
HAL Id: hal-02126985
https://hal.science/hal-02126985

Submitted on 11 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Keystroke Dynamics Anonymization System
Denis Migdal, Christophe Rosenberger

To cite this version:
Denis Migdal, Christophe Rosenberger. Keystroke Dynamics Anonymization System. SeCrypt Inter-
national Conference on Security and Cryptography, Jul 2019, Prague, Czech Republic. �hal-02126985�

https://hal.science/hal-02126985
https://hal.archives-ouvertes.fr

Keystroke Dynamics Anonymization System

Denis Migdal1 , Christophe Rosenberger1

1 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

{denis.migdal, christophe.rosenberger}@ensicaen.fr

August 11, 2019

Abstract

Keystroke Dynamics enables the authentication or iden-
tification of users by analyzing their way of typing, e.g.
when browsing the Internet. Most studies in the state
of the art focus on increasing Keystroke Dynamics Sys-
tems performances. In this paper, we address the is-
sue of avoiding the biometric capture of keystroke dy-
namics in order to protect users’ privacy. Authentica-
tion/identification, profiling can be considered as attacks
we limit in this contribution. Experimental results ob-
tained on significant datasets show the benefits of the pro-
posed approaches.
Keywords: Keystroke Dynamics Anonymization Sys-
tem, Keystroke Dynamics, Anonymization, WebExten-
sion, JavaScript, Browser, Browser Fingerprinting.

1 Introduction

Browser Fingerprinting aims at tracking users through
their browser thanks to discriminant data a service can
collect. This is usually proposed to ”personalize services”
corresponding to users profile-type, s.a. suggesting con-
tents depending on the user’s assumed Internet history.
Browser Fingerprinting goal is not to identify users with
assurance, but to classify the user into a category, e.g. by
identifying a set of browsing sessions belonging to the
same user, or type of users.

Panopticlick (Eckersley, 2010), IAmUnique (Laperdrix
et al., 2016), and UniqueMachine (Cao and Wijmans,
2017) websites enable the computation of browser fin-

gerprints from data collected by the website, generally
through the network and a JavaScript API, to determine
the fingerprint uniqueness among the previously com-
puted. The more the browser fingerprint is unique, the
more the service is able to discriminate the user. Infor-
mation used for browser fingerprinting might be linked,
e.g. to the hardware (e.g. GPU (Cao and Wijmans, 2017),
screen), to the operating system, to the browser, its config-
uration, installed fonts (Eckersley, 2010; Laperdrix et al.,
2016), browser history (Weinberg et al., 2011), or black-
listed domains (Boda et al., 2012). Such identification and
tracking are often not consented by the user, and poses
a threat to users’ online privacy, thus, leading researcher
and developers to study this issue and propose solutions
in order to protect users’ privacy (Laperdrix et al., 2016;
Nikiforakis et al., 2015; Moore and Thorsheim, 2016;
Eckersley, 2010; Acar et al., 2013).

Biometric capture can also be added to browser fin-
gerprinting, e.g. using the mouse (Jorgensen and Yu,
2011; Shen et al., 2013) or/and Keystroke (Revett et al.,
2007a; Giot et al., 2011; Kim et al., 2018). Such modal-
ity also enables to deduce private information about the
user, s.a. his/her gender or to link some identities. In this
study, we aim at protecting users’ privacy by anonymiz-
ing keystroke, thus limiting browser fingerprinting and
preventing deduction of private information about users,
while still allowing use of this modality in authentication
for consenting users.

As any biometric authentication solution, a keystroke
dynamic system (KDS) is composed of two main mod-
ules: the enrollment and the verification modules. Each
user must enroll himself/herself in the KDS in order to

1

compute its biometric reference template given multiple
samples (i.e., several inputs of the password) acquired
during the enrollment step. For each input, a sequence
of timing information is captured (i.e., time when each
key is pressed or released) from which some features are
extracted (i.e., latencies and durations) and used to learn
the model which characterizes each user. During a verifi-
cation request, the claimant types his/her password. The
system extracts the features and compares them to the bio-
metric reference template of the claimant. If the obtained
distance is below a certain threshold, the user is accepted,
otherwise he/she is rejected.

