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This paper studies the three-dimensional cellular patterns appearing on wings in subsonic stall and transonic buffet conditions. URANS simulations are carried out for three-dimensional infinite swept configurations closed by periodic boundary conditions in the spanwise direction. In both flow conditions the occurrence of stall/buffet cells is observed, as well as their convection at a speed proportional to the sweep angle. In transonic buffet conditions, this phenomenon is superimposed to the well-documented two-dimensional buffet instability. These results indicate that the discrepancies between twodimensional and three-dimensional buffet are caused by the occurrence of buffet cells and that this phenomenon is similar to the one observed at low speed. These numerical simulations are complemented by global linear stability analyses, showing unstable modes reminiscent of stall/buffet cells.

INTRODUCTION

Transonic buffet and subsonic stall are two boundaries of the flight envelope of civil aircraft. Transonic buffet is an oscillation of the shock wave position over a wing caused by an interaction between a separated boundary layer and the shock wave. This oscillation induces variation of the aerodynamic forces which can be detrimental to aircraft handling. Subsonic stall occurs when flow separation causes a reduction of the lift forces as the wing incidence is increased. These phenomena involve complex physics, part of which is the occurrence of stall cells and buffet cells.

Stall cells have been observed experimentally [START_REF] Moss | Two-Dimensional Low-Speed Tunnel Tests on the NACA 0012 section Including Measurements Made During Pitching Oscillations at the Stall[END_REF][START_REF] Gregory | Progress Report on Observations of Three-Dimensional Flow Patterns obtained during Stall Development on Aerofoils, and on the Problem of Measuring Two-Dimensional Characteristics[END_REF][START_REF] Winkelmann | Flowfield Model for a Rectangular Planform Wing beyond Stall[END_REF][START_REF] Yon | Study of the Unsteady Flow Features on a Stalled Wing[END_REF][START_REF] Schewe | Reynolds-number effects in flow around more-or-less bluff bodies[END_REF] and numerically [START_REF] Bertagnolio | New Insight Into the Flow Around a Wind Turbine Airfoil Section[END_REF][START_REF] Manni | Numerical study of airfoil stall cells using a very wide computational domain[END_REF] since the 1970's. This phenomenon is characterized by flow patterns with an "owl-face" or "mushroom" shape. The latter are usually reported for experiments and simulations over extruded airfoil. In such cases, a three-dimensional flow is obtained on a two-dimensional extruded configuration. Multiple models have been proposed for the origin of the phenomenon. Analyses based on the lifting line theory by Spalart [START_REF] Spalart | Prediction of Lift Cells for Stalling Wings by Lifting-Line Theory[END_REF] and Gross et al. [START_REF] Gross | Criterion for Spanwise Spacing of Stall Cells[END_REF] suggest that a negative slope of the lift versus the incidence is necessary to observe the stall cells. Analyses with the Vortex Lattice Method coupled with RANS data by Gallay and Laurendeau [START_REF] Gallay | Nonlinear Generalized Lifting-Line Coupling Algorithms for Pre/Poststall Flows[END_REF] and Paul and Gopalarathnam [START_REF] Paul | Iteration schemes for rapid post-stall aerodynamic prediction of wings using a decambering approach[END_REF] exhibits similar lift distributions. Rodriguez and Theofilis [START_REF] Rodríguez | On the birth of stall cells on airfoils[END_REF] linked the stall cells to a global unstable mode for a laminar case, but the existence of this mode has then been questioned by the later work of He et al. [START_REF] He | Linear instability of low Reynolds number massively separated flow around three NACA airfoils[END_REF], who was unable to reproduce similar results. As such, the literature lacks of a proper relation between stall cells and a global instability of the flow.

