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INCORPORATING KNOWLEDGE ON THE MEASUREMENT NOISE

IN ELECTRICAL IMPEDANCE TOMOGRAPHY∗

Marc Dambrine1,∗∗, Helmut Harbrecht2 and Benedicte Puig1

Abstract. The present article is concerned with the identification of an obstacle or void of different
conductivity which is included in a two-dimensional domain by measurements of voltage and currents at
the boundary. In general, the voltage distribution is prescribed and hence deterministic. Whereas, the
current distribution is measured and contains measurement errors. We assume that some information
is given on these measurement errors which can be described by means of a random field. We exploit
this extra knowledge by minimizing a linear combination of the expectation and the variance of the
Kohn–Vogelius functional. It is shown how these ideas can be realized in numerical computations. By
numerical results, the applicability and feasibility of our approach is demonstrated.

Received October 10, 2017. Accepted January 23, 2018.

Introduction

Electrical impedance tomography is used in medical imaging to reconstruct the electric conductivity of a
part of the body from measurements of currents and voltages at the surface [26]. The same technique is also
used in geophysical explorations. An important special case consists in reconstructing the shape of an unknown
inclusion or void assuming (piecewise) constant conductivities. In this case, only one pair of current/voltage
measurements is necessary, in principle.

The problem under consideration is a special case of the general conductivity reconstruction problem and is
severely ill-posed. It has been intensively investigated as an inverse problem. We refer for example to [1, 4, 9, 21]
for numerical algorithms and to [5, 17] for particular results concerning uniqueness. Moreover, we refer to [7, 8]
for methods using the full Dirichlet-to-Neumann map at the outer boundary.

In [29], the problem under consideration has been reformulated as a shape optimization problem for the
Kohn–Vogelius functional (see [24]). Then, seeking the unknown inclusion is equivalent to seeking the minimizer
of an energy functional. Much attention has been spent on the analysis of this approach ([2, 3, 13]) and its
comparison with a least-squares tracking type functionals. It is also sufficiently versatile to be used in the
context of fluid mechanics [6].

Our objective in this article is to take advantage of properties of the noise to construct a deterministic
formulation which incorporates this knowledge. We assume that the measured flux is given as a random field that
models the measurement errors. We then aim at minimizing a combination of the expectation and the variance
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Figure 1. The domain D and its boundaries Γ and Σ.

of the Kohn–Vogelius functional. As we will show, both quantities can easily be computed via deterministic
quantities. The associated shape gradients can likewise be deterministically computed.

The rest of this article is organized as follows. In Section 1, we present the physical model and reformulate
the identification problem as shape optimization problem. We introduce the random model and compute the
expectation and the variance of the shape functional and their shape gradients. As we will see, both are given
by deterministic expressions under some structure assumptions on the random fields under consideration. Then,
Section 2 is concerned with the discretization of the shape optimization problem. We assume that the sought
inclusion is a starshaped domain which enables us to approximate it by a finite Fourier series. The state
equations are reformulated as boundary integral equations which are discretized by means of a fast wavelet
boundary element method of linear complexity. In Section 3, we present numerical results which validate the
feasibility of the present approach. Finally, in Section 4, we state concluding remarks.

1. Problem formulation

1.1. Physical model

Let T ∈ Rd, d = 2, 3, be a simply connected domain with boundary Σ = ∂T and assume that an unknown
simply connected inclusion S with regular boundary Γ = ∂S is located inside the domain T satisfying
dist(Σ,Γ ) > 0, cf. Figure 1. In order to determine the inclusion S, we measure the current distribution
g ∈ H−1/2(Σ) at the boundary Σ for a given voltage distribution f ∈ H1/2(Σ). Hence, we are seeking a
domain D := T \ S and an associated harmonic function u, satisfying the system of equations

∆u = 0 in D,

u = 0 on Γ ,

u = f,
∂u

∂n
= g on Σ.

(1.1)

This system is an overdetermined boundary value problem which admits a solution only for the true inclusion S.
In accordance with e.g. [25], the inclusion’s boundary Γ is uniquely determined from f 6= 0 and g. Nonetheless,
it is well known that the problem of finding the inclusion’s boundary Γ is severely ill-posed. Especially, the
measured data g contain noise.

