and n2 := dn/2e, so that
n = n1 + n2. For (a, b) and (i, j) two points in the quadrant, let E (a,b)

i,j (n) denote the event
{S(a,b)(n) = (i, j), τ (a,b) > n}. Observe that the step distribution (55) is such that the
laws of (−X,−Y ) and (Y,X) coincide. In other words, time-reversal has the same effect
as exchanging the roles of x and y. Hence for any quadrant points (a, b), (c, d) and (i, j),
we have,

P
(
E (a,b)
c,d (n), S(a,b)(n1) = (i, j)

)
= P

(
E (a,b)
i,j (n1)

)
· P
(
E (i,j)
c,d (n2)

)
= P

(
E (a,b)
i,j (n1)

)
· P
(
E (d,c)
j,i (n2)

)
.

We now assume that (c, d) ∈ R
(a,b)
> (n), and sum the above identity over all (i, j) in

R
(a,b)
> (n1). In the first line below, we use Proposition 32 to estimate the probability of

the two E-events, and in the second line, we use the symmetry of g(x, y) in x and y. This
yields

P
(
E (a,b)
c,d (n)

)
∼

∑
(i,j)∈R(a,b)

> (n1)

ιV (a, b)

4
√
πn

5/2
1 σ2

g

(
i

σ
√
n1

,
j

σ
√
n1

)
· ιV (d, c)

4
√
πn

5/2
2 σ2

g

(
j

σ
√
n2

,
i

σ
√
n2

)

∼ V (a, b)V (d, c)
2ι2

πn5σ4

∑
(i,j)∈R(a,b)

> (n1)

g

(
i

σ
√
n/2

,
j

σ
√
n/2

)2

, (77)
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since n1 ∼ n2 ∼ n/2. Then we classically approximate the sum by an integral, using the
description (74) of R(a,b)(n):

ι

(σ
√
n/2)2

∑
(i,j)∈R(a,b)

> (n1)

g

(
i

σ
√
n/2

,
j

σ
√
n/2

)2

∼
∫∫

(x,y)∈R2
+

g(x, y)2dxdy =
1

4
√

3
.

Returning to (77), this gives

P
(
E (a,b)
c,d (n)

)
= P

(
S(a,b)(n)=(c, d), τ (a,b)>n

)
∼ ι

4
√

3πσ2

V (a, b)V (d, c)

n4
,

as stated in Proposition 29.

9. Complements and final comments

9.1. Link with non-intersecting triples of directed walks

It is known that plane bipolar orientations can be encoded by certain non-intersecting
triples of directed walks, that is, walks on the square lattice consisting of North and East
steps (Figure 12, right) [1, 9, 43, 39]. We explain here how such a bijection can be obtained
from the KMSW bijection with tandem walks. In fact, our construction is more general,
as it extends to marked bipolar orientations.

Consider a tandem walk w of length n going from (a, b) to (c, d), staying in the quadrant,
with successive steps s1, . . . , sn. We associate with w a triple of directed walksD1, D2, D3 as
follows. We initialize D1, D2, D3 to be the empty walks starting (and ending) at (0,−a−1),
(0, 0), and (0, b + 1), respectively. Then we let D1, D2, D3 grow by reading the successive
steps of w. Precisely, for m from 1 to n:

• If sm is a SE step, we add a North step to D2, and leave D1 and D3 unchanged.
• If sm is a face step (−i, j) we append an East step to D2, and we append the walk
EN i to D1 and append the walk N jE to D3.

See Figure 12 for an example. One can see that at stage m, the walks D1, D2, D3 have
the same number of East steps (which is the number of face steps among s1, . . . , sm), and
D2 has exactly m steps. In addition, if we denote by (im, jm) the point of w reached after
m steps (that is, (im, jm) = s1 + · · · + sm), and by y

(m)
1 , y

(m)
2 , y

(m)
3 the ordinates of the

endpoints of D1, D2, D3 at stage m, then y(m)
2 − y(m)

1 = im + 1 and y(m)
3 − y(m)

2 = jm + 1.

x

y

x

y

b

d

a c a+1

b+1

c+1

d+1

Figure 12. A tandem walk in the quadrant, and the corresponding non-
intersecting triple of directed lattice walks.
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In particular, saying that w stays in the quadrant is equivalent to saying that the three
walks D1, D2, D3 do not intersect. By construction, the first step of D1 (resp. the last step
of D3) is necessarily an East step, hence can be deleted without loss of information. We
denote by (D̂1, D2, D̂3) the resulting triple of walks. This gives the following proposition.