Transonic buffet has been investigated experimentally [START_REF] Jacquin | Experimental Study of Shock Oscillation over a Transonic Supercritical Profile[END_REF][START_REF] Brion | Experimental analysis of the shock dynamics on a transonic laminar airfoil[END_REF][START_REF] Mcdevitt | Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility[END_REF][START_REF] Benoit | Buffeting prediction for transport aircraft applications based on unsteady pressure measurements[END_REF] and numerically [START_REF] Goncalves | Turbulence model and numerical scheme assessment for buffet computations[END_REF][START_REF] Deck | Numerical Simulation of Transonic Buffet over a Supercritical Airfoil[END_REF][START_REF] Thiery | Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls[END_REF][START_REF] Grossi | Prediction of Transonic Buffet by Delayed Detached-Eddy Simulation[END_REF]] by many searchers. In two dimensions, the Strouhal number of the shock oscillations lies between 0.06 to 0.09. The phenomenon was described as a feedback loop between the shock wave motion and acoustic waves generated near the trailing edge by Lee [START_REF] Lee | Oscillatory shock motion caused by transonic shock boundary-layer interaction[END_REF]. The description of the transonic buffet as a globally unstable mode was introduced by Crouch et al. [START_REF] Crouch | Origin of transonic buffet on aerofoils[END_REF], with an accurate prediction of the buffet frequency and onset incidence angle. However, the transonic buffet over three-dimensional wings is more complex. On such configurations, the frequency content is broadband and the dominant Strouhal numbers are higher [START_REF] Dandois | Experimental study of transonic buffet phenomenon on a 3D swept wing[END_REF][START_REF] Roos | The buffeting pressure field of a highaspect-ratio swept wing[END_REF][START_REF] Molton | Control of Buffet Phenomenon on a Transonic Swept Wing[END_REF][START_REF] Lawson | Characterisation of Buffet on a Civil Aircraft Wing[END_REF][START_REF] Paladini | Analysis and Comparison of Transonic Buffet Phenomenon over Several Three-Dimensional Wings[END_REF]. These higher buffet frequencies have also been observed with numerical simulations [START_REF] Brunet | Zonal-Detached Eddy Simulation of Transonic Buffet on a Civil Aircraft Type Configuration[END_REF][START_REF] Sartor | Delayed Detached-Eddy Simulation of Shock Buffet on Half Wing-Body Configuration[END_REF]. Oscillations of the shock wave position along the span of simplified wings have also been observed [START_REF] Iovnovich | Numerical Study of Shock Buffet on Three-Dimensional Wings[END_REF][START_REF] Plante | Study of Three-Dimensional Transonic Buffet on Swept Wings[END_REF][START_REF] Plante | Similitude between 3D cellular patterns in transonic buffet and subsonic stall[END_REF], forming what is called buffet cells. This phenomenon was observed numerically [START_REF] Sartor | Stability, Receptivity, and Sensitivity Analyses of Buffeting Transonic Flow over a Profile[END_REF] and experimentally [START_REF] Sugioka | Nonintrusive unsteady PSP technique for investigation of transonic buffetting[END_REF] for transport aircraft configurations. These cells are convected in the spanwise direction and induce a higher frequency than that of the twodimensional buffet when the wing is highly swept. Recently, global stability analysis has been applied to infinite swept wings [START_REF] Crouch | Global Instability Analysis of Unswept and Swept-Wing Transonic Buffet Onset[END_REF][START_REF] Paladini | Insight on Transonic Buffet Instability: Evolution from Two-Dimensional Aerofoils to Three-Dimensional Swept Wings[END_REF] and three-dimensional half wingbody [START_REF] Timme | Global instability of wing shock buffet[END_REF][START_REF] Timme | Global Shock Buffet Instability on NASA Common Research Model[END_REF] buffet. These analyses exhibit unstable modes coherent with the occurrence of buffet cells. This paper investigates the link between stall cells and buffet cells using URANS simulations and global stability analyses. First, the numerical methods are presented. Then, numerical solutions for low-speed stall and transonic buffet conditions are analyzed.

NUMERICAL METHODS

The Reynolds-Averaged Navier-Stokes equations can be approximated in integral form as:

V ∂W W W ∂t + R R R( ( (W W W ) ) ) = 0 (1) 
where W W W = [ρ , ρu , ρv , ρw , ρe , ρ ν] t is the conservative variables vector, V is the cell volume and R R R is the summation of the source terms and the convective and viscous fluxes. In this paper, the ONERA-Airbus-Safran elsA software is used to solve the (U)RANS equations.

For this study, a cell-centered structured finite volume flow solver is used. A second order cell-centered scheme with scalar numerical dissipation is used for convective fluxes discretization. Convergence towards steady-state solutions is accelerated using local time steps and geometrical multigrid with a LU-SSOR pseudo-time integration scheme. Time-accurate solutions are obtained by a dual time stepping approach. In some case, Selective Frequency Damping (SFD) [START_REF] Åkervik | Steady solutions of the Navier-Stokes equations by selective frequency damping[END_REF][START_REF] Jordi | Encapsulated formulation of the selective frequency damping method[END_REF][START_REF] Jordi | An adaptive selective frequency damping method[END_REF][START_REF] Richez | Selective frequency damping method for steady RANS solutions of turbulent separated flows around an airfoil at stall[END_REF] is used to force the convergence to a steady state. The one equation Spalart-Allmaras turbulence model with the Edwards-Chandra modification is used.

Steady-state solutions also known as base flows W W W 0 are computed to carry out global linear stability analysis. In this case R R R(W W W 0 ) = 0 and small perturbations W W W about the base flow are considered, such that W W W = W W W 0 + W W W . Following this linearization, eq.1 reduces to

∂W W W ∂t = A A AW W W = - 1 V ∂ R R R ∂W W W W W W 0 W W W (2) 
where ∂ R R R ∂W W W is the Jacobian of the discretized RANS equations, including the turbulence model. Solutions in the form of normal modes are sought

W W W = e λt W W W (x, y, z) (3) 
where W W W is called a global mode and λ = σ + iω describes its time behavior (i = √ -1). The real part σ is the growth rate and ω is the angular frequency of the global mode. Introducing this particular solution in eq.2, the problem reduces to the eigenproblem

A A A W W W = λ W W W (4) 
This study involves three-dimensional geometries for which A A A has a high dimension. This makes the solution of the eigenproblem computationally expensive. To reduce the computational cost, the method proposed by Schmid et al. [START_REF] Schmid | Stability analysis for n -periodic arrays of fluid systems[END_REF] for n-periodic arrays of fluid systems is used. This method relies on the fact that the matrix A A A takes the form

A A A =        A A A 0 A A A 1 A A A 2 . . . A A A n-1 A A A n-1 A A A 0 A A A 1 . . . A A A n-2 A A A n-2 A A A n-1 A A A 0 . . . A A A n-3 . . . . . . . . . . . . . . . A A A 1 A A A 2 A A A 3 . . . A A A 0        (5) 
when the grid cells are properly ordered. This matrix is block-circulant and can be transformed into a block diagonal matrix

A A A =         A A A 0 0 A A A 1 A A A 2 . . . 0 A A A n -1         (6) 
with

A j = n-1 ∑ k=0 ρ k j A A A k (7) 
and

ρ j = e i j 2π n (8) 
Eigenvalues of A A A are also eigenvalues of A A A and each block matrix A A A j can be treated separately, resulting in n separated eigenproblems of the same size as a twodimensional problem

A A A j v v v j = λ j v v v j (9) 
and eigenvectors of A A A are retrieved as

W W W = v v v j , ρ j v v v j , ρ 2 j v v v j , . . . , ρ n-1 j v v v j t ( 10 
)
The only difference between the A j is the value of ρ j . Hence, only the eigenspectrum of A 1 with multiple values of the spatial frequency β = 2π /λ z will be analyzed by changing n. This analysis is equivalent to a biGlobal stability analysis [START_REF] Crouch | Global Instability Analysis of Unswept and Swept-Wing Transonic Buffet Onset[END_REF][START_REF] He | Linear instability of low Reynolds number massively separated flow around three NACA airfoils[END_REF].