1.2. Formulation as shape optimization problem

Following [29], we introduce the auxiliary harmonic functions v and w, satisfying

∆v = 0 ∆w = 0 in D,

v = 0 w = 0 on Γ ,

∂v

∂n
= g w = f on Σ,
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and consider the following shape optimization problem

J(D) =

∫
D

‖∇(v − w)‖2 dx =

∫
Σ

(
g − ∂w

∂n

)
(v − f) dσ → inf . (1.2)

Herein, the infimum has to be taken over all domains which have a void with sufficiently regular boundary. We
refer to [29] for the existence of optimal solutions with respect to this shape optimization problem.

The shape gradient to (1.2) has also been computed in [29]. For variation fields V : Rd → R, being sufficiently
smooth, it holds that

δJ(D)[V] =

∫
Γ

〈V,n〉

[(
∂v

∂n

)2

−
(
∂w

∂n

)2
]

dσ. (1.3)

see also [29]. Given an inclusion Σ such the overdetermined boundary problem (1.1) has a solution, the necessary
first order optimality condition δJ(D)[V] = 0 is satisfied for all admissible variations V. Notice that the shape
Hessian for (1.2) has been computed and analyzed in [13].

1.3. Random model

We shall now assume that we have some knowledge on the errors which are caused by the measurement of g.
Then, we can model g as a random field. To that end, let (Ω,S,P) be a complete probability space and assume
that g : Σ ×Ω → R is a random field which belongs to the Bochner space L2

P(Ω,H−1/2(Σ)).
Let us recall for the reader’s convenience the definition of Bochner spaces. Consider a real number p ≥ 1.

Then, for a Banach space X, the Bochner space LpP(Ω,X) consists of all functions v : Ω → X whose norm

‖v‖LpP (Ω,X) :=


(∫

Ω

‖v(·, ω)‖pX dP(ω)

)1/p

, p <∞,

ess sup
ω∈Ω

‖v(·, ω)‖X , p =∞,

is finite. If p = 2 and X is a Hilbert space, then the Bochner space is isomorphic to the tensor product space
L2
P(Ω)⊗X.
Since the data L2

P(Ω,H−1/2(Σ)) are random, also the state v will be a random field. It satisfies
v ∈ L2

P(Ω,H1(Ω)) by linearity of the underlying partial differential equation. As a consequence, the shape
functional J becomes also a random process.

Two strategies are a priori available to deal with such a random shape functional. The first one consists
in minimizing each realization of the objective and then taking an average of the minimizers. This strategy
has been presented in the context of Bernoulli’s free boundary problem in [11]. Nonetheless, this approach is
unrealistic here due to its high computational cost.

We therefore propose in this article to address the second approach. Namely, we minimize an averaged shape
functional as considered in [10]. In particular, we will minimize a combination of the expectation and the
variance of the shape functional (1.2). In other words, we seek the domain D with inclusion S in argminF
where the objective is

F (D) = (1− α)E
[
J(D,ω)

]
+ αV

[
J(D,ω)

]
(1.4)

or even

F (D) = (1− α)E
[
J(D,ω)

]
+ α

√
V
[
J(D,ω)

]
, (1.5)
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where the random shape functional reads as

J(D,ω) =

∫
D

∥∥∇(v(ω)− w
)∥∥2 dx (1.6)

and the states read as

∆v(ω) = 0 ∆w = 0 in D,

v(ω) = 0 w = 0 on Γ , (1.7)

∂v

∂n
(ω) = g(ω) w = f on Σ.

Let us explain the meaning of the averaged objective defined in (1.4) and (1.5), respectively. When the
weight α is equal to 0, we consider only the average value of the Kohn–Vogelius functional. Its minimization
means to be good on a regular base, but does not prohibit a flat distribution and, hence, being often with
high values of the of the objective. In order to obtain a shape around which the distribution of the objective is
more narrow, we can penalize the variance of the Kohn–Vogelius functional by increasing the weight α. Notice
that the standard deviation scales like the expectation which makes (1.5) better suited to achieve this goal
in comparison with (1.4). The range of admissible α is [0, 1), since the expectation is neglected when α = 1.
Then, only the reduction of variance matters and not the average value at all, losing all interest in the shape
identification.

Concerning the existence of an optimal shape for the minimization of the objective defined in (1.4) or (1.5),
the situation is the same than for the original problem: minimizing J . In the class of open subsets of T , we do
not have an existence result. Existence holds once the class of admissible domains is restricted to some class
of domains for which one obtains compactness and the continuity of the solution of the Dirichlet problem with
respect to the shape (compare [22]): the class of domains with a uniform exterior cone property for example.