Proposition 33. The above mapping is a bijection Ψ between tandem walks of length n
with k face steps, staying in the quadrant, starting at (a, b) and ending at (c, d), and non-
intersecting triples of directed walks from A1 = (1,−a− 1), A2 = (0, 0), A3 = (0, b+ 1) to
B1 = (k, n− k − c− 1), B2 = (k, n− k), B3 = (k − 1, n− k + d+ 1).

Therefore, by the Lindström-Gessel-Viennot lemma [45], the number of such walks is
given by

qn,k(a, b, c, d) =

∣∣∣∣∣∣∣∣
(
n+a−c−1
k−1

) (
n+a
k−1

) (
n+a+d
k−2

)(
n−c−1
k

) (
n
k

) (
n+d
k−1

)(
n−b−c−2

k

) (
n−b−1
k

) (
n−b+d−1
k−1

)
∣∣∣∣∣∣∣∣ .

As discussed at the beginning of Section 3, the number

q̃n,k(a, b, c, d) := qn,k(a, b, c, d)− qn,k(a− 1, b, c− 1, d)

− qn,k(a, b− 1, c, d− 1) + qn,k(a− 1, b− 1, c− 1, d− 1)

counts marked bipolar orientations with n + 1 plain edges, k inner faces, and signature
(a, b; c, d). Coming back to the involutions ρ and σ of Definition 3, we see that Ψ be-
haves simply with respect to ρ (it amounts to rotate Ψ(w) by a half-turn), but that
the transformation induced by σ is not simple. Accordingly, the underlying symmetry
q̃n,k(a, b, c, d) = q̃n,k(d, b, c, a) is not clear from the above determinant.

When a = d = 0, we have qn,k(0, b, c, 0) = q̃n,k(0, b, c, 0), and the map Ψ, composed with
(the reverse of) the KMSW bijection Φ, sends bijectively bipolar orientations with n + 1
edges, k inner faces, left outer boundary of length b + 1, right outer boundary of length
c + 1, onto non-intersecting triples of directed walks joining A1 = (1,−1), A2 = (0, 0),
A3 = (0, b+1) to B1 = (k, n−k− c−1), B2 = (k, n−k), B3 = (k−1, n−k+1). (Another
bijection between these two families can also be deduced from the correspondence between
plane bipolar orientations and twin pairs of binary trees given in [39], and from the encoding
of twin binary trees given in [33], upon taking the mirror encoding for the second binary
tree.)

The further specialization a = b = c = d = 0 gives a bijection for bipolar orientations
of a digon having n + 1 edges and k inner faces. Upon deleting the two outer edges (for
n > 3), we obtain a bipolar orientation having n − 1 edges and k − 2 inner faces. In the
corresponding tandem walk, the first step is necessarily of the form (0, j), and the last one
of the form (−i, 0). Hence, in the associated non-intersecting triple D̂1, D2, D̂3, the first
steps of D̂1 and D2, and the last steps of D2 and D̂3, are always East, hence these four
steps can be deleted. We thus recover the fact that plane bipolar orientations with n− 1
edges and k − 2 inner faces are in bijection with non-intersecting triples of lattice walks
from (2,−1), (1, 0), (0, 1) to (k, n−k−1), (k−1, n−k), (k−2, n−k+1), which are counted
by the Baxter summand (see (2)):

qn,k(0, 0, 0, 0) =
2

n2(n− 1)

(
n

k − 2

)(
n

k − 1

)(
n

k

)
.



