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NON-REDUCED MODULI SPACES OF SHEAVES ON MULTIPLE CURVES

JEAN-MARC DREZET

ABSTRACT. Some coherent sheaves on projective varieties have a non reduced versal deforma-
tion space. For example, this is the case for most unstable rank 2 vector bundles on Py (cf.
[18]). In particular, it may happen that some moduli spaces of stable sheaves are non reduced.

We consider the case of some sheaves on ribbons (double structures on smooth projective
curves): the quasi locally free sheaves of rigid type. Let E be such a sheaf.

— Let € be a flat family of sheaves containing E. We find that it is a reduced deformation
of E when some canonical family associated to € is also flat.

— We consider a deformation of the ribbon to reduced projective curves with two components,
and find that F can be deformed in two distinct ways to sheaves on the reduced curves. In
particular some components M of the moduli spaces of stable sheaves deform to two components
of the moduli spaces of sheaves on the reduced curves, and M appears as the “limit” of varieties
with two components, whence the non reduced structure of M.

Mathematics Subject Classification : 14D20, 14B20

1. INTRODUCTION

Let Y be a projective variety over C and E a coherent sheaf on Y. Let (Vg,vp, Eg, ) be a
semi-universal deformation of E' ((Vg,vg) is a germ of an analytic variety, g is a coherent sheaf
onY xVgand a:&gs — E is an isomorphism, cf. [I7]). It may happen that Vg is not
reduced at sg, for example in the case of unstable rank-2 vector bundles on Py (cf. [18]). We
will study here the case of some sheaves on multiple curves (in particular on ribbons, i.e. double
structures on smooth projective curves), and try to see why Vg is not reduced, and similarly
why some moduli spaces of stable sheaves on Y are not reduced.

If ¥ is a flat family of sheaves on Y parametrised by the germ (7', ¢y) of an analytic variety,
and if F;, ~ E, there is a morphism ¢ : (T,ty) — (Vg,v9) such that (Ix x ¢)*(€g) ~ F, with
a uniquely defined tangent map

T;,T — T, Ve = Exty (E, E) .

If T is reduced then ¢ can be factorized to Vg, .4, the reduced germ associated to Vg:

¢:T . VErea™— Vg . It is then natural to ask:

(i) What is the tangent space T, Vi rea C Ext(lgx (E,E)?
(ii) Under which conditions on F, when 7" is non reduced, is ¢ a morphism to Vg ,eq 7

and the more vague question
(iii) Why can Vg be non reduced ?

The problem can also be stated in terms of moduli spaces of stable sheaves: let Oy (1) be an
ample line bundle on Y and Pg the Hilbert polynomial of £. Let M be the moduli space of
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2 JEAN-MARC DREZET

sheaves on Y, stable with respect to Ox(1), and with Hilbert polynomial Pg. Suppose now
that E' is stable. We can then ask

(i’) What is the tangent space TpM,eq C TpM ?
(ii") If F is a flat family of stable sheaves with Hilbert polynomial Pg, parametrised by a
variety T', we get a morphism ¢ : T'— M. Under which conditions on &, when T is non

reduced, is ¢ a morphism to M,.4 7
(iii") Why can M be non reduced ?

We suppose now that Y is a primitive multiple curve (i.e. a Cohen-Macaulay scheme whose
associated reduced scheme is a projective smooth curve, and such that Y is locally embeddable
in a smooth surface). In this case, there is a canonical filtration of F, and the first result
of this paper (theorem 3.2.1) is that the associated reduced scheme Vg ,.q of Vi corresponds
to deformations of E such that this associated filtration deforms flatly together with a flat
deformation of E. A similar result has been proved in [I8] for unstable rank-2 vector bundles
on Ps.

Suppose now that Y is a ribbon (a primitive multiple curve of multiplicity 2). For suitable
sheaves E, we have seen in [II] that the fact that Vg is not reduced can also be explained
by considering deformations of Y to reduced curves with two irreducible components and the
associated deformations of E: in fact E can be deformed in two distinct ways to sheaves on
the deformations of Y. In other words the deformation space Vg can be seen as the “limit”
of two sequences of deformation spaces of sheaves on the reduced curves with two irreducible
components, whence the non reduced structure on Vg.

The second result of this paper (theorem 5.2.1) is a description of the part of the non reduced
structure of Vx that comes from such a deformation of Y.

1.1. FIRST RESULT — GOOD FAMILIES OF SHEAVES ON MULTIPLE CURVES

Let Y be a primitive multiple curve and C' = Y., the associated smooth curve. Let Jo be the
ideal sheaf of C'in Y. The multiplicity of Y is the smallest integer n such that J = 0. We have
a filtration C=C; C--- C C, =Y, where for 1 <17 <n, C; is the subscheme corresponding
to the ideal sheaf J, (C; is a primitive multiple curve of multiplicity 7).