For what follows, we should make the assumption that the Neumann data g are given by the expansion

g(x, ω) = g0(x) +

M∑
i=1

gi(x)Yi(ω), (1.8)

where the random variable Yi(ω) are independent and identically distributed random variables, Yi ∼ Y , being
centered, E[Y ] = 0, normalized, V[Y ] = 1, and having finite fourth order moments. Thus, there especially hold
the identities

E[g(ω)] = g0 and V[g(ω)] =

M∑
i=1

g2i .

Note that we have in mind several independent measurements of the current distribution for the same voltage
distribution, from which we can derive the sample mean and the sample covariance. Then, assuming that g(x, ω)
is a Gaussian random field, the expansion (1.8) can be derived from by means of the Karhunen–Loève expansion,
see [18, 27] for example.

Given the expansion (1.8), the linearity of the state equation (1.7) implies that

v(x, ω) = v0(x) +

M∑
i=1

vi(x)Yi(ω), (1.9)
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where vi solves the equation

∆vi = 0 in D, vi = 0 on Γ ,
∂vi
∂n

= gi on Σ. (1.10)

In particular, if g is a Gaussian random field, then also v is a Gaussian random field.

1.4. Expectation and variance of the random shape functional

We shall show that the expectation and the variance of the random shape functional (1.6) can be computed
from deterministic quantities.

Proposition 1.1. It holds

E
[
J(D,ω)

]
=

M∑
i=1

∫
Σ

vigi dσ +

∫
Σ

(
g0 −

∂w

∂n

)
(v0 − f) dσ. (1.11)

Proof. Following the ideas from [10], using Fubini’s theorem for non negative functions, the expectation of the
random shape functional can be rewritten as

E
[
J(D,ω)

]
=

∫
Ω

∫
D

∥∥∇(v(ω)− w
)∥∥2 dx dP(ω)

=

∫
D

∫
Ω

∥∥∇(v(ω)− w
)∥∥2 dP(ω) dx

=

∫
D

[ ∫
Ω

〈
∇
(
v(x, ω)− w(x)

)
,∇
(
v(y, ω)− w(y)

)〉
dP(ω)

]∣∣∣∣
x=y

dx.

In view of the expansion (1.9), we thus conclude

E
[
J(D,ω)

]
=

∫
D

[ ∫
Ω

〈
∇
(
v0(x) +

M∑
i=1

vi(x)Yi(ω)− w(x)

)
,

∇
(
v0(y) +

M∑
j=1

vj(y)Yj(ω)− w(y)

)〉
dP(ω)

]∣∣∣∣
x=y

dx.

Making now use of the fact that Yi ∼ Y are independent and identically distributed random variables, we arrive
at

E
[
J(D,ω)

]
=

∫
D

[
M∑

i,j=1

〈∇vi(x),∇vj(y)〉E[YiYj ]+2

M∑
i=1

〈∇vi(x),∇
(
v0(y)− w(y)

)
〉E[Yi]

+ 〈∇
(
v0(x)− w(x)

)
,∇
(
v0(x)− w(y)

)
〉

]∣∣∣∣∣
x=y

dx

=

∫
D

[
M∑
i=1

‖∇vi(x)‖2E[Y 2]+2

M∑
i=1

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉E[Y ]

+
∥∥∇(v0(x)− w(x)

)∥∥2] dx.
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Finally, we can exploit that Y is centered and normalized to arrive at

E
[
J(D,ω)

]
=

∫
D

[
M∑
i=1

‖∇vi(x)‖2 +
∥∥∇(v0(x)− w(x)

)∥∥2] dx.

Integration by parts and observing ∂vi/∂n = gi in accordance with (1.10) yields thus (1.11).

In complete analogy, one can derive a deterministic expression for the variance of the random shape functional.

Proposition 1.2. It holds

V
[
J(D,ω)

]
= (E[Y 4]− 3)

M∑
i=1

(∫
Σ

vigi dσ

)2

+ 4 E[Y 3]
M∑
i=1

(∫
Σ

vigi dσ

)(∫
Σ

gi(v0 − f) dσ

)

+ 2

M∑
i,j=1

(∫
Σ

vigj dσ

)2

+ 4

M∑
i=1

(∫
Σ

gi(v0 − f) dσ

)2

.

(1.12)

Proof. Due to the knowledge of (1.11), the variance can be computed from the uncentered second moment of
the shape functional in accordance with

V
[
J(D,ω)

]
= E

[
J(D,ω)2

]
− E2

[
J(D,ω)

]
.