PLANE BIPOLAR ORIENTATIONS AND QUADRANT WALKS 51

9.2. Random generation of tandem walks in the quadrant

For p > 1, let z and z0, . . . , zp be step probabilities satisfying (54) and (56). We let Qn
denote the family of p-tandem walks of length n in the quadrant starting at the origin, and
En the subfamily of those that end at the origin (excursions). We consider the problem
of generating a random walk in Qn (or En) such that each walk w occurs with probability
proportional to zk

∏
r z

nr
r , with k the number of SE steps in w and nr the number of face

steps of level r. With z = (z, z0, . . . , zp), we refer to such random walks as z-distributed.
Regarding Qn, the bijection of Proposition 25 reduces this problem to the random

generation of z-distributed tandem walks in the upper half-plane, starting at the origin
and ending on the x-axis. Projected to the y-axis, these walks correspond to a model of
critical Galton-Watson trees, and can thus be randomly generated in linear time [30].

We thus focus on En. We begin with the special case p = 1 and z0 = 0. Then z = z1 =
1/3, and the z-distribution is simply uniform. This case is particularly simple due to the
existence of closed form expressions. Indeed, the number of walks of length n = 3m+2i+j
starting at the origin and ending at (i, j) is [17, Prop. 9]:

qn(0, 0; i, j) =
(i+ 1)(j + 1)(i+ j + 2)(3m+ 2i+ j)!

m!(m+ i+ 1)!(m+ i+ j + 2)!
.

This makes it easy to draw in time O(n) a uniform excursion in En step by step (in reverse
order, that is, from the last one to the first one). This is how we generated the tandem
walk encoding the random bipolar orientation with triangular faces of Figure 3.

For the general case p > 1, we propose an almost linear algorithm under two relaxations:

(i) the length is not exactly prescribed, but lies in a linear-size window J2n, 3nK,
(ii) the distribution conditioned to a given size m ∈ J2n, 3nK coincides with the desired

distribution only asymptotically (meaning that the total variation distance between
the actual distribution and the z-distribution is o(1)).

To obtain a random excursion w we generate two random walks w1, w2 in the quadrant,
of respective lengths n and 2n, using the above random generators for Qn and Q2n. Let
(a, b) be the ending point of w1. If w2 does not visit (b, a) between times n and 2n, then we
declare a failure situation and restart generating w2 until we obtain a walk visiting (b, a)
between times n and 2n. Then, let n′ ∈ Jn, 2nK be the index of the last visit of w2 to (b, a).
Let w3 be the prefix of length n′ of w2, and let ←−w 3 be obtained by reversing time in w3,
and applying an x/y-symmetry. That is, if the rth step of w3 is (i, j) then the (n′−r+1)th
step of←−w 3 is (−j,−i). As already used in Section 8.4,←−w 3 is also a tandem walk. Then the
concatenation w of w1 and ←−w 3 is a random excursion in Em, where m = n+ n′ ∈ J2n, 3nK.

A random excursion in Em is called n-twisted if it is z-distributed once conditioned on
the point (Xn, Yn) visited after n steps. Clearly the random excursion w constructed by
the above procedure is n-twisted. Moreover, by Proposition 31, as n → ∞ the rescaled
random point 1

σ
√
n
(Xn, Yn) converges to the law of density

g(x, y) =
1√
3π

xy(x+ y) exp
(
− 1

3
(x2 + y2 + xy)

)
,

and a local limit statement also holds, following from Proposition 32. Let us compare
this behaviour to the limit density of 1

σ
√
n
(Xn, Yn) in a z-distributed excursion of Em. Let

qn(i, j) := P(S(0,0)(n) = (i, j), τ (0,0) > n) denote the z-weighted number of quadrant walks
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of length n starting at the origin and ending at (i, j). Then the probability that a z-
distributed excursion of Em is at (i, j) after n steps is proportional to qn(i, j)qm−n(j, i).
This, combined with Proposition 32, implies that the rescaled random point 1

σ
√
n
(Xn, Yn)

in a z-distributed excursion of Em asymptotically follows the law of density

cα g(x, y)g(x/
√
α, y/

√
α),

where α := (m−n)/n ∈ [1, 2], for some constant cα. Moreover a local limit statement also
holds.