The linear operator A A A is obtained with the fully discrete approach proposed by Mettot et al. [START_REF] Mettot | Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: Application to openloop control[END_REF]. This Jacobian is extracted with a second-order finite difference as

A A Au u u ≈ 1 2ε (R R R(W W W 0 + εu u u) -R R R(W W W 0 -εu u u)) ( 11 
)
where ε is a small parameter and u u u are vectors chosen to efficiently compute every non-zero coefficient of the Jacobian matrix. For the second-order finite volume scheme used in this study, the numerical stencils have a width of five grid cells. Hence,

A A A 3 = A A A 4 = . . . = A A A n-3 = 0,
and all the non-zero block matrices A A A j (eq. 5) can be retrieved from a three-dimensional grid with only five cells in the k direction. Hence, the base flows are computed as two-dimensional solutions and the grid is extruded to get the three-dimensional grid for the extraction of the 3D Jacobian. This Jacobian matrix is then reduced as A A A 1 . The eigenproblems are then solved with the Arnoldi iteration method and a shift and invert strategy.

Numerical simulations are carried out on threedimensional grids obtained from the extrusion of a baseline 2D grid. For URANS simulations the x-coordinates of the three-dimensional grids are modified to maintain the baseline airfoil geometry in the plane normal to the leading edge and to include the sweep angle δ in the mesh geometry. For the stability analyses, a cross-flow component is added to the farfield conditions to get 2.5D solutions [START_REF] Ghasemi | A Two-Dimensional/Infinite Swept Wing Navier-Stokes Solver[END_REF][START_REF] Bourgault-Côté | Extension of a Two-Dimensional Navier-Stokes Solver for Infinite Swept Flow[END_REF] (w = 0; ∂W W W /∂z = 0). Both configurations are equivalent and the farfield conditions are adapted to maintain constant Mach number, Reynolds number and incidence in the plane normal to the leading edge.

UNSTEADY REYNOLDS AVERAGED SIMULATIONS

URANS simulations were carried out to observe stall cells and buffet cells on infinite swept wings. This section presents the results for a low-speed and a transonic flow conditions.

Subsonic Stall

Stall cells are investigated for the NACA4412 airfoil at a Reynolds number of 350 000 and a Mach number of 0.2 to neglect compressibility effects. Fig. 1 shows the lift polar of two-dimensional base flows and three-dimensional unswept simulations with a span of 6 chords meshed with Fig. 3 shows the pressure coefficient and the skin friction lines over wings swept at 10, 20 and 30 deg. One should note that the distance between the periodic boundaries is fixed. Hence, the length of the leading edge varies in 1 /cosδ. Four stall cells are still observed. However, the topology of the flow changes with the sweep angle. In these cases, the stall cells are convected in the spanwise direction. This induces a frequency proportional to the wavelength of the cells and their convection speed ( f = V C/λ z ). Finally, the convection speed is proportional to the sweep angle (see fig. 7). 

