
HAL Id: hal-02127131
https://hal.science/hal-02127131

Submitted on 23 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Silent self-stabilizing scheme for spanning-tree-like
constructions

Stéphane Devismes, David Ilcinkas, Colette Johnen

To cite this version:
Stéphane Devismes, David Ilcinkas, Colette Johnen. Silent self-stabilizing scheme for spanning-tree-
like constructions. ICDCN 2019, Jan 2019, Bangalore, India. pp.158-167, �10.1145/3288599.3288607�.
�hal-02127131�

https://hal.science/hal-02127131
https://hal.archives-ouvertes.fr

Silent Self-Stabilizing Scheme for Spanning-Tree-like
Constructions∗

Stéphane Devismes

Univ. Grenoble Alpes, CNRS,

Grenoble INP,
†
VERIMAG

Grenoble, France

stephane.devismes@

univ-grenoble-alpes.fr

David Ilcinkas

CNRS & Univ. Bordeaux,

LaBRI, UMR 5800

Talence, France

ilcinkas@labri.fr

Colette Johnen

Univ. Bordeaux,

LaBRI, CNRS UMR 5800

Talence, France

johnen@labri.fr

ABSTRACT
In this paper, we propose a general scheme, called Algorithm STlC,
to compute spanning-tree-like data structures on arbitrary net-

works. STlC is self-stabilizing and silent and, despite its generality,

is also efficient. It is written in the locally shared memory model

with composite atomicity assuming the distributed unfair daemon,

the weakest scheduling assumption of the model.

Its stabilization time is in O (nmaxCC) rounds, where nmaxCC is the
maximum number of processes in a connected component. We also

exhibit polynomial upper bounds on its stabilization time in steps

and process moves holding for large classes of instantiations of

Algorithm STlC.
We illustrate the versatility of our approach by proposing sev-

eral such instantiations that efficiently solve classical problems

such as leader election, as well as, unconstrained and shortest-path

spanning tree constructions.

CCS CONCEPTS
• Theory of computation→ Distributed computing models;

KEYWORDS
distributed algorithms, self-stabilization, spanning tree, leader elec-

tion, spanning forest

ACM Reference Format:
Stéphane Devismes, David Ilcinkas, and Colette Johnen. 2018. Silent Self-

Stabilizing Scheme for Spanning-Tree-like Constructions. In Proceedings of
International Conference onDistributed Computing andNetworking (ICDCN’19).
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A self-stabilizing algorithm is able to recover a correct behavior

in finite time, regardless of the arbitrary initial configuration of

∗
This study has been partially supported by the ANR projects DESCARTES (ANR-16-

CE40-0023) and ESTATE (ANR-16-CE25-0009).

†
Institute of Engineering Univ. Grenoble Alpes.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICDCN’19, January 2019, Bangalore, India
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

the system, and therefore also after a finite number of transient

faults (such faults may corrupt the configuration of the system),

provided that those faults do not alter the code of the processes.

Among the vast self-stabilizing literature, many works (see [29]

for a survey) focus on spanning-tree-like constructions, i.e. construc-
tions of specific distributed spanning tree — or forest — shaped data

structures. Most of these constructions actually achieve an addi-

tional property called silence [27]: a silent self-stabilizing algorithm
converges within finite time to a configuration from which the val-

ues of the communication variables used by the algorithm remain

fixed. Silence is a desirable property. Indeed, as noted in [27], the

silent property usually implies more simplicity in the algorithm de-

sign. Moreover, a silent algorithm may utilize less communication

operations and communication bandwidth.

Self-stabilizing spanning-tree-like constructions are widely used

as a basic building block of more complex self-stabilizing solutions.

Indeed, composition is a natural way to design self-stabilizing algo-

rithms [37] since it allows to simplify both the design and the proofs

of self-stabilizing algorithms. Various composition techniques have

been introduced so far, e.g., collateral composition [32], fair compo-

sition [25], cross-over composition [4], and conditional composi-

tion [18]; and many self- stabilizing algorithms are actually made

as a composition of a silent spanning-tree-like construction and

another algorithm designed for tree/forest topologies, e.g., [3, 7, 17].
Notably, the silence property is not mandatory in such designs,

however it allows to write simpler proofs. Finally, notice that silent

spanning-tree-like constructions have also been used to build very

general results, e.g., the self-stabilizing proof-labeling scheme con-

structions proposed in [6].

We consider the locally shared memory model with composite

atomicity introduced by Dijkstra [24], which is the most commonly

usedmodel in self-stabilization. In this model, executions proceed in

atomic steps (where a subset of enabled processes move, i.e., update
their local states) and the asynchrony of the system is captured by

the notion of daemon. The weakest (i.e., the most general) daemon

is the distributed unfair daemon. Hence, solutions stabilizing under

such an assumption are highly desirable, because they work under

any other daemon assumption. Moreover, the stabilization time
can also be bounded in terms of steps (and moves) only when the

algorithm works under an unfair daemon. Otherwise (e.g., under
a weakly fair daemon), time complexity may only be evaluated in

terms of rounds, which capture the execution time according to the

slowest process. In contrast, step complexity captures the execution

time according to the fastest process. If the average speeds of the

different processes are roughly equal, then the execution time is

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICDCN’19, January 2019, Bangalore, India Stéphane Devismes, David Ilcinkas, and Colette Johnen

of the order of magnitude of the round complexity. Otherwise, if

the system is truly asynchronous, then the execution time is of the

order of magnitude of the step complexity. The stabilization time

in moves captures the amount of computations an algorithm needs

to recover a correct behavior. Notice that the number of moves and

the number of steps are closely related: if an execution e contains x
steps, then the numbery of moves in e satisfies x ≤ y ≤ n ·x , where
n is the number of processes.

1
Finally, if, for example, an algorithm

is self-stabilizing under a weakly fair daemon, but not under an

unfair one, then this means that the stabilization time in moves

cannot be bounded, so there are processes whose moves do not

make the system progress in the convergence. In other words, these

processes waste computation power and so energy. Such a situation

should therefore be prevented, making algorithms withstanding

the unfair daemon more desirable than the weakly fair one.

There are many self-stabilizing algorithms proven under the

distributed unfair daemon, e.g., [2, 8, 19, 20, 30]. However, analyses
of the stabilization time in steps (ormoves) is rather unusual and this

may be an important issue. Indeed, recently, several self-stabilizing

algorithms which work under a distributed unfair daemon have

been shown to have an exponential stabilization time in steps in

the worst case. In [2], silent leader election algorithms from [19, 20]

are shown to be exponential in steps in the worst case. In [23], the

Breadth-First Search (BFS) algorithm of Huang and Chen [33] is

also shown to be exponential in steps. Finally, in [31] authors show

that the silent self-stabilizing algorithm they proposed in [30] is

also exponential in steps.

1.1 Contribution
We propose a general scheme, called Algorithm STlC (stands for

Spanning-Tree-like Constructions), to compute spanning-tree-like

data structures on bidirectional weighted networks of arbitrary

topology. Algorithm STlC is self-stabilizing and silent. It is written

in the locally shared memory model with composite atomicity,

assuming the distributed unfair daemon. Despite its versatility,

Algorithm STlC is efficient. Indeed, its stabilization time is at most

4nmaxCC rounds, where nmaxCC is the maximum number of processes

in a connected component. Moreover, its stabilization time in moves

is polynomial in the usual cases (see the example instantiations

we propose). Precisely, we exhibit polynomial upper bounds on its

stabilization time in moves that depend on the particular problems

we consider. To illustrate the versatility of our approach, we present

here four instantiations of STlC solving classical spanning-tree-like

problems.

