
HAL Id: hal-02127441
https://hal.science/hal-02127441v1

Submitted on 24 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anisotropic Filtering for On-the-fly Patch-based
Texturing

Nicolas Lutz, Basile Sauvage, Frédéric Larue, Jean-Michel Dischler

To cite this version:
Nicolas Lutz, Basile Sauvage, Frédéric Larue, Jean-Michel Dischler. Anisotropic Filtering for On-
the-fly Patch-based Texturing. Eurographics 2019, May 2019, Genoa, Italy. �10.2312/egs.20191019�.
�hal-02127441�

https://hal.science/hal-02127441v1
https://hal.archives-ouvertes.fr


EUROGRAPHICS 2019/ P. Cignoni and E. Miguel Short Paper

Anisotropic Filtering for On-the-fly Patch-based Texturing

Nicolas Lutz, Basile Sauvage, Frédéric Larue and Jean-Michel Dischler

ICube, Université de Strasbourg, CNRS, France

Abstract
On-the-fly patch-based texturing consists of choosing at run-time, for several patches within a tileable texture, one random
candidate among a pre-computed set of possible contents. This category of methods generates unbounded textures, for which
filtering is not straightforward, because the screen pixel footprint may overlap multiple patches in texture space, i.e. different
randomly chosen contents. In this paper, we propose a real-time anisotropic filtering which is fully compliant with the standard
graphics pipeline. The main idea is to pre-filter the contents independently, store them in an atlas, and combine them at run-time
to produce the final pixel color. The patch-map, referencing to which patch belong the fetched texels, requires a specific filtering
approach, in order to recover the patches that overlap at low resolutions. In addition, we show how this method can achieve
blending at patch boundaries in order to further reduce visible seams, without modification of our filtering algorithm.

CCS Concepts
• Computing methodologies → Rendering; Texturing; Antialiasing;

1. Introduction

Adding detail to 3D surfaces in virtual scenes is often performed
through the mapping of textures, as they are able not only to repre-
sent a simple color (albedo), but also complex reflectance param-
eters, or relief. Since very large scenes can nowadays be modelled
and visualized, very large textures are required too, leading to stor-
age problems due to graphics hardware limitations. On-the-fly tex-
ture synthesis methods have arisen to solve these issues, by gener-
ating the textures on demand at run-time, thus leading to virtually
unbounded textures.

Among these methods, tile-based approaches are very efficient
and popular. They consist in pre-computing a set of tiles which are
assembled on a regular grid at run-time. However, a reduced set
of tiles generally leads to repetition artifacts due to the fact that
the same large pieces of contents are reused too often. Conversely,
using a high number of tiles may help to remove such artifacts,
but is not tractable, due to memory consumption. To get round this
issue, on-the-fly patch-based approaches [VSLD13, KCD16] have
proposed to pre-compute patches, namely contiguous regions with
irregular shapes, in a repeatable tile. Then, every patch occurrence
is filled-in at run-time with a content selected randomly (see Fig-
ure 1). This has proved to be effective for irregular and homoge-
neous textures with structured patterns (i.e. with sharp features),
like the ones presented in Figure 2.

Texture filtering is mandatory to make real-time texturing tech-
niques useful in practice, as it removes under-sampling artifacts
which occur when viewing a textured surface from far away or at
a grazing angle. In the case of on-the-fly texture synthesis, render-

Figure 1: Content selection process. At rendering, each occurrence
of the patch p is filled with a content Ip,c randomly chosen by C
among a set of pre-defined candidates.

ing requires to compute every screen-space pixel in constant time,
whatever its footprint in texture space. This makes the filtering dif-
ficult: one cannot afford computing the high-resolution texture, and
then averaging over an arbitrarily large footprint. Instead, filtering
and synthesis have to be coupled: only the useful texture resolution
must be computed. As far as we know, no such solution has been
proposed for the aforementioned patch-based methods.

In this paper, we propose a technique for anisotropic filtering
of [VSLD13]. This solution consists in storing explicitly low reso-
lutions of the contents, each one being pre-filtered independently.
The patch-map (which indicates the patch each texel belongs to)
is also MIP-mapped using a special bitwise-OR boolean operation.
We show how our method allows for simple filtering at every res-
olution while remaining relatively cheap in terms of both mem-
ory and computational costs. After a review of the literature (Sec-
tion 2), our method is detailed in Section 3 and 4, and evaluated
in Section 5. We then provide some perspectives in the concluding
Section 6.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



N. Lutz, B. Sauvage, F. Larue & J-M. Dischler / Anisotropic Filtering for On-the-fly Patch-based Texturing

Figure 2: Examples of irregular, homogeneous and structured tex-
tures, particularly suitable for content exchange.