First works on KD have been done in the eight-
ies (Gaines et al., 1980), although the idea of using a key-
board to automatically identify individuals has first been
presented in 1975 (Spillane, 1975). In the preliminary
report of Gaines et al. (Gaines et al., 1980), seven sec-
retaries typed several paragraphs of text and researchers
showed that it is possible to differentiate users with their
typing patterns. Since then, several studies have been
done, allowing to decrease the quantity of information
needed to build the biometric reference, while improving
the performances (Umphress and Williams, 1985; Mon-
rose and Rubin, 2000; Revett et al., 2007b; Lee and Cho,
2007; Giot et al., 2011).

However, to the knowledge of the authors, no study
has yet tried to decrease their performances in order
to protect users’ privacy against unwanted authentica-
tion/identification or profiling. Indeed, many papers (Giot
and Rosenberger, 2012; Epp, 2010) have shown that some
soft biometric characteristics (emotion, gender, age . . .)
can be extracted from keystroke dynamics features, inter-
net services could profile users given a simple JavaScript
code embedded in the web page.

The main contribution of this paper is to propose mul-
tiple simple solutions for internet users to decide whether
its keystroke dynamics features could be used or not on

a specific website. Using keystroke dynamics could be
useful to enhance the security of authentication avoiding
complex password (logical access control to a bank ac-
count as for example). For other services, such as social
networks, an user might choose to disable the keystroke
dynamics capture. The proposed methods have been im-
plemented as a WebExtension as an operational proof of
concept. With this WebExtension, any user can easily de-
cide for which service, its keystroke dynamics features
could be used or not (GDPR requirement).

The article is organized as follows. Section 2 provides
some background information on the keystroke dynamics
biometric modality. We describe the possible attack and
the existing countermeasure in the literature. We propose
new protection schemes in section 3. Their efficiency
is illustrated through experimental results on significant
datasets. An implemented WebExtension is presented in
Section 4 and compared with the only existing solution.
Section 5 concludes and gives some perspectives of this
study.

2 Background

We present in this section some background information
on keystroke dynamics.

2.1 Keystroke dynamics system

As the number of collected samples during the enrollment
step is usually low, many Keystroke Dynamics Systems
are based on a distance. In the scope of this article, we
suppose that the attacker uses the Hocquet distance func-
tion (Hocquet et al., 2007): We aim at computing a score
between two templates KA and KB. We suppose that the
template KA is associated by µ and σ the average value of
biometric samples and the standard deviation (note that

Name Text # of users (45) Clock resolution EER Source
GREYC K greyc laboratory 104 10.0144ms 14.75% (Giot et al., 2009)

GREYC W1 laboratoire greyc 62 1ms 14.40% (Giot et al., 2012)
GREYC W2 sésame 46 1ms 25.39% (Giot et al., 2012)

CMU .tie5Roanl 51 0.2ms 19.38% (Killourhy and Maxion, 2009)

Table 1: Description of used datasets.

2

0/0 is assumed to be 0).

Score = 1− 1
n

n

∑
i=1

e−
|KB(i)−µi |

σi (1)

In the scope of this paper, the templates are composed of
the gap and dwell durations for each typed key, i.e. the
duration between two consecutive key press, and the time
a key is pressed. The 10 first templates of each user are
used for the reference template computation.

2.2 Keystrole dynamics datasets
There exist many keystroke dynamics datasets (Monaco,
2018). We decided in this work to focus on fixed text
datasets (i.e. where users typed the same passphrase).
Datasets have been cleaned to remove incoherent data,
e.g. entries in which the user did not type the asked text.
This corresponds to 13% of entries in GREYC W, and less
than 3 entries for other datasets.

In order to get comparable sets, only the first 45 en-
tries per users is kept, users with less than 45 entries, and
datasets with less than 45 users, are discarded. From the
existing fixed-text datasets, only 3 matched our criteria.
From these 3 datasets, we build 4 datasets composed of
a fixed text Keystrokes for each user (one having 2 fixed
text, 2 datasets are thus created). Table 1 gives the datasets
used in this work.

2.3 Attacker model
The attacker is able to execute arbitrary JavaScript code
on the users’ browser in order to identify them, using only
the keyboard events’ timestamps. We assumed, in this
paper, the typed text to be fixed, s.a. a login, e-mail, or
password. The attack is also possible on free text.