• Assuming an input set of roots, we propose an instance to

compute a spanning forest of arbitrary shaped trees, with

non-rooted components detection.

By non-rooted components detection, we mean that every

process that belongs to a connected component which does

not contain a root should eventually take a special state

notifying that it detects the absence of a root.

This instance stabilizes inO (nmaxCC·n)moves, whichmatches

the best known step complexity for spanning tree construc-

tion [12] with explicit parent pointers.

1
Actually, in this paper as in most of the literature, bounds on step complexity are

established by proving upper bounds on the number of moves.

Actually, there exists a solutionwith implicit parent pointer [34]

that achieves a better complexity, O (n · D) moves, where D
is the network diameter. However adding a parent pointer

to this algorithm makes this solution more costly than ours

in a large class of networks, as we will explain later.

• Assuming a rooted network, we propose a shortest-path

spanning tree construction, with non-rooted components

detection, that stabilizes inO (nmaxCC
3 ·n ·Wmax) moves, where

Wmax is the maximum weight of an edge.

Again, this move complexity matches the best known move

complexity for this problem [21].

• Finally, assuming processes have unique identifiers, we pro-

pose two instantiations of STlC, for electing a leader in each

connected component and building a spanning tree rooted

at each leader.

– In the first version, the trees are of arbitrary topology.

The move complexity of this version is in O (nmaxCC
2 · n)

moves. This bound matches the best known step complex-

ity for leader election [2].

– In the second version, the trees are BFS.

This latter version stabilizes in O (nmaxCC
3 · n) moves.

From these various examples, one can easily derive other silent self-

stabilizing spanning-tree-like constructions, e.g., silent Depth-First
Search (DFS) spanning tree constructions.

1.2 Related Work
The locally shared memory model with composite atomicity is the

standard model in self-stabilization [24]. Another (more realistic)

model is the read/write atomicity [28], where an atomic step of

a process consists of an internal computation followed by either

a read or write action on shared registers, but not both. Dolev

et al. [28] have presented a method to transform any algorithm

which is self-stabilizing under composite atomicity into an algo-

rithm that stabilizes to the same specification in the presence of

read/write atomicity. Then, Afek and Brown in [1] have presented

a self-stabilizing version of Alternating bit protocol (ABP), while

Dolev et al. [26] proposes a stabilizing data-link protocol that emu-

lates a reliable FIFO communication channel over unreliable capac-

ity bounded non-FIFO channels. So by combining the work of [28]

with the work of [1] or [26], one can transform a self-stabilizing

algorithm designed in shared memory model with composite atom-

icity into a protocol that is stabilizing for the same specification

yet in message passing model with bidirectional communication,

see [25] for details.

Several works consider the design of particular spanning-tree-

like constructions in the locally shared memory model with com-

posite atomicity and their move/step complexity.

Self-stabilizing algorithms that construct BFS trees in arbitrary

connected and rooted networks are proposed in [15, 16]. The algo-

rithm in [15] is not silent and has a stabilization time of O (∆ · n3)
steps (∆ is the maximum degree of the network). The silent al-

gorithm given in [16] has a stabilization time of O (D2) rounds
and O (n6) steps.

Silent self-stabilizing algorithms that construct spanning trees

of arbitrary topologies in arbitrary connected and rooted networks

are given in [12, 34]. The solution proposed in [12] stabilizes in

Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions ICDCN’19, January 2019, Bangalore, India

at most 4 · n rounds and 5 · n2 steps, while the algorithm given

in [34] stabilizes in n · D moves. However, its round complexity is

not analyzed and the parent of a process is not computed explic-

itly. Now, Cournier [11] showed that the straightforward variant

of this algorithm where a parent pointer variable is added has a

stabilization time of Ω(n2 ·D) steps in an infinite class of networks.

Several papers propose self-stabilizing algorithms stabilizing in

both a polynomial number of rounds and a polynomial number of

steps, e.g., [2] (for the leader election in arbitrary connected net-

works of processes having unique identifiers), and [13, 14] (for the

DFS token circulation in arbitrary connected and rooted networks).

The silent leader election algorithm proposed in [2] stabilizes in

at most 3 · n + D rounds and O (n3) steps. DFS token circulations

given in [13, 14] execute each wave in O (n) rounds and O (n2)
steps usingO (n · logn) space per process for the former, andO (n3)
rounds and O (n3) steps using O (logn) space per process for the
latter. Note that in [13], processes are additionally assumed to have

unique identifiers.

In [9], a generic self-stabilizing algorithm is presented for con-

structing in a rooted connected network a spanning tree where

a given metric is maximized. Now, since the network is assumed

to be rooted (i.e., a leader node is already known), leader election

is not an instance of their generic algorithm. Similarly, since they

assume connected networks, the non-rooted components detection

cannot be expressed too. Finally, the algorithm is proven assuming

the restricted centralized weakly-fair daemon. In particular, step

complexity cannot bounded under such an assumption.

In [21], we presented a self-stabilizing shortest-path tree con-

struction with a single root in composite atomicity model with

distributed unfair daemon; the algorithm is efficient both in terms

of rounds and moves, and tolerates disconnections. We generalize

this approach here with the goal of keeping similar efficient com-

plexity bounds. It is worth noting that this purpose was challenging

since general schemes and efficiency are usually understood as

orthogonal issues.

1.3 Roadmap
The remainder of the paper is organized as follows. In the next

section, we present the computational model and basic definitions.

In Section 3, we describe our algorithm STlC and justify its round

complexity. Its proof of correctness and a complexity analysis in

moves are sketched in Section 4 (due to the lack of space, the com-

plete proofs have been omitted, they are available in the technical

report online [22]). Several instantiations of STlCwith their specific

complexity analyses are presented in Section 5. Finally, we make

concluding remarks in Section 6.

2 PRELIMINARIES
2.1 Distributed Systems
We consider distributed systems made of n ≥ 1 interconnected pro-

cesses. Each process can directly communicate with a subset of

other processes, called its neighbors. Communication is assumed to

be bidirectional. Hence, the topology of the system can be repre-

sented as a simple undirected graphG = (V ,E), where V is the set

of processes and E the set of edges, representing communication

links. Every (undirected) edge {u,v} actually consists of two arcs:

(u,v) (i.e., the directed link from u to v) and (v,u) (i.e., the directed
link from v to u). For every process u, we denote by Vu the set of

processes (including u) in the same connected component ofG as u.
In the following,Vu is simply referred to as the connected component
of u. We denote by nmaxCC the maximum number of processes in a

connected component of G. By definition, nmaxCC ≤ n.
Every process u can distinguish its neighbors using a local label-

ing of a given datatype Lbl . All labels of u’s neighbors are stored in

the set Γ(u). Moreover, we assume that each process u can identify

its local label αu (v) in the set Γ(v) of each neighborv . Such labeling
is called indirect naming in the literature [36]. When it is clear from

the context, we use, by an abuse of notation, u to designate both

the process u itself, and its local labels (i.e., we simply use u instead

of αu (v) for v ∈ Γ(u)).

2.2 Computational Model
We use the composite atomicity model of computation in which the

processes communicate using a finite number of locally shared

variables, henceforth simply called variables. Each process can read

its own variables and those of its neighbors, but can write only to its

own variables. The state of a process is defined by the values of its

local variables. A configuration of the system is a vector consisting

of the states of each process.

A distributed algorithm consists of one local program per process.

The program of each process consists of a finite set of rules of the
form

⟨label⟩ : ⟨дuard⟩ → ⟨action⟩

Labels are only used to identify rules in the reasoning. A guard is a

Boolean predicate involving the state of the process and that of its

neighbors. The action part of a rule updates the state of the process.