The starting point to derive the uncentered second moment is

E
[
J(D,ω)2

]
=

∫
Ω

[ ∫
D

∥∥∇(v(ω)− w
)∥∥2 dx

]2
dP(ω)

=

∫
D

∫
D

∫
Ω

∥∥∇(v(x, ω)− w(x)
)∥∥2∥∥∇(v(y, ω)− w(y)

)∥∥2 dP(ω) dy dx.

By inserting again the expansion (1.9) of the random field v and straightforward calculation, we obtain

E
[
J(D,ω)2

]
=

∫
D

∫
D

[
M∑

i,j,k,`=1

〈∇vi(x),∇vj(x)〉〈∇vk(y),∇v`(y)〉E[YiYjYkY`]

+ 4

M∑
i,j,k=1

〈∇vi(x),∇vj(x)〉〈∇vk(y),∇
(
v0(y)− w(y)

)
〉E[YiYjYk]

+

M∑
i,j=1

{
2〈∇vi(x),∇vj(x)〉

∥∥∇(v0(y)− w(y)
)∥∥2

+ 4〈∇vi(x),∇
(
v0(x)− w(x)

)
〉〈∇vj(y),∇

(
v0(y)− w(y)

)
〉
}
E[YiYj ]

+ 4

M∑
i=1

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉
∥∥∇(v0(y)− w(y)

)∥∥2E[Yi]

+
∥∥∇(v0(x)− w(x)

)∥∥2∥∥∇(v0(y)− w(y)
)∥∥2] dy dx.
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Of course, this deterministic expression can further be simplified by using the independence of the random
variable Yi ∼ Y . Namely, in view of E[Y ] = 0 and V[Y ] = 1, it holds

E
[
J(D,ω)2

]
= E[Y 4]

M∑
i=1

(∫
D

‖∇vi(x)‖2 dx

)2

+ E[Y 2]2

[
2
∑
i 6=j

(∫
D

〈∇vi(x),∇vj(x)〉dx

)2

+
∑
i 6=j

∫
D

∥∥∇vi(x)
∥∥2 dx

∫
D

∥∥∇vj(x)
∥∥2 dx

]

+4E[Y 3]

M∑
i=1

∫
D

∥∥∇vi(x)
∥∥2 dx

∫
D

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉dx

+ E[Y 2]

[
2

M∑
i=1

∫
D

∥∥∇vi(x)
∥∥2 dx

∫
D

∥∥∇(v0(x)− w(x)
)∥∥2 dx

+ 4

M∑
i=1

(∫
D

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉dx

)2
]

(∫
D

∥∥∇(v0(x)− w(x)
)∥∥2 dx

)2

= E2
[
J(D,ω)

]
+ (E[Y 4]− 1)

M∑
i=1

(∫
D

‖∇vi(x)‖2 dx

)2

+ 4 E[Y 3]

M∑
i=1

(∫
D

‖∇vi(x)‖2 dx

)(∫
D

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉dx

)

+ 2
∑
i 6=j

(∫
D

〈∇vi(x),∇vj(x)〉dx

)2

+ 4

M∑
i=1

(∫
D

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉dx

)2

= E2
[
J(D,ω)

]
+ (E[Y 4]− 3)

M∑
i=1

(∫
D

‖∇vi(x)‖2 dx

)2

+4E[Y 3]

M∑
i=1

(∫
D

‖∇vi(x)‖2 dx

)(∫
D

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉dx

)

+ 2

M∑
i,j=1

(∫
D

〈∇vi(x),∇vj(x)〉dx

)2

+ 4

M∑
i=1

(∫
D

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉dx

)2

.

Finally, integration by parts yields the desired expression (1.12).

We have a further simplification of (1.12) in the most important situation of Gaussian random fields.



8 M. DAMBRINE ET AL.

Corollary 1.3. If g is a Gaussian random field, then

V
[
J(D,ω)

]
= 2

M∑
i,j=1

(∫
Σ

vigj dσ

)2

+ 4

M∑
i=1

(∫
Σ

gi(v0 − f) dσ

)2

. (1.13)

Proof. In the case of a Gaussian random field, the random variables obey the normal law, i.e., Y ∼ N (0, 1). By
injecting that it thus holds E[Y 4] = 3 and E[Y 3] = 0, we derive the assertion immediately from (1.12).