The attacker is able to measure the timestamps of key-
board events she/he receives with the JavaScript func-
tion Date.now(). Thus, modifying the events’ times-
tamps will have no effect, as the attacker can measure
them himself. However, events can be delayed, i.e. wait-
ing some time before sending the keyboard event. As
JavaScript events loop is mono-threaded, any active wait
is troublesome and will be easily detected by the attacker
using setInterval(), thus requiring the delayed event
to be destroyed, and recreated after a passive wait with
setTimeout().

The attacker has an a priori on the user’s identity, and
will be able to use any Keystroke Dynamics Systems,
and to perform any pre-processing, in order to identify
or profile him. The way the Keystroke Dynamics is pro-
tected, and the eventual parameters of such anonymiza-
tion scheme is also assumed to be known by the attacker.
Thus, such parameters should be fixed for all users in or-
der to prevent the attacker from using them to discriminate
users through browser fingerprinting techniques (Eckers-
ley, 2010).

2.4 Countermeasures in the literature
In order to avoid the attack described previously, the in-
ternet user can disable the JavaScript capability of his/her
internet browser. It has lots of usage consequences for
him/her.

Otherwise, the main idea of protecting the user from
identification/profiling given the keystroke dynamics data
is to disturb the collected information. Very few works
have been done in the state of the art to avoid the cor-
rect capture of keystroke dynamics on Internet. To our
knowledge, there exists a single work implemented as a
browser extension. KeyboardPrivacy(Moore and Thor-
sheim, 2016) is a Google Chrome extension that imple-
ments such a protection. Timestamp of each event is com-
puted as follows:

t ′i = max(t ′i−1, ti)+
{

b 1 time out of 2
0 1 time out of 2

Where b is a random value following an Uniform dis-
tribution between 0 and a (this value is user-defined).

2.5 Attack performance
The capacity of an attacker to authenticate an user will be
quantified with the maximal estimation of the Equal Er-
ror Rate (EER), which corresponds to configuration of the
biometric system when FAR equals FRR. The False Ac-
ceptance Rate (FAR) describes the ratio of accepted im-
postor data, the False Rejection Rate (FRR) describes the
ratio of falsely rejected legitimate users.

The performance of a KD Anonymization Scheme
(KDAS) will thus be quantified as the minimum of
the maximal estimation of the EER for each possible
KDS and pre-processing. For a given KDS and pre-
preprocessing, if the KDAS is not deterministic, the

3

KDAS is tested 20 times, and the mean of the maximal
estimation of the EER for each test is used. If the dataset
is not indicated, the number given is the average number
for each of the 4 datasets used in this study.

2.6 Attacker pre-processing

The timestamp of a given event depends of the resolution
and jitter of the clock used to measure it. The resolution
is the mean time between two clocks tics, and the jitter,
the difference between the theoretical clock tic timestamp
and its real timestamp. This mean that an event occur-
ring at a time t will have a timestamp of bt/rc ∗ r + j ,
where r is the clock resolution, and j a random noise (the
jitter). Existing studies have found that the clock reso-
lution influence KDS performances (Killourhy and Max-
ion, 2008), and discretization might improve KDS perfor-
mances (Giot et al., 2011).

In the following, we illustrate the impact of dis-
cretization. Timestamps values have been discretized us-
ing 1,001 different resolutions (from 0 to 1 by step of
1/1,000). As shown in Figure 3, attacker might expect
slight (J' 0.02 for GREYC W1) or negligible (J < 0.005)
EER improvement by doing so. Figure 1 shows the dis-
cretization can both increase or decrease the EER depend-
ing on the resolution. Figure 2 zooms on the area where
the EER decreases.

Jitter can be removed with the following formula : t ′ =
dt/rc∗r. As shown in Figure 3, it has negligible influence
on the EER (diff < 0.004, and noJ ' J), and thus does
not need to be removed.

In the next section, we propose new solutions to protect
internet users against their identification/profiling through
their keystroke dynamics.

3 Proposed protection schemes

We propose different solutions to anonymize keytroke dy-
namics of users. Their objective is to be able to use
keystroke dynamics features for internet services when
the user consents (for security applications), and to pro-
vide altered data otherwise (for privacy protection).

3.1 Costless protection
Release keyboard events can be automatically generated
at a constant time after the pressure event e.g. 2ms (A).
As shown in figure 4, such strategy increases significantly
the EER (0.044 ≤ A ≤ 0.117).

