
A Preliminary Theory for Open
Source Ecosystem Micro-economics

Nicolas Jullien
LEGO-M@rsouin

IMT Atlantique
Nicolas.Jullien@imt-atlantique.fr

Klaas-Jan Stol
Lero--the Irish Software Research Centre

School of Computer Science and Information Technology
University College Cork

k.stol@cs.ucc.ie

James D. Herbsleb
Institute for Software Research

School of Computer Science
Carnegie Mellon University

jdh@cs.cmu.edu

Introduction
Markets play a key organizing role in most economic systems. Understanding how
markets  work is  critical  for  effective economic policy.  It  identifies  the  levers  that
policymakers  can  manipulate  to  achieve  desired  effects.  Microeconomics  uses
constructs such as supply and demand, allocation of resources, and equilibria to build
models that explain and predict key phenomena such as price setting and the flow of
resources to various producers. It allows policy makers to identify market failures,
identify abuse of monopoly positions, and other undesirable phenomena and provides
theory that points to policy decisions that can have a beneficial impact, minimizing
harmful side effects that result in suboptimal outcomes.

Open source ecosystems perform functions analogous to those performed by markets,
but they do so without price signals, revenue streams, monetary returns, or other key
theoretical mechanisms that are the stock in trade of economists modeling markets.
While there has been substantial empirical work identifying factors that influence the
contribution to, and use of open source software,  we have as yet  little theory that
identifies  the  key constructs  and relationships  that  would  allow us  to  explain  and
predict how open source ecosystems function. 

1



The absence of ecosystem theory is  particularly alarming as  open source software
works its way more broadly and deeply into the economy. As pointed out in a recent
report  by  Eghbal  (2016),  open  source  ecosystems  are  becoming  critical  digital
infrastructure  underpinning  the  publicly  and  privately  produced  computational
resources we rely on. And it is increasingly apparent that this infrastructure is often
neglected  and  under-resourced,  with  negative  consequences  ranging  from  slowed
product development to critical security flaws1 and propagation of defects and version
incompatibilities. 

The  problem facing  policymakers  is  how to  provide  support  and  resources  when
needed, without distorting decision-making, demotivating volunteers, serving special
interests at the expense of others, and maintaining the communities that take on and
guide the work. Inappropriate application of resources, for example, could extend the
life  of  a  project  that  should  be  allowed to  decline  and  be  replaced.  Adding paid
developers to a project  could demotivate other volunteers,  and reduce the intrinsic
motivation of those who are compensated, reducing future contributions. If support is
provided to move in a particular technical direction, it could give rise to conflict and
potential fragmentation of the community. Interventions that do not respect the logic
and underlying principles and relationships of open source ecosystems could easily
cause more harm than good, and weaken the very ecosystems it is designed to help.

What is needed is a clearly articulated and empirically validated theory of open source
ecosystems. Such a theory should:

● Explain  why,  how,  and  when  key  resources---primarily  the  work  of
developers---are attracted to or depart from a project or an ecosystem.

● Explain why, how, and when projects and ecosystems move through a life
cycle, from initiation, growth, maturity, and decline and death.

● Explain  how  decisions  about  use  are  made,  and  how  the  cumulatively
influence the socio-technical position of a project within an ecosystem, and
the relations of ecosystems to each other.

The remainder of this chapter provides a sketch of such a theory in the form of a set of
propositions, which may form the foundation for future empirical work

The Three Stages of an Open Source Project
The Stanford economist Paul David identified three factors that influence growth and
sustainability of FLOSS projects (David 2006), factors which define three phases in an
open source project  life: firstly,  projects will  not be able to enter  Phase 2 without
achieving  sufficient  community  commitment.  In  Phase  2,  the  rate  of  innovation
through  addition  of  new  features  will  ensure  growth  to  Phase  3.  In  this  phase,
existential  threats  emerge  through  the  problem  of  maintainability,  which  may  be

1For example: https://en.wikipedia.org/wiki/Heartbleed

2



exacerbated by contributor fatigue as key maintainers may leave the project, leaving
the project’s future in jeopardy.

This  three-phased  idea  is  a  familiar  concept  in  software  system  development,
adoption,  and  also  in  project  staffing.  Software  development  follows  an  S-curve
process  in  terms  of  efficiency,  or  productivity,  called  the  Rayleigh-Norden  curve
(Norden 1960). In Phase 1, investments have to be made to develop the foundations of
the project, while the production of features might be slow, but the number of people
may stay law. After a point, the project enters Phase 2, which is the development phase
during which many features are added and the total size of the team may increase.
During this phase, the level of productivity tends to be high. After some time, when
most  of  the  needs  have  been  addressed,  the  project  enters  Phase  3,  which  is
characterized by a decrease in the efficiency of the allocation of resources, and a need
to decrease the size of the team affected to the project. Koch (2011) showed that this
three-phase evolution in terms of software production applies to open source as well.

As  open  source  has  traditionally  been  a  voluntary-based  movement,  this  is  not  a
surprise either as it also echoes the analyses on people’s engagement into a collective
action (Oliver et al. 1985, Marwell and Oliver, 1993), or an “action taken together by a
group  of  people  whose goal  is  to  enhance  their  status  and  achieve  a  common
objective” (Wikipedia quoting  Encyclopædia Britannica).  As explained by Marwell
and Oliver (1993), motivations and engagement of participants vary, and this explains
what happens in these phases in terms of involvement. The first phase attracts only
those people who have a high interest in the project, and a low cost of involvement.
After  some  point,  and  this  is  especially  true  for  software,  increasing  returns  to
adoption start to matter, making more and more interesting to adopt the solution, and
attracting new and more diverse actors (Dalle and Jullien 2003, Bonaccorsi and Rossi
2003).  Finally,  when  the  project  matures,  development  of  new functionality  often
slows downs and it moves into a mode that could be characterized as “maintenance,”
which we call Phase 3. Evidence suggests that as projects age, they struggle to recruit
and  retain  newcomers  (Von  Krogh  et  al.  2003).  This  decrease  in  the  growth  in
participants may simply be the result  of,  or a signal that, the project has entered a
mature  phase  in  which  it  needs  fewer  additions  and  thus  fewer  contributors
(Heckathorn,  1996).  Their organization is said to become increasingly bureaucratic
(Butler  et  al,  2008).  This  is  not  necessarily  a  bad thing:  as  Heckathorn explained
(ibid), this bureaucracy makes entry more difficult (more expensive) for newcomers,
and thus decrease the number of people willing to participate in such a project.

However, this can lead to the death or downfall of the project. If too many people
leave  too  rapidly,  if  the  project’s  technical  or  administrative  structure  make  it
increasingly harder to integrate new features, or if, on the contrary, too many people
stay for too few things to do, there is an increasing risk of conflicts and inefficient
allocation of efforts. Actually, a project’s decline, or “death” can occur at any phase of
the project, if nobody contributes in the first phase, if growth is not properly managed
in Phase 2, or, as stated above, if maturity turns into decay too soon or too quickly.

3



We detail the ecosystemic challenges of each phase in the remaining sections of this
chapter.

Phase 1: The User-Innovator Phase
The first  phase is the one which has attracted probably the most and certainly the
earliest research. According to Von Hippel, beyond any motivations, the core of the
incentive framework for people to get involved in the early stage of an open source
project  is  the  “private  collective”  innovation  model  or  the  “user-as-innovator
principle” (Lakhani and von Hippel 2003, von Hippel and von Krogh 2003): as users
directly benefit from the innovation they produce, they have an incentive to produce it,
and  as  they  can  expect  add-on,  feedback,  or  cumulative  innovation  on  their  own
proposition,  they have an  incentive to  freely share  it.  Jullien  and Roudaut  (2012)
described the difficulties to succeed for projects when the producers were not its users.

As a consequence,  to evaluate the chance of success of an open source project  in
Phase 1, we must focus first on incentives of individual users; developers have to get
involved, and, second, the technical and organizational structures that lead them to
stay. But first of all, the question is why people or organizations would initiate an open
source project.

Early stage FLOSS projects can be classified into three categories. The first category
represents the  “traditional”  FLOSS project,  started by one or  a few individuals to
“scratch an itch” (Raymond 1999). The causes for such itches are various: technical
issues  that  “bother”  expert  programmers  who  decide  to  develop  a  solution,
dissatisfaction with existing proposals, or a lack of existing solutions altogether. Other
software solutions may be controlled by a company and lead to market inefficiency
(e.g.,  overpriced products,  too little innovation, poor user support,  or poor product
compatibility).  A key characteristic of  this  type of FLOSS project  is  that  they are
solutions developed by individuals to solve a personal computing problem. Examples
are widespread, with the Linux kernel perhaps the best known and most successful
example.  A key  challenge  for  many  of  these  projects  is  to  attract  a  developer
community--most  projects  have  only  small  developer  communities  (Comino et  al.
2007). 

The second category of FLOSS projects is formerly proprietary software that has been
open-sourced, such as Netscape’s web browser (Ågerfalk and Fitzgerald 2006). The
reasons for opensourcing may vary; one reason is that a company no longer wants to
spend resources on maintaining the software (van der Linden et al. 2009). Another
reason is to increase market share, which will also change the business model around
the  product  (e.g.  services  around  the  product).  Another  reason  might  be  that  a
company seeks collaboration in development of complementary assets.  Here again,
one of the key challenges for the opensourcing company is to generate enough interest
for the project that it attracts contributors. 

4



The third category is that of so-called “planned” FLOSS projects, typically driven by
one or a consortium of companies. One well-known and recent  example of this is
OpenStack, which was planned by a large consortium of companies, and the goal for
the companies  involved is  to  create  an industrial  standard (or  an industrial  public
good, Romer, 1993).2 The challenges are those of the creation of an open standard,
especially in the balance of the participants’ incentive to support the creation of such a
standard,  and  their  interest  in  curving  it  toward  their  own goal.  For  this  type  of
projects,  the  issue  of  raising  initial  investment  of  resources  does  not  loom large;
instead,  such  projects  face  organizational  challenges  such  as  project  governance,
which also characterize projects in Phase 2.

The first phase of the model presented (see Fig. S-Curve) illustrates how successful
FLOSS projects have an initial stage of growth. Whether or not a FLOSS project will
attract  sufficient  momentum in terms  of  users  and  developers  (i.e.,  its  popularity)
depends on many factors. Firstly, projects in what we have described as Phase 1 attract
only those developers who have a very strong interest in the project, or in Raymond’s
terms (Raymond 2001), those developers that share the same “itch to scratch.” These
developers typically face low “cost” in participating; for example, they have sufficient
time to engage in the project, and they have a significant level of expertise that is
required to participate in an early stage of the project when the foundations are laid
out. This leads us to pose the following proposition.

Proposition 1:  Early-stage FLOSS projects attract developers that perceive
the  project  to  be  of  very  high  personal  value  (i.e.  it  solves  a  personal
problem), and who have low entry barriers to participate (i.e. highly skilled,
strong motivation, sufficient time to participate).

As  a  FLOSS  project  is  maturing  and  exhibits  a  basic  feature  set  beyond  the
foundations of a project,  the project increasingly offers value to stakeholders other
than the initial developers who were simply scratching an itch. A more diverse group
of  stakeholders  starts  to  become  interested,  including  companies  who  may  see
business opportunities by leveraging the FLOSS asset for product development, or for
developing services around the product. For example, Red Hat is a company (founded
in 1993, two years after Linux version 0.0.1 was released) that built an extensive set of
services around several very successful FLOSS projects, including the Linux operating
system and JBoss. This led Red Hat to become the first one-billion dollar Open Source
company in 2012, and its growth has sustained quite significantly in the years since.
The process of maturation---that is, the recognition that a project has real potential---
may lead to the attraction of additional developers and users, who are perhaps less
skilled, or have less spare time available, but who are nevertheless highly motivated to
contribute to a project that they are excited about. 

2The literature on standards is  very extensive and well beyond the scope of  this chapter.
We refer interested readers to Swann’s literature review (Swann 2000).

5



Proposition 2: Early-stage FLOSS projects that offer value beyond “personal
interest” will  attract  a more diverse group of  stakeholders than the initial
developers. 

There  is  also  a  set  of  socio-technical  factors  that  influence  the  attraction  of  new
developers  to  a  project,  which is  a  measure  of  a  project’s  popularity.  In  terms  of
technical  factors,  the  implementation  technologies  may  attract,  but  also  deter
developers. Modern technologies are typically perceived to be more interesting, not
only due to developers’ desire and interest to learn those new technologies, but also to
improve future job opportunities. Projects that are based on old technologies which are
no longer in favor (e.g. Fortran, Cobol) are unlikely to attract today’s generation of
developers  who  are  likely  more  interested  in  modern  web  technologies  such  as
JavaScript (incl. Node.js) and Python. Thus, we offer the following proposition.

Proposition 3:  The popularity of an early-stage FLOSS project depends on
the popularity of the technology the project is written in.

There are few analyses of why companies decide to open source one of its software
since Ågerfalk and Fitzgerald (2008) defined the term, as “outsourcing a formally
internal software to unknown people” Companies have to adjust in order to be able to
collaborate efficiently with communities beyond their organizational boundaries (see,
for  example,  Schaarschmidt  et  al.  2015).  Shaikh  and Cornford  (2010)  have  since
reaffirmed the fact that embracing an open source strategy means embracing an open
source  organization,  and  building  trust  and  cooperative  mechanisms  with  the
developers.  In  exchange,  the  company,  in  addition  to  outsourcing  the  cost  of
maintaining  and  expanding  the  software  can  recruit  competent  and  committed
developers more easily.

However, there is still a need for a better understanding of the link between internal
and external organization, and of the consequences of opening up and collaborate with
potential competitors, in other words, to create a sustainable open source ecosystem,
or what we refer to here as Phase 2. 

Proposition 4: Projects that offer considerable potential business value will
attract corporate investment if the project’s value proposition is compatible
with the company’s strategy. 

It is worth noting, first, that not all the open-sourced software projects are aimed at
creating  value  for  companies.  The  traditional  outsourcing  strategy  concerns
externalizing complementary assets to specialized companies in order to decrease the
total cost of ownership. (We refer to Lacity et al. (2009) for a review of the literature
on IT outsourcing). 

If a component does not have a great potential to evolve further, it is unlikely to attract
any new developers, and, if it is key for the business of the company, it is unlikely to
be open-sourced (van der Linden et al. 2009). If there is a potential, it is not sure that

6



the company would want to invest its employees’ time and money in developing a
community. On the other hand, if a component is business-critical, outsourcing may
lead to too much leak toward its competitor (ibid). These simple considerations lead to
Table 1, which summarizes the opportunity for outsourcing (and opensourcing).

Table 1. When outsourcing an internally produced component and how 

Central for the core business of the company?

Low importance Business-critical

Potential of further 
evolution of the 
software

Low Orphan software

Key component, software as
a product or service, or 
internal (closed) 
maintenance

High
Cooperative 
development software

solution, open-sourced or 
not depending on the 
strategic consequences of 
open-sourcing the 
component

Proposition 5: If a software component is not critical for the core business of
a company, and has a potential of evolution, the company will favor an open
source strategy to share the cost of development

Proposition 6:  If a software component is critical for the core business of a
company, and has a high potential of evolution, an open source strategy will
be considered if and only if the technical structure of the software allows the
company to keep some strategic components closed while open-sourcing the
standard part to benefit from the innovative dynamic of the community,

As appealing this analysis can be, the case of an opensourcing strategy raises many
questions.  For  example,  how can  we evaluate  the  minimum population  of  skilled
developers that is required for the opensourcing strategy to be considered, so as to be
able to expect a community to emerge? What does a dynamic of evolution means, is
being  dynamic  enough  for  a  company  to  prevent  competitors  from  forking  and
“capturing” the developer community, and the clients? How big should a population of
potential clients be for this strategy to be economically sustainable? And, of course,
coming back to the howto, for both the core and the complementary asset strategy,
how to advertise this open-sourcing to the first contributors, in order to jump-start the
ecosystem? What guarantees should a company provide, and how should it structure

7



and publish the software source code to facilitate entry of new developers? What is the
cost of sustaining and supporting a community, and what should a company “control”
themselves,  and which aspects  can  be left  to  self-organizing  communities,  so  that
project management and leadership can emerge among a core of initial community
developers?

To conclude this section, we can say that if the open source licences can be seen, in
that perspective, as a new element in the companies’ strategic portfolio to manage
their relations with a software service provider, it would benefit from more research
from  fields  such  as  strategic  management  and  information  systems  regarding  the
parameters to take into account and the measure of these parameters in the business
and financial evaluation of an open source strategy.

If the early-stage software reaches some point of minimum viability, technically and in
terms of adoption by a sufficiently large user-base, its adoption by a more general
audience  may  start  to  grow.  To  put  it  in  a  more  global  framework,  technology
adoption,  and  in  Roger's  (Rogers  1976)  perspective,  the  end  of  Phase  1  is
characterized  by  going  beyond  the  core  developers  team,  and  even  to  the  early
adopters, who if not developing directly, can give feedback, express new needs, but
ask also for new support services, such as user-support mailing lists (Kogut and Metiu,
2001) to start reaching the early majority of the ‘simple’ users.

Figure 4: A Diffusion S-Curve (adapted from Rogers 1976)

This signals that a project has entered Phase 2, and in this "growth" stage, both the
adoption rate  and development  efforts  grow as  the  utility  of  the  minimally viable
product is recognized. We discuss Phase 2 next.

8



Phase 2: Blossoming or Fading
As adoption grows, development resources tend to flow into the project, for several
distinct  reasons.  Volunteers  are  drawn by  the  increasing  visibility  and  reputation-
enhancing potential of contributions to the project. Companies are drawn by the high
potential, but not yet fully-realized, of the project for their business--at this relatively
early stage, companies may be able to exert some level of control and shape the future
of the project. Since the product has demonstrated its utility but is not yet feature-
complete,  companies  invest  a  portion  of  their  development  resources  to  build  the
functionality they need.

Proposition 7:  Projects that have a sound initial foundation (i.e. the project
has  commercial  potential  and  represents  significant  value  to  users)  will
attract more developers who may have less time and skills than the original
core developers, leading to an increased development velocity of the project.

As the actors in the community diversify, their goals may diverge, too. As the project
grows, the difficulty to maintain a technical coherence may also grow, as the difficulty
for newcomers to contribute to the code.

How to deal with the management of stakeholders’ different points of view, with the
growing complexity  of  the  code  and of  the  organization,  how to  turn  a  technical
success into a diffusion success, how to make the participation of the companies in the
development economically sustainable are some of the main challenges of this phase,
and will be discussed this section.

The  challenge  for  projects  at  that  stage  is  to  build  the  governance  structures,  the
technical infrastructure to allow each to concentrate on their own subject of interest in
the project, and everybody to coordinate, so that the diverse range of interests turn into
a broader project rather than a battlefield characterized by internal conflicts.

The design of the project into clearly defined modular components is key here, for
economic reasons, as it facilitates and decreases the cost of producing new knowledge
(Bessen  2005),  making  entry  easier  for  a  new  competitor,  which,  as  traditional
standard economics pointed out, “needs only to produce a single better component,
which can then hook up the market range of complementary components, than if each
innovator must develop an entire system” (Farrell 1989). It is also key from a software
engineering (Baldwin & Clark 2003) and organizational point of view, as it is very
difficult for teams to work efficiently with too many people. In an early study of the
Apache  web  server  project,  Mockus  et  al.  (2000)  hypothesized  that  open  source
projects’ core teams tend to consist of no more than 15 persons, for accessibility and
managerial purpose (Baldwin & Clark 2003). 

Proposition 8: Sustainable open source projects are those which succeed in 1)
structuring  their  architecture  and  their  organisation  around  modules

9



managed by small teams; 2) orchestrating the coordination of the differents
modules/teams.

But what exactly characterizes a good open source module team; which are the key
qualities of good open source contributors are questions that remain a topic of debate.
Team assembly mechanisms can determine team performance (Guimera et al. 2005),
especially in creative teams such as those engaged in building knowledge commons
(Hess & Ostrom 2006). open source contributor evaluation often relies on the idea of
meritocracy, where developers are evaluated based on the quality and quantity of their
contributions, which leads to recognition by peers (Jensen & Scacchi 2007). However,
meritocratic cultures have been demonstrated to deliver biased observations (Castilla
& Bernard 2010), and FLOSS communities have been specifically criticized for this
shortcoming (Reagle 2012, Nafus 2012).

In fact, as for other virtual teams (Guimera et al. 2005), social skills in conjunction
with  leadership  behavior  affect  team motivation  and  performance,  too.  Stuart  and
Gossin (2006) demonstrated how contributors’ performance is sensitive to trust and
good communication within the  team.  And,  as  for  any social  group,  Carillo  et  al.
(2017) insisted on the importance of socialization, i.e. the capacity of the open source
organization to  teach the rules  to  newcomers,  for  them to become good,  valuable
contributors. Finally, Barcomb et al. (2018), showed that even a limited number of
open  source  project  managers  may  agree  on  the  set  of  relevant  characteristics  to
identify good open source contributors, they vary in which actual characteristics they
use in practice to evaluate different contributors. Even when the different managers
use the same attributes, there may be disagreement on the relative importance of these
attributes.

Table 2: relevant characteristics to identify a good open source contributor (from
Barcomb et al. 2018)  

Problematic contributor Good contributor

Communication 
skills (signal over 
noise ratio)

Too much noise / not 
enough information

Is good at providing the right 
level of information

Commitment to the 
project

Unmotivated/passive in 
seeking answers

Is motivated and does a 
thorough job

Working with others Tends to find fault with 
others

Is generally trusting, patient 
with people

Pressure and stress 
related managing 
capacity

Gets nervous \ stressed 
easily (ex.: when things 
do not go as expected, 
when there are delays or 

Is relaxed, handles stress, 
technical limitations, setbacks 
well

10



due deliverables)

Creativity Not very creative in terms 
of solutions

Has an active imagination, 
proposes creative 
ideas/solutions

Quantity of code 
contributed

Few lines of code An impressive quantity of code

Quality of code 
contributed

Tends to provide 
incomplete or inferior 
solutions

Produces efficient and well 
written code, without 
disturbing other part of the 
code 

Global picture: 
understands the 
tools / technology / 
domain, processes 
behind the project

Low, does not understand 
beyond the talks/the 
modules addressed

Understands the technical and 
non-technical fundamentals of 
the project 

Documentation and 
testing

Does not document/test 
the code produced, or 
does so in a way not 
understandable by others

Documents/test well and 
clearly the code produced

Contribution on 
other aspects than 
code (new features, 
bug description)

Does not contribute 
beyond code production

Very active in proposing new 
features, tracking and 
documenting bugs,etc

There is a need to develop a better understanding of teaming processes and module-
team management as well as ways to articulate project management in such contexts. 

Proposition 9: Team composition and skills required may vary according to
the technical characteristics and difficulties of the project, but also according
to the psychological profile of the team leader.

Proposition  10: If  modularity  and  delegation  of  responsibility  are  key  at
project  level,  the  organization  of  this  delegation  and   the  level  of
centralization  will  vary  according  to  the  technical  dependencies  of  the
modules, but also according to the psychological and professional profile of
the project leader.

This paradoxical situation in which commercial business relies on the existence and
durability  of  non-market  activities  questions  industrial  economics.  This  is  clearly
related  to  “coopetition”  questions  (Brandenburger  and Nalebuff,  1996).  As  in  any

11



cooperative agreement devoted to technology or knowledge development, agents put
assets together in a “pre-competitive” phase and share the products of their efforts
before coming back to competition (Crémer et al.,  1990; Bhattacharya and Guriev,
2006). On the contrary, a FLOSS project is an open game in which the list of players is
not bounded ex-ante by a cooperative agreement and whose product is a public good
that cannot be privately appropriated by the players. This corresponds closely to the
formation of a consortium for the production of a standard.3

But there is still a need for a better understanding of the link between open source
firms’ business models and their investment in the production of open source, when
they are at the origin of the project, as said in the previous section, but also when they
start contributing to an already existing project. For example, Dahlander and Wallin
(2006)  showed  that  firms  strategically  sponsor  individuals  who  occupy  a  central
position in  a community,  in order to better  access  distributed skills  and aiming to
control the direction of development of the related projects.  But not all  companies
invest so much, and this does not explain why and when companies develop an open
source  based  business  model.  Based  on  the  concept  of  “dynamic  capabilities”
developed by Teece et al. (1997), Jullien and Zimmermann (2011a, 2011b) proposed
that when a software project is evolving rapidly in terms of features and development,
and when there are sufficiently skilled users to propose contributions, an open source
strategy may be valid. The key idea is that a company may be able to propose services
based on the  management of  this evolution (support  on an official  version,  ad-hoc
developments, and assistance to users, or, a so-called “3A” strategy: Insurance (which
spells ‘Assurance’ in French), Assistance, Adaptation to users’ needs). In that case, a
company must control the dynamic asset which is the development community--and
this requires a deeply involvement in the development of the product as well as in the
community. When a product is of less importance to a software company, it may be
considered as a complementary asset, and thus, the goal of the company may be to
create a consortium to co-develop this component. 

Proposition 12: The more central  the role  of  an open source project  in  a
company’s business (i.e. a core asset), the more a company will contribute.

Proposition  13: Projects  that  are  “stable”  (i.e.  little  development  efforts
beyond basic maintenance) tend not to attract corporate investment.

But how should firms organize themselves to capture the feedback from communities?
Ågerfalk  and  Fitzgerald  (2008)  observed  that  to  preserve  the  coexistence  and

3What we mean is that a player offers a standard by developing a software, the other
players can adopt  and contribute to the development.  This “unilateral” adoption is
usually called ‘bandwagon’ in the literature on standards (see, for instance Farrell et
Saloner, 1985). See Bessen (2002) and Baldwin and Clark (2003) for a theoretical
analysis  of  the  impact  of  OSS  code  architecture  on  the  efficiency  of  libre
development.  The  latter  argues  that  FLOSS  may  be  seen  as  a  new development
"institution" (p. 35 and later).

12



cooperation  of  two  types  of  organizations  that  are  based  on  distant  albeit  not
contradictory rationales, firms must, in a nutshell:

● Not seek to dominate and control process
● Provide professional management and business expertise
● Help establish an open and trusted ecosystem. 

They view such interaction as osmotic rather than parasitic,  as the firm's resources
reinforce communities’ sustainability. But, being able to benefit from the cooperation
with  an  open source  project  requires  internal  reorganization,  to  allow the  internal
developers  to  devote  a  part  of  their  time  to  these  projects,  but  also  to  promote
cooperative development culture.

As discussed above, companies exert control on open source communities by getting
involved  in  open  source  communities.  Companies  do  this  through  sponsorship  of
selected  community  members,  but  they  can  also  do  this  by  having  their  own
developers contribute on open source projects. A key question is how companies can
measure the return on investment of such activity, and how can companies manage the
involvement  of  their  in-house  developers  in  open  source  communities?  Is  such
involvement  guided  by  a  strategic  purpose  only  (as  the  employees  represent  the
investment of the firm into project), or are other considerations at play, such as the
training of employees,  the negotiation of of some compensations (perks) to attract
high profile developers? On the other hand, are open source participants using their
involvement to signal their high profile to potential employers?

Other questions still are related to legal consequences of ‘collective production’. In
this  context,  the  rise  of  open  source  foundations  is  a  key  development.  Such
foundations are legal entities that represent an open source project. They can also be
used  as  an  institutional  tool  to  manage  the  strategic  evolution  of  a  project;  one
example of this is the OpenStack project.

The projects that succeed in Phase 2 can last for years, and even decades (Linux was
first released in 1991 and is still actively developed). From one single project, they
expand to other  projects and markets,  and may even create  a whole ecosystem of
intertwined projects---the so-called LAMP stack is an example of this (Linux, Apache,
MySQL,  and  Perl/Python/PHP,  and  today  also  Ruby).  The  governance  of  these
projects can become increasingly complex, and some new layers appear to deal with it,
and with the multiplicity of projects, such as the foundation system, which can handle
the legal representation of the projects, as well as their long term governance. 

Proposition 14: projects that become part of a common technology stack will
sustain their activity and level of maturity as long as the technology stack as a
whole can sustain its activity and level of maturity. 

13



Phase 3: Maturity and Beyond
When discussing the maturity phase of open source projects, it is useful to be able to
decide whether a project is in fact in its maturity phase. A number of indicators may
point to this, for example, a declining or stable number of contributors, contributions,
or new features that are added to the project. 

Proposition 15: Projects that are stable in terms of number of features added/
removed will lose developers over time as there is a decreasing amount of
work left on the project. 

Evidence  suggests  that  as  they  age,  projects  find  it  harder  to  recruit  and  retain
newcomers  (Von  Krogh  et  al.  2003),  and  their  organization  is  said  to  become
increasingly  bureaucratic  (Butler  et  al.  2008).  In  that  respect,  these  online  open
projects appear to follow a trend common to traditional organizations, i.e., a natural
tendency toward structural inertia when they get bigger, leading to a growing difficulty
to adapt (Hannan and Freeman, 1984).

Proposition 16:  Mature FLOSS projects tend to become more bureaucratic
and rigid in terms of processes and procedures. 

At  the  same  time,  as  discussed  briefly  above,  the  maturity  of  a  project  and  its
ecosystem may suggest  that  less  feature  development  is  needed,  which leads  to  a
reduction of the number of involved contributors. While companies may be attracted
to new and emerging projects, as they perceive business opportunities the reverse is
true as well. Once companies perceive a decline in business value, companies may
drop support altogether, for example stopping sponsorship or the support of developers
to work on the project. 

Proposition 17: Companies that no longer perceive a project to be of business
value will stop investing in that project.

But even among these mature projects, some projects, with the Linux kernel being a
prime example (over 25 years old) remain attractive to new developers while others,
such as Apache, see decreased participation, but without full demise as some level of
maintenance activity is still needed. It remains an open question as to whether this
variety  is  simply  due  to  external  dynamics  (e.g.  technology  changes  including
hardware developments that require projects to constantly adapt itself, as is the case
for the Linux kernel)?

Proposition 18: the continuance of external perturbations leads to continued
project activity, even when there is no improvement in terms of functionalities.

Perhaps, are certain governance structures more appropriate or amenable than others?
Perhaps certain ecosystem are more resilient; if so, how, and why? Can projects cease
due  to  an  increased  bureaucracy,  and  what  are  some  of  the  consequences  for

14



developers and the projects’ users? Does formal institutionalization of open source
projects (i.e. the creation of foundations) lead to a higher rate of survival?

In other words, how do organizations deal with what Hirschman (1970) called the exit,
voice, and loyalty phenomenon. When participants in an organization (we consider
open source  projects  as  a  type  of  organization)  perceive  a  decrease  in  quality  or
benefit  to  the  member,  they  can  either  exit (withdraw,  quit  a  job,  emigrate,  stop
participating),  or  they  can  voice (attempt  to  repair  or  improve  it,  express  their
complaint,  or  propose  changes).  The literature  stresses  the  difficulty  with the  exit
strategy in the case of a company, or a country: it is a type of “point of no return”
behavior, implying that beyond the fear of losing a job and the salary that comes with
it, the fact that employees (or citizens) do not believe in the possible improvement of
the situation. Sentimental attachment to the institution may make this belief and the
resulting decision to  leave even harder.  This  situation is  different  for  open source
projects,  because contributors  may join and leave the community freely and more
easily. Community members could temporarily leave a community during a “cooling
down”  period.  For  individual  (voluntary)  contributors  there  are  no  direct
consequences, such as the loss of a salary, which means there are lower barriers to the
exit  strategy,  and  thus  individual  contributors  may  be  less  willing  to  negotiate  a
solution. While contributors’ reputation might be at stake (depending on whether they
left due to a conflict, for example), for companies coming and going as they please
would jeopardize their reputation and credibility significantly; rejoining a community
after a company pulled out may be very difficult. When companies that play a key role
in an open source community leave, the project’s sustainability may be jeopardized. 

This analysis could suggest also that:

Proposition 18: A project’s core members are the last to abandon a project
(they are the most attached to the project), and the peripheral ones the first.

So, in a nutshell, while in a regular organization (a firm), people may be over loyal
(they won't voice when they see a problem, afraid of losing their position), but if they
do, they will be very committed to finding a solution, in open source projects, people
will probably voice earlier, but also put less effort in finding a solution (and fork or
joint  a competitive  project  instead).  In  the  same time,  it  is  not  sure  that  the  core
members are the best to see the problems and to fix them (to voice). Companies may
will voice, but not too much (and possibly not enough), for they may fear to be seen a
willing to take the control; they may be also more committed to find a solution, for the
project they have invested in to survive

Proposition  18: If  a  project  becomes  too  bureaucratic  while  lacking
innovation, participants may ‘voice,’ but those who resent this most are not
those who have decision-making power (i.e.  core members),  or those with
business interests (i.e. companies).

15



Proposition  19: If  a  project  accepts  that  it  has  to  reorganize  to  regain
innovativeness,  those  who  have  invested  the  most  (core  members  and
companies) will be the most committed to participate in this reorganization. 

However, it is not clear whether this is what happens in reality. Who voice against the
slowdown and proposes solution? If the only developers remaining are those hired by
companies,  will  they  be sufficiently  motivated to  sustain  a  project?  Is  it  wise  for
companies to stay involved in such projects from a strategic perspective? What might
be some indicators that ‘predict’ such downfall or decline in projects? (Some examples
of this could include a decrease in quality or slowdown in bug fixes, etc.) Studies that
address contributor behavior, their positions or roles within the project or community,
and by drawing careful comparisons with behavior in previous phases may lead to
fruitful insights that can help us better understand how to manage these issues.

Conclusion
Most research on open source software tends to focus on individual software projects,
ignoring the complex interactions between the various types of actors listed above, or
what is called in this book an open source ecosystem. Open source ecosystems are
complex  networks  of  different  types  of  actors  at  different  levels  of  granularity,
including open source projects that rely on other open source projects, companies who
either start new, or invest in existing open source projects, open source communities as
collections of developers, and of course individual voluntary developers. 

Despite two decades of research on open source software, there is very little theory
that  helps  to  explain  how  open  source  ecosystems  “work,”  evolve,  sustain,  and
decline.  There  is  a  considerable  body of  knowledge  on  the  phenomenon of  open
source,  but  much of  it  is  disconnected  and has  ignored  the  relationships  between
different open source projects and between projects and companies. Studies tend to
adopt the sample strategy (either developers or projects) or the field study strategy
focusing on specific projects, but there is a distinct lack on open source ecosystems
that study the  interactions and  dependencies between projects. Given the increasing
level of interest of companies in open source projects, and also the fact that many
companies are built and, indeed, enabled by open source projects, we believe  this is a
very significant  gap in our knowledge base that  urgently requires further research,
because this will help to better understand the sustainability of open source projects
and their entire ecosystems. 

In this chapter, we have made an initial  attempt to develop such a theory of open
source ecosystem “micro-economics,” which aims to explain the various forces and
behaviors that actors exhibit in open source ecosystems. This initial theory is by no
means complete, nor do we have evidence to support our propositions. However, it
does help to structure the phenomenon of open source ecosystems, drawing on a three-
phased  model  from  the  so-called  S-curve  model,  and  to  formulate  propositions
regarding where and what is to be studied. This three-phased structure to explain the

16



life cycle of open source projects helps to better understand the chronology of the
various challenges that projects face. It also helps to explore the role that companies
play in each phase. Furthermore, the structure helps to identify open questions for
future research (see Table 3 below).

Finally, the death of a project, and even of an ecosystem, may not be the end of the
story (Khondhu et al.  2013). Its technology may survive very long, but it  can also
generate new ideas, and a part of the developers involved in this former project may
use the knowledge they acquired to start something new. For example, the decline of
the Geronimo project (a Java/OSGi server runtime environment) seems to have seeded
the development of the TomEE project by former Geronimo developers, still within
the Apache Foundation projects (Zhou et al. 2016, p. 24).

Proposition 20: Aging projects that suffer from technical and organizational
legacy, may be better of being “reinvented” through a new project started
from scratch than trying to reorganize the old project.

Table 3. Summary of research questions and propositions for future research on
open source ecosystems

Phase 1: Early Stage

Research 
Questions

Our Propositions

How to recruit 
sufficient and 
highly skilled 
developers to 
ensure successful 
progress to Stage 
2?

Early-stage FLOSS projects attract developers that perceive the
project  to  be  of  very  high  personal  value  (i.e.  it  solves  a
personal  problem),  and  who  have  low  entry  barriers  to
participate  (i.e.  highly  skilled,  strong  motivation,  sufficient
time to participate).

Early-stage FLOSS projects that offer value beyond “personal
interest” will attract a more diverse group of stakeholders than
the initial developers. 

The popularity of an early-stage FLOSS project depends on the
popularity of the technology the project is written in.

Projects  that  offer  considerable  potential  business  value  will
attract corporate investment if the project’s value proposition is
compatible with the company’s strategy. 

When and how 
open-sourcing an 

If a software component is not critical for the core business of a
company, and has a potential of evolution, the company will

17



in-house software 
component

favor an open source strategy to share the cost of development

If a software component is critical for the core business of a
company, and has a high potential of evolution, an open source
strategy will be considered if and only if the technical structure
of  the  software  allows  the  company  to  keep  some  strategic
components  closed  while  open-sourcing  the  standard  part  to
benefit from the innovative dynamic of the community,

Phase 2: Growth

Research 
Questions

Our Propositions

How to design a 
sustainable project

Sustainable open source projects are those which succeed in 

1. Structuring  their  architecture  and  their  organisation
around modules managed by small teams;

2. Orchestrating  the  coordination  of  the  differents
modules/teams.

What is an 
efficient teaming  
teaming and an 
efficient 
management at 
module level as 
well as at project 
level

Team composition and skills required may vary according to 

1. The  technical  characteristics  and  difficulties  of  the
project,

2. The psychological profile of the team leader

If modularity and delegation of responsibility is key at project
level,  the  organization  of  this  delegation  and   the  level  of
centralization will vary according to

1. The technical dependencies of the modules, 
2. The  psychological  and  professional  profile  of  the

project leader.

Corporate 
investment in 
open source 
production

The  more  central  the  role  of  an  open  source  project  in  a
company’s business (i.e. a core asset), the more a company will
contribute.

Projects that are “stable” (i.e. little development efforts beyond
basic maintenance) tend not to attract corporate investment.

18



Phase 3: Maturity and beyond

Research 
Questions

Our Propositions

When does a 
project enter in a 
mature phase?

Projects  that  are  stable  in  terms  of  number  of  features
added/removed will  lose  developers  over  time  as  there  is  a
decreasing amount of work left on the project. 

Mature FLOSS projects tend to become more bureaucratic and
rigid in terms of processes and procedures, making harder for
newcomers to get involved.

The continuance of external perturbations leads to continued
project activity, even when there is no improvement in terms
of functionalities.

Evolution of 
participation

Companies that no longer perceive a project to be of business
value will stop investing in that project.

A project’s core members are the last to leave (they are the
most attached to the project), and the peripheral ones the first.

Decline or death 
of a project

If a project becomes too bureaucratic while lacking innovation,
participants may ‘voice,’ but those who resent this most are not
those who have decision-making power (i.e. core members), or
those with business interests (i.e. companies) 

If  a  project  accepts  that  it  has  to  reorganize  to  regain
innovativeness,  those  who  have  invested  the  most  (core
members  and  companies)  will  be  the  most  committed  to
participate in this reorganization. 

Aging projects  that  suffer  from technical  and organizational
legacy,  may be  better  of  being  “reinvented”  through a  new
project started from scratch than trying to reorganize the old
project.

Acknowledgments. This work was supported, in part, by Science Foundation Ireland
grant  15/SIRG/3293 and 13/RC/2094 and co-funded under  the  European Regional
Development Fund through the Southern & Eastern Regional Operational Programme
to Lero—the Irish Software Research Centre (www.lero.ie).

19



References
Ågerfalk PJ, Fitzgerald B (2008) "Outsourcing to an Unknown Workforce: Exploring
Opensourcing as a Global Sourcing Strategy," MIS Quarterly, vol. 32, pp. 385-400

Baldwin CY, Clark KB (2003) The architecture of cooperation: How code architecture
mitigates free riding in the open source development model. Harvard Business School,
43 pages. URL: http://opensource.mit.edu/papers/baldwinclark.pdf.

Barcomb A, Jullien N, Meyer P, Olteanu AL (2018) Integrating managerial preferences
into the qualitative multi-criteria evaluation of team members.  In “Cases based on
Multiple Criteria Decision Making/Aiding methods: Building and Solving Decision
Models with Computer Implementations”, S Huber (ed) 

Bessen J (2005) Open Source Software: Free Provision of Complex Public Goods.
Rapport,  Research  on  Innovation.  URL:
http://www.researchoninnovation.org/online.htm{\#}oss.

Bhattacharya S, Guriev S (2006) Patents vs. trade secrets: Knowledge licensing and
spillover. Journal of the Economic Association, vol. 4, no. 6, pp. 1112–1147.

Bonaccorsi  A,  Rossi  C (2003).  Why open source software can  succeed.  Research
policy, vol. 32, no. 7, pp. 1243-1258.

Bonaccorsi  A,  Giannangeli  S,  Rossi  C  (2006).  Entry  strategies  under  competing
standards: Hybrid business models in the open source software industry. Management
Science vol. 52, no. 7, pp. 1085-1098.

Brandenburger A,  Nalebuff B (1996) Co-opetition. Currency Doubleday

Butler B, Joyce E, Pike J (2008) Don't look now, but we've created a bureaucracy: the
nature and roles of policies and rules in Wikipedia.  Proceedings of the twenty-sixth
annual SIGCHI conference on Human factors in computing systems, ACM, pp. 1101-
1110

Castilla  EJ,  Benard  S  (2010)  The  paradox  of  meritocracy  in  organizations.
Administrative Science Quarterly, 55(4), 543-676.

Carillo K, Huff S, Chawner B (2017) What makes a good contributor? Understanding
contributor behavior within large Free/Open Source Software projects--A socialization
perspective, The Journal of Strategic Information Systems

Chang  V,  Mills  H,  Newhouse  S  (2007)  "From  Open  Source  to  long-term
sustainability: Review of Business Models and Case studies". 

Crémer J, d’Aspremont C, and Gérard-Varet LA (1990) Incentives and the existence
of pareto-optimal revelation mechanisms. Journal of Economic Theory, vol. 51, no. 2,
pp. 233-254.

20

http://opensource.mit.edu/papers/baldwinclark.pdf


Cusumano MA (2004)  The business of software: What every manager, programmer,
and entrepreneur must know to thrive and survive in good times and bad. Simon and
Schuster.

Comino S, Manenti FM, Parisi, ML (2007) From planning to mature: on the success of
open source projects, Research Policy, vol. 36, pp. 1575-1586

Dahlander L, Magnusson MG (2005) Relationships Between Open Source Software
Companies and Communities: Observations from Nordic Firms. Research Policy, vol.
34, 481-493

Dahlander L, Wallin MW (2006) "A man on the inside: Unlocking communities as
complementary assets", Research Policy, pp. 1243-1259.

Dalle J,  Jullien N (2003) ‘Libre’ software:  turning fads into institutions?  Research
Policy, 32(1)

David P (2006) A Multi-dimensional View of the “Sustainability” of Free & Open
Source  Software  Development,  OSS  Watch  Conference  on  Open  Source  and
Sustainability, Saїd Business School, Oxford 10-12d Business School, Oxford 10-12

Dedrick J, West J (2004) An exploratory study into open source platform adoption. In
Proceedings of the 37th Annual Hawaii International Conference on System Sciences
(HICSS)

Eghbal  N  (2016).  Roads  and  Bridges:  The  Unseen  Labor  Behind  Our  Digital
Infrastructure. Retrieved from https://www.fordfoundation.org

Farrell, D. (1983). Exit, voice, loyalty, and neglect as responses to job dissatisfaction:
A multidimensional scaling study.  Academy of management journal,  26(4), pp. 596-
607.

Farrell, J. 1989, Standardization and intellectual property, Jurimetrics Journal, vol 30,
pp. 35

Germonprez M, Kendall JE, Kendall KE, Mathiassen L, Young BW, Warner B (2017)
A Theory of Responsive Design: A Field Study of Corporate Engagement with Open
Source Communities. Information Systems Research, vol. 28, no. 1, pp. 64-83

Guimera  R,  Uzzi  B,  Spiro  J,  Amaral  LAN  (2005)  Team  assembly  mechanisms
determine  collaboration  network  structure  and  team  performance.  Science,  vol.
308(5722), pp. 697-702.

Hannan MT, Freeman J (1984) Structural inertia and organizational change, American
sociological review, pp. 149-164,

Heckathorn DD (1996) The Dynamics and Dilemmas of Collective Action, American
Sociological Review, vol 61. no 2 

21

https://www.fordfoundation.org/library/reports-and-studies/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure/


Henkel J (2006) "The Jukebox Mode of Innovation - A Model of Commercial Open
Source Development", DRUID Working Paper.

Hirschman  AO  (1970)  Exit,  voice,  and  loyalty:  Responses  to  decline  in  firms,
organizations, and states (Vol. 25). Harvard university press.

Iansiti M, Richards GL (2006) "The Business of Free Software: Enterprise Incentives,
Investment,  and  Motivation  in  the  Open  Source  Community",  Harvard  Business
School Working Paper Series.

Jensen C, Scacchi W (2007) Role Migration and Advancement Processes in OSSD
Projects:  A Comparative  Case  Study,  29th  International  Conference  on  Software
Engineering (ICSE'07), Minneapolis, MN, USA, pp. 364-374.

Jullien N, Roudaut K (2012). Can Open Source projects succeed when the producers
are  not  users?  Lessons  from  the  data  processing  field.  Management
international/International Management/Gestiòn Internacional, 16, 113-127.

Jullien N, Zimmermann JB (2011a) FLOSS firms, users and communities: a viable
match? Journal of Innovation Economics & Management vol. 1, pp. 31-53.

Jullien N.  Zimmermann JB (2011b) FLOSS in an industrial economics perspective,
Revue d'économie industrielle, vol. 136, no. 4, pp. 39-64. 

Kendall  JE,  Kendall  KE,  Germonprez  M  (2016)  Game  theory  and  open  source
contribution:  Rationale  behind  corporate  participation  in  open  source  software
development. Journal of Organizational Computing and Electronic Commerce. Vol. 26
(4)

Khondhu J, Capiluppi A, Stol KJ (2013) Is it all lost? A study of inactive open source
projects. Proc. IFIP International Conference on Open Source Systems, pp. 61-79

Kogut  B  and  Metiu  A (2001)  Open  source  software  development  and  distributed
innovation », Oxford Review of Economic Policy, 17(2), pp. 248–264

Lacity MC, Khan SA, Willcocks LP (2009). A review of the IT outsourcing literature:
Insights for practice. The Journal of Strategic Information Systems, 18(3), 130-146.

Lakhani  K,  Wolf  R  (2005)  Why  Hackers  Do  What  They  Do:  Understanding
Motivation and Effort in Free/Open Source Software Projects, in Perspectives on Free
and Open Source Software,  J Feller, B Fitzgerald, S Hissam, and KR Lakhani (Eds.),
MIT Press.

Lakhani, K, von Hippel E (2003) How Open Source Software Works: Free User to
User Assistance, Research Policy, pp. 923-943.

22



Marwell  G,  Oliver  P  (1993).  The  critical  mass  in  collective  action.  Cambridge
University Press. Discusses user as producer involvement into a project (a collective
action)

Morgan L, Feller J, and Finnegan P (2013) Exploring value networks: theorising the
creation  and  capture  of  value  with  open  source  software,  European  Journal  of
Information Systems, vol. 22, pp. 569–588

Nafus  D  (2012)  ‘Patches  don’t  have  gender’:  What  is  not  open  in  open  source
software. New Media & Society, vol. 14, no. 4, 669-683.

Norden PV (1960) On the anatomy of development projects.  IRE Transactions on
Engineering Management, 7(1), 34-42.

Oliver  P,  Marwell  G,  Teixeira  R  (1985)  A  theory  of  the  critical  mass.  I.
Interdependence,  group  heterogeneity,  and  the  production  of  collective  action.
American Journal of Sociology, vol. 91, no. 3, pp. 522-556.

Ransbotham S, Kane GC (2011) Membership turnover and collaboration success in
online  communities:  Explaining  rises  and  falls  from  grace  in  Wikipedia.  MIS
Quarterly, pp. 613-627.

Raymond ES (2001) The Cathedral and the Bazaar. O’Reilly Media

Reagle  J (2012) “Free as in sexist?” Free culture and the gender gap.  first monday,
18(1).

Rogers  EM  (1976)  New  Product  Adoption  and  Diffusion.  Journal  of  consumer
Research. vol. 2, no. 4, pp. 290-301. 

Romer P (1992) The economics of new ideas and new goods. In  Proceedings of the
World Bank Annual Conference on Development Economics.

Schaarschmidt M, Walsh G, von Kortzfleisch HFO (2015) How do firms influence
open source software communities? A framework and empirical analysis of different
governance modes, Information and Organization, vol. 25, pp. 99-114

Shaikh  M,  Cornford  T  (2010).  'Letting  go  of  control'  to  embrace  open  source:
implications  for  company  and  community.  In  Proc.  IEEE  Hawaii  International
Conference on System Sciences (HICSS)

Stewart KJ, Gosain S (2006). The impact of ideology on effectiveness in open source
software development teams. MIS Quarterly, 291-314.

Stol  KJ,  Caglayan  B,  Fitzgerald  B  (2018).  Competition-Based  Crowdsourcing
Software Development: A Multi-Method Study from a Customer Perspective.  IEEE
Transactions on Software Engineering. In Press.

23



Swann  GP (2000).  The  economics  of  standardization.  University  of  Manchester,
Manchester, UK.

Teece DJ, Pisano G,  Shuen A (1997). Dynamic capabilities and strategic management.
Strategic Management Journal, pp. 509-533.

Van  der  Linden  F,  Lundell  B,  Marttiin  P  (2009)  Commodification  of  Industrial
Software: A Case for Open Source. IEEE Software vol. 26 no. 4.

von  Hippel  E,  von  Krogh  G  (2003)  Open  Source  Software  and  the  "Private-
Collective" Innovation Model: Issues for Organization Science, Organization Science,
pp. 209-223.

Von Krogh G, Spaeth S, Lakhani KR (2003) Community, joining, and specialization in
open source software innovation: a case study.  Research Policy  vol. 32, no. 7, pp.
1217-1241.

Zhou M, Mockus A, Ma X, Zhang L, Hong M (2016) Inflow and Retention in OSS
Communities with Commercial Involvement: A Case Study of Three Hybrid Projects.
ACM Trans. Softw. Eng. Methodol. Vol. 25,  no. 2.

24