Transonic Buffet

URANS simulations have been computed on the ON-ERA OALT25 airfoil at a Mach number of 0.7352, a Reynolds number of 3 million and an incidence of 4 deg. These conditions are kept constant in the plane normal to the leading edge. This airfoil was designed to promote laminarity and has been studied experimentally with free transition and a boundary layer tripped at 7% on the suction side by Brion et al. [START_REF] Brion | Experimental analysis of the shock dynamics on a transonic laminar airfoil[END_REF]. With the tripped boundary layer, the buffet instability is similar to the one of other turbulent airfoils. These data are used to validate our numerical setup for two-dimensional buffet. Fig. 4 shows the time-averaged wall pressure coefficient of simulations with a single spanwise mesh cell and multiple sweep angles (2.5D). The pressure coefficients are globally well predicted and the similarity between simulations with various sweep angles is maintained. However, the shock wave position is downstream of the experimental one. The shock wave motion amplitude can be evaluated from the slope of the time-averaged pressure coefficient in the vicinity of the shock wave position. The largest buffet amplitude is observed for the unswept case and the buffet amplitude decreases as the sweep angle is increased. Fig. 5 shows the instantaneous pressure coefficient and skin friction lines on swept wings meshed with 168 spanwise cells over a span of 6 chords. For every sweep angle, a spanwise variation of the shock wave position is observed, forming what is called buffet cells. This indicates that meshing the third dimension allows perturbations to develop in the spanwise direction, even when periodic boundary conditions are imposed. For the unswept wing, four spanwise structures are observed. However, the flow is irregular and this number changes in time. For swept wings, the flow is periodic and the cells are convected in the spanwise direction. Three cells are observed for a sweep angle of 30 deg while there are only 2 cells on this pressure map and the associated frequency can be computed with the wavelength of the buffet cells. These values for multiple sweep angles are reported in tab. 1. Fig. 7 shows the relation between the sweep angle and the convection speed. The cross-flow velocity varies in tan δ , meaning that the convection speed is proportional to the farfield velocity projected along the leading edge. This proportionality is true for low-speed flow conditions as well. More details are provided in Plante et al. [START_REF] Plante | Similitude between 3D cellular patterns in transonic buffet and subsonic stall[END_REF]. 

δ (deg) L z/c L z /c N cells λ z/c V C/V

GLOBAL STABILITY ANALYSES

The second part of this study uses global stability analyses to identify linearly unstable modes which could lead to stall cells and buffet cells. Results for the low-speed and transonic flow conditions are presented.

Subsonic Stall

Machine accuracy converged steady 2.5D solutions of the NACA4412 airfoil at a Reynolds number of 350 000, a Mach number of 0.2 and multiple incidences and sweep angles were obtained. These solutions are used as base flows for the stability analyses. Most of the analyses are done with an incidence of 15 deg. these two values of β , there is an eigenvalue with a positive real part located along the imaginary axis. These are non-oscillatory unstable modes. This figure also shows the shifts used in the shift and invert strategy as well as the radius covered by the Arnoldi algorithm. Points with different real parts are used to insure modes with nonzero imaginary part are not missed. Fig. 9 shows the growth rate of the steady unstable mode as a function of β . Multiple values of ∆ z used in the extrusion of the 2D grid are plotted to ensure that the grid is sufficiently refined. These results can be considered as converged for every β with ∆ z = 0.002c. One can observe that the grid convergence is poorer in the high beta range. These are small structures. Hence, with a larger ∆ z they would be meshed with fewer points if a complete 3D analysis was carried out. The grid spacing used in the URANS simulations (∆ z = 0.054c ) is well converged up to β c = 6, covering the case with the maximum growth rate. It should be noted that refining the grid in the z-direction has no effect on the computational cost here, but reduces the dicretization errors.

The maximum growth rate is obtained for a spanwise structure with β c ≈ 4.4. This corresponds to a wavelength λ z/c ≈ 1.43, which is close to the one observed in the URANS simulations ( λ z/c = 1.5). A URANS simulation was computed with a span of 12 chords, for which 8 stall cells were observed. This is the same result as for the 6 chords simulation. Since the periodicity conditions do not allow for non integer number of cells, only the wavelengths λ z/c = 1.33, λ z/c = 1.5 and λ z/c = 1.71 could be obtained with 7, 8 and 9 stall cells respectively. Hence, the wavelength of the URANS simulation is as close as possible to the stability analysis result. A simulation with a larger span would be required to reduce the discrepancy between the URANS simulation and the stability analysis Fig. 10 shows the base flow and the real part of the eigenvector ρe reconstructed in three dimensions with eq. 10, and extracted on the airfoil surface and the plane z = 0. The instability is located in the shear layer and upstream of the separation point.