Users’ screen typically draw a frame every 1/60 sec-
onds. Thus, in an ordinary use, the time an event oc-
curred between two consecutive frames makes no dif-
ference to the users, i.e. any delay of an event to
match the time of the next frame is de facto impos-
sible to perceive for an user, and thus assumed cost-
less. Such operation can be trivially done thanks to
Window.requestAnimationFrame().

As shown in Figure 4, automatically generating release
events after delaying pressure events to the next frame
(DA), gives slight increase of the EER. However, such
strategy is interesting as it would suppress information
that could be exploited by other KDS.

In the following, non-costless KDAS, pressure events
will be delayed beforehand, and release events will be au-
tomatically generated afterward.

3.2 Non-blocking protection
In order to further increase the EER values, some events
have to be delayed beyond the next frame. Such delay
might be perceivable by the users and thus constitute a
cost in terms of usability of the KDAS. This cost, we call
latency, is computed as the maximal number of frames
skipped during a typing of a given text.

Non-blocking KDAS delays pressure events indepen-
dently from the previous, with the only constraint to pre-
serve the events’ order. Their parameters N are the num-
ber of frames that can be skipped, and de facto their la-
tency.

Two non-blocking KDAS are studied. In the first,
events are discretized with a resolution of (N +1)/60 (de-
lay), and in the second, events are delayed by n frames
with n an uniform discrete noise n∼U(0,N) (rdelay).
These two KDAS were tested with 15 configurations,
N ∈ J0,14K for delay, and N ∈ J1,15K for rdelay. As
shown in Figure 5, both provide significant protection
compared to the costless KDAS. However, for the same
latency, rdelay seems always better than delay.

Moreover, delay improves the EER for N=1, compared

4

Figure 1: Impact of discretization on the performance of KDS.

 0.1

 0.2

 0.3

 0.4

0 1 2 3

GREYC K
GREYC W1
GREYC W2

CMU
EER = 0.5

Optimal EER

Figure 2: Impact of the discretization on the performance
of KDS (zoomed).

to the costless KDAS. However, this does not decrease the
security as any pre-processing done with public informa-
tion cannot decrease the privacy. Indeed, even if a given
pre-processing decreases the EER, the attacker is likely to
perform such pre-processing if it has not be done by the
user.

3.3 Blocking protection
In order to continue to increase the EER value, events can
be delayed depending on the previous event. The first
blocking KDAS ensures that there is at least N frames
between each pressure events (block delay), the second

(block rdelay) delays them such as the ith pressure event’s
delayed timestamp (t ′i) is computed from the original
timestamp ti as follows: t ′i = max(t ′i−1, ti)+U(0,N)..

As shown in Figure 5, both blocking KDAS increase
the EER faster than non-blocking KDAS. However, as
shown in Figure 6, their latency also quickly explodes.
Thus, in order to compare fairly the KDAS between them,
Figures 7 and 8 gives the EER in function of the mean and
maximal latency.

As shown in Figure 7, block rdelay is in mean

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

GREYC K GREYC W1 GREYC W2 CMU

J

noJ

diff

0.137

1.932

0.422

0.112

0.137

1.932

0.422

0.122

0.055
0.000 0.000

0.376

Figure 3: Maximal absolute gains on the EER using 1,001
different discretizations with (J) or without jitter (noJ),
and maximal difference between EER with and without
jitter (diff). EER values are expressed in %.

5

slightly better than its non-blocking equivalent rdelay.
block delay is by far better than delay, but still worst than
rdelay. As for delay, block rdelay might improve the EER
compared to the costless KDAS for N ≤ 5.

However, as shown in Figure 8, when considering the
maximal latency, non-blocking KDAS out-perform by far
blocking KDAS. block rdelay only starts to be better than
delay when the maximal latency exceed near 24 frames
(0,4 seconds), that is an high latency, and never come
close to rdelay. block delay only becomes better than the
costless KDAS when the maximal latency exceed near 20
frames (0,333 seconds).