This is the expression we will exploit in our numerical examples. Especially, for sake of convenience, we will
provide the shape gradient only for the specific formula (1.13) in the next section and not for the general case
(1.12).

1.5. Shape gradient of the expectation and of the variance

We shall compute next the shape gradient of the expectation and of the variance. For a survey on the shape
calculus, we refer the reader to [12, 28, 30] and the references therein.

Obviously, due to linearity, the shape gradient δ
(
E
[
J(D,ω)

])
[V] of the shape functional E[J(D,ω)] into the

direction of the perturbation field V is just given by E
[
δJ(D,ω)[V]

]
. Hence, it is computed according to

δ
(
E
[
J(D,ω)

])
[V] = E

[
δJ(D,ω)[V]

]
=

∫
Ω

∫
Γ

〈V,n〉

[(
∂v

∂n
(ω)

)2

−
(
∂w

∂n

)2
]

dσ dP(ω)

=

∫
Γ

〈V,n〉

{[∫
Ω

∂v

∂n
(x, ω)

∂v

∂n
(y, ω) dP(ω)

]∣∣∣∣
x=y

−
(
∂w

∂n
(x)

)2
}

dσ.

We insert the expansion (1.9) and exploit again that the random variables Yi ∼ Y are independent, identically
distributed, centered and normalized to arrive at the final expression:

δ
(
E
[
J(D,ω)

])
[V] =

∫
Γ

〈V,n〉

[
M∑
i=0

(
∂vi
∂n

)2

−
(
∂w

∂n

)2
]

dσ.

Of course, we could alternatively have computed the shape derivative of the deterministic shape functional
(1.11), yielding the same result.

In case of the variance of the random shape functional (1.6), the situation becomes somewhat more difficult.
It can be derived by using directly the derivative of the shape functional’s second uncentered moment:

δ
(
E
[
J(D,ω)

])
[V] = δ

(∫
Ω

J2(D,ω) dP(ω)

)
[V] = 2

∫
Ω

J(D,ω)δJ(D,ω)[V] dP(ω).

However, since we are mainly interested in Gaussian random fields g(x, ω), i.e., Yi ∼ N (0, 1) in (1.8) and (1.9),
respectively, we will provide only the shape derivative of (1.13).

Proposition 1.4. Assume that it holds Yi ∼ N (0, 1) in (1.8). Then, we have

δ
(
V
[
J(D,ω)

])
[V] = 4

M∑
i,j=1

(∫
Σ

vigj dσ

)(∫
Γ

〈V,n〉∂vi
∂n

∂vj
∂n

dσ

)
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+ 8

M∑
i=1

(∫
Σ

gi(v0 − f) dσ

)(∫
Γ

〈V,n〉∂vi
∂n

∂v0
∂n

dσ

)
.

Proof. Since only the functions vi’s depend on the domain D, the shape derivative of (1.13) reads

δ
(
V
[
J(D,ω)

])
[V] = 4

M∑
i,j=1

(∫
Σ

vigj dσ

)(∫
Σ

δvigj dσ

)

+ 8

M∑
i=1

(∫
Σ

gi(v0 − f) dσ

)(∫
Σ

giδv0 dσ

)
,

(1.14)

where the local shape derivatives δvi = δvi[V] satisfy the boundary value problems

∆δvi = 0 in D, δvi = −〈V,n〉∂vi
∂n

on Γ ,
∂vi
∂n

= 0 on Σ. (1.15)

Using that ∂vi/∂n = gi, we obtain for all i, j = 0, 1, . . . ,M by integration by parts∫
Σ

δvigj dσ +

∫
Γ

δvi
∂vj
∂n

dσ =

∫
Σ

∂δvi
∂n︸ ︷︷ ︸
=0

vj dσ +

∫
Γ

∂δvi
∂n

vj︸︷︷︸
=0

dσ = 0.

This, in view of (1.15), means that ∫
Σ

δvigj dσ =

∫
Γ

〈V,n〉∂vi
∂n

∂vj
∂n

dσ

for all i, j = 0, 1, . . . ,M . By inserting the latter identities into (1.14), we arrive at the desired assertion.

We mention that the shape derivative of the standard deviation is given by the chain rule in accordance with

δ
√
V
[
J(D,ω)

]
[V] =

δ
(
V
[
J(D,ω)

])
[V]

2
√

V
[
J(D,ω)

] .

2. Numerical realization

Since the numerical realization is based on the adaptation of the classical Kohn–Vogelius approach for
electrical impedance tomography, we briefly recall the ingredients and refer to [13, 14] for more details.