Figs. 11 and12 show the growth rate and frequency of the unstable mode with sweep angles of 0, 10, 20, 30 and 40 deg. With these graphs it is possible to follow the displacement of the unstable eigenvalue with respect to the sweep angle. The frequency of the mode increases with the sweep. However, its growth rate diminishes. The value of β for which the growth rate is maximum also slightly diminishes as the sweep angle increases. Fig. 12 also shows the frequency obtained with URANS simulations (red points) and the frequency extrapolated from the trend of the convection speed and the spanwise frequency (red lines). The frequencies observed in the URANS computations are well aligned with the frequency obtained with global linear stability analysis. This gives us further indications that the stall cells are linked to this unstable global mode. The mismatch between linear and URANS results may stem from nonlinear interactions.

Works based on the lifting line theory by Spalart [START_REF] Spalart | Prediction of Lift Cells for Stalling Wings by Lifting-Line Theory[END_REF] and Gross et al. [START_REF] Gross | Criterion for Spanwise Spacing of Stall Cells[END_REF] suggested that a negative slope of the C Lα curve is a necessary condition for the occurrence of stall cells. To test this, the stability analy- igure 13: Effect of the incidence angle on the growth rate of the unstable mode of the NACA4412 (M = 0.2, Re = 350 000, δ = 0.0 deg). sis has been carried out for unswept wings at several incidences around the maximum lift coefficient. Fig. 13 shows the growth rate obtained in these flow conditions. One can note that the most unstable eigenvalue crosses the imaginary axis at an incidence slightly below 14.15 deg, which coincides with the maximum lift incidence in fig. 1. This tends to confirm the criterion of a negative C Lα slope. However, results on a variety of airfoils would be necessary to properly validate this criterion. Results at higher incidences are also necessary to find out if the flow becomes stable when the separation occurs at the leading edge, or when the C Lα slope becomes positive again. This will be the subject of future work. Another conclusion of the analysis of Gross et al. [START_REF] Gross | Criterion for Spanwise Spacing of Stall Cells[END_REF] is that the wavelength of the cells should be λ z/c = -0.5 ∂C L/∂ α with a discrete model or λ z/c =π /4 ∂C L/∂ α with a continuous model. Since the linear instability occurs around the two-dimensional solution ∂C L/∂ α is taken as the slope of the two-dimensional lift polar around an incidence of 15.0 deg (-2.52rad -1 ). With this slope, the wavelength should be 1.26 or 1.98 (β c = 3.2 and 5.0 respectively). The values computed with the URANS simulations and the stability analyses fall between the values predicted with this model.

V ref ) βc = 2πc/λ z δ = 0°δ = 10°δ = 20°δ = 30°δ = 40°0 .8tan(δ)βc/2π

Transonic Buffet

The same global stability analyses are carried out for the case of the transonic buffet of the OALT25 airfoil at a Reynolds number of 3 million and a Mach number of 0.7352. Fig. 14 shows the spectra obtained for β c = 2π Hence, two unstable eigenmodes are found for this flow condition. It should be noted that the spectra are symmetric with respect to the imaginary axis. Thus, an unsteady mode with a negative frequency is also observed. Following this analysis, fig. 15 shows the effect of the spanwise frequency on the growth rate of the steady unstable mode for several incidences. As for the subsonic stall case, a bump in the growth rate is observed around β c = 6.0. However, a second bump with a maximum growth rate at higher β is also obtained. These results are similar to the ones obtained by Crouch et al. [START_REF] Crouch | Global Instability Analysis of Unswept and Swept-Wing Transonic Buffet Onset[END_REF] on the OAT15A airfoil. Fig. 16 shows the effect of the sweep angle on the growth rate of the three-dimensional mode. As for the subsonic stall, the growth rate of the three-dimensional mode diminishes as the sweep angle increases. From this trend, the mode becomes stable for a sweep angle slightly higher than 40.0 deg. Fig. 17 shows the Strouhal number of the three-dimensional mode for sweep angles of 0, 10, 20, 30 and 40 deg for a range of β . The URANS results (red points) and the frequencies extrapolated from the convection speed (red lines) are plotted on this graph as well. As expected, the frequency increases with β (smaller spanwise structures) and with the sweep angles (higher convection speed). The URANS results match the trend of the frequencies predicted by the linear stability analyses. However, the spatial frequencies obtained in the swept URANS (β c = 1.97 to 2.84) simulations are not unstable in the stability analysis. These might be explained by a subcritical bifurcation.