We would now like to twist the way we produce the excursion w so that the distribution
of its nth point approaches the above distribution. This is classically done by adding a
rejection step (see e.g. [29, II.3]). Precisely, let g0 ≈ 0.267 be the maximal value of g(x, y)
(attained at (x, y) = (

√
6/2,
√

6/2) and at two other points). Then we repeat calling
the random sampler above, at each attempt producing an n-twisted random excursion
of length m ∈ J2n, 3nK and then flipping a coin with success probability 1

g0
g( Xn

σ
√
αn
, Yn
σ
√
αn

)

where α = (m − n)/n, and (Xn, Yn) is the point reached after n steps. We return the
excursion for the first successful attempt. With this additional rejection-step we obtain a
random sampler that is asymptotically z-distributed.

Let us discuss (heuristically) the time-complexity of the sampler. The coin-flipping
probability of success is Θ(1) (uniformly over α ∈ [1, 2]), hence the time complexity is of
the same order as the one of the z-twisted random excursion sampler. The generation
of w1 takes time O(n) as already mentioned. Moreover it is well known [36] that in the
simple random 2-dimensional walk of length n, the number of distinct points visited by
the walk is of the order of n/ log(n). Hence we can expect that the number of attempts
needed to generate w2 should be of the order of log(n). We can thus expect the overall
time complexity of the sampler to be of the order of n log(n).

9.3. Some remarks on the discrete harmonic function V (a, b)

The harmonic function V (a, b) of p-tandem walks in the quadrant, given by (59), is
all-present throughout Section 8, as it expresses the dependence of various asymptotic
behaviours in terms of the starting point (a, b) of the random walk; see Propositions 28
and 29. The notion of discrete harmonic function is intrinsically interesting, as it is related
to many probabilistic problems (Doob’s h-transform and (non-)uniqueness problem, to
quote a few of them). In this section we present some key features of V (a, b).

9.3.1. The discrete harmonic function and Tutte’s invariants. Recall that the val-
ues V (a, b) must be related by the identity (60), which follows from a first step decomposi-
tion of random quadrant walks. This converts into a functional equation for the associated
generating function V(u, v) defined by (59):(

S(u, v)− 1
)
V(u, v) = zūvV(0, v) +

∑
0<j6r6p

zru
r−j v̄j

j−1∑
k=0

vkVk(u), (78)

where
S(u, v) = zūv +

∑
06j6r6p

zru
r−j v̄j,

and Vk(u) is the coefficient of vk in V(u, v). Observe that S(u, v) is closely related to the
step polynomial S(x, y) defined by (7). In fact, S(u, v) is S(ū, v̄), taken at t = 1 and with
a weight z on the first step. This comes from the fact that the recurrence relation (60)
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satisfied by the harmonic function is, in some sense, dual to the recurrence corresponding
to the enumeration of walks.

Let U0, U1, . . . , Up be the p + 1 solutions to S(u, v) = 1 (when solved for u). They are
algebraic functions of v, z and the zr’s. Upon writing

S(u, v) = zūv +

p∑
r=0

zr
ur+1 − v̄r+1

u− v̄
, (79)

we see that the equation S(u, v) = 1 implies

I0(u) = I0(v̄), with I0(u) = u+ zū−
p∑
r=0

zru
r+1. (80)

In particular, all the functions I0(Ui) are equal: using the terminology of Tutte [81], we say
that the rational function I0(u) is an invariant. We refer to [6, 42] for recent applications
of invariants to quadrant problems.

It is shown in [72] how, in the case of small steps, the notion of invariants can be used
to determine discrete harmonic functions in the quadrant. Let us illustrate this with the
case p = 1 of tandem walks (we take moreover z0 = 0, so that z = z1 = 1/3 as discussed
in the examples following Proposition 28). In this case, the functional equation (78) reads

3uv
(
S(u, v)− 1

)
V(u, v) = v2V(0, v) + uV(u, 0).

In [72], it is explained how one can give an analytic meaning to V(u, v) (even without
knowing that it is a simple rational function), such that u can be specialized to U0 and
U1 = Up in the above equation. Then the left hand-side vanishes, and it follows that

0 = v2V(0, v) + U0V(U0, 0) = v2V(0, v) + U1V(U1, 0),

so that the function I(u) := uV(u, 0) is another invariant (when p = 1). Remarkably,
this property, together with some properties peculiar to harmonic functions, eventually
characterizes I(u), and gives an expression of it in terms of the rational invariant I0(u)
defined by (80):

I(u) = uV(u, 0) =
cst

I0(u)− I0(1)
,

for some normalizing constant cst that can be determined (and is here 2
√

3).
We now return to general values of p. No counterpart of the analytic framework of [72]

has been developed for large steps, and the role of invariants remains to be worked out in
this setting. However, it follows from the exact value of V(u, v), given in Proposition 28,
that the above identity still holds.

Proposition 34. For p-tandem walks in the quadrant, the generating function V(u, v) of
Proposition 28 satisfies

uV(u, 0) =
2

σ
· 1

I0(u)− I0(1)
,

where I0(u) is the rational invariant defined by (80) and σ is given by (58). In particular,
uV(u, 0) is also an invariant.

The proof is a simple calculation, using on the normalizing identity (54) and the zero-
drift identity (56). We leave it to the reader.
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9.3.2. Probabilistic features. The aim of this section is twofold: we first comment on
the links between the discrete harmonic function V (a, b) and its continuous counterpart
V∞(a, b) (see (63)); then we give an estimation of S(a,b)(τ (a,b)), the location of the random
walk at its first exit (Proposition 35).

The asymptotic result (63) as both a and b go to infinity,

V (a, b) ∼ V∞(a, b)

σ3
,

can be derived from purely probabilistic arguments: it is proved in [28, Lem. 13] that, when
the covariance matrix is the identity, the discrete harmonic function V (a, b) is asymptoti-
cally equivalent to the continuous harmonic function V∞(a, b) = ab(a+b). The above factor
1
σ3 is thus due to a different normalization. It is remarkable that this factor captures all the
dependence in the model in the parameters z and zr. The function V∞(a, b) = ab(a+b) can
thus be viewed as a universal harmonic function for our class of models. This universality
is also visible on the expression of the covariance matrix in Lemma 27.

In fact we can go further and state an exact formula relating V and V∞.

Proposition 35. Let us define the following shifted version of V∞:

V s
∞(a, b) := V∞(a+ 1, b+ 1) = (a+ 1)(b+ 1)(a+ b+ 2).

Then
V s
∞(a, b)− σ3V (a, b) = E

(
V s
∞(S(a,b)(τ (a,b)))

)
, (81)

where S(a,b)(τ (a,b)) is the position where the random tandem walk started at (a, b) leaves the
quadrant for the first time.

Remarks
1. If p = 1 then S(a,b)(τ (a,b))) is necessarily of the form (−1, j) or (i,−1), for some integers
i, j > 0. Since V s

∞ vanishes at these points, the expectation in (81) is zero, which is
consistent with (61).

2. If p > 2, there are again two possibilities. The random walk may exit through the
horizontal boundary, in which case S(a,b)(τ (a,b)) is still of the form (i,−1), where V s

∞ van-
ishes. It may also exit through the vertical boundary, and then S(a,b)(τ (a,b)) = (−i, j), for
1 6 i 6 p and j > 0 and V s

∞(−i, j) = (1− i)(1 + j)(j − i+ 2) does not necessarily vanish.
Hence we can interpret (81) as an estimation of the square of the vertical coordinate, when
an exit occurs through the vertical boundary.

Proof of Proposition 35. Let us define the function f by

f(a, b) = E (V s
∞((a, b) + (X, Y )))− V s

∞(a, b). (82)

Then it follows from [28, Eq. (5)] that

σ3V (a, b) = V s
∞(a, b)− E

(
V s
∞(S(a,b)(τ (a,b)))

)
+ E

τ (a,b)−1∑
m=0

f(S(a,b)(m))

 .

There are two slight differences between this formula and Eq. (5) in [28]: first, for the
same reasons as above, we need the σ3 factor; second, the right-hand side of our formula
involves V s

∞ rather than V∞ because the boundary axes of [28] are shifted by (1, 1) (more
precisely, the walk is killed on the coordinates axes).
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The function f defined by (82) can be computed explicitly, and is found to be 0. This
completes the proof of the proposition. We compute f below in an independent lemma,
which shows again the rich structure of tandem walks.