2.1. Boundary integral equations

We will compute the unknown boundary data of the state functions v and w by boundary integral equations.
We introduce the single layer and the double layer operator with respect the boundaries Φ, Ψ ∈ {Γ,Σ} by

(VΦΨu)(x) := − 1

2π

∫
Φ

log ‖x− y‖u(y) dσy, x ∈ Ψ,

(KΦΨu)(x) :=
1

2π

∫
Φ

〈x− y,ny〉
‖x− y‖2

u(y) dσy, x ∈ Ψ.



10 M. DAMBRINE ET AL.

For sake of simplicity, we suppose that diamD < 1 to ensure that VΦΦ is invertible, cf. [23]. Then, the normal
derivative of w is given by the Dirichlet-to-Neumann map[

VΓΓ VΣΓ
VΓΣ VΣΣ

] [
∂w
∂n

∣∣
Γ

∂w
∂n

∣∣
Σ

]
=

[
1
2 +KΓΓ KΣΓ

KΓΣ
1
2 +KΣΣ

] [
0
f

]
, (2.1)

cf. (1.7). Likewise, the unknown boundary data of vi are determined by[
VΓΓ −KΣΓ

−VΓΣ 1
2 +KΣΣ

] [
∂v
∂n

∣∣
Γ

v|Σ

]
=

[
1
2 +KΓΓ −VΣΓ
−KΓΣ VΣΣ

] [
0
gi

]
. (2.2)

2.2. Boundary element method

The shape functional and its gradient can be computed from the knowledge of the boundary data of the state
equations (1.7) and (1.10). These data are given by the boundary integral equations (2.1) and (2.2). Hence,
it is rather convenient to employ a boundary element method to compute the required boundary data of the
state equations. We use a Galerkin discretization by NΦ piecewise linear functions {θΦi }

NΦ
i=1 on each boundary

Φ ∈ {Σ,Γ}. For Φ, Ψ ∈ {Σ,Γ}, we introduce the system matrices

VΦΨ = − 1

2π

[∫
Ψ

∫
Φ

log ‖x− y‖θΦi (y)θΨj (x) dσy dσx

]
i=1,...,NΦ, j=1,...,NΨ

,

KΦΨ =
1

2π

[∫
Ψ

∫
Φ

〈x− y,ny〉
‖x− y‖2

θΦi (y)θΨj (x) dσy dσx

]
i=1,...,NΦ, j=1,...,NΨ

,

and the mass matrices

MΦ =

[∫
Φ

θΦi (x)θΦj (x) dσx

]
i,j=1,...,NΦ

,

and the load vectors of Dirichlet data fΣ and Neumann data gi,Σ

fΣ =

[∫
Σ

θΣi (x)f(x) dσx

]
i=1,...,NΣ

, gi,Σ =

[∫
Σ

θΣi (x)gi(x) dσx

]
i=1,...,NΣ

.

Then, the linear system of equations[
VΓΓ VΣΓ

VΓΣ VΣΣ

] [
aΓ
aΣ

]
=

[
1
2MΓ + KΓΓ KΣΓ

KΓΣ
1
2MΣ + KΣΣ

] [
0

M−1
Σ fΣ

]
, (2.3)

gives us the Neumann data (∂w/∂n)|Γ ≈
∑NΓ
j=1[aΓ ]jθ

Γ
j on Γ and (∂w/∂n)|Σ ≈

∑NΣ
j=1[aΣ ]jθ

Σ
j on Σ from the

Dirichlet data f on Σ. Likewise, the system[
VΓΓ −KΣΓ

−VΓΣ
1
2MΣ + KΣΣ

] [
bΓ
bΣ

]
=

[
1
2MΓ + KΓΓ −VΣΓ

−KΓΣ VΣΣ

] [
0

M−1
Σ gi,Σ

]
, (2.4)

yields the Dirichlet data vi|Γ =
∑NΓ
j=1[bΓ ]jθ

Γ
j on Γ and the Neumann data (∂vi/∂n)|Σ ≈

∑NΣ
j=1[bΣ ]jθ

Σ
j on Σ

from the given Neumann data gi,Σ on Σ.
We mention that the appearing system matrices have to be computed only once for each domain while the

system (2.4) has to be solved M + 1 times to get the vi’s from the gi’s. We will use the wavelet Galerkin scheme
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which yields quasi sparse system matrices and, hence, a linear overall complexity with respect to the number
NΓ +NΣ of degrees of freedom. We refer to [20] for all the details on the wavelet based fast solution of boundary
integral equations.