Fig. 18 shows the base flow with a sweep angle of 30 deg, and real part of the ρe two-dimensional and threedimensional unstable modes. The two unstable modes are mostly located in the vicinity of the shock wave and in the shear layer. The two-dimensional mode has the shape of the unstable mode reported in two-dimensional buffet studies [START_REF] Sartor | Stability, Receptivity, and Sensitivity Analyses of Buffeting Transonic Flow over a Profile[END_REF]. The three-dimensional mode has spanwise fluctuations in the shock foot and trailing edge region. Those are regions of flow separation. The shape of this mode is in line with the observations of Paladini [START_REF] Paladini | Insight on Transonic Buffet Instability: Evolution from Two-Dimensional Aerofoils to Three-Dimensional Swept Wings[END_REF] using fully three-dimensional stability analysis of infinite swept configurations. Fig. 19 shows the C Lα curve based on the steady base flow of the OALT25. As it was the case for the NACA4412, the incidences for which the linear stability predicts an unstable three-dimensional mode correspond to incidences where the C Lα slope is negative. However, the slope of this curve around α = 4 deg and the most unstable wavelength do not correlate based on the model of Gross et al. [START_REF] Gross | Criterion for Spanwise Spacing of Stall Cells[END_REF]. If one takes the slope between 5 deg and 9 deg, wavelengths of 0.97 and 1.52 are predicted with the discrete and continuous models. The unstable mode with β c = 6.0 corresponds to a wavelength of 1.05. Another interesting point is the fact that the unstable unsteady mode (two-dimensional buffet) is only observed over a range of incidences between 3.75 The three-dimensional buffet mode becomes unstable at an incidence around 3.75 deg as well. However, it does not become stable again at higher incidences in the range studied in this paper. Hence, this mode is observed for transonic stall conditions.

V ref ) βc = 2πc/λ z δ 0deg δ 10deg δ 20deg δ 30deg δ 40deg 0.7tan(δ)β c/2π

CONCLUSION

Three-dimensional flows over infinite swept configurations were obtained using URANS simulations for low-speed stall and transonic buffet conditions. These stall/buffet cells are steady for unswept wings, and convected in the spanwise direction when the wing is swept. This induces a frequency which can be related to the distance between two cells and their convection speed. In the case of the subsonic stall, this unsteadiness dominates the flow. However, it is superimposed to the well-documented two-dimensional buffet phenomenon in high-speed conditions.

Global linear stability analyses of 2.5D base flows were carried out for subsonic stall and transonic buffet. An unstable three-dimensional mode was observed in both flow conditions. The latter is stationary for unswept wings and becomes unsteady as the sweep angle is increased. The frequencies and wavelengths of stall cells obtained with stability analysis are in line with the observations of the URANS simulations. However, discrepancies between the wavelengths of the buffet cells and the global modes with the largest growth rate are observed. Nevertheless, the frequency of the unstable modes is consistent with that of structures convected at the convection speed observed in the URANS simulations. The shift towards a global mode with a higher spatial frequency when the incidence is increased also remains to be explained.

Figure 1 :

 1 Figure 1: Lift coefficient of the NACA4412 airfoil.

Figure 2 :

 2 Figure 2: Surface pressure coefficient and skin friction lines with 224 (left) and 112 (right) spanwise cells.

  (a) Sweep 10 deg. (b) Sweep 20 deg. (c) Sweep 30 deg.