Lemma 36. The functions V∞ (and V s
∞) are discrete harmonic functions for the random

walk in Z2 with increments (X, Y ) satisfying (55) (with no killing), in the sense that for
all (a, b) ∈ Z2,

V∞(a, b) = E (V∞((a, b) + (X, Y )))

= zV∞(a+ 1, b− 1) +

p∑
r=0

zr
∑
i+j=r

V∞(a− i, b+ j),

and similarly for V s
∞.

Proof. Recall that V∞(a, b) = ab(a+ b). Hence

E (V∞((a, b) + (X, Y ))) = z(a+ 1)(b− 1)(a+ b) +

p∑
r=0

zr
∑
i+j=r

(a− i)(b+ j)(a− i+ b+ j).

We write j = r − i, and sum over i = 0, . . . , r for r fixed. Upon putting apart the cubic
terms, this transforms the above expression into

zab(a+ b) +

p∑
r=0

zr(r+ 1)ab(a+ b) + z(b− a− 1)(a+ b) +

p∑
r=0

zr
r(r + 1)

2
(a+ b)(a− b+ 1).

Because of the drift condition (56), the sum of the third and fourth terms vanishes. More-
over, the sum of the first two terms equals ab(a+b) = V∞(a, b), thanks to the normalization
condition (54). This completes the proof for V∞. Finally, since V s

∞(a, b) = V∞(a+1, b+1),
this function is also harmonic.

9.4. More combinatorics for 1D walks

In this section we call 1D walk any walk with steps in {−1} ∪ N = {−1, 0, 1, . . .}.
Such walks are classically represented as directed 2D walks, upon drawing each step i as
(i, 1). For F a family of 1D walks, we denote by F the associated generating function in
Q[w−1, w0, w1, . . .][[t]], where the variable t records the length, and wi the number of steps i,
for i > −1. We give for such walks a combinatorial proof of two enumerative results that
we have used in the paper. The first one deals with nonnegative walks going from height 0
to height a, and has been used in Section 7.2. The only published proofs that we know
for it are algebraic [3, 18, 44]. The second one deals with nonnegative walks going from
height k to height 0, and has been established algebraically when proving Corollary 7. (In
practise we translate these walks so that they start at 0, end at −k, and never visit any
vertex of height less than −k.)

We begin with preliminary arguments that have already been used in Section 7. For
a > 0 we let Ha be the family of 1D walks going from height 0 to height a with nonnegative
height all along. And for k > 0 we let Dk be the family of 1D walks going from height 0
to height −k and with height at least −k all along (note that D0 = H0), and we let Lk
be the subfamily of those that reach height −k only at their ending point. By considering
the first step i of a walk, we see that Y := L1 is the unique power series in t satisfying

Y = t
∑
i>−1

wiY
i+1.
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Moreover, for k > 1 a decomposition of walks of Lk at their first visits to heights
−1, . . . ,−k + 1 shows that Lk = Y k. Since, clearly, Lk = tw−1Dk−1, this gives, for
k > 0,

Dk =
1

tw−1

Y k+1.

This is the analogue of (46).

9.4.1. Nonnegative walks from 0 to a. The classical kernel method [3, 18] shows that∑
a>0

Hau
a =

1− ūY
1− tS(u)

,

where ū = 1/u and S(u) =
∑

i>−1wiu
i is the generating function of the steps. As argued

in the proof of Lemma 26, this rewrites into:

Ha =
Y

tw−1

[ua]
1

1− uY
w−1

∑
j,k>0wj+k+1ukY j

. (83)

We will prove this identity combinatorially. As we will show, it implies the expression (53)
of the series H0→a counting tandem walks in the upper half-plane ending at ordinate a.