2.3. Approximation of the free boundary

For the numerical computations, we restrict ourselves to inclusions which are starshaped with respect to the
origin 0. Then, the inclusion can be parametrized in accordance with

γ : [0, 2π]→ Γ, φ 7→ r(φ)

[
cosφ
sinφ

]
,

i.e., we can identify the inclusion via a radial function

r(φ) = a0 +

∞∑
n=1

an cos(nφ) + a−n sin(nφ) ∈ C2
per([0, 2π]),

which depends only on the polar angle. Hence, it is reasonable to make for the sought inclusion the ansatz

rNr (φ) = a0 +

Nr∑
n=1

an cos(nφ) + a−n sin(nφ). (2.5)

Since rNr admits 2Nr + 1 degrees of freedom a−Nr , a1−Nr , . . . , aNr , we arrive at a finite dimensional
optimization problem in the open set

ANr :=
{
a−Nr , a1−Nr , . . . , aNr ∈ R : rNr (φ) > 0, φ ∈ [0, 2π]

}
⊂ R2Nr+1.

Hence, via the identification rNr ⇔ DNr , the finite dimensional approximation of shape minimization problem
(1.2) reads as find

DNr ∈ argmin
ANr

(F ). (2.6)

The associated gradient has to be computed with respect to all directions under consideration:

V(φ) = cos(Nrφ)er(φ), cos
(
(Nr − 1)φ

)
er(φ), . . . , sin

(
(Nr − 1)φ

)
er(φ), sin(Nrφ)er(φ).

Herein, er(φ) = (cosφ, sinφ) is the radial direction.
We will apply the quasi-Newton method, updated by the inverse BFGS-rule without damping, in combination

with a quadratic line-search in order to solve the minimization problem (2.6). For all the details and a survey
on available optimization algorithms, we refer to [15, 16, 19] and the references therein.

3. Numerical results

In our numerical example, we consider D to be the ellipse with semi-axes 0.45 and 0.3, having a starshaped
inclusion in its interior. This inclusion is to be determined from measurements of the Neumann data for the
single voltage distribution f(x) = x21 − x22 at the outer boundary Σ.

We consider the situation that the noisy measurement g(x, ω) is a Gaussian random field. Then, the Neumann
data g(x, ω) are given in accordance with (1.8), being fully described by having normalized Gaussian random
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Figure 2. Reconstructions for ten different realizations of the noisy data.

variables Yi ∼ N (0, 1) and a certain covariance kernel

Cor(x,y) =

∫
Ω

(
g(x, ω)− g0(x)

)(
g(y, ω)− g0(y)

)
dP(ω).

We assume for our test that the covariance kernel is a Gaussian kernel

Cor(x,y) = β exp

(
− ‖x− y‖2

`2

)
,

with correlation length ` > 0. Hence, by means of the Karhunen–Loève expansion and an appropriate random
number generator, we are able to simulate the Gaussian random field numerically, see [18, 27] for example.

The discretization of the shape optimization problem is as follows. The sought inclusion is approximated by a
Fourier expansion of with 33 Fourier coefficients, i.e., it holds Nr = 16 in (2.5). Notice that the sought inclusion
cannot be exactly represented by this Fourier expansion. Moreover, the solutions of the boundary integral
equations (2.1) and (2.2) are approximately computed by using 512 piecewise linear wavelets per boundary,
i.e., it holds NΣ = NΓ = 512 in Section 2.2. We use always the circle of radius 0.2 as initial guess and stop the
quasi-Newton method after 25 steps since the underlying shape identification problem is severely ill-posed.

3.1. Classical approach

The classical approach would be to sample the process g and to minimize the Kohn–Vogelius functional for
each realization. In Figure 2, we plotted ten reconstructions which were derived from a single measurement, where
the correlation length is set to ` = 0.1 and the noise level β is chosen such that the perturbation ‖g(ω)− g0‖L2(Σ)

is about 5 percent of ‖g0‖L2(Σ). We observe a great variance of the reconstructions in Figure 2. In particular,
the reconstructions differ mostly considerably from the exact inclusion, which is indicated in dark gray.
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Figure 3. Mean of the reconstructed inclusions.

Figure 4. Reconstructions for the expected Kohn–Vogelius functional in case of 10 samples.

Since we are using a parametrization (2.5) based on Fourier coefficients, we can compute the mean of the
Fourier coefficients of the reconstructions. Doing so for the ten reconstructions found in Figure 2, we obtain
the inclusion seen in Figure 3. One clearly observes an improvement of the reconstruction. Nonetheless, this
parametrization based notion of the mean shape is not generally possible. In particular, it is computationally
extremely expensive.

3.2. Expected Kohn–Vogelius functional

To realize the new approach proposed on this article, we repeat the measurement M times, yielding samples
g(1), g(2), . . . , g(M) of the unknown random field g(ω). From these measurements, we compute the sample mean

g(x) =
1

M

M∑
m=1

g(m)(x)

to approximate the mean g0 in (1.8). The random variation is approximated by means of the Karhunen–Loève
expansion with respect to the sample covariance

Q(x,y) =
1

M − 1

M∑
m=1

g(m)(x)g(m)(y).
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Figure 5. Reconstruction for the expected Kohn–Vogelius functional in case of 100 samples.

Figure 6. Influence of the coupling parameter: α = 1/2, 3/4, 7/8, 15/16 (from the top to the bottom
and from the the left to the right).

If we run the optimization for the expected Kohn–Vogelius functional, i.e., for the objective (1.5) with α = 0,
then we obtain the reconstructions found Figure 4. Here, we have repeated the reconstruction algorithm four
times based on M = 10 samples each. One observes much better reconstructions than those which are obtained
from a single measurement. Nonetheless, there is still a slight deviation of the reconstructions. This stems from
the fact that ten samples are not sufficient to reliably estimate the expectation and the covariance. The situation
changes if we exploit 100 measurements. In this case, we obtain a slightly improved reconstruction, see Figure 5.
Especially, there is no more difference when repeating the experiment.

3.3. Influence of the coupling parameter α

So far, we only considered the minimization of the expected Kohn–Vogelius functional, which means the
particular choice α = 0 in the objective (1.4) and (1.5), respectively. Therefore, we shall study the dependence
of the reconstruction algorithm on the coupling parameter α. To that end, we choose M = 100 samples in order
to ensure that the reconstruction does not depend on the particular samples.

We consider objective (1.5), since the standard deviation exhibits the same scaling as the expectation. For
our test example, both quantities have a similar size for the initial shape. For increasing coupling parameter
α, the standard deviation of the Kohn–Vogelius functional becomes more and more important compared with
its expectation. Nonetheless, the reconstruction is basically the same as seen in Figure 6. Here, one finds the
reconstructions for α = 1/2, α = 3/4, α = 7/8, and α = 15/16.
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Figure 7. Convergence histories of the objective for different choices of α.

What differs for different values of the coupling parameter α is the convergence behaviour of the reconstruction
algorithm. Increasing α enforces faster convergence in the beginning of the minimization algorithm, see also
Figure 7, where the convergence histories of the objective (1.5) are found for different values of the coupling
parameter α. Nonetheless, one also figures out that the functional becomes more flat as α increases. Notice that
the reconstruction algorithm does not converge anymore for values of α higher than α = 15/16.

4. Conclusion

In the present article, we have proposed a method which enables to reconstruct inclusions or void in electrical
impedance tomography also in case of very noisy data. Namely, we modeled the measurement data as random
field which can approximately be determined from repeated measurements. An objective which combines the
expectation and variance of the Kohn–Vogelius functional is then mimimized to reconstruct the sought inclusion.
In particular, it is shown that the objective as well as its shape gradient is a deterministic quantity. Numerical
results are present which show the capability and feasibility of the proposed approach.

References
[1] L. Afraites, M. Dambrine and D. Kateb, Conformal mapping and inverse conductivity problem with one measurement. ESAIM:

COCV. 13 (2007) 163–177.

[2] L. Afraites, M. Dambrine and D. Kateb, Shape methods for the transmission problem with a single measurement. Numer.
Funct. Anal. Optim. 28 (2007) 519–551.

[3] L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography.
SIAM J. Control Optim. 47 (2008) 1556–1590.

[4] I. Akduman and R. Kress, Electrostatic imaging via conformal mapping. Inverse Probl. 18 (2002) 1659–1672.
[5] G. Alessandrini, V. Isakov and J. Powell, Local uniqueness in the inverse problem with one measurement. Trans. Am. Math. Soc.

347 (1995) 3031–3041.
[6] M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods. Math. Models

Methods Appl. Sci. 21 (2011) 2069–2101.
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