2. Related work

In this paper, we focus on real-time texture synthesis, and specifi-
cally tile-based methods. The quality of the results of the methods
which fall in this category is not meant to be competitive against
the best offline synthesis results, but rather to provide a good bal-
ance between quality, size, and speed. These methods generate an
output by putting tiles next to each other, in a way such that there is
no visible seam between adjacent tiles. To achieve this, both Wang
Tiling [CSHD03, Wei04, LD05] and Corner Tiling [LD06, SD10]
indicate the compatibility of the edges or corners of square tiles,
and then assemble them in an aperiodic tiling. The filtering prob-
lem for these methods has been solved by [Wei04], by packing the
tiles as a correct tiling in a texture which is then filtered, allowing
borders of adjacent tiles to blend into each other at low resolutions
without introducing visual artifacts.

A drawback of these methods is that repeating the same set
of squared tiles introduces visually unpleasant repetition artifacts,
unless the amount of different edges (resp. corners) is increased,
which exponentially increases the corresponding amount of tiles.
Both [VSLD13] and [KCD16] solve this issue by partitioning the
tiles into regions called patches, whose contents can be exchanged
for different, pre-determined alternative contents taken from the tile
itself, or from a larger input. While [VSLD13] segments the entire
tile with a single set of patches, at the risk of introducing visible
seams near the patch borders, [KCD16] limits seams by comput-
ing different sets of non-overlapping patches, but at the cost of re-
introducing possible alignments, especially at the tile corners. For
these methods, the filtering solution proposed by [Wei04] is im-
practical, since it would require to generate tiles representing every
possible combination of contents, yielding a memory complexity
which grows exponentially with the number of patches.

Even if the decomposition of the input tile into patches may
seem to be related to the problem of multi-chart texture filtering,
approaches like [RNLL10] are not adapted to our case, because
contents that must be blended are only known at rendering time,
thus preventing an a priori filtering of texture seams. To our knowl-
edge, no solution has been proposed yet for the filtering of on-the-
fly patch-based texturing.

3. Problem statement

3.1. Content exchange

The algorithm of [VSLD13] works as follows. For clarity, we con-
sider a single periodic tile. The tile is partitioned into P patches

numbered 1 6 p 6 P. They are encoded by a patch-map P such
that P(xxx) = p if the texel xxx belongs to patch p. Because the tile is
assumed to be periodic, the patch-map is also repeated periodically.
Let Ip,c be the c-th content of patch p: Ip,c(xxx) yields a texel value
(Figure 1). Without loss of generality, we assume that every patch is
given the same number C of contents, numbered 1 6 c 6C. At each
tile repetition, each patch p is repeated, but its content changes: a
function C(p) yields a random content number c. The synthesized
texture is then defined, for any position xxx, as

I(xxx) = IP(xxx),C(P(xxx))(xxx). (1)

3.2. Filtering

Once the texture I is mapped to a 3D scene, every screen-space
pixel has a projected footprint in texture space. The filtering con-
sists in approximating the average of I over this footprint. In a stan-
dard pipeline with pre-computed I, it relies on a MIP-map I(`) of
the texture: as the level ` increases, I is down-sampled by averaging
over 2`×2` square regions (decreasing resolution). In our context,
the challenge consists in computing I(`) on-the-fly.

Tiling techniques solve this problem by MIP-mapping the
tiles offline and by assembling the appropriate resolution at run-
time [Wei04]. This does not work in our case because the patches
have irregular shapes. So, at low resolution, the square regions may
overlap several patches whose contents are known only at run-
time. Pre-computing all possible combinations of contents is not
tractable either: it would produce CP tiles, which cannot be stored
and pre-filtered.

4. Filtering content exchange

Our method follows the same intuition as [Wei04]: since we cannot
assemble I offline and pre-filter it as I(`), we pre-filter the data so
as to compute I(`) on demand at run-time. We achieve this by:

• Pre-filtering the patch-map as a MIP-mapP(`) in such a way that
the overlap of patches can be recovered at every level `.

• Pre-filtering all contents I(`)p,c and packing them in a texture atlas.
• Assembling I(`) at run-time from P(`) and the content atlas.

4.1. Pre-filtering the patch-map

The patch-map is encoded as a bitmask of size P: at the higher
resolution the p-th bit of P(0)(xxx) is set to 1 if xxx belongs to the
patch p. Then the MIP-map is computed by using a bitwise-OR
instead of an average. Namely, the value P(`)(xxx) at texel xxx is the
bitwise-OR of its four parents in the previous level P(`−1).