Moreover, when users type too fast (or N too high),
blocking KDAS latency adds up at each key pressed.
When this happens, t ′i will only be computed from t ′i−1,
i.e. every users will have the same way of typing, but
at the cost of a non-ergonomic and unacceptable latency.
Adapting N to match the user typing speed would enable
browser fingerprinting attacks, as it would enable the at-
tacker to discriminate users in function of their configu-
ration, i.e. the N parameter. This suggests that blocking
KDAS should be avoided in favor of non-blocking KDAS.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

GREYC K GREYC W1 GREYC W2 CMU

A

DA

0.053

0.044

0.065

0.117

0.053

0.045

0.066

0.123

Figure 4: Minimal absolute loss on the EER using 1,001
different discretizations with automatic release (A) and
delay then automatic release (DA).

4 Proof of concept implementation
We developed Keystroke Anonymization, a Firefox We-
bExtension, that implements the previously cited KDAS.
The WebExtension was used during the writing of this pa-
per on Overleaf (method: rdelay, N: 15). Users can en-
able/disable the protection using the Ctrl+K shortcut, and
can enable/disable generation of events using the Ctrl+G
shortcut.

A demonstration is also integrated to the WebExtension
enabling users to test usability and the protection of dif-
ferent configurations (see Figure 9).

4.1 Implementation issues
The manifest is a JSON configuration file used by We-
bExtensions. In order to make active the WebExtension
on all pages, content script’s matches field is set to
<all url>.

The WebExtension listens on each Keyboard events in
order to delay them. One important point is that the We-
bExtension listeners must be called before any other, or
else the attacker will be able to block call to the WebEx-
tension listeners, i.e. to prevent events from being delayed
by the WebExtension.

For that, content script’s run at field must be set
to document start, in order to the WebExtension script
to be executed before the page scripts, thus allowing it
to register listeners before any else. Indeed, listeners are
called in the order of their registration.

Moreover, listeners must be added on document, with
the third parameter of addEventListener(), capture,
set to true. Indeed, event propagation has two phases
in JavaScript, capture and bubble. In the capture phase,
events are propagated from the root element, document,
to the target element, e.g. an input. Then during the bub-
ble phase, events are propagated from the target element
to the root element. Thus, in order to be the first to cap-
ture the event, the WebExtension must capture it during
the capture phase, on the root element. The page must be
reloaded upon WebExtension installation or activation, in
order to ensure to be the first to register listener on already
opened pages.

Only the keydown and keyup events are listened to.
If the event has be been delayed, its immediate prop-
agation is stopped. If the event is a keydown, the

6

 0.3

 0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

costless
delay

rdelay
block_delay

block_rdelay

Figure 5: Minimal EER with 5 KDAS in function of their
parameter N.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

delay/rdelay
block_delay

M_block_delay
block_rdelay

M_block_rdelay

Figure 6: Mean, and maximum (prefixed with M), of the
expected latency for 5 KDAS in function of their parame-
ter N.

 0.2

 0.3

 0.4

 0.5

 0.6

0 5 10 15 20 25 30 35 40 45 50 55 60

raw
costless

delay
rdelay

block_delay
block_rdelay

Moore

Figure 7: EER in function of mean latency.

 0.2

 0.3

 0.4

 0.5

 0.6

0 5 10 15 20 25 30 35 40 45 50 55 60

raw
costless

delay
rdelay

block_delay
block_rdelay

Moore

Figure 8: EER in function of maximal latency.

event is captured, i.e. added to an array. As previ-
ously stated, delaying event must be done without active
wait. Thus, requiring to stop the event propagation with
event.stopImmediatePropagation(), and to latter re-
inject it with event.target.dispatchEvent(event).

The function window.requestAnimationFrame() is
used to call an handler in order to process captured events
before each frame. The frame in which each event will
have to be re-injected in then computed depending on the
KDAS method, and the parameter N.

However, re-injected event will loose their trusted sta-
tus as it no longer originate from user action. This means
that the event will trigger listeners but will not trigger the
target default behavior, e.g. add a character on an input.
This default behavior has thus to be simulated. Keyboard
events that are not a character (event.key.length !=
1), or when the ctrl key is pressed (event.ctrlKey) will
not be delayed.