Figure 3 :

 3 Figure 3: Surface pressure coefficient and skin friction lines.

Figure 4 :

 4 Figure 4: Time-averaged wall pressure coefficient for 2.5D cases.

Figure 5 :

 5 Figure 5: Pressure coefficient and skin friction lines for infinite swept wings.

Fig. 6

 6 Fig.6 consists in a (z ,t) diagram showing the extraction of the pressure coefficient on a line parallel to the leading edge for the sweep angle of 20 deg. Most of the time the pressure exhibits the value linked to the supersonic plateau. However two buffet cells periodically cross the extraction line. The time between two occurrences of the buffet cells is tV re f/c = 16.45, with V re f the speed in the plane normal to the leading edge. This results in a Strouhal number of 0.06. This Strouhal number is observed for every sweep angle. The convection speed can be extracted as the slope of an iso-contour of pressure

Figure 6 :

 6 Figure 6: Extraction of the pressure on a line parallel to the leading edge near x /c = 0.4.

Fig. 8 Figure 7 :

 87 Fig.8presents the spectra obtained for two values of the spanwise frequency β and a sweep angle of 0 deg. For

Figure 8 :

 8 Figure 8: NACA4412 eigenspectrum (M = 0.2, Re = 350 000, α = 15.0 deg, δ = 0.0 deg).

Figure 9 :

 9 Figure 9: Effect of the spatial frequency β on the growth rate of the unstable mode of the NACA4412 (M = 0.2, Re = 350 000, α = 15.0 deg, δ = 0.0 deg).

  (a) ρe /ρe ∞ base flow. (b) Real part of the ρe /ρe ∞ eigenmode (β c = 4.4).

Figure 10 :igure 11 :

 1011 Figure 10: NACA4412 flow visualization (M = 0.2, Re = 350 000, α = 15.0 deg, δ = 0.0 deg).

Figure 12 :

 12 Figure 12: Effect of the sweep angle on the frequency of the unstable mode of the NACA4412 (M = 0.2, Re = 350 000, α = 15.0 deg, black: stability analysis, red: URANS simulations).

  β c = 2π. 14: OALT25 eigenspectrum (M = 0.7352, Re = 3 × 10 6 , α = 4.0 deg, δ = 0.0 deg). and β → 0 for an incidence of 4 deg, and a sweep angle of 0 deg. The case when β goes to 0 is equivalent to the two-dimensional case. As one can see, an unstable global mode is found at a Strouhal number of 0.075 when β → 0 (unsteady two-dimensional) and a Strouhal number of zero when β c = 2π (stationary three-dimensional).

Figure 15 :

 15 Figure 15: Effect of the spatial frequency β on the growth rate of the 3D of the OALT25 (M = 0.7352, Re = 3 × 10 6 , δ = 0.0 deg).

Figure 16 :

 16 Figure 16: Effect of the sweep angle on the growth rate of the 3D mode of the OALT25 (M = 0.7352, Re = 3 × 10 6 , α = 4.0 deg).

Figure 17 :

 17 Figure 17: Effect of the sweep angle on the frequency of the 3D mode of the OALT25 (M = 0.7352, Re = 3 × 10 6 , α = 4.0 deg, black: stability analysis, red: URANS simulations).

  (a) ρe /ρe ∞ base flow. (b) Real part of the 2D ρe /ρe ∞ eigenmode (β → 0.0). (c) Real part of the 3D ρe /ρe ∞ eigenmode (β c = 5.0).

Figure 18 :

 18 Figure 18: OALT25 flow visualization (M = 0.7352, Re = 3 × 10 6 , α = 4.0 deg, δ = 30 deg).

Figure 19 :

 19 Figure 19: Lift coefficient of the steady base flow of the OALT25 (M = 0.7352, Re = 3 × 10 6 , δ = 0.0 deg).

igure 20 :

 20 Effect of the incidence on the two-dimensional buffet mode of the OALT25 (M = 0.7352, Re = 3 × 10 6 , δ = 0.0 deg, β → 0.0).

Table 1 :

 1 Buffet cells convection frequency.

					re f	St
	5	6.00 6.02	2	3.01	0.07	0.024
	10	6.00 6.09	2	3.05	0.13	0.042
	15	6.00 6.21	2	3.11	0.20	0.064
	20	6.00 6.39	2	3.19	0.26	0.081
	25	6.00 6.62	3	2.21	0.32	0.144
	30	6.00 6.93	3	2.31	0.40	0.172
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