As a consequence, the p-th bit of P(`)(xxx) equals to 1 iff the
patch p overlaps the texel xxx which corresponds to a 2`× 2` square
at high resolution. These patches are the ones whose contents con-
tribute to the final color I(`)(xxx).

4.2. Pre-filtering the contents

To compute the pre-filtered contents I(`)p,c, we proceed as follows.
For each content c of each patch p :

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



N. Lutz, B. Sauvage, F. Larue & J-M. Dischler / Anisotropic Filtering for On-the-fly Patch-based Texturing

Figure 3: Each content Ip,c is pre-filtered at different levels / reso-
lutions. Top: fixed resolution. Bottom: fixed size.

Figure 4: Packing of the contents. Left: the high resolution (`= 0)
does not need special storage. Right: for each content id c, all low-
resolution (`≥ 1) contents {I(`)p,c}c,` are packed in an atlas.

• The tile is filled with zeros, except for the patch p, which is filled
with content Ip,c.
• The tile is MIP-mapped using four-to-one standard averaging.

Boundary texels are thus blended with the null-valued back-
ground (see Figure 3).
• At every level `≥ 1, the content I(`)p,c is cut out and packed in an

atlas (see Section 4.4).

4.3. Assembling the filtered output

When rendering the texture, we need to compute I on demand for
any level ` and at any texel xxx. We compute it as

I(`)(xxx) = ∑
p∈P (`)(xxx)

I(`)p,C(p)(xxx), (2)

where the sum blends all the contents I(`)p,C(p) overlapping xxx at
level `. The patches p involved are recovered from the pre-filtered
patch-map P(`). Thus, equation (2) is an exact evaluation of the
MIP-map of I, without the need to store it explicitly. Then, stan-
dard filtering operations, such as trilinear and anisotropic filtering,
can be applied as usually done with a MIP-map.

4.4. Storage

Our method requires storing the patch-map at all resolutions as an
array of bitmasks (of P bits for P patches), as well as every reso-
lution of the contents. To limit the impact of irregular patch shapes
on the memory, we build an atlas (one for each content identifier c)

Data (N/C)
No filtering (Mb) Our filtering (Mb)

contents patch-map contents patch-map
5122 / 3 0.79 0.26 2.0 (+150%) 1.4 (+433%)
5122 / 6 0.79 0.26 3.2 (+300%) 1.4 (+433%)
10242 / 3 3.1 1.05 8.1 (+150%) 5.6 (+433%)
10242 / 6 3.1 1.05 13 (+300%) 5.6 (+433%)
Asymptotic Θ(N) Θ(NC)

Table 1: Memory footprint analysis for different input sizes N and
different numbers of contents C. The additional cost for the patch-
map is fixed (+433%). The cost for the contents is +50% per con-
tent, which must be compared to +33% if the packing were perfect.

which encompasses the low resolution contents I(`)p,c of every patch
(` ≥ 1, p ∈ P), as shown in Figure 4. Note that we store only
isotropic MIP-map levels, from which anisotropic filtering can be
computed. Since contents of the highest resolution do not present
the same overlapping issues as those of lower resolutions, they do
not need to be stored in this atlas, but can be accessed directly from
the input tile using translation offsets, like in [VSLD13, KCD16].
To use this atlas, it is necessary to store the origins of the content
in the atlas and of the related patch in the input tile, for each reso-
lution. It takes up a few more kilo-bytes, which is negligible.

4.5. Blending the contents

Patch-based texturing tends to introduce visible seams at patch
boundaries. They can be hidden by blending adjacent contents. Our
technique can filter the blended contents by making the following
changes:

• The patches are dilated, which sets several bits to 1 in P(0)(xxx)
when xxx is near a boundary.

• Blending weights are defined in overlapping areas. In our tests,
we used a simple decreasing distance to the patch boundaries.

• Ip,c are weighted accordingly to get the high-resolution con-
tents I(0)p,c .

Then our pipeline (Sections 4.1, 4.2, and 4.3) is unchanged, gener-
ating the lower resolutions which automatically integrate the blend-
ing weights in the filtered contents. This enables to get the blending
almost for free: a slight additional cost of memory is due to the stor-
age of blending weights and more terms are involved in the sum of
equation (2).

5. Results

Figure 5 presents the results of our filtering technique : it is indistin-
guishable from the ground truth (middle), while unfiltered results
(left) are noisy at low resolution. The accompanying video shows
how the filtering reduces flickering artifacts in dynamic scenes.
Note that some flickering remains, which is not due to pre-filtering:
it is also present in the ground truth and can be further reduced
with supersampling or temporal anti-aliasing. Figure 6 shows the
improvement of a simple blending, based on the texel distance to
the patch boundaries. In regions where seams between different
contents remain visible, blending reduces their visual impact. This

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



N. Lutz, B. Sauvage, F. Larue & J-M. Dischler / Anisotropic Filtering for On-the-fly Patch-based Texturing

Figure 5: Results for various examples. Our filtering method (right) is compared to the ground truth (middle) and no filtering (left). The
ground truth is computed by an exact filtering of the high resolution. The leftmost view indicates the MIP-map levels used.