A coherent sheaf € on Y is called quasi locally free if there exist integers my, ..., m, such that

€ is locally isomorphic to @ O¢, ® C™. The sequence (my, ..., m,) is called the type of €.
i=1

Let X be a connected algebraic variety, and [E a coherent sheaf on X x Y, flat on X, such that

for every closed point = € X, E, is quasi locally free of type (my,...,m,). For 0 <i <n let

E; = JLE (so that E;/E;y; is concentrated on X x C'). We say that E is a good family if for

0 <i < n the sheaf E;/E;;; on X x C'is flat on X (which is equivalent to say that it is locally

free on C'). Then we have the theorem 3.2.1:

Theorem: 1 — The sheaf E is a good family if and only if it is locally isomorphic to
D= Oxxc, ® C™.
2 — IfE is a good family on X XY, then for every x € X the image of the Kodaira-Spencer
morphism of E

wy(E) : TX, — Extg (E,,E,)
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is contained in H'(End(E,)).

For the sheaves on ribbons studied in , H'(&nd(E,)) is the tangent space of Vg, yeq, and if
E is a good family then the image of the canonical morphism to Vg, associated to E at x is
contained in Vg, yeq-

1.2. SECOND RESULT — THE NON-REDUCED STRUCTURE OF THE DEFORMATION SPACES OF SHEAVES
ON A RIBBON Y AND ITS RELATIONS WITH THE DEFORMATIONS OF Y

Suppose that Y is a ribbon (a primitive multiple curve of multiplicity 2). Let C' =Y,.4. For
vector bundles Vi is smooth (because in this case Extg (E,E) = {0}). We will consider
quasi-locally free sheaves of rigid type (defined and studied in [6]), i.e. coherent sheaves locally
isomorphic to rOy & O¢ for some integer r. Deformations of these sheaves are also quasi-
locally free sheaves of rigid type, and deg(E|¢) is invariant under deformation.

For these sheaves, for (i) we have from [6]: T,,Veea = H'(End(E)). Let L be the ideal sheaf
of C'in Y. It is a line bundle on C. We will prove in that

T Vi T Virea = H(Exty (E,E)) ~ H°(L*).

We suppose that deg(L) < 0, and consider a maximal reducible deformation of Y, i.e. a flat
morphism 7 : € — S, and P € S, such that

— S is a smooth curve and Cp ~ Y.

— C is a reduced algebraic variety with two irreducible components €y, Cs.

~ Fori=1,2,let 7 :C — S be the restriction of 7. Then =;'(P) = C and 7, is a
flat family of smooth irreducible projective curves.

— For every s € S\{P}, the components C; s, Co s of Cs meet transversally.

For every s € S\{P}, €1 and Cy s meet in exactly —deg(L) points. It is proved in [I0] that
such a deformation exists if L can be written as L = O¢(—P, — -+ — Py), for distinct points
Py,..., P, of C. In this case we can construct C such that if Z is the closure of the set of
intersections points of the components Cy 5, Cy 5 of C5, s # P, we have ZNC = {Py,..., P}

We denote by Ae C H°(L*) the 1-dimensional subspace generated by the isomorphism
L~0c(—P, —--+— P;). Note that this parameter Ae of € lies in the vector space
T, VE/Tw,VErea which measures the non-reduceness of V.

To relate the deformations of £ and those of Y we use the Kodaira-Spencer elements associated
to pairs of sheaves on € (cf. . Let €1, €5 be coherent sheaves on C, flat on S, and such that
E1,p = & p = E. Then we define

we, e, € Ext(lgy(E, E)
On the second neighbourhood Y, of Y in € we have exact sequences
0 —FE— &y, — E—0

for ¢ = 1,2, and associated elements o; € Ext(lgyz (E, E). The difference we, ¢, = 01 — 02 lies
in Exty_(E, E).
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Let & be a coherent sheaf on €, flat on S and such that &y = E. Recall that £ is locally
isomorphic to rOy @& O¢ with r > 0. Then from [II] there are two possibilities: for every
s € S\{P} in a neighbourhood of P

1) Ege,.\z is locally free of rank r and €, ,\z is locally free of rank r + 1,
2) Ege,.\z is locally free of rank r + 1 and &e, ,\z is locally free of rank r,

(that is: € is of rank r on one of the components of € and of rank r + 1 on the other). So we
see that F can be deformed in two distinct ways to sheaves on the reduced curves with two
components.

We then consider two such coherent sheaves €1, €P on @, and we have two cases:
Case A

- EE] is of rank 7 on €y \Z and of rank r + 1 on C; 4\Z.
— el is of rank 7+ 1 on Ca,5\Z and of rank r on C; 4\Z.

Case B
— 8?1 and €2 are of rank 7 on Ca,5\Z and of rank r 4+ 1 on € 4\Z.

Let
¢ Exty (E,E) — H°(Exty (B, E)) ~ H(L")
be the canonical morphism. Recall that its kernel H'(End(F)) corresponds to good deforma-

tions of E, or deformations parametrised by a reduced variety (cf. 1.1). Then we have (theorem
5.2.1)

Theorem : 1 — In case A, ¢(wen gi21) generates Ae.

2 — in case B, we have ¢(wen gi2) = 0.

This means that the “non-reduced part” of the deformation of F to sheaves on € in
T VE/To VE red, corresponds to some parameter of the deformation of Y to reduced curves
with two components. If E is stable, we have two canonical morphisms f; : U - M, i = 1,2,
corresponding to &M, where U is a neighbourhood of P in S and p: M — S is the relative
moduli space of stable sheaves on € containing F, and we have f;(P)= E. The image of
T f1.p — T fsp is contained in Ext(lgy(E, E) (the tangