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Bio-curation for cellular signalling

the KAMI project

Russ Harmer, Yves-Stan Le Cornec, Sébastien Légaré and Eugenia Oshurko

Abstract—The general question of what constitutes bio-curation for rule-based modelling of cellular signalling is posed. A general
approach to the problem is presented, based on rewriting in hierarchies of graphs, together with a specific instantiation of the
methodology that addresses our particular bio-curation problem. The current state of the ongoing development of the Kam1
bio-curation tool, based on this approach, is outlined along with our plans for future development.

1 THE BIO-CURATION PROBLEM

In multi-cellular organisms, the development, maintenance
and repair of tissues are principally coordinated via de-
centralized signalling: cells send signals—usually small pro-
teins such as hormones, growth factors or cytokines—to be
received by other cells through the agency of dedicated
receptor proteins embedded in their external membranes.
Reception of a signal is typically transduced across the ex-
ternal membrane by a conformational change of the receptor
protein that, in consequence, triggers various intra-cellular
signalling ‘pathways” [1.

Despite their name, these latter do not exist physically,
as hard-wired pathways in the cell, but rather as metaphors
for the cascaded activation of enzymes that perform post-
translational modifications (PTMs)—most commonly phos-
phorylation and dephosphorylation—in order to control
the assembly and disassembly of protein complexes. The
metaphorical ‘destination” of a pathway is the cell’s DNA
and the ‘journey’ ends in the modulation of gene expression
as effected by the assembly or disassembly of complexes of
transcription factors that bind directly to the DNA. At the
cellular level, this typically effects a phenotypic change—
advance of the cell cycle, differentiation, movement, &c.
—and may also lead to the release of new signals to the
environment.

This intrinsic signalling system can be perturbed by
modifications to a cell’s DNA—mutations or gene abla-
tion, duplication or rearrangement—that ‘reroute’, ‘block’
or ‘short-cut’ its pathways; and by pharmacological inter-
ventions intended to counteract such pathological changes.
Even in the absence of such extrinsic perturbations, different
cells may respond differently to the same signal. In particu-
lar, different cell types—which express different repertoires
of proteins—need not express the same receptors so that the
‘starting point” of a pathway may be present in some cases
yet absent in others. More generally, the intricate chore-
ography of protein-protein interactions (PPIs)—bindings,
unbindings and PTMs—that we conceptualize as pathways
clearly depends on the gene expression profile of the cell
(including its expression levels): a ‘highway’ in one cell may
be a ‘country lane’ in another.
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1.1 Modelling pathways

Considerable work has been done [2], [3], [4] to build cell
type-specific statistical ‘models from data’. Although able to
recapitulate the principal highways known to operate in that
cell context, such models have limited predictive power in
other contexts. Indeed, this work never intends, nor claims,
to seek such predictive power; on the contrary, it exploits
contextuality to provide insight into the workings of partic-
ular cells. However, it illustrates very clearly the difficulty of
trying to model directly in terms of pathways: such models
have an inherently holistic nature and, realistically, can only
be built by unbiased, statistical learning methods.

Our approach, as advocated in [5], adopts a different
stance: we seek a de-contextualized representation of the
PPIs that underlie pathways; then provide the means to
re-instantiate that knowledge in any context in the form of
an executable model [6]. We then attempt to reconstruct the
biologist’s notion of pathway either by extracting a suitably
post-processed causal trace from a stochastic simulation of
the model [5], [7]; or by direct construction of such a causal
trace through static analysis of the model [8].

This factorization of the modelling process allows us
to focus our attention on bio-curation: the construction of
the de-contextualized representation. The consequences of
this knowledge in any particular context are to be revealed
by the automatic generation of an executable model and
its subsequent analysis. This contrasts with most modelling
methodologies that first require the modeller to understand
sufficiently the very system they are seeking to model;
instead, we enable an exploratory mode of modelling as “tool
for discovery’ in order to investigate how a single ‘roadmap’
of PPIs can be deployed, in varying (normal or pathological)
contexts, to exhibit distinct cell type-specific signalling.

However, this places constraints on what constitutes an
appropriate executable model. The principal requirement is
that it provides a notion of execution trace based on discrete
events—occurrences of PPIs—from which causal traces can
be extracted, cf. Mazurkiewicz traces [9], to be compared
to the biologist’s imagined pathways. This rules out ODE
models—which have no such discrete notion of event—and,
although Mazurkiewicz’s theory applies to reaction-based
models, the resulting causal traces are overly fine-grained,
since a single PPI is encoded as a family of reactions, and so
tend to correspond badly to the expected pathways.



For example, suppose protein B can independently bind
proteins A and C to form a complex ABC' via intermediates
AB or BC. This means that A’s binding to B is insensitive
to the presence of C bound to B (and analogously for the
binding of C' to B). As such, ‘A binds B’ must be expressed
by two reactions: A,B — AB and A,BC — ABC (and
analogously for ‘C binds B’). In the event that an A and B
first react to form A B, via the first reaction, this would create
an instance of the AB, C — ABC reaction which, if applied,
would force Mazurkiewicz’s theory to deduce a spurious
causality: ‘C' binds B’ is supposed to be independent of
A but this is confounded by the obligation to represent
‘C binds B’ by two fine-grained reaction instances—that
make explicit the presence or absence of A. This mismatch
between the level of representation and the desired notion
of causality complicates—and compromises the scalability
of—the use of reaction-based models for our purposes.

This problem can be alleviated by an approach known as
rule-based modelling, based on graph rewriting, exemplified
by the BioNetGen'| [10] and Kappeﬂ [5] languages. In this
setting, a PPI is represented by a single graph rewriting rule
and the above issue of spurious causality no longer arises:
the protein B would have two binding sites, one for A and
one for C, and the rule ‘A binds B’ would not mention the
binding site for C' (and vice versa) so Mazurkiewicz’s trace
theory, which can be generalized to such graph rewriting
settings [11], [7], [12], would deduce no causality.

Let us note that the most appropriate notion of causal
trace for reversible systems remains unclear since the naive
generalization of Mazurkiewicz traces does not eliminate
loops in causal traces. In the face of this uncertainty, Kappa
currently offers three progressively refined notions: uncom-
pressed Mazurkiewicz traces that may contain uninformative
‘do-undo’ event loops; weakly compressed traces that employ
heuristics to eliminate such ‘do-undo’ loops; and strongly
compressed traces that further quotient by conflating all in-
stances, i.e. individual proteins, of each type of protein in the
model [7], [8]. Although further clarification is still required,
the latter two notions correspond closely, in many cases, to
intuitive notions of pathway employed by biologists.

1.2 Representing PPIs

The protein-centric representation of rule-based models
fixes, to a good first approximation, the mismatch with the
desired notion of causality. However, for the purpose of
providing a de-contextualized representation of PPIs, it has
some serious shortcomings. The principal difficulty comes
from the fact that, although one rule corresponds to one PPI,
in practice many PPIs share a single bio-chemical mechanism,
e.g. bindings or enzymatic modifications may be shared by
multiple proteins given sufficient conservation of sequence
and/or structure. If we wish to update our knowledge about
such a mechanism, this necessitates identifying, and then
making ‘the same’ change to, every corresponding rule. The
significance of this problem became apparent during the
first author’s development (in 2007-08) of a Kappa model
of the erbB signalling network, as partially documented in
[5], and led directly to the work on MetaKappa [13]], [14].

1. http://bionetgen.org/index.php/Main_Page
2. https://kappalanguage.org
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MetaKappa provides a partial solution to the problem by
enabling the definition of mechanisms as generic rules—that
it then automatically expands into sets of Kappa rules—that
can be shared by splice variants, loss-of-function mutants
and even homologous genes. However, MetaKappa cannot
conveniently treat the important case of gain-of-function
mutants and, even more critically, the fact that mechanisms
are defined in MetaKappa implicitly requires the modeller
to already have in mind an intended set of underlying Kappa
rules. In other words, MetaKappa allows us to compress a
known, contextualized set of Kappa rules—whereas we wish
to discover those rules by contextualizing mechanisms.

Let us finally state explicitly our bio-curation problem for
signalling. We are aiming to enable the de-contextualized
representation of knowledge about the bio-chemical binding
and enzymatic mechanisms that are implicated in cellular
signalling: specifically, the known necessary conditions for
these PPIs to take place. Moreover, we wish to express this
knowledge in such a way that a mechanism corresponds
to a single ‘element” of our knowledge representation—from
which we can identify all its instances in order to avoid the
above-mentioned ‘update problem’.

We must also be able to deploy this knowledge through
instantiation to specific cell-type contexts: a mechanism may
not apply to a particular splice variant that, for example,
lacks a necessary binding site; or a mutated protein may
lose, or gain, the ability to participate in a given mechanism
[15]. In particular, this requirement implies that the basic
unit of our de-contextualized representation is not a protein
but what we call an protoform: the ensemble of products of a
gene including all its splice variants and important mutants.

Plan of the paper

This paper motivates and explains the conceptual and
mathematical framework of our bio-curation tool KAMTP}
Knowledge Aggregator & Model Instantiator. It extends and
supersedes the extended abstract [16] in the light of some
small, but significant, changes to the meta-model. It exploits
the factorization of the modelling process (discussed above)
to focus exclusively on representational issues. In particular,
in order to respect the page limit, there is no discussion of
dynamics, i.e. how KAMI generates executable Kappa mod-
els after instantiation; nor do we provide any experimental
validation of the tool itself in the form of a significant use
case. A follow-up tool paper is being prepared to address
both these limitations.

In §2 and the appendix, we provide the necessary mathe-
matical background to define graph rewriting in hierarchies
of graphs. In §3, we discuss the requirements on KAMI's
knowledge representation (KR) and describe its structure as
a hierarchy of graphs, rooted in a domain-specifying meta-
model, with domain-specific background knowledge and
model-specific content. In §4, we show how to use graph
rewriting to update the contents of the KR with particular
emphasis on the exploitation of background knowledge to
automate this update process. In §5, we use graph rewriting
to define the re-contextualization of the contents of the KR
into specific PPIs. We conclude with a discussion of future
perspectives and related work.

3. https://github.com/Kappa-Dev/KAMI
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2 GRAPH REWRITING

This section briefly explains the mathematical formalism
underlying KAMI’s knowledge representation. Specifically,
it defines the class of graphs that we use and how rewriting
rules are defined and applied.

2.1 Graphs and homomorphisms

We consider a graph to be a simple directed graph with
attributes on nodes and edges an attribute consists of a key
to which a set of values may be associated. The widely-used
Python library network¥*{provides this class of graphs and
our implementation of graph hierarchies and rewriting—in
the Python library ReGraphE]—is built on top of networkX.

A homomorphism h : G — G’ is a total function mapping
the nodes of G to the nodes of G’ in such a way that (i) if
there is an edge from node n; to node ny of G then there
is an edge from h(n1) to h(ng) in G’; and (i) if ny has an
associated key k with set of values V then h(n;) also has
the key k with set of values V' O V. In words, h preserves
all edges and attributes of G.

2.2 Sesqui-pushout graph rewriting

Graph rewriting makes use of three basic operations that
correspond to generalized notions of intersection, union and
set difference on nodes, edges and attributes. These are
called respectively pullback, pushout and pullback complement
and are defined, abstractly and in our concrete setting, in
the appendix. Sesqui-pushout (SqPO) rewriting [17] can be
defined in any setting where these three operations are well-
defined—with the requirement for pullback complements to
exist only when the second homomorphism is injective.

A rewriting rule is a span, i.e. a pair of homomorphisms
from a common source object P

L/P\FIJR

where the left-hand side L defines the pattern that the rule
must match. The articulation between L and R is expressed
in P, the preserved region of the rule, that specifies which
nodes, edges and attributes of L correspond to those of R
and which nodes, edges and attributes of L (resp. R) will
disappear (resp. appear).

4. https://networkx.github.io
5.https://github.com/Kappa-Dev/ReGraph
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The left leg of the span A : P — L specifies the cloning
of nodes and the deletion of nodes, edges and attributes.
We give specific details for the graphs used by KAMI in the
appendix. An instance—also often called a matching—of this
in a graph G is an injective homomorphism e : L ~— G. This
restrictive phase of a rewriting step from G to G~ is defined
by taking the pullback complement.

L«2_p

1 I

Goe— G

The right leg of the span p : P — R defines the adding of
nodes, edges and attributes and the and merging of nodes.
This expansive phase of rewriting from G~ to G is defined
by taking a push-out.

p—2 R

m] =

G- —— G7
ot
A rewriting rule can be viewed as a relation between L
and R: a node ny, of L is related to a node ni of R iff some
node of P is mapped by A to ny, and by p to ng; we call this
node of P the witness of the relation between ny, and ng.

3 KAMI’S KNOWLEDGE REPRESENTATION

Statements about mechanistic aspects of PPIs abound in the
signalling literature. They occur with varying granularity
and detail ranging from vague, coarse-grained statements
such as ‘Grb2 binds Shc’ or the slightly more detailed ‘Grb2
binds phosphorylated Shc” to detailed, fine-grained state-
ments such as ‘the SH2 domain of Grb2 binds Shc phospho-
rylated on Y317’. As such, our knowledge representation
must be capable of accommodating formal counterparts to
this entire spectrum of more or less detailed statements.

In order to fulfill this r6le, we need to represent certain
anatomic aspects of proteins such as regions, residues, bind-
ing sites and (physical or phenomenological) states (that
represent the presence or absence of PTMs or consequent
phenomenological conditions such as ‘activity’). We must
also be able to represent the three general classes of PPIs
implicated in signalling—bindings, enzymatic modifications
and unbindings—as well as tests for the presence or absence of
states and bonds which enable us to express state-dependent
and (positive or negative) allosteric control of PPIs.

3.1 The meta-model of KAMI

These various kinds of concepts can be naturally represented
as the nodes of a particular graph, which we call the meta-
model of KAMI, and relationships between these nodes as
edges between these nodes.

The meta-model is shown in figure ,' its nodes and
edges also have attributes that we now discuss. Let us first
note that the meta-model enforces certain domain-specific
but model-independent constraints on all KAMI models.
Technically, this means that all graphs that are valid in KAMI
must be homomorphic to the meta-model. In particular, all
attributes and all their possible values must be present in
the meta-model.



BND

protoform

Fig. 1. The (nodes and edges of the) meta-model of KAMI

These attributes are of two distinct types: those serving
as pure meta-data; and those that may be tested as one of the
necessary conditions of an interaction. Meta-data attributes
occur on the protoform, region and site nodes for
(string-valued) database references such as UniProt acces-
sions, InterPro IDs and so on; and on the BND and MOD nodes
for (positive real-valued) rate constants.

The principal examples of necessary conditions tested
by interactions are the presence or absence (i) of PTMs such
as phosphorylation; (ii) of bonds; or (iii) of certain amino
acids in specific sequence locations. These correspond to (i)
states that serve as proxies for the activity (or otherwise)
of certain enzymes; (ii) protoform positive or negative
allosteric control; and (iii) whether or not a wild-type or
mutant protein is known to lose or gain an interaction.

The state of a PTM is represented by the state node that
has two attributes: value:{0, 1} and test:{+, -}. These
attributes of the meta-model constraint all values of KAMI
states to be subsets of {0,1}; and all tests of a state to be
for the presence (+) or absence (—) of the stated value(s).
Phenomenological states, such as the activity of an enzyme,
can also be represented in this way.

The MOD node represents actions that change the value
of states; it has a single (non-meta-data) attribute called
value:{0,1} that specifies the value to be written to
the state to which it points. A MOD node may also have
an incoming arrow specifying the agent, e.g. an enzyme,
responsible for the modification.

The BND node has two dual aspects: it can represent
both an action and a test—albeit not at the same time.
This is handled by an attribute called type:{do,be}. As
for states, there is a second attribute test:{+,-}. The
combination of type:do and test:+ corresponds to a
binding action; and type:do and test:- to an unbinding
action. Similarly, type:be and test:+ corresponds to a
bound test; and type :be and test : — to an unbound test.

The third class of necessary conditions requires us to test
the amino acid identity of a residue. The residue node has
two attributes to enable this: aa, taking values from the set
of one-letter codes for amino acids; and test : {+, -}, as for
state and BND nodes. There is one more (integer-valued)
attribute loc that represents the sequence location of the
residue. However, this is attached not to the residue node
itself but to its outgoing arrow to the protoform node.
Similarly, the site and region nodes have integer-valued
attributes start and end for their sequence intervals.
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Let us note that there is no significant technical difference
between attributes and states: a state is simply a special
kind of attribute whose value we wish to be able to modify
within a model. Currently, this means either a physical state,
representing a PTM, or a phenomenological state such as
enzymatic activity. If we wish to be able to modify the value
of the aa attribute of a residue within a model, i.e. an actual
act of mutation, we would need to reify aa as a state
whose value would then be controllable by a MOD.

3.2 Models in KAMI

The meta-model defines the kinds of things that can exist
in KAMI. A model in KAMI is an instance of the meta-model,
i.e. the actual things that exist in the model. This comprises
two distinct components: an action graph which defines the
‘anatomy’ of the model—the proteins, their regions and
residues, &c. and their interactions—and a collection of
nuggets that define its ‘physiology’—the detailed descrip-
tions of the necessary conditions for interactions.

The action graph is a graph that is homomorphic to the
meta-model, i.e. each of its nodes maps to a node of the
meta-model—which defines what kind of node it is—in such
a way that all its edges and attributes are preserved, i.e. that
they are permitted by the meta-model.

We give an example of an action graph in figure 2| The
mapping of its nodes to those of the meta-model are given
implicitly by the shapes: big circles are proteins, ovals are
regions, small circles are sites, &c. We label (some) nodes
for the sake of readability and ease of reference; technically,
these are really string-valued attributes.

value:1
testi+
value:1

aaY

value:1
test:+

Fig. 2. An example action graph in KAMI

This action graph defines three protoforms and aspects
of their anatomies, two BNDs (one of which is a binding
action, the other a bound test) and a MOD setting value 1.

A nugget is a graph homomorphic to a given action
graph; and a model consists of an action graph together with
a collection of nuggets. For example, in figure [3} we give
a nugget (with respect to the action graph in figure [2) that
expresses ‘the site pY of EGFR with residue Y1092 whose
state phos has value 1 binds to the region SH2 of Grb2’.

In effect, an action graph can be seen as a schema for a
model and the meta-model as the schema of all KAMI models.



As things stand, the state phos has no semantics: its name
suggests ‘phosphorylation—but we must wait for the next
subsection to make this kind of domain-specific background

knowledge precise.
@ test:+
value:1 aa:D aa:S
, test:- test:+

. aaY
loc:1092 foc:
type:do
test:+

Fig. 3. An example nugget in KAMI

This nugget makes additional tests concerning the amino
acid at location 90 of Grb2 (within the SH2 domain). In
the action graph, there are two possible values—aa:S or
aa:D—that this can take. Of course, in principle, there are
twenty possible values; all we mean here is that, to date,
we have only considered these two values (one of which is
the wild-type and the other a known mutation). The nugget
states a positive requirement for aa:S, i.e. serine, although
there could have been a set of values—meaning that there is
a positive requirement for any one of those values. However,
there is also a negative requirement for aa:D, i.e. aspartic
acid, meaning that we know that the presence of aspartic
acid at location 90 prevents binding.

Had the nugget not specified this negative constraint,
its meaning would have been subtly but crucially different:
we do not know whether or not the presence of aspartic
acid at location 90 affects the binding. The given nugget
therefore includes the additional knowledge that ‘the S90D
mutation abrogates binding” by explicitly stating the nega-
tive constraint via the test : - attribute. In general, the use
of the test : + and test : - attributes allows us to make the
critical distinction between not knowing and knowing not.

As another example, consider the nugget in figure [4| that
states ‘the region kinase of an EGFR whose state active has
value 1 modifies to value 1 the state phos of the residue
Y1092 of a second EGFR bound to the first’. This nugget
includes an explicit test of the presence of a bond between
the two EGFRs.

value:1

Fig. 4. Another example nugget in KAMI

Note that anatomic aspects of genes may have multiple
outgoing edges in the action graph, e.g. the state active in
figure 2| The purpose of having these multiple edges is to
be able to express nuggets with varying levels of detail: one
may refer to ‘the active state of EGFR” while another refers
to “the active state of the kinase region of EGFR’.

3.3 Background knowledge in KAMI

The English transliterations of the nuggets in figuresB|and 4]
are clumsy and do not correspond to the way that biologists
speak about PPIs. However, because nuggets and action
graphs are formal, purely syntactic entities, we can only ex-
press domain-specific properties, such as phosphorylation,
by inventing, and rigorously abiding by, an arbitrary syntac-
tic convention, e.g. any state labelled phos should be thought
of as meaning phosphorylation—and treated accordingly.

For example, if we take the nugget in figure {4 but
change the value to be written to 0, the nugget remains
perfectly well-formed syntactically but no longer respects
the intended meaning: a kinase is, by definition, an enzyme
that phosphorylates—so it cannot write the value 0 to a state
intended to represent phosphorylation.

It would clearly be unwieldy to attempt to maintain the
appropriate convention for each and every instance of an
intended domain-specific property. A more robust approach
would be to state explicitly, in one place somewhere in
KAMI, all the domain-specific background knowledge that
we wish to represent and the constraints that this implies.

We represent this background knowledge with the so-
called semantic action graph (SAG), which is homomorphic
to the meta-model, and a collection of semantic nuggets that
are all homomorphic to the SAG—in effect, a semantic
counterpart to a model. This is a built-in component of KAMI
that can nonetheless be modified and extended over time.

value:1

test:+,-
value:0,1

Y

value:0
aa:S, T.Y

phosphatase

o0

Fig. 5. The (current) semantic action graph of KAMI

The SAG is shown in figure[f] It defines kinds of semantic
things: kinase, phosphatase and SH2 domains, pY-binding mo-
tifs (sites) and phos states. It also defines associated kinds of
semantic actions—PHOS, DEPHOS and SH2-pY binding—
and states some of their associated constraints, e.g. PHOS
actions act on phos states and may only set their value to 1.

KAMI allows us to provide a relation between an action
graph and the SAG to specify the semantic attribution, if
any, of its regions, residues, sites, states and actions; see the
appendix for full details.

A semantic nugget provides a template for the generic
necessary conditions of a PPI such as SH2-pY binding or
phosphorylation (figure [6). Note how the residue in the
former restricts the permitted values of its aa attribute; this
expresses its dependence on tyrosine phosphorylation.

The relation between the action graph of a model and
the SAG lifts to relations between each of its nuggets and
the semantic nuggets. This will allow us to express the idea
that a nugget can be an instance of a generic semantic PPI.



test:+
value:1

iﬂlﬂg\‘kamY
value:1 aa:S,T.Y

Fig. 6. The semantic nuggets for SH2—phospho-tyrosine binding and
phosphorylation

SH2-
pY

In section 4}, we explain how we can (sometimes) au-
tomatically recognize that a nugget is an instance of a se-
mantic nugget, how missing details can be auto-completed
in such cases and how this can be used to guarantee that
the resulting nugget respects the intended meaning. In
effect, this provides—and provides the means to enforce
automatically—a collection of syntactic conventions to cap-
ture domain-specific semantic properties such as those of
phosphorylation or SH2 domain-binding discussed above.

4 KNOWLEDGE AGGREGATION

In this section, we discuss how knowledge can be imported
into KAMI and the various ways in which such inputs may
update the state of the KR.

As we have seen, the KR has been designed to accom-
modate knowledge at varying levels of granularity. How-
ever, the representation remains somewhat stylized in that
only one ‘type’ of modification exists formally which, in
practice, subsumes a number of distinct but related cases:
classical modification of one entity bound to another, self-
modification of a single entity and the case where the
modifying entity is currently unknown.

Clearly, these can all be captured by our single type
of modification; however, the information required and the
details of the processes of construction of the corresponding
nuggets differ. For this reason, we choose to represent inputs
to KAMI with an intermediate language—whose terms are
called KAMI interactions—that distinguishes these kinds of
cases in order to ease the transition from the way in which
biological knowledge is generally expressed to the more
abstract form required by our KR.

A raw input to KAMI, provided in the intermediate
language, gives rise to an update of the KR by building a
graph rewriting rule that respects the meta-model and, as
such, has an intrinsic semantic character: an update expresses
more than just a ‘diff’; it is stated in terms of a meaningful
change in an expert’s knowledge about something in the KR.
An update may apply only to the action graph—typically
when we provide some new anatomic information about a
gene—or, more commonly, adds a new nugget or modifies
an existing one. In the latter case, downward propagation
maintains consistency with the action graph if the update
requires the introduction of new nodes, edges or attributes
to the action graph.
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The history of updates thus provides an audit trail that
recapitulates, in properly semantic, domain-specific terms,
the modelling process itself. In particular, it maintains a
record of how knowledge was aggregated from various
sources—principally scientific papers but also potentially
from databases—thus providing some transparency and
clarity—as well as support for model maintenance and future
update—in the face of the fragmentary, dispersed nature of
the primary bio-medical literature. Indeed, let us emphasize
that this is the only reason why KAMI has been built on top
of a rather sophisticated graph rewriting technology.

The raw input, as initially provided in the intermediate
language and subsequently re-expressed as a nugget, may
be additionally auto-completed in the case that we can
exploit background knowledge to fill in missing details.
At the time of writing, KAMI performs two distinct types
of auto-completion. Firstly, when a gene is mentioned in
an input for the very first time, we invoke a specialized
module—the gene anatomizer—to construct a representation
of anatomic aspects of that gene, e.g. its known regions
and modifiable residues, from standard databases such as
UniProt and InterPro. Secondly, if an input is judged to be
an instance of a generic semantic nugget, even though it
does not include all the details expressed by the latter, we
can construct a rewriting rule that automatically adds those
missing details. The identification of an input as being an
instance of a semantic nugget may also allow us to decide
whether that input refers to a completely new nugget or
whether some version of it already exists in the KR.

4.1 KaMI interactions

KAMI interactions are defined as standard Python user-
defined data structures in the kami.entities and
kami.interactions modules.

KAMI entities are Python classes that reflect the structure
of the meta-model in that they define Protoforms (poten-
tially containing regions, sites and residues), Regions (po-
tentially containing sites and residues), Sites (potentially
containing residues) and Residues; states and attributes
may also be specified for each of these kinds of entity. These
classes all inherit the class of physical entities.

For example, ‘phosphorylated Shc” and ‘an SH2 domain’
(in the sequence interval 58-152 of some protoform) could
be written as the following entities:

pShc = Protoform(
uniprotid="P29353",
states=[State ("phos", True) ])

sh2 = Region(
interproid="IPR0O00980",
start=58, end=152)

At the time of writing, a nugget must be ‘rooted” in
protoforms: we cannot express that a disembodied region
modifies some state; the protoform to which the region
belongs must additionally be specified. In consequence, we
provide a second class, of Actors, that is inherited by
Protoforms (again), RegionActors (with respect to a
given protoform) and SiteActors (with respect to a given
protoform and, optionally, region). These classes do nothing
more than provide a fully-grounded context for an entity,
e.g. the protoform to which a region belongs.



For example, if we wish to use the SH2 domain of Grb2
as one of the two participants in a binding nugget, we must
encapsulate the above definition inside a RegionActor
that additionally specifies the Grb2 protoform:

Grb2_SH2 = RegionActor (
gene=Protoform/(
uniprotid="P62993",
states=[State ("phos", True) ])
region=sh2)

A binding interaction between ‘phosphorylated Shc” and
‘the SH2 domain of Grb2’ can now be written simply as

Binding(
left=pShc,
right=Grb2_SH2)

However, strictly speaking, and just as in section we
have not yet specified the semantics of the state phos of
Shc and so cannot yet speak of ‘phosphorylated Shc” but
only of “Shc in state phos: True’.

More generally, we need to specify how and when se-
mantic information becomes available to KAMI. First of all,
in some cases, a KAMI interaction already includes certain
kinds of semantic attribution, e.g. a UniProt accession num-
ber uniquely identifies the protoform in question while an
InterPro ID identifies the type of a domain, not an individual
instance, e.g. a region tagged IPR000980 is an SH2 domain.
In other cases, we may be able to exploit existing semantic
attribution as expressed in the relation between the action
graph of our model and the semantic action graph. To do
this, we must first construct a nugget from the given KAMI
interaction and then insert it into the model by providing
a homomorphism to the action graph; only then can we
determine whether or not an entity or state maps to a node
of the action graph that already has a semantic attribution.

Let us note that KAMI interactions implicitly introduce
some constraints on the shape of the nuggets that we can
add to the system. For example, at the time of writing,
there is no means of writing a bond displacement—where
one binding partner is initially bound to a third party
and the other binding partner actively disrupts that pre-
existing bond—or a coupled modification and unbinding.
Such nuggets would have two action nodes: in the first
case, one that unbinds the pre-existing bond; and another
that creates the new bond; in the second case, one for the
modification and another for the unbinding.

As such, the language of KAMI interactions provides only
a partial coverage of the entire ‘representation space’ of
KAMI. We have made this choice for the pragmatic reason
that most real inputs to KAMI only need a single action and
we anticipate that a small number of ad hoc additional KAMI
interactions will suffice, in practice, to cover the exceptions
to this general rule.

However, in principle, we can write nuggets that express
arbitrarily complex combinations of actions in KAMI—up
to the constraint that the actions must not be in conflict
with each other. In other words, entire sequences (or even
DAGs) of actions could be grouped together into a single
mechanism, e.g. a piece of a signalling pathway. We return
to this point later in the discussion about future directions
for KAMI in section @

4.2 Nugget construction and aggregation

We now detail the process of automatic aggregation of PPIs
into a KAMI model. The Aggregation Engine of KAMI takes
as input a KAMI interaction and performs a sequence of
operations that result in an appropriate update of the model.

First, we generate a proto-nugget graph that is typed
by, i.e. homomorphic to, the meta-model; secondly, a rdle
relation is constructed between this proto-nugget and the ap-
propriate template graph; and, finally, a relation between the
proto-nugget and the current action graph is constructed.

Let us illustrate these steps on our above KAMI interac-
tion with respect to the following action graph:

value:1
test:+
value:1

We begin by parsing the interaction into the following
proto-nugget graph; the typing into the meta-model is de-
termined directly from the KAMI interaction.

uniprotid=<P29353” uniprotid="P62993"

interproid=
"IPR000980"

SH2
BND region

Grb2

protoform protoform

At the current time, there are two templates in KAMI:
one for MOD actions and the other for BND actions (figure 7).
A relation between a template and a nugget can be thought
of as an assignment of the rdles given by the nodes of the
template to those of the nugget.

right

region

left right
protoform protoform

substrate

substrate
protoform

enzyme
protoform

Fig. 7. BND and MOD nugget templates



The role relation between our proto-nugget and the BND
template identifies Shc as the left and Grb2 as the right
protoform; and SH2 as the right region. (Clearly, the
assignment of left and right is completely arbitrary.)

The grounding meta-data in the proto-nugget allows us to
read off that the protoform with UniProt accession number
P62993, i.e. Grb2, already exists in the action graph whereas
the other with accession number 529353, i.e. Shc, does not.
We can also see that the region with InterPro ID IPR000980,
i.e. the SH2 domain of Grb2, already exists.

This allows us to define a relation between our proto-
nugget and the current action graph: its witness R is

corresponding precisely to the fact that the Grb2 protoform
and its SH2 region are the only entities that already exist in
the action graph T'.

The proto-nugget R can now be aggregated into the
model essentially by performing the push-out of the relation
T < Rt — R to construct the minimal extension of T' that
is required to type R. This is a straightforward instance of
the downward propagation of rewriting as described in the
appendix.

In our running example, we obtain:

RN

value:1
test:+
value:1

value:1
test:+

type:do type:do
test:+ test:+

value:1
test:+

Note that this adds a new BND action to the action graph.
This is inevitable since no standard grounding, analogous
to UniProt or InterPro IDs, has yet been defined for PPI{I

However, if we can further identify the newly-added
nugget as being an instance of a semantic nugget, we may be
able to sharpen this update by taking into account constraints
coming from background knowledge. Indeed, in this case,
the bio-physical constraint that SH2 domains can bind at
most one phospho-tyrosine motif at a time implies that
KAMI should merge the new BND action with the existing
one—provided it can satisfy itself that the new nugget really
is an instance of the SH2—pY semantic nugget.

6. Indeed, a notable longer-term side effect of KAMI is precisely to
provide such a grounding!
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KAMI takes this decision by determining whether or
not the new nugget ‘sufficiently matches’ the semantic
nugget. Specifically, in our current implementation, if the
left (resp. right) protoform is phosphorylated—either
directly, on a site or on a tyrosine residue, i.e. having the at-
tribute aa : yY—and the right (resp. left) protoform binds
through an SH2 domain then this is taken to correspond to
an instance of the SH2—pY semantic nuggetﬂ In the event of
a match, the system uses the semantic nugget to construct an
auto-completion rewriting rule{ﬂ to be applied to the nugget.

In our example, the auto-completion rule is:

@
O=-0O-=-0O*

We can now apply this rule to our nugget to obtain its
auto-completion:

G
. aay
@D@

type:do
test:+

This nugget update propagates downwards to the action
graph to reflect the fact that new entities have been created.

The update is completed by a final phase that consists
in the construction of rewriting rule that is applied only to
the action graph. This rule performs some pedestrian ‘book-
keeping’ updates that guarantee the transitive closure of
anatomic structure, e.g. a state that belongs to a residue that
belongs to a site also belongs directly to that site.

However, it may also be required to restore certain
invariants, demanded by background knowledge, that
have been broken by the downward propagation of auto-
completion. For example, in our running example, we must
merge the two SH2—pY binding actions incident to the SH2
domain of Grb2 in order to satisfy the constraint that an
SH2 domain can sustain a single phospho-tyrosine binding
at any given time. Similar constraints apply to the cases of
phosphorylation and dephosphorylation since kinase and
phosphatase domains have a single mode of enzymatic
action—and so a single edge to a PHOS or DEPHOS nodeﬂ

7. Clearly, these conditions could be made more or less stringent.
They could also be made ‘programmable’ by allowing the express of
mandatory nodes, edges and attributes in the semantic nugget to specify
the notion of sufficient matching.

8. At the time of writing, this rule is constructed by cases; however, by
adding a protoformnode to the semantic action graph, we could con-
struct this rule automatically by computing an appropriate pullback.
Such an approach is likely to prove more scalable as we add further
semantic nuggets of this general domain—-motif binding type.

9. At present, this part of the rule is constructed explicitly by cases.
However, simple constraints of the form ‘at most one incident edge’,
as in SH2 domains or enzymatic modifications, could be expressed
directly in the semantic action graph from which the necessary rule
could be computed.



The final action graph, where the two SH2-pY nodes
incident to the SH2 domain of G7b2 have at last been
merged, is:

value:1
test:+
value:1

loc:90

This action graph formalizes the fact that the two nuggets
that have an action that maps to this node—for Grb2’s
binding to EGF R and Shc respectively—are two instances
of the same mechanism. This enables us to solve the update
problem discussed in the introduction while allowing us to
maintain the flexibility of being able to add some further ad
hoc necessary conditions to one nugget or the other without
necessarily having to propagate this to the other.

4.3 The Anatomizer

The Anatomizer is a module of KAMI that can be used dur-
ing the process of nugget construction and aggregation—but
also independently. It makes use of a number of databases—
most notably UniProt and InterPro—to retrieve anatomic
information and further meta-data about protoforms. At the
time of writing, it uses InterPro to produce a list of the
known regions of the protoform, accompanied by a name,
sequence interval and InterPro ID. It also uses UniProt to
collect meta-data such as the HGNC symbol, synonyms and
references to other databases.

Once it has collated this information, the Anatomizer
generates an expansive rewriting rule P — R, i.e. where
the left leg of the rule is the identity on P and is there-
fore trivial, called an anatomization rule which performs the
corresponding update of the action graph. If the protoform
being anatomized does not yet exist in the action graph, P
is simply the empty graph and R is built by adding the
protoform and all its regions; if it and/or some of its regions
already exist, they constitute the graph P and R extends P
by adding all the newly discovered regions.

If we anatomize Shc in our running example, we
obtain—modulo the sequence location of the tyrosine
residue—the action graph of figure 2] where Shc has gained
three extra regions, one of which is an SH2 domain.

The fact that the Anatomizer extracts InterPro IDs means
that it is implicitly collecting information about semantic
attribution. This information is used to update the relation
between the (updated) action graph and the semantic action
graph, e.g. Shc’s SH2 domain is designated as such. As
discussed above, this may be of use to subsequent nugget
construction and aggregation processes.

5 MODEL INSTANTIATION

The basic unit of KAMI's KR is that of a (small) neighbour-
hood in sequence space around a protoform. A nugget
specifies the known necessary conditions on its participating
protoforms; this includes required regions and sites as
well as amino acid constraints that capture the abrogation
or creation of interactions by mutations.

As discussed in the introduction, this de-contextualized
representation expresses potential interactions that may or
may not be possible for actual proteins, i.e. the particular
inhabitants of such a neighbourhood in sequence space. For
each protein of interest, an interaction can only occur if its
necessary conditions can be realized for that protein, e.g. a
splice variant may lack a certain region or a mutant may
violate an amino acid constraint.

In order to re-contextualize nuggets for a given collection
of proteins, we need an additional ingredient: for each
desired protein, a definition that specifies a single sequence
in the appropriate sequence neighbourhood that determines
which anatomic aspects of the protein are actually present
and which amino acid is present at each residue.

5.1 Protein definitions

The Shc gene gives rise to several proteins including the
so-called p52 and p66 proteins (named after their molecular
weights in kDa). The shorter p52 lacks the first 110 residues
of p66; as such, residue location 427 in p66 becomes 317 in
p52. Moreover, the CH2 region of Shc occurs within those
first 110 residues and does not occur in the p52 protein.

We express the definition of these proteins by the rule

loc:317,427

which clones the Shc protoform, its various regions,
residues and states—with the exception of CH2 that only
occurs in p66—and dispatches sequence locations and their
amino acid identities appropriately to the proteins on the
right-hand side of the rule.

Let us note that, in each case, the rewriting rule defining
proteins is purely restrictive, i.e. of the form L < P with
a trivial right leg, precisely because the de-contextualized
protoform contains all possible regions, sites, residues,
states and attributes of all its possible proteins; indeed, it can
be thought of as their superposition. As such, we only ever
need to clone and delete in order to define specific proteins.
Indeed, each definition specifies a combination of deletions
that precisely specifies the passage from a superposition to
an actual protein.

The Grb2 gene does not have any known splice variants
but it does have the possibility of the S90D mutation; as
such, we must resolve this sequence nondeterminism in the
definition of its proteins (even if we only wish to instantiate
one of the two possible proteins).



Moreover, the left-hand side of a rewriting rule that
defines gene products must be injectively typed by, i.e. a sub-
graph of, the action graph: typing by the action graph is
fundamental simply because that is where protoforms are
defined; we further require injectivity because we wish to
be able to apply these rules to rewrite the action graph in
order to determine which nuggets a given gene product can
actually use, i.e. to effect re-contextualization.

5.2 Re-contextualization

Given a model and a collection of protein definitions, we can
apply them to the action graph and, through the upward
propagation mechanism of ReGraph described in the ap-
pendix, propagate their effects to the nuggets of the model.

For example, the propagation of the two above protein
definitions to the ‘Shc binds Grb2’ nugget is shown in
figure This instantiated nugget can be read@] as saying that
p52 phosphorylated on Y317 or p66 phosphorylated on Y427
binds the SH2 domain of wild-type Grb2 or the SH2 domain
of S90D Grb2'.

type:do
test:+

loc:427

Grb2
. % test:+ BI0D
value:1

aa:Y

Fig. 8. The instantiation of ‘Shc binds Grb2’

However, if we consider propagation to the ‘EGFR binds
Grb2’ nugget, we obtain the instantiated nugget of figure [9}
the aa attribute has the empty set of values for the residue
performing the negative test (in wild-type Grb2) and for the
residue performing the positive test (in S90D Grb2). This
means that wild-type Grb2 fulfills the necessary conditions
for binding but that S90D Grb2 does not; indeed, the S90D
mutant fulfills a necessary condition for not-binding! Let
us note that, even if the original nugget did not have the
negative constraint, the S90D mutant would still fail to fulfill
the necessary condition for binding; it would just not fulfill
any necessary condition for not-binding.

10. Although the BND node no longer has arity 2, there is no ambigu-
ity because the relation between the nugget and the binding template is
propagated to the instantiated nugget. In particular, if Shc was related
to the left node of the template then so are both p52 and p66.
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aa: 0 aa:S
test:+

Grb2g90p

Fig. 9. The instantiation of ‘EGFR binds Grb2’

From the point of view of a rule-based model, these
two situations are completely indistinguishable: rules can
only express positive constraints; the effect of a negative
constraint, as in this example, manifests by the non-existence
of a rule, not by the existence of a rule that turns out never
to be applicable. As such, the absence of a rule may be due
to a lack of knowledge—not knowing—or because we know
better—knowing not.

If we build a rule-based model directly, we have no
way to distinguish these two cases and, in any large-scale
curation effort, it would have to be explicitly noted as
meta-data; otherwise, it would be unclear whether a rule
had been forgotten or deliberately left out. KAMI allows
the human curator to express these distinctions directly, in
the very definitions of nuggets, and relegates the task of
generating (and not-generating) a potentially huge number
of rules to the machine. This simultaneously sidesteps the
cognitive bottleneck and the scalability failure of the rule-
based approach for building models.

6 CONCLUSIONS AND FUTURE PERSPECTIVES

We have presented an overview of the aims and current
functionality of our bio-curation tool KAMI with particu-
lar focus on the importance of capturing mechanisms, not
just individual PPIs, together with a curation procedure
which exploits domain-specific background knowledge and
intrinsically provides an audit trail, by constructing and
storing explicit rewriting rules, documenting the curation
process. The tool is based on solid theoretical foundations,
as discussed specifically for KAMI in the appendix and also,
to some extent and in greater generality, in [6], [12].

Rule-based modelling has been around for over a decade
now. The stochastic simulation technology has greatly ma-
tured over this time, so that very large models can be run,
and the causal analysis technology specific to Kappa has
also significantly developed—although more work remains
to be done. KAMI is intended as a further tool to allow the
full exploitation of this technology by scaling up the size
of models that can be realistically built. In this way, we
seek to enable new kinds of questions that models can be
used to address: instead of seeking to build a model of
‘the EGF pathway’ (or whatever), we seek to avoid this
omnipresent bias by collating a large collection of PPIs and
investigating, via causal analysis, the pathways that emerge
during simulation.



In this way, we hope that KAMI can become an authentic
‘tool for discovery’ that provides (semi-)automated support
for the book-keeping aspects of curation, allowing the expert
user to focus on hypothesis testing and investigating the
consequences of curated knowledge in various contexts.
Let us note, in particular, the potential strength of our
approach—exploiting a de-contextualized representation of
PPIs—to address the critical issue of reproducibility and
robustness of biological knowledge [18]], [19]: if a single body
of de-contextualized knowledge can be instantiated to a
number of different cell type contexts, providing pertinent
explanations for their diverse behaviours, our confidence in
that body of knowledge will be much greater than if we
had achieved the same results with independently-produced
models for each cell type which may derive from different,
or even apparently conflicting, bodies of knowledge.

The development of KAMI continues in earnest. We are
planning to extend the current Anatomizer to collect infor-
mation about homologous proteins in order to build orthology
relations between the action graphs representing different
species and paralogy relations within the action graph of
each species. This would provide the Aggregation Engine
with a further powerful source of background knowledge
about conserved regions of proteins, which typically share
mechanisms, that would enable the systematic transfer of
knowledge, through such homology relations, so that a
single observed PPI could be used to generate a collection
of inferred PPIs—that would be tagged as such but which
could be ‘upgraded’ to observed PPIs subsequently.

On a more technical front, the current implementation
of semantics-based reasoning in the Aggregation Engine
uses hard-wired ‘by cases’ code in a number of places (see
footnotes 7-9 above). A more flexible approach would be to
enable the expression of domain-specific constraints—such
as the ‘at most one adjacent edge’ properties discussed in
this paper—in the semantic action graph and/or semantic
nuggets; and for these to determine all required rewriting
rules for the semantic auto-completion of a model. We have
not yet done this as it does not directly concern KAMI so
much as the underlying ReGraph library; however, it will
be a necessary step for the scalability of semantics-based
reasoning as we add further generic PPIs and extend the
Aggregation Engine accordingly.

In the longer term, we intend to broaden KAMI's purely
mechanistically-oriented representation to incorporate cer-
tain phenomenological aspects. These come in essentially two
kinds: phenomenological states, such as ‘activation” of an
enzymatic domain or ‘local counters’ that would enable us
to express conditions such as ‘any 3 of these 5 residues must
be phosphorylated’; and actions at a distance that express the
overall effect of an entire cascade of mechanistic actions.
The class of actions at a distance would serve a double
purpose: firstly, as assertions that capture experimentally-
observed dependencies, as expressed in the BE language
for example, that we would like to reconstitute with an
underlying mechanistic ‘implementation’; and secondly, as
templates to support the gradual refinement of phenomeno-
logical knowledge—of which there is a great deal in the
bio-medical literature—into mechanistic implementations.

11. http://openbel.org
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This interplay between [what it called] Assembly and
Explanation were central to DARPA’s Big Mechanism pro-
gramme [20] within which the development of KAMI was
initiated. Indeed, KAMI should be seen as an attempt to build
a semantically-rigorous Assembly machine that feeds the
(already-existing) Explanation machine provided by rule-
based modelling. In order to complete this schema to a bona
fide Big Mechanism would require at least two further as-
pects. Firstly, integration with natural language processing
(NLP), to solve the human Reading bottleneck intrinsic to
the vast literature on cellular signalling; and, secondly, the
means to revisit Assembly in the light of Explanation, to
refine phenomenological knowledge into mechanisms.

Related work

Our work bears a superficial similarity to the INDRA project
developed in the Sorger Lab at Harvard Medical School [21]].
However, the level of representation employed by INDRA
corresponds to that of rule-based modelling: their agents
are specific gene products, so mutants must be treated as
distinct agents. As such, INDRA statements have none of
the disjunctive flavour of our nuggets that comes from the
notion of a neighbourhood in sequence space—and therefore
fail to solve the ‘update problem’.

Indeed, INDRA sets out to solve a different problem: its
aim is not the de-contextualization of knowledge but the
automation of model construction—notably through the use
of NLP to extract knowledge from the literature. Unlike
KAMI, which places priority on building a transparent and
semantically rigorous curation procedure, INDRA invests in
a battery of techniques—some based on background knowl-
edge, others on heuristics—to infer conflicts and other rela-
tionships between large numbers of machine-Read INDRA
statements. The outcome of this assembly procedure is an
executable model, either ODEs or rule-based, whose prove-
nance and built-in assumptions necessarily remain rather
opaque since no meaningful audit trail can be provided.

Our work also relates to the BioPAX'| project [22]
which aims to represent biological pathways at multiple
levels of abstraction. As such, BioPAX has a more general
ambition than KAMI as it also treats metabolic pathways
and interactions with DNA. Moreover, BioPAX allows the
user to express pathways directly—along the lines of the
discussion above concerning the perspective of higher-level
mechanisms and assertions in KAMI. On the other hand,
BioPAX employs the same level of representation as rule-
based modelling and so, like INDRA, offers no treatment of
the effects of mutations nor of the update problem.

Let us conclude by mentioning briefly the first author’s
MetaKappa [13], [14] which provided the means to express
an existing Kappa model compactly through the use of a
hierarchy of agents and generic rules acting upon them. Its
principal defect was in forcing the modeller to define this
hierarchy which inevitably led to cases where the generic
rules failed to express the desired Kappa rules. To put
it another way, MetaKappa forced the modeller to encode,
rather than represent, and therefore reinforced the (old) idea
of modelling as a means of codifying understanding rather
than as a tool for discovery.

12. http://www.biopax.org
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APPENDIX
OPERATIONS ON GRAPHS

Graph rewriting makes use of three basic operations on
graphs corresponding to generalized notions of intersection,
union and set difference on nodes and edges [23], [24], [17].

Each of these operations takes, as its starting data, some
graphs and homomorphisms and constructs new graphs
and homomorphisms that satisfy a so-called universal prop-
erty that guarantees the canonicity of the construction—just
as the intersection of two sets is the largest set contained in
both; or their union is the smallest containing both.

Let us first introduce some terminology. A pair of arrows
with a common source is called a span (just like a rewriting
rule) while a pair of arrows with a common target, often
called the sink object, is called a co-span.

Pullback

The first operation is called pullback. If we are given, as
starting data, a co-span hi3 : G1 — G5 and has : G2 — G,
we construct its pullback by defining a span, i.e. a graph Gg
and homomorphisms hg; : Go — G and hg2 : Go — G,
such that h13 o h01 = hgg o hOQ, ie.

}V lhuz
G1
l /

such that, for any other choice of span h{; and h{, to G1
and Go respectively such that ki3 o h{; = haz o h{,, there
is a unique homomorphism from A’ : Gij — Gy such that
hy; = ho1 o b’ and hjy = hga o I/, i.e.
Go
o

Go | koo
o
G1 G2
taa %
Gs

This definition characterizes Gy mathematically (up to
unique isomorphism) but does not provide us with a direct
definition of its nodes and edges. We can easily do this: the
nodes of G are all pairs of nodes of GG; and G mapped to
the same node in G5 by hiz and hog, i.e. {(n1,n2)|h13(n1) =
has(nz)}; we have an edge from (n1,n2) to (n},n5) in G
if there is an edge from n; to n} in G and from ny to nh in
G. The above unique factorization condition means that Gy
is as large as possible, cf.set intersection.

We give an example in figure To compute which
nodes should occur in the pullback object, we look at each
node of the sink object and ask whether or not it occurs in
the image of both homomorphisms; this is only the case for
the black square and the white circle (twice) so the pullback
object contains one black square and two white circles. We
do not show the nodes of the pullback object explicitly as
pairs; this is implicit in the way we have calculated them.
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hm/ O
m" m"
hoa
] ]

Fig. 10. An example of a pullback

The fact that Gg, ho1 and hgs always exists is a concrete
property of the class of graphs under consideration. In the
special case that the two given homomorphisms h;3 and
hss are injective, it can be shown that ho; and hgy are also
necessarily injective and, in this case, the nodes of Gy are
the intersection of those of G; and G5 (and likewise for the
edges).

Pushout

The second operation is dual to the first and is called
pushout. Given a span hg; : Go = G and hg2 : Go = Go,
its pushout consists of a co-span, i.e. a graph G3 and
homomorphisms h;3 : G5 — G3 and hgz : G2 — G, such
that hi3 o hg; = hag o hgs, i.e.

e
of A

such that, for any other choice of co-span h}5 and hfs from
G1 and G respectively such that hf s 0 hgr = hf3 0 hgo, there
is a unique homomorphism from A’ : G3 — G% such that
his = h"ohys and hlhs = h' o hog, i.e.

G/l
l/

~

G3

’
h02

We give a direct definition by taking the disjoint union
of G; and (3 and quotienting by the reflexive and transitive
closure of the gluing relation: a node n; in GG is related to ny
in G2 lff, for some no in GO, h()l (’I’L()) = N1 and h()2 (’I’L()) = Na.
This time, the unique factorization condition means that G3
is as small as possible, cf.set union.

For example, in figure |11} the pushout object contains a
single black square and, due to quotienting, a single white
square—and otherwise adds in everything from G and G2
that is not in the image of ho; and hg2 respectively. Note
also the slight difference in G5 compared with the pullback
example: there is no edge incident to the white square.
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Fig. 11. An example of a pushout

As for the pullback, the fact that G, hi3, hes always
exists is a concrete property of our class of graphs. In the
special case where hg; and hgs are injective, it can be shown
that h13 and hos are also injective and, in this case, the nodes
of (G5 are the union of those of G; and Gs.

Pullback complement

The third operation is called pullback complement. Given two
homomorphisms hg; : Go = G and h;3 : G; — G, their
pullback complement is a graph G2 and homomorphisms
hog : GO — G2 and h23 : G2 — Gg such that Go, h()l, h02 is
a pullback of hi3 and has, i.e.

Go
hV J{’Loz
Gh Go
hwl A&
G3

and such that any other pullback that factors through Gy,
i.e. where h{; = ho1 o h,

h6
Go «—— G

ho1 ,
, hoo
hoy
G1 G
23
Gs

also necessarily factors uniquely through Go

ho
Go +—— Gy

}LO2J, lh,(’u

hy
Ga < Glg
hz/
ho3

Gs

in such a way that hbs = hog o hf and hf o h{j, = hgs © hj,.

This abstract characterization may seem obscure—it has
its origins in algebraic topology [25]—but, concretely, it
corresponds to defining G2 directly by starting with G'3 and
modifying it by replacing the image of h13 in G5 by Gg. The
(rather complex) unique factorization condition means that
Gy is as large as possible, cf.set difference.
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Fig. 12. An example of a pullback complement

For example, in figure the white square in G3 is in
the image of hi3 but not of hg; so it disappears in Go—
otherwise, by the requirement that the square is a pullback,
it would have to occur in G (but it does not). Moreover,
the white circle in G3 is duplicated in Gy because it is
duplicated in Go—Dbut only one of the copies preserves the
edge to the black square (as in Gy whereas both acquire an
edge to the black circle.

In our concrete setting, pullback complements only exist
(necessarily) when hy3 is injective. Note also that, for any
given ho; @ Gop — G; and hyz3 : G; — G3, there are
many ways to define a graph G> and homomorphisms
hog : GO — G2 and h23 : G2 — G3 such that Go, hOl/
hoo is a pullback, e.g. taking G5 to be Gy. However, only
the largest possible G5 satisfies the factorization condition
expressed in the abstract characterization—and this is the
one captured by our direct definition.

REWRITING HIERARCHIES OF GRAPHS

Let us now formalize the hierarchy of KAMI and discuss the
process of rewriting in such a hierarchy.

We say that a graph G is typed by a graph T’ iff there is a
homomorphism h : G — T

The full hierarchy of KAMI is shown in figure [13] There
can be many nuggets N and semantic nuggets SN, typed
respectively by an action graph AG and the semantic action
graph SAG that are themselves both typed by the meta-
model M M. The dotted lines represent relations so that a
nugget can be related, by a rewriting rule, to a semantic
nugget and the action graph likewise to the semantic action
graph. This enables us to capture the idea that a concrete
mechanism, represented by a nugget, uses the generic mech-
anism specified by a semantic nugget. The templates 1" are
used internally for nugget aggregation.

The typing hierarchy of KAMI is a tree where the meta-
model is its root and the nuggets and semantic nuggets are
its leaves. If we wish to rewrite one of the graphs G in this
hierarchy;, it is possible that this will ‘break’ the hierarchy.
Specifically, if the rule is restrictive, we may no longer know
to type all graphs previously typed by G—because we have
deleted, or cloned, some of the nodes, edges and attributes
of G—but we do still know how to type the rewritten G~.
Conversely, if the rule is expansive, we still know how to
type all graphs previously typed by G but—because we
have added, or merged, some nodes, edges and attributes
to G—we do not know how to type the rewritten G*.
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Fig. 13. The graph hierarchy of kAMI
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However, it is possible to maintain all typings in the
hierarchy, after rewriting G, by propagating restrictive effects
‘upwards’, i.e. in the opposite direction of the typing arrows,
and expansive effects ‘downwards’—provided that the rule
satisfies some mild conditions. Let us consider the two cases
separately for ease of exposition.

Given a restrictive rule A : P — L and typings 7p :
P — T and 7, : L — T, we say that A respects typing iff
7L o A = 7p. If we additionally have a matchingm : L — G
and a typing 7¢ : G — T, the rewritten G~ is indeed still
typed by T by setting 7¢- :=T7g o A™:

However, if we have a further typing 7 : H — G, to
maintain consistency ‘above’ G~ we must propagate the
changes in G to H by taking the pullback:

Py B
H<+——H

| -

G()\iiGi

Concretely, if the rule deletes (resp. clones) anode n in G, all
nodes of H typed by n are deleted (resp. cloned) in H~. This
propagates in exactly the same way to relations: deleting n
in G deletes all pairs of a relation with G~ in which it occurs;
and cloning n clones all those pairs. We call this operation
upward propagation.

If we continue with an expansive rule p : P — R where
we have a typing 7g : B — T such that 7p = 7 0 p,
G™ is still typed by T (by the universal property of the
pushout that defines G). Intuitively, the fact that R is typed
by T' means that nothing is being added to G~ that 7" does
not already know about. Moreover, H ™ is still typed by the
rewritten G by setting 75— := pT o7 _.

- +

— P ’/,
T -~

- H™

- -

Pp—" R

However, if R is not typed by T', we will have things in
G™ that we have no means of typing in 7.
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In this case, we require an extra piece of information
that specifies those nodes, edges and attributes of R that do
already exist in T'. This is given by a relation between R and
T, R < Ry — T, and a homomorphism P — Ry making
the two triangles commute:

IENRN

P43 R

-

T

We can now take the pushout of the relation R <~ Ry — T
to construct T — T <~ R from which we obtain a typing
Tg+ s+ of the fully rewritten G (by the universal property

of its defining pushout):
s S
- +
|
T ——-———T7

In concrete terms, 7" adds any extra nodes, edges of
attributes mentioned in R but absent in 7" and also merges
nodes, edges and attributes of 7" when required—typically
if two nodes of different type in P are merged in . We call
this operation downward propagation.

In practice, upward propagation only occurs in KAMI
when we rewrite the current action graph with a restrictive
rule—and this only generally occurs during the process of
model instantiation, as discussed in section |5} On the other
hand, downward propagation occurs every time we update
a nugget with details that do not yet exist in the action
graph. This is discussed extensively in section
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