For inputs and text area, this requires
to delete the current selection (between

7

elem.selectionStart, elem.selectionEnd), in-
sert the character between, set the cursor position
(elem.setSelectionRange(start+1, start+1)),
generate an input event, and add a listener to trigger
a change event when the element loses focus. As
elem.selectionStart and elem.selectionEnd are
not defined for all types of inputs (e.g. email), the type of
the input (elem.type), has to be changed to text while
accessing and modifying theses properties.

div elements can also be used to type text thanks to
the contentEditable=true attribute. This is used,
e.g. by the webmail GMail to write e-mail. For con-
tentEditable elements, current selection must be deleted
window.getSelection().deleteFromDocument().
The element and position in which insert the
character is givent by selection.focusNode
and selection.focusOffset. If the ele-
ment is a div, its content must be cleared
(div.removeChild(div.fistChild)), and a new
div containing a TextNode must be appended to the
fist div. If the element is a TextNode, or once the
TextNode created, its content is modified through
textNode.textContent.

Figure 9: Screenshot of the WebExtension (debug mode).

Before creating an input event, the cursor has to be up-
dated in the following way:
let range = document.createRange();
range.setStart(textNode, start+1);
range.setEnd(textNode, start+1);
range.collapse(false);
selection.addRange(range).

Unfortunately, the creation of new lines ignore the po-
sition of the cursor if the mouse or the arrows key has not
been used since the last delayed event. Events s.a. key-
press, input, change, could also not be generated when
simulating the default behavior on events, to increase the
privacy protection by making it more difficult to an at-
tacker to deduce the event timestamp, however, this might
impact the functionality of some websites.

4.2 Comparison with KeyboardPrivacy

As shown in Figure 7, KeyboardPrivacy is, in average,
slightly less efficient than rdelay when the latency exceed
near 7 frames (117ms), and is worst than any other non-
costless KDAS before when the latency is near under 7
frames. It is even less efficient than a costless KDAS
when the latency is near under 4 frames (67ms).

As shown in Figure 8, KeyboardPrivacy is, when con-
sidering the maximal latency, worst than any other KDAS
at the exception of block delay. It is even less efficient
than the costless KDAS when the maximal latency is near
under 15 frames (0,25 seconds). The construction of this
KDAS extension seems to be ad hoc, and could be im-
proved using the conclusion of this study:

• use passive waits instead of active waits ;
• automatically generate release events ;
• delays pressure events to the next frame ;
• use non-blocking KDAS (rdelay) to limit the latency

;
• use fixed parameters for all users to prevent finger-

printing attacks.

It also suffers from several security vulnerabilities. In-
deed, the events are captured during the bubble phase, in-
stead of the capture phase. Moreover, the script is, by
default, executed after the page has been loaded. This We-
bExtension also does not support ContentEditable fields.

8

5 Conclusion and perspectives
This work constitutes a preliminary study on the
Keystroke Dynamics Anonymization Scheme. Perfor-
mances of presented KDAS has been demonstrated using
3 state of the art fixed-text keystroke dynamics datasets.
However performances and latency may vary depending
on the written text, and the user. KDAS introduce a trade-
off between performances (security) and latency (usabil-
ity). The latency has been evaluated in term of duration,
and should be evaluated in terms of usability.

Other KDS could be tested, for authentication, but
also, e.g. for soft-biometrics. Attacker model could also
be modified in order to include the knowledge of non-
protected users references. Other KDAS are also pos-
sible, e.g. using non-regular discretization, using non-
uniform random laws, or by merging KDAS (e.g. merg-
ing delay and rdelay). An hardware implementation of
such KDAS, could be also imagined, e.g. in the form of a
programmable USB to USB device between the keyboard
and the computer. Presented KDAS techniques could be
applied to mouse events.

REFERENCES
Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S.,

Piessens, F., and Preneel, B. (2013). Fpdetective: dust-
ing the web for fingerprinters. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications
security, pages 1129–1140. ACM.

Boda, K., Földes, Á., Gulyás, G., and Imre, S. (2012). User
tracking on the web via cross-browser fingerprinting. In-
formation Security Technology for Applications, pages 31–
46.

Cao, S. Y. and Wijmans, E. (2017). Browser fingerprinting via
os and hardware level features. Network & Distributed
System Security Symposium, NDSS, 17.

Eckersley, P. (2010). How unique is your web browser? In Inter-
national Symposium on Privacy Enhancing Technologies
Symposium, pages 1–18. Springer.

Epp, C. (2010). Identifying emotional states through keystroke
dynamics. Master’s thesis, University of Saskatchewan,
Saskatoon, CANADA.

Gaines, R., Lisowski, W., Press, S., and Shapiro, N. (1980).
Authentication by keystroke timing: some preliminary re-
sults. Technical Report R-2567-NSF, Rand Corporation.

Giot, R., Abed, M. E., and Rosenberger, C. (2012). Web-based
benchmark for keystroke dynamics biometric systems: a
statistical analysis. In Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP), 2012 Eighth In-
ternational Conference on, pages 11–15. IEEE.

Giot, R., El-Abed, M., Hemery, B., and Rosenberger, C.
(2011). Unconstrained keystroke dynamics authentication
with shared secret. Computers & Security, 30(6-7):427–
445.

Giot, R., El-Abed, M., and Rosenberger, C. (2009). Greyc
keystroke: a benchmark for keystroke dynamics biometric
systems. In IEEE International Conference on Biometrics:
Theory, Applications and Systems (BTAS 2009), pages 1–
6.

Giot, R. and Rosenberger, C. (2012). A new soft biometric ap-
proach for keystroke dynamics based on gender recogni-
tion. International Journal of Information Technology and
Management (IJITM). Special Issue on : ”Advances and
Trends in Biometrics by Dr Lidong Wang, 11(1/2):35–49.

Hocquet, S., Ramel, J.-Y., and Cardot, H. (2007). User classifi-
cation for keystroke dynamics authentication. In The Sixth
International Conference on Biometrics (ICB2007), pages
531–539.

Jorgensen, Z. and Yu, T. (2011). On mouse dynamics as a be-
havioral biometric for authentication. In Proceedings of
the 6th ACM Symposium on Information, Computer and
Communications Security, pages 476–482. ACM.

Killourhy, K. and Maxion, R. (2008). The effect of clock reso-
lution on keystroke dynamics. In Proceedings of the 11th
international symposium on Recent Advances in Intrusion
Detection, pages 331–350. Springer.

Killourhy, K. S. and Maxion, R. A. (2009). Comparing anomaly
detectors for keystroke dynamics. In Proc. of the 39th Ann.
Int. Conf. on Dependable Systems and Networks, pages
125–134.

Kim, J., Kim, H., and Kang, P. (2018). Keystroke dynamics-
based user authentication using freely typed text based on
user-adaptive feature extraction and novelty detection. Ap-
plied Soft Computing, 62:1077–1087.

Laperdrix, P., Rudametkin, W., and Baudry, B. (2016). Beauty
and the beast: Diverting modern web browsers to build
unique browser fingerprints. Security and Privacy (SP),
pages 878–894.

Lee, H. and Cho, S. (2007). Retraining a keystroke dynamics-
based authenticator with impostor patterns. Computers &
Security, 26(4):300–310.

Monaco, V. (2018). Public keystroke dynamics datasets.

9

Monrose, F. and Rubin, A. (2000). Keystroke dynamics as a
biometric for authentication. Future Generation Computer
Syststems, 16(4):351–359.

Moore, P. and Thorsheim, P. (2016). Keyboard privacy plugin.
Nikiforakis, N., Joosen, W., and Livshits, B. (2015). Privari-

cator: Deceiving fingerprinters with little white lies. Pro-
ceedings of the 24th International Conference on World
Wide Web, pages 820–830.

Revett, K., de Magalhaes, S., and Santos, H. (2007a). On the
use of rough sets for user authentication via keystroke dy-
namics. In EPIA Workshops, pages 145–159.

Revett, K., Gorunescu, F., Gorunescu, M., Ene, M., Tenreiro, S.
d. M., and Santos, H. M. D. (2007b). A machine learn-
ing approach to keystroke dynamics based user authenti-
cation. International Journal of Electronic Security and
Digital Forensics, 1:55–70.

Shen, C., Cai, Z., Guan, X., Du, Y., and Maxion, R. A.
(2013). User authentication through mouse dynamics.
IEEE Transactions on Information Forensics and Security,
8(1):16–30.

Spillane, R. (1975). Keyboard apparatus for personal identifica-
tion. IBM Technical Disclosure Bulletin.

Umphress, D. and Williams, G. (1985). Identity verification
through keyboard characteristics. Internat. J. Man Ma-
chine Studies, 23:263–273.

Weinberg, Z., Chen, E. Y., Jayaraman, P. R., and Jackson, C.
(2011). I still know what you visited last summer: Leak-
ing browsing history via user interaction and side channel
attacks. Security and Privacy (SP).

10