A rule can be executed only if its guard evaluates to true; in this

case, the rule is said to be enabled. A process is said to be enabled

if at least one of its rules is enabled. We denote by Enabled(γ) the
subset of processes that are enabled in configuration γ .

When the configuration is γ and Enabled(γ) , ∅, a non-empty

set X ⊆ Enabled(γ) is selected by the so-called daemon; then every

process of X atomically executes one of its enabled rules,
2
leading

to a new configuration γ ′, and so on. The transition from γ to γ ′ is a
stepwhere processes ofX execute amove. The possible steps induce
a binary relation over the set of configurations, denoted by 7→. An

execution is a maximal sequence of configurations e = γ0γ1 · · ·γi · · ·
such that γi−1 7→ γi for all i > 0. The term “maximal” means that

the execution is either infinite, or ends at a terminal configuration
in which no rule is enabled at any process.

Each step from a configuration to another is driven by a daemon.

We define a daemon as a predicate over executions. We say that

an execution e is an execution under the daemon S if S (e) holds. In
this paper we assume that the daemon is distributed and unfair.
“Distributed” means that while the configuration is not terminal,

the daemon should select at least one enabled process, maybe more.

“Unfair” means that there is no fairness constraint, i.e., the daemon

might never select an enabled process unless it is the only enabled

process. In other words, the distributed unfair daemon corresponds

to the predicate true , i.e., this is the most general daemon.

2
In case of several enabled actions at the activated process, the choice of the executed

action is nondeterministic.

ICDCN’19, January 2019, Bangalore, India Stéphane Devismes, David Ilcinkas, and Colette Johnen

2.3 Silent Self-Stabilization
In the composite atomicity model, an algorithm is silent if all its
possible executions are finite. Hence, we can define silent self-

stabilization as follows.

Definition 2.1 (Silent Self-Stabilization). Let L be a non-empty

subset of configurations, called the set of legitimate configurations.

A distributed system is silent and self-stabilizing under the dae-

mon S for L if and only if the following two conditions hold:

(1) all executions under S are finite, and

(2) all terminal configurations belong to L.

2.4 Time Complexity
Wemeasure the time complexity of an algorithm using two notions:

rounds [28] and moves [24].
We say that a process moves in γi 7→ γi+1 when it executes a

rule in γi 7→ γi+1.
The definition of round uses the concept of neutralization: a

process v is neutralized during a step γi 7→ γi+1, if v is enabled

in γi but not in configuration γi+1, and it is not activated in the

step γi 7→ γi+1.
Then, the rounds are inductively defined as follows. The first

round of an execution e = γ0γ1 · · · is the minimal prefix e ′ =
γ0 · · ·γj , such that every process that is enabled inγ0 either executes
a rule or is neutralized during a step of e ′. Let e ′′ be the suffix

γjγj+1 · · · of e . The second round of e is the first round of e ′′, and
so on.

The stabilization time of a silent self-stabilizing algorithm is the

maximum time (in moves, steps, or rounds) over every execution

possible under the considered daemon S (starting from any initial

configuration) to reach a terminal (legitimate) configuration.

3 ALGORITHM STlC AND ITS ROUND
COMPLEXITY

3.1 The problem
We propose a general silent self-stabilizing algorithm, called STlC
(see Algorithm 1 for its formal code), which aims at converging to

a terminal configuration where a specified spanning forest (maybe

a single spanning tree) is (distributedly) defined. To that goal, each

process u has two input constants.

canBeRootu : a boolean value, which is true if u is allowed to

be root of a tree. In this case, u is called a candidate. In a

terminal configuration, every tree root satisfies canBeRoot ,
but the converse is not necessarily true. Moreover, for every

connected component GC , if there is at least one candidate
u ∈ GC , then at least one process ofGC should be a tree root

in a terminal configuration. In contrast, if there is no candi-

date in a connected component, we require that all processes

of the component converge to a particular terminal state,

expressing the local detection of the absence of candidates.

pnameu : the name of u. pnameu ∈ IDs , where IDs = N ∪ {⊥}
is totally ordered by < and min< (IDs) = ⊥. The value of
pnameu is problem dependent. Actually, we consider here

two particular cases of naming.

• In one case, ∀v ∈ V ,pnamev = ⊥.

• In the other case, ∀u,v ∈ V ,pnameu , ⊥ ∧ (u , v ⇒
pnameu , pnamev), i.e., pnameu is a unique global identi-
fier.

Then, according to the specific problem we consider, we may

want tominimize theweight of the trees using some kind of distance.

To that goal, we assume that each edge {u,v} has twoweights:ωu (v)
denotes the weight of the arc (u,v) and ωv (u) denotes the weight
of the arc (v,u). Both values belong to the domain DistSet .

Let (DistSet ,⊕,≺) be an ordered magma, i.e., ⊕ is a closed binary

operation onDistSet and ≺ is a total order on this set. The definition
of (DistSet ,⊕,≺) is problem dependent and, if necessary, i.e., if the
problem dependent predicate P_nodeImp (.) holds (P_nodeImp (v)
is true if process v is required to act to minimize the weight of the

tree), the weight of the trees will be minimized using the ordered

magma and the distance values that each candidate u should take

when it is the root of a tree. This latter value is given by the (problem

dependent) function distRoot (u). Finally, we assume that, for every

edge {u,v} of E and for every value d of DistSet , we have d ≺
d ⊕ ωu (v) and d ≺ d ⊕ ωv (u).

Notice that the ordered magma is necessary for the versatility of

our solution as it allows STlC to compute various kinds of spanning

tree constructions. For example, following the approach proposed

in [10], we can instantiate the ordered magmawith the set of strings

as domain, the concatenation as operator, and the lexicographical

order. Then, STlC can compute as distance value the sequence

of the channel port numbers traversed by a path. Consequently,

a spanning tree where these distances are minimized according

to the lexicographic order (using P_nodeImp (.)) will be built, i.e.,
a depth-first spanning tree (see algorithm RDFS in the technical

report online [22]).

3.2 The variables
In STlC, each process u maintains the following three variables.

stu ∈ {I ,C,EB,EF }: this variable gives the status of the process.
I ,C , EB, and EF respectively stand for Isolated, Correct, Error
Broadcast, and Error Feedback.
The two first status, I and C , are involved in the normal

behavior of the algorithm, while the two last ones, EB and

EF , are used during the correction mechanism. The meaning

of EB and EF will be further detailed in Subsection 3.4.

In a terminal configuration, if Vu contains a candidate, then

stu = C , otherwise stu = I .
parentu ∈ {⊥} ∪ Lbl : In a terminal configuration, ifVu contains

a candidate, then either parentu = ⊥, i.e., u is a tree root, or

parentu belongs to Γ(u), i.e., parentu designates a neighbor

ofu, referred to as its parent. Otherwise (Vu does not contain

a candidate), the value of parentu is meaningless.

du ∈ DistSet : In a terminal configuration, if Vu contains a can-

didate, then du is larger than or equal to the weight of the

tree path from u to its tree root, otherwise the value of du is

meaningless.

Using these variables, we define the legitimate configurations of

STlC as follows.

Definition 3.1 (Legitimate state and configuration). A legitimate
configuration of STlC is a configuration where every process is in

Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions ICDCN’19, January 2019, Bangalore, India

Algorithm 1: Algorithm STlC, code for any process u

Inputs:
• canBeRootu : a boolean value; it is true if u can be a root

• pnameu : name of u

Variables:
• stu ∈ {I ,C,EB,EF }: the status of u

• parentu ∈ {⊥} ∪ Lbl

• du : the distance value associated to u

Predicates:
• P_root (u) ≡ canBeRootu ∧ stu = C ∧ parentu = ⊥ ∧ du = distRoot (u)
• P_abnormalRoot (u) ≡ ¬P_root (u)∧ stu , I∧ [parentu < Γ(u)∨ du ≺ dparentu ⊕ ωu (parentu)∨ (stu , stparentu ∧ stparentu , EB)]
• P_reset (u) ≡ stu = EF ∧ P_abnormalRoot (u)

• P_updateNode (u) ≡ (∃v ∈ Γ(u) | stv = C ∧ dv ⊕ ωu (v) ≺ du)

• P_updateRoot (u) ≡ canBeRootu ∧ distRoot (u) ≺ du
• P_nodeImp (u) is problem dependent.

However,

if P_nodeImp (u), then P_updateNode (u) ∨ P_updateRoot (u); if P_updateRoot (u), then P_nodeImp (u);
P_nodeImp (u) only depends on the values of stu , du , P_updateRoot (u), and min(v ∈Γ(u) ∧ stv=C) (dv ⊕ ωu (v)).

Macros:
• Children(u) = {v ∈ Γ(u) | stv , I ∧ parentv = u ∧ dv ⪰ du ⊕ ωv (u) ∧ (stv = stu ∨ stu = EB)}

• beRoot (u): stu := C; parentu := ⊥; du := distRoot (u);

• computePath(u): if {v ∈ Γ(u) | stv = C} , ∅ then
stu := C;
parentu := argmin(v ∈Γ(u) | stv=C) (dv ⊕ ωu (v));

du := dparentu ⊕ ωu (parentu);
if P_updateRoot (u) then beRoot (u);

else
beRoot (u);

end if

Rules:
RU (u): stu = C ∧ P_nodeImp (u) → computePath(u);
REB (u): stu = C ∧ ¬P_nodeImp (u) ∧ (P_abnormalRoot (u) ∨ stparentu = EB) → stu := EB;
REF (u): stu = EB ∧ (∀v ∈ Children(u) | stv = EF) → stu := EF ;
RI (u): P_reset (u) ∧ ¬canBeRootu ∧ (∀v ∈ Γ(u) | stv , C) → stu := I ;
RR (u): (P_reset (u) ∨ stu = I) ∧ [canBeRootu ∨ (∃v ∈ Γ(u) | stv = C)] → computePath(u);

a legitimate state. A process u is said to be in a legitimate state of
STlC if u satisfies one of the following conditions:

(1) P_root (u), and ¬P_nodeImp (u),
(2) there is a process satisfying canBeRoot inVu , stu = C ,parentu
∈ Γ(u), du ⪰ dparentu ⊕ ωu (parentu), and ¬P_nodeImp (u),
or

(3) there is no process satisfying canBeRoot in Vu and stu = I .

Letu be a process. In a legitimate configuration, either no process

satisfies canBeRoot in Vu and every process v in Vu has status

stv = I ; or there is at least one candidate and every process in V
satisfies one of the two first conditions in Definition 3.1. Moreover,

in this latter case, at least one process v in Vu satisfies P_root (u),

that is, canBeRootv , stv = C , parentv = ⊥, and dv = distRoot (v).
In other word, v is a tree root.

One can establish that any terminal configuration is legitimate

(and that a legitimate configuration is terminal, see Lemma 1 in the

technical report online [22]).

Theorem 3.2. Any terminal configuration of STlC is legitimate.

3.3 Typical Execution
Assume the system starts from a configuration where, for every

process u, stu = I . All processes that belong to a connected compo-

nent containing no candidates are disabled forever. Focus now on a

connected componentGC where at least one process is a candidate.

ICDCN’19, January 2019, Bangalore, India Stéphane Devismes, David Ilcinkas, and Colette Johnen

Then, any process u of status I that is a candidate or a neighbor of
a process of status C is enabled to execute rule RR: it eventually
executes RR (u) to initiate a tree or to join a tree rooted at some

candidate, choosing among the different possibilities the one that

minimizes its distance value. Using this rule, it also switches its

status to C and sets du to either distRoot (u), or dv ⊕ ωu (v) if it
chooses a parent v . Executions of rule RR are asynchronously prop-

agated in GC until all processes of GC have status C . In parallel,

rules RU are executed to reduce the weight of the trees, if necessary:

when a process u with status C satisfies P_nodeImp (u), this means

that u can reduce du by selecting another neighbor with status C
as parent and this reduction is required by the specification of the

problem to be solved (P_nodeImp (u) is problem dependent). In this

case, u chooses the neighbor which allows to minimize the value

of du . In particular, notice that a candidate can lose its tree root

condition using this rule, if it finds a sufficiently good parent in its

neighborhood. Overall, within at most nmaxCC rounds, a terminal

configuration is reached in which a specific spanning forest (maybe

a spanning tree) is defined in each connected component containing

at least one candidate, while in other components all processes are

isolated.

3.4 Error Correction
Assume now that the system is in an arbitrary configuration. Incon-

sistencies between the states of the processes are detected using

predicate P_abnormalRoot .

Definition 3.3 (Normal and Abnormal Roots). Every process u
that satisfies P_root (u) is said to be a normal root.

Every process u that satisfies P_abnormalRoot (u) is said to be

an abnormal root.

Informally, a processu is an abnormal root ifu is neither a normal

root (i.e., ¬P_root (u)), nor isolated (i.e. stu , I), and satisfies one

of the following three conditions:

(1) its parent pointer does not designate a neighbor,

(2) its distance du is inconsistent with the distance of its parent,

or

(3) its status is inconsistent with the status of its parent.

Every process u that is neither an abnormal root nor isolated satis-

fies one of the two following cases.

• Either u is a normal root, i.e., P_root (u),
• or u points to some neighbor (i.e., parentu ∈ Γ(u)) and the

state of u is coherent w.r.t. the state of its parent.
In this latter case, u ∈ Children(parentu), i.e., u is a “real”

child of its parent. See the definition below.

Definition 3.4 (Children). For every process v , Children(v) =
{u ∈ Γ(v) | stu , I ∧ parentu = v ∧ du ⪰ dv ⊕ ωu (v) ∧ (stu =
stv ∨ stv = EB)}.

For every process u ∈ Children(v), u is said to be a child of v .
Conversely, v is said to be the parent of u.

Observation 1. A process u is

• either a normal root,
• an isolated process (i.e. stu = I),
• an abnormal root,

• or a child of its parent v (i.e. member of the set Children(v),
where v = parentu).

Definition 3.5 (Branch). Consider a path P = u0, . . . ,uk such

that ∀i,0 ≤ i < k , ui+1 ∈ Children(ui). P is acyclic. If u0 is either
a normal or an abnormal root, then P is called a branch rooted at

u0. The process ui is said to be at depth i and ui , . . . ,uk is called a

sub-branch. If u0 is an abnormal root, the branch is said to be illegal,
otherwise, the branch is said to be legal.

Observation 2.

• A branch depth is at most nmaxCC − 1.
• A process v having status I does not belong to any branch.
• If a process v has status C (resp. EF), then all processes of a
sub-branch starting at v have status C (resp. EF).

Definition 3.6 (Tree). Let u be a root (either normal or abnormal).

We define the tree T (u) as the set of all processes that belong to a

branch rooted at u. If u is a normal root, then T (u) is said to be a

normal tree, otherwise u is an abnormal root and T (u) is said to be

an abnormal tree.

Definition 3.7 (Normal Configuration). We call any configuration

without abnormal trees a normal configuration.

So, to recover a normal configuration, it is necessary to remove

all abnormal trees. For each abnormal tree T , we have two cases.

If the abnormal root u of T can join another tree T ′ using rule

RU (u) (thus without increasing its distance value, since, in this

case, P_nodeImp (u) holds), then it does so and T disappears by

becoming a subtree of T ′. Otherwise, T is entirely removed in a

top-down manner, starting from its abnormal root u. Now, in that

case, we have to prevent the following situation: u leaves T ; this
removal creates some abnormal trees, each of those being rooted at

a previous child of u; and later u joins one of those (created) trees

or a tree issued from them. (This issue is sometimes referred to as

the count-to-infinity problem [35].) Hence, the idea is to freeze T ,
before removing it. By freezing we mean assigning each member

of the tree to a particular state, here EF , so that

(1) no member v of the tree is allowed to execute RU (v), and
(2) no processw can join the tree by executing RR (w) or RU (w).

Once frozen, the tree can be safely deleted from its root to its leaves.

The freezing mechanism (inspired from [5]) is achieved using

the status EB and EF , and the rules REB and REF. If a process is

not involved into any freezing operation, then its status is I or C .
Otherwise, it has status EB or EF and no neighbor can select it as

its parent. These two latter status are actually used to perform a

“Propagation of Information with Feedback” in the abnormal trees.

This is why status EB means “Error Broadcast” and EF means “Error

Feedback”. From an abnormal root, the status EB is broadcast down

in the tree using rule REB. The propagation of the status EB in a

top-down manner is done in at most nmaxCC rounds (see Lemma 14

in the technical report online [22]). Then, once the EB wave reaches

a leaf, the leaf initiates a convergecast EF -wave using rule REF. The
propagation of the status EF in a bottom-up manner is also done

in at most nmaxCC rounds (see Lemma 15 in the technical report

online [22]). Once the EF -wave reaches the abnormal root, the tree

is said to be dead, meaning that all processes in the tree have status

EF and, consequently, no other process can join it. So, the tree can

Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions ICDCN’19, January 2019, Bangalore, India

be safely deleted from its abnormal root toward its leaves. There

are several possibilities for the deletion depending on whether or

not the processu to be deleted is a candidate or has a neighbor with

status C . If u is a candidate and has no neighbor with status C: u
becomes a normal root by executing beRoot (u) using the rule RR (u).
If u has a neighbor with status C , again the rule RR (u) is executed:
u tries to directly join another “alive” tree, however ifu is candidate

and becoming a normal root allows it to further minimize du , it
executes beRoot (u) to become a normal root. If u is not a candidate

and has no neighbor with status C , the rule RI (u) is executed: u
becomes isolated, and might join another tree later.

The removal of all dead trees requires at most nmaxCC rounds

(see Lemma 16 in the technical report online [22]). Hence, overall

after at most 3nmaxCC rounds, any execution has reached a normal
configuration, meaning that no process has status EB or EF , and
there are no abnormal roots.

Lemma 3.8. After at most 3nmaxCC rounds, a normal configuration
of STlC is reached.

Then, similarly to the typical execution presented in Subsec-

tion 3.3 and using the properties of P_nodeImp, we showed that

nmaxCC additional rounds are necessary to reach a terminal configu-

ration from a normal configuration (see Corollary 7 in the technical

report online [22]), hence follows.

Corollary 3.9. A terminal and legitimate configuration of any
instantiation of STlC is reached in at most 4nmaxCC rounds from any
configuration.

Let u be a process belonging to an abnormal tree of which it is

not the root. Let v be its parent. From the previous explanation,

it follows that during the correction, (stv ,stu) ∈ {(C,C), (EB,C),
(EB,EB), (EB,EF), (EF ,EF)} until v resets by RR (v) or RI (v). Now,
due to the arbitrary initialization, the status of u and v may not be

coherent, in this case u is an abnormal root. Precisely, as formally

defined in Algorithm 1, the status of u is incoherent w.r.t. the status
of its parent v if stu , stv and stv , EB. For example, if a process

u belongs to a tree (i.e., stu , I) and designates an isolated node v
with parentu (i.e., parentu = v and stv = I), then the status of u is

incoherent w.r.t. its parent v , i.e., u is actually an abnormal root.

Finally, notice that the freezing mechanism ensures that if a

process is the root of an alive abnormal tree, it is in that situation

since the initial configuration (see Lemma 5 in the technical report

online [22]). As explained in the next section, the bounded move

complexity mainly relies on this strong property.

4 MOVE AND STEP COMPLEXITIES
4.1 GC-segment
In the following, a process u is said to be an alive abnormal root
(resp. a dead abnormal root) ifu is an abnormal root and has a status

different from EF (resp. has status EF).
Let GC be a connected component of G. The notion of GC-

segment defined below helps us to analyze the number of moves

per process.

Let SL(γ ,GC) be the set of processesu ∈ GC such that, in the con-

figurationγ ,u is an alive abnormal root, or P_updateRoot (u)∧stu =
C holds. We first prove (see Lemmas 5 and 6 in the technical report

online [22]) that if a process satisfies one of these two conditions,

then it does so from the beginning of the execution. Let e = γ0γ1 · · ·
be an execution of STlC. We thus have SL(γi+1,GC) ⊆ SL(γi ,GC),
for all i ≥ 0.

Definition 4.1 (Segments). The first GC-segment of e = γ0γ1 · · ·
is the maximal prefix γ0 · · ·γiγi+1 of e , such that SL(γi ,GC) =
SL(γ0,GC). The second GC-segment of e is the first GC-segment

of the suffix γi+1γi+2 · · · , and so forth.

Notice that along any execution, the number of GC-segments is

bounded by nmaxCC + 1.
Let u be any process of GC . We prove (see Corollary 2 in the

technical report online [22]) that the sequence of rules executed by

u during a GC-segment belongs to the following language:

(RI + ε) (RR + ε) (RU)∗ (REB + ε) (REF + ε)

Hence, we deduce the following result.

Theorem 4.2. If the number ofRU executions during aGC-segment
by any process of GC is bounded by nb_UN , then the total number
of moves (and steps) in any execution is bounded by

(nb_UN + 4) (nmaxCC + 1)n

4.2 Maximal Causal Chain
The notion of maximal causal chain helps us to analyze the number

of RU executions in a GC-segment seд.

Definition 4.3 (Maximal Causal Chain). A maximal causal chain
of seд rooted atv0 is a non-emptymaximal sequence of computePath
actions a1,a2, . . . ,ak executed in seд such that

(1) the action a1 sets parentv1
tov0 not later than any RU action

by v0 in seд and

(2) for all 2 ≤ i ≤ k , the action ai sets parentvi to vi−1 after the
action ai−1 but not later than vi−1’s next action.

As an RU action always decreases the distance value, all actions

in a maximal causal chain of seд rooted at v0 are caused by distinct

processes, different from v0 (see Lemma 8 in the technical report

online [22]). So the length of any maximal causal chain is less than

nmaxCC. Coupled with additional properties of our algorithm, this

allows us to show (see Lemma 10 in the technical report online [22])

that the number of RU executions during seд by any process ofGC
is bounded, in general, by nmaxCC! (the factorial of nmaxCC), leading
to Theorem 4.4 below. However, note that this huge complexity

can be refined to obtain polynomial complexities in many practical

cases, see Theorem 4.5.

Theorem 4.4. Algorithm STlC is silent self-stabilizing under the
distributed unfair daemon and has a bounded move (and step) com-
plexity.

Assume that weights are strictly positive integers bounded by

Wmax and ⊕ is the addition operator. The distance values set by an

action in a maximal causal chain rooted at some processu belong to

the interval [dsseд,u + 1,dsseд,u +Wmax (nmaxCC − 1)], where dsseд,u
is the initial value of u in seд. We can deduce from this observation

the following result (for more details see Subsection 4.5 in the

technical report online [22]).

ICDCN’19, January 2019, Bangalore, India Stéphane Devismes, David Ilcinkas, and Colette Johnen

Theorem 4.5. When all weights are strictly positive integers bounded
by Wmax, and ⊕ is the addition operator, the stabilization time of STlC
in moves (and steps) is at most

(Wmax (nmaxCC − 1)
2 + 5) (nmaxCC + 1)n

5 INSTANTIATIONS
We now illustrate the versatility of Algorithm STlC by proposing

several instantiations that solve various classical problems. Follow-

ing the general bound (Corollary 3.9), all these instances reach a

terminal configuration in at most 4nmaxCC rounds, starting from an

arbitrary one. In the following, we also address the specific move

complexity of each proposed instance.

Notice that many other instantiations can be envisioned (see the

conclusion and the technical report online [22]).

5.1 Spanning Forest and Non-Rooted
Components Detection

Given an input set of processes rootSet , Algorithm Forest is the
instantiation of STlC with the parameters given in Algorithm 2.

Algorithm Forest computes (in a self-stabilizingmanner) a spanning

forest in each connected component of G containing at least one

process of rootSet . The forest consists of trees (of arbitrary topology)
rooted at each process of rootSet . Moreover, in any component

containing no process of rootSet , the processes eventually detect

the absence of root by taking the status I (Isolated).

Algorithm 2: Parameters for any process u in Algorithm

Forest

Inputs:
• canBeRootu is true if and only if u ∈ rootSet ,
• pnameu is ⊥, and

• ωu (v) = 1 for every v ∈ Γ(u).

Ordered Magma:
• DistSet = N, i1 ⊕ i2 = i1 + i2,
• i1 ≺ i2 ≡ i1 < i2, and distRoot (u) = 0.

Predicate:
• P_nodeImp (u) ≡ P_updateRoot (u)

5.1.1 Correctness of Forest. By Theorems 3.2 (page 5) and 4.4

(page 7), Algorithm Forest self-stabilizes to a terminal legitimate

configuration that satisfies the following requirements (see Defini-

tion 3.1).

Observation 3. In a terminal legitimate configuration of Forest,
each process u satisfies one of the following conditions:

(1) P_root (u), i.e., u is a tree-root and u ∈ rootSet ,
(2) there is a process of rootSet in Vu , stu = C , parentu ∈ Γ(u),

du ≥ dparentu + 1, and ¬P_nodeImp (u), i.e., u < rootSet
belongs to a tree rooted at some process of rootSet and its
neighbor parentu is its parent in the tree,

(3) there is no process of rootSet in Vu and stu = I , i.e., u is
isolated.

5.1.2 Move Complexity of Forest. Since for every process u,
P_nodeImp (u) ≡ P_updateRoot (u), rule RU is enabled at most once.

Hence, the total number of moves (and steps) during any execution

is bounded by 5(nmaxCC + 1)n, by Theorem 4.2 (page 7).

5.2 Leader Election
Assuming the processes have unique identifiers, Algorithm LEM is

the instantiation of STlC with the parameters given in Algorithm 3.

In each connected component, Algorithm LEM elects the process

u (i.e., P_leader (u) holds) of smallest identifier and builds a tree

(of arbitrary topology) rooted at u that spans the whole connected

component.

Algorithm 3: Parameters for any process u in Algorithm LEM

Inputs:
• canBeRootu is true for any process,

• pnameu is the identifier of u (n.b., pnameu ∈ N)

• ωu (v) = (⊥,1) for every v ∈ Γ(u)

Ordered Magma:
• DistSet = IDs ×N; for every d = (a,b) ∈ DistSet , we let
d .id = a and d .h = b;
• (id1,i1) ⊕ (id2,i2) = (id1,i1 + i2);
• (id1,i1) ≺ (id2,i2) ≡ (id1 < id2) ∨ [(id1 = id2) ∧ (i1 < i2)];
• distRoot (u) = (pnameu ,0)

Predicate:
• P_nodeImp (u) ≡ ((∃v ∈ Γ(u) | stv = C ∧

dv .id < du .id)) ∨ P_updateRoot (u)

5.2.1 Correctness of LEM. As canBeRoot is true for all processes,
we can deduce from Theorem 3.2 (page 5) that, in a terminal con-

figuration, stu = C for every process u. So, Algorithm LEM self-

stabilizes to a terminal legitimate configuration that satisfies the

following requirement:

(1) P_root (u), or
(2) stu = C , parentu ∈ Γ(u), du ≻ dparentu .

One can establish (see Lemma 18 in the technical report on-

line [22]) that in a terminal legitimate configuration of Algorithm

LEM, each process u satisfies one of the following conditions:

(1) P_root (u) (≡ P_leader (u)) and u is the process of smallest

identifier in Vu , or
(2) stu = C ,parentu ∈ Γ(u),du ≻ dparentu , anddu = (pnameℓ ,−)

where ℓ is the process of smallest identifier in Vu .

5.2.2 Move Complexity of LEM. During a GC-segment, a pro-

cess can only execute RU to improve its ID. Since there are nmaxCC
initial values and nmaxCC real IDs in its connected component, the

total number of moves (and steps) during any execution is bounded

by (2nmaxCC+4) (nmaxCC+1)n (Theorem 4.2, page 7) i.e.,O (nmaxCC
2n).

5.3 Shortest-Path Tree and Non-Rooted
Components Detection

Assuming the existence of a unique root r and (strictly) positive

integer weights for each edge, Algorithm RSP is the instantiation

Silent Self-Stabilizing Scheme for Spanning-Tree-like Constructions ICDCN’19, January 2019, Bangalore, India

of STlC with the parameters given in Algorithm 4. Algorithm RSP
computes (in a self-stabilizing manner) a shortest-path tree span-

ning the connected component ofG containing r . Moreover, in any

other component, the processes eventually detect the absence of r
by taking the status I (Isolated).

Recall that the weight of a path is the sum of its edge weights.

The weighted distance between the processes u and v , denoted
by d (u,v), is the minimum weight of a path from u to v . A shortest
path from u to v is then a path whose weight is d (u,v). A shortest-
path (spanning) tree rooted at r is a tree rooted at r that spans Vr
and such that, for every process u, the unique path from u to r inT
is a shortest path from u to r in Vr .

Algorithm 4: Parameters for any process u in Algorithm RSP

Inputs:
• canBeRootu is false for any process except for u = r ,
• pnameu is ⊥, and

• ωu (v) = ωv (u) ∈ N
∗
, for every v ∈ Γ(u).

Ordered Magma: the same as the configuration of Algorithm

Forest (Algorithm 2)

Predicate:
• P_nodeImp (u) ≡ P_updateNode (u) ∨ P_updateRoot (u)

5.3.1 Correctness of RSP. It can be proven that in a terminal

configuration of Algorithm RSP, r is the unique process satisfying
P_root . By the definition of P_nodeImp (u), we obtain the following

result.

Observation 4. In a legitimate configuration of Algorithm RSP,
each process u satisfies one of the following three conditions:

(1) u < Vr and stu = I ,
(2) u = r and P_root (r) holds, or
(3) u ∈ Vr \ {r }, stu = C , parentu ∈ Γ(u), and du = d (u,r) =

dparentu + ωu (parentu).

5.3.2 Move Complexity of RSP. All edges have a positive integer
weight bounded by Wmax, so the total number of moves (and steps)

during any execution is bounded by (Wmax (nmaxCC−1)
2+5) (nmaxCC+

1)n (by Theorem 4.5), page 8), i.e., O (WmaxnmaxCC
3n).

5.4 Leader Election and Breadth-First Search
Tree

Assuming the processes have unique identifiers, Algorithm LEM_BFS
is the instantiation of STlC with the parameters given in Algorithm

5. In each connected component, Algorithm LEM_BFS elects the

process u (i.e., P_leader (u) holds) of smallest identifier and builds

a breadth-first search (BFS) tree rooted at u that spans the whole

connected component.

Recall that the weight of a path is the sum of its edge weights (in

this case, each edge as weight 1). The weighted distance between the

processes u and v , denoted by d (u,v), is the minimum weight of a

path from u to v . A shortest path from u to v is then a path whose

weight is d (u,v). When all edges have weight 1, a BFS spanning tree

rooted at u is a shortest-path (spanning) tree rooted at process u
that spans Vu .

Algorithm 5: Parameters for any process u in Algorithm

LEM_BFS

Inputs:
the same as the configuration of Algorithm LEM (Algorithm 3)

Ordered Magma:
the same as the configuration of Algorithm LEM (Algorithm 3)

Predicates:
• P_nodeImp (u) ≡ P_updateNode (u) ∨ P_updateRoot (u)
• P_leader (u) ≡ P_root (u)

5.4.1 Correctness of LEM_BFS. Following the same reasoning

as for Algorithm LEM and from the definition of P_nodeImp (u),
Algorithm LEM_BFS self-stabilizes to a terminal legitimate config-

uration that satisfies the following requirements.

Observation 5. In a terminal legitimate configuration of Algo-
rithm LEM_BFS, each process u satisfies one of the following condi-
tions:

(1) P_root (u) (≡ P_leader (u)) and u is the process of smallest
identifier in Vu , or

(2) stu = C ,parentu ∈ Γ(u),du = (pnameℓ ,d (u, ℓ)) = dparentu ⊕
(⊥,1), where ℓ is the process of smallest identifier in Vu .

5.4.2 Move Complexity of LEM_BFS. All edges have the same

weight, so the total number of moves (and steps) during any ex-

ecution is bounded by ((nmaxCC − 1)2 + 5) · (nmaxCC + 1) · n (see

Corollary 5 in the technical report online [22]), i.e.,O (nmaxCC
3 ·n).

6 CONCLUSION
We proposed a general scheme, called Algorithm STlC, to com-

pute spanning-tree-like data structures on arbitrary (not neces-

sarily connected) bidirectional networks. Algorithm STlC is self-

stabilizing and silent. It is written in the locally shared memory

model with composite atomicity. We proved its correctness under

the distributed unfair daemon hypothesis, the weakest scheduling

assumption of the model. We also showed that its stabilization time

is at most 4nmaxCC rounds, where nmaxCC is the maximum number

of processes in a connected component. Finally, we showed that its

stabilization times in steps and process moves are polynomial in

usual cases.

We illustrated the versatility of our approach by presenting sev-

eral instantiations of STlC that efficiently solve various classical

problems, i.e., in a linear number of rounds and polynomial number

of steps and process moves. For example, assuming the processes

have unique identifiers, we proposed two efficient instances of STlC
for electing a leader in each connected component and building a

spanning tree rooted at each leader. In the first version, the trees

are of arbitrary topology, while trees are BFS in the second. Using

our scheme, one can easily derive other instances to efficiently com-

pute shortest-path trees for example. Assuming now an input set of

roots, we also proposed an instance to efficiently compute a span-

ning forest of arbitrary shaped trees, with non-rooted components

ICDCN’19, January 2019, Bangalore, India Stéphane Devismes, David Ilcinkas, and Colette Johnen

detection. Again, one can easily enforce this latter construction to

efficiently compute BFS or shortest-path forests. Finally, assuming

a rooted network, we proposed an efficient shortest-path spanning

tree construction, with non-rooted components detection. Again,

efficient BFS or arbitrary tree constructions can be easily derived

from these latter instances.

Notice that, for many of these latter problems, there was, until

now, no solution in the literature where a polynomial step com-

plexity upper bound was proven.

REFERENCES
[1] Y. Afek and G. M. Brown. 1993. Self-Stabilization Over Unreliable Communication

Media. Distributed Computing 7, 1 (1993), 27–34.

[2] K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. 2017. Self-stabilizing

Leader Election in Polynomial Steps. Information and Computation 254 (2017),

330–366.

[3] Anish Arora, Mohamed G. Gouda, and Ted Herman. 1990. Composite Routing

Protocols. In Proceedings of the Second IEEE Symposium on Parallel and Distributed
Processing, SPDP 1990. IEEE Computer Society, Dallas, Texas, USA, 70–78.

[4] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. 2001. Cross-Over

Composition - Enforcement of Fairness under Unfair Adversary. In Self-Stabilizing
Systems, 5th International Workshop, WSS 2001 (Lecture Notes in Computer Science),
Ajoy Kumar Datta and Ted Herman (Eds.), Vol. 2194. Springer, Lisbon, Portugal,

19–34.

[5] Lélia Blin, Alain Cournier, and Vincent Villain. 2003. An Improved Snap-

Stabilizing PIF Algorithm. In Self-Stabilizing Systems, 6th International Symposium,
SSS 2003 (Lecture Notes in Computer Science), Shing-Tsaan Huang and Ted Herman

(Eds.), Vol. 2704. Springer, San Francisco, CA, USA, 199–214.

[6] Lélia Blin, Pierre Fraigniaud, and Boaz Patt-Shamir. 2014. On Proof-Labeling

Schemes versus Silent Self-stabilizing Algorithms. In Stabilization, Safety, and
Security of Distributed Systems - 16th International Symposium, SSS 2014 (Lecture
Notes in Computer Science), Pascal Felber and Vijay K. Garg (Eds.), Vol. 8756.

Springer, Paderborn, Germany, 18–32.

[7] Lélia Blin, Maria Gradinariu Potop-Butucaru, Stephane Rovedakis, and Sébastien

Tixeuil. 2010. Loop-Free Super-Stabilizing Spanning Tree Construction. In Stabi-
lization, Safety, and Security of Distributed Systems - 12th International Symposium,
SSS 2010 (Lecture Notes in Computer Science), Shlomi Dolev, Jorge Arturo Cobb,

Michael J. Fischer, and Moti Yung (Eds.), Vol. 6366. Springer, New York, NY, USA,

50–64.

[8] Fabienne Carrier, Ajoy Kumar Datta, Stéphane Devismes, Lawrence L. Larmore,

and Yvan Rivierre. 2015. Self-stabilizing (f, g)-alliances with safe convergence. J.
Parallel and Distrib. Comput. 81-82 (2015), 11–23.

[9] Jorge Arturo Cobb and Chin-Tser Huang. 2009. Stabilization of Maximal-Metric

Routing without Knowledge of Network Size. In 2009 International Conference on
Parallel and Distributed Computing, Applications and Technologies, PDCAT 2009.
IEEE Computer Society, Higashi Hiroshima, Japan, 306–311.

[10] Z. Collin and S. Dolev. 1994. Self-Stabilizing Depth-First Search. Inform. Process.
Lett. 49, 6 (1994), 297–301.

[11] A. Cournier. 2009. A lower bound for the Max + 1 algorithm. https://home.mis.

u-picardie.fr/~cournier/MaxPlusUn.pdf. Online; accessed 11 February 2009.

[12] Alain Cournier. 2010. A New Polynomial Silent Stabilizing Spanning-Tree Con-

struction Algorithm. In Structural Information and Communication Complexity,
16th International Colloquium, SIROCCO 2009 (Lecture Notes in Computer Sci-
ence), Shay Kutten and Janez Zerovnik (Eds.), Vol. 5869. Springer, Piran, Slovenia,

141–153.

[13] A. Cournier, S. Devismes, F. Petit, and V. Villain. 2006. Snap-stabilizing depth-first

search on arbitrary networks. Comput. J. 49, 3 (2006), 268–280.
[14] Alain Cournier, Stéphane Devismes, and Vincent Villain. 2005. A Snap-Stabilizing

DFS with a Lower Space Requirement. In Self-Stabilizing Systems, 7th Interna-
tional Symposium, SSS 2005 (Lecture Notes in Computer Science), Ted Herman and

Sébastien Tixeuil (Eds.), Vol. 3764. Springer, Barcelona, Spain, 33–47.

[15] A. Cournier, S. Devismes, and V. Villain. 2009. Light enabling snap-stabilization of

fundamental protocols. ACM Transactions on Autonomous and Adaptive Systems
4, 1 (2009), 6:1–6:27.

[16] Alain Cournier, Stephane Rovedakis, and Vincent Villain. 2011. The First Fully

Polynomial Stabilizing Algorithm for BFS Tree Construction. In Principles of
Distributed Systems - 15th International Conference, OPODIS 2011 (Lecture Notes
in Computer Science), Antonio Fernández Anta, Giuseppe Lipari, and Matthieu

Roy (Eds.), Vol. 7109. Springer, Toulouse, France, 159–174.

[17] A. K. Datta, S. Devismes, K. Heurtefeux, L. L. Larmore, and Y. Rivierre. 2016.

Competitive self-stabilizing k-clustering. Theoretical Computer Science 626 (2016),
110–133.

[18] A. K. Datta, S. Gurumurthy, F. Petit, and V. Villain. 2001. Self-Stabilizing Network

Orientation Algorithms In Arbitrary Rooted Networks. Stud. Inform. Univ. 1, 1
(2001), 1–22.

[19] A. K. Datta, L. L. Larmore, and P. Vemula. 2011. An O(n)-time Self-stabilizing

Leader Election Algorithm. J. Parallel and Distrib. Comput. 71, 11 (2011), 1532–
1544.

[20] A. K. Datta, L. L. Larmore, and P. Vemula. 2011. Self-stabilizing leader election in

optimal space under an arbitrary scheduler. Theoretical Computer Science 412, 40
(2011), 5541–5561.

[21] S. Devismes, D. Ilcinkas, and C. Johnen. 2016. Self-Stabilizing Disconnected

Components Detection and Rooted Shortest-Path Tree Maintenance in Polyno-

mial Steps. In 20th International Conference on Principles of Distributed Systems,
(OPODIS 2016) (LIPIcs), Vol. 70. Schloss Dagstuhl, Madrid, Spain, 10:1–10:16.

[22] S. Devismes, D. Ilcinkas, and C. Johnen. 2018. Silent Self-Stabilizing Scheme
for Spanning-Tree-like Constructions. Technical Report. HAL. https://hal.

archives-ouvertes.fr/hal-01667863

[23] S. Devismes and C. Johnen. 2016. Silent self-stabilizing BFS tree algorithms

revisited. J. Parallel and Distrib. Comput. 97 (2016), 11–23.
[24] Edsger W. Dijkstra. 1974. Self-stabilizing Systems in Spite of Distributed Control.

Commun. ACM 17, 11 (1974), 643–644.

[25] Shlomi Dolev. 2000. Self-stabilization. MIT Press, Cambridge, MA, USA.

[26] S. Dolev, S. Dubois, M. Potop-Butucaru, and S. Tixeuil. 2011. Stabilizing data-link

over non-FIFO channels with optimal fault-resilience. Inform. Process. Lett. 111,
18 (2011), 912–920.

[27] S. Dolev, M. G. Gouda, and M. Schneider. 1999. Memory Requirements for Silent

Stabilization. Acta Informatica 36, 6 (1999), 447–462.
[28] S Dolev, A Israeli, and S Moran. 1993. Self-stabilization of dynamic systems

assuming only Read/Write atomicity. Distributed Computing 7, 1 (1993), 3–16.

[29] Felix C. Gärtner. 2003. A Survey of Self-Stabilizing Spanning-Tree Construction
Algorithms. Technical Report. Swiss Federal Institute of Technolog (EPFL).

[30] Christian Glacet, Nicolas Hanusse, David Ilcinkas, and Colette Johnen. 2014.

Disconnected Components Detection and Rooted Shortest-Path Tree Mainte-

nance in Networks. In Stabilization, Safety, and Security of Distributed Systems
- 16th International Symposium, SSS 2014 (Lecture Notes in Computer Science),
Pascal Felber and Vijay K. Garg (Eds.), Vol. 8756. Springer, Paderborn, Germany,

120–134.

[31] C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen. 2016. Disconnected Components
Detection and Rooted Shortest-Path TreeMaintenance in Networks - extended version.
Technical Report. LaBRI, CNRS UMR 5800. https://hal.archives-ouvertes.fr/

hal-01352245

[32] M. G. Gouda and T. Herman. 1991. Adaptive Programming. IEEE Trans. Software
Eng. 17, 9 (1991), 911–921.

[33] Shing-Tsaan Huang and Nian-Shing Chen. 1992. A Self-Stabilizing Algorithm

for Constructing Breadth-First Trees. Inform. Process. Lett. 41, 2 (1992), 109–117.
[34] A. Kosowski and L. Kuszner. 2005. A Self-stabilizing Algorithm for Finding a

Spanning Tree in a Polynomial Number of Moves. In 6th International Conference
Parallel Processing and AppliedMathematics, (PPAM’05) (Lecture Notes in Computer
Science), Vol. 3911. Springer, Poznan, Poland, 75–82.

[35] Alberto Leon-Garcia and Indra Widjaja. 2004. Communication Networks (2 ed.).
McGraw-Hill, Inc., New York, NY, USA.

[36] Morris Sloman and Jeff Kramer. 1987. Distributed systems and computer networks.
Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK.

[37] G Tel. Second edition 2001. Introduction to distributed algorithms. Cambridge

University Press, Cambridge, UK.

https://home.mis.u-picardie.fr/~cournier/MaxPlusUn.pdf
https://home.mis.u-picardie.fr/~cournier/MaxPlusUn.pdf
https://hal.archives-ouvertes.fr/hal-01667863
https://hal.archives-ouvertes.fr/hal-01667863
https://hal.archives-ouvertes.fr/hal-01352245
https://hal.archives-ouvertes.fr/hal-01352245

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Roadmap

	2 Preliminaries
	2.1 Distributed Systems
	2.2 Computational Model
	2.3 Silent Self-Stabilization
	2.4 Time Complexity

	3 Algorithm STlC and its Round Complexity
	3.1 The problem
	3.2 The variables
	3.3 Typical Execution
	3.4 Error Correction

	4 Move and step complexities
	4.1 GC-segment
	4.2 Maximal Causal Chain

	5 Instantiations
	5.1 Spanning Forest and Non-Rooted Components Detection
	5.2 Leader Election
	5.3 Shortest-Path Tree and Non-Rooted Components Detection
	5.4 Leader Election and Breadth-First Search Tree

	6 Conclusion
	References