Figure 6: Rendering of a texture with (bottom / right) and without
(top / left) blending at patch boundaries. Seams between different
contents are less visible when blending is enabled.

blending has been enabled for all the results presented in the pa-
per. Although the blending we used is very simple, more complex,
content-dependant weights may be used as well.

Table 1 lists the memory usage, which grows linearly with the
number N of pixels and the number C of contents. For typical use
cases, with a tile of 10242 texels and 6 contents, the additional cost
is about 5×, which makes it possible to generate high-resolution
and unbounded textures with less than 20Mb. We rendered our re-
sults on a steep surface covered by 2.6G texels (51.2K× 51.2K)
using a 800× 700 pixels viewport. We enabled trilinear filtering,
linear magnification, and anisotropic filtering. Rendering was run-
ning at 90 frames per second on an NVidia GTX 1060. Note that
these performances could be improved by bypassing equation (2)
at very low resolutions (i.e. far away), by lowering the degree of
anisotropic filtering (we used 16 samples at most), and by improv-
ing the implementation to reduce cache misses.

6. Conclusion and future works

We presented in this paper a filtering technique for on-the-fly patch-
based texturing approaches, which deals with the difficult challenge
of managing different contents coming from non-adjacent regions
of the input texture and randomly chosen at rendering time. Pre-
filtering both the contents and the patch-map allows for a runtime
evaluation of the resulting texture MIP-map. To achieve this, our
method requires to store explicitly the pre-filtered low-resolution
contents, as well as the patch-map at each resolution. Yet, the to-
tal memory storage still remains acceptable, typically a few tens
of Mb for unbounded textures. Moreover, we showed that our al-

gorithm is able to perform blending at patch boundaries by only a
slight modification of our pre-processing. It reduces the visual im-
pact of seams potentially appearing in on-the-fly patch-based tex-
turing. This technique performs well on a modern GPU, and can be
implemented with standard shader languages, leading to real-time
performances.

We are interested in investigating how our filtering technique
can be extended. Indeed, it has been especially designed to work
for [VSLD13], but cannot be applied directly to [KCD16] due to
differences in data representation. We would like to extend the al-
gorithm so as to be able to filter the latter as well. Following the
same direction, we think that our algorithm is able to filter tile-
based approaches too, by considering the set of tiles as the differ-
ent contents of a unique square patch, and we would like to conduct
experiments to validate this assumption. Finally, we want to investi-
gate the possibility of using our method for more complex data that
cannot be linearly filtered, such as normal maps or shadow maps.

References
[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver

Deussen. Wang tiles for image and texture generation. ACM Transac-
tions on Graphics, 22(3):287–294, 2003. 2

[KCD16] Martin Kolàř, Alan Chalmers, and Kurt Debattista. Repeatable
texture sampling with interchangeable patches. The Visual Computer,
32(10):1263–1272, 2016. 1, 2, 3, 4

[LD05] Ares Lagae and Philip Dutré. A procedural object distribution
function. ACM Transactions on Graphics, 24(4):1442–1461, 2005. 2

[LD06] Ares Lagae and Philip Dutré. An alternative for wang tiles: Col-
ored edges versus colored corners. ACM Transactions on Graphics,
25(4):1442–1459, 2006. 2

[RNLL10] Nicolas Ray, Vincent Nivoliers, Sylvain Lefebvre, and Bruno
Lévy. Invisible seams. In Proceedings of the 21st Eurographics Confer-
ence on Rendering, EGSR’10, pages 1489–1496. Eurographics Associ-
ation, 2010. 2

[SD10] Thomas Schlömer and Oliver Deussen. Semi-stochastic tilings
for example-based texture synthesis. Computer Graphics Forum,
29(4):1431–1439, 2010. 2

[VSLD13] Kenneth Vanhoey, Basile Sauvage, Frédéric Larue, and Jean-
Michel Dischler. On-the-fly multi-scale infinite texturing from example.
Transactions on Graphics, 32(6):208:1–208:10, 2013. (Proceedings of
Siggraph Asia’13). 1, 2, 3, 4

[Wei04] Li-Yi Wei. Tile-based texture mapping on graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, HWWS ’04, pages 55–63. ACM, 2004. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.