In a 1D walk a record is a point whose height is strictly smaller than the height of
all subsequent points (by convention the endpoint is always considered as a record). For
a walk in Ha the heights of the successive records form an increasing sequence 0, i1, i1 +
i2, . . . , i1 +· · ·+ie, where i1, . . . , ie are positive and i1 +· · ·+ie = a; the sequence (i1, . . . , ie)
is called the record-sequence of the walk (note that the record-sequence is empty if and
only if a = 0). For k > 1 we let Uk be the generating function of those walks in Hk whose
only records are the endpoints. This means that all points, except the starting point,
have height at least k. Clearly, the generating function of walks in Ha that have record-
sequence (i1, . . . , ie) is then equal to H0

∏e
s=1 Uis . Hence by summing over all possible

record-sequences, and using H0 = 1
tw−1

Y , we find:

Ha =
Y

tw−1

[ua]
1

1−
∑

k>1 Uku
k
.

We finally express the series Uk for k > 1. A walk counted by Uk consists of a first step
h > k, followed by a (translated) walk of Dh−k. The associated generating function is thus
twhDh−k = wh

w−1
Y h−k+1. Hence we have

Uk =
Y

w−1

∑
h>k>1

whY
h−k,

so that ∑
k>1

Uku
k =

uY

w−1

∑
j,k>0

wj+k+1u
kY j,

which gives (83).
This result can now be applied to tandem walks. With the notation of Section 7.2, a

tandem walk in H0→a, once projected on the vertical axis, becomes a 1D walk in Ha: every
SE step projects onto a −1 step, and for r > 0, a step r in the 1D walk can arise from any
step (−i, r) with i > 0. Hence, under the specialization {w−1 = 1, ws =

∑
r>s zr for s > 0},

we have Y = W and Ha = H0→a. We thus recover (53).
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r
i

γ1 s γ2 γ2 γ1

k r-i
r+k

Figure 13. The bijection between Nk,r,i (for any fixed i 6 r) and Wk+r.

9.4.2. Nonnegative walks from k to 0. Let k > 1. In this section we give a combina-
torial proof of the following constant term expression of Lk:

Lk = Y k = −t[y0]y1+kS
′(y)

K(y)
, (84)

where S(y) =
∑

i>−1wiy
i and K(y) := 1 − tS(y). Note that it directly yields the

identity (39) used to prove Corollary 7, by taking the specialization for tandem walks:
{w−1 = x,ws =

∑
r>s x̄

r−szr for s > 0}.
Our combinatorial argument is borrowed from [73] (see also the interesting discussion

therein regarding the fact that, for walks with steps ±1, the argument is originally due to
Désiré André, to whom the reflection principle was wrongly attributed).

Let Wk be the family of 1D walks ending at height −k, and let Nk = Wk\Lk be the
subset of those walks that visit height −k before their final point. For γ ∈ Nk, we define
the marked step of γ as the last step that starts at height 6 −k. For 0 6 i 6 r, let Nk,r,i
be the subfamily of Nk where the marked step is a step +r that starts at height −k− i (if
i = r then the marked step is always the last step).We refer to Figure 13 for an illustration.
We claim that Nk,r,i and Wk+r are in bijection. To γ ∈ Nk,r,i, written as γ1sγ2 with s the
marked step, we associate γ2γ1 ∈ Wk+r. Conversely for γ ∈ Wk+r we let γ2 be the prefix
of γ ending at the first visit to height i − r (if i = r then γ2 is empty) and we take γ1 as
the corresponding suffix of γ; we associate to γ the walk γ1sγ2 where s is a +r step.

In terms of generating functions this gives Nk,r,i = twrWk+r. Hence

Nk =
∑
r>0

r∑
i=0

Nk,r,i =
∑
r>0

r∑
i=0

twrWk+r = t
∑
r>0

(r + 1)wrWk+r.

Moreover we clearly have, for all j > 1,

Wj(t) = [y−j]
1

K(y)
= [y0]

yj

K(y)
.

Since Lk = Wk −Nk we obtain, for k > 1,

Lk = [y0]
yk

K(y)
·
(

1− t
∑
r>0

(r + 1)wry
r
)

= [y0]
yk

K(y)
·
(
K(t, y) + tw−1y

−1 − t
∑
r>0

rwry
r
)

= t[y0]
yk

K(y)
·
(
w−1y

−1 −
∑
r>0

rwry
r
)
.
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Since yS ′(y) = −y−1w−1 +
∑

r>0 rwry
r, this gives the expression (84) of Lk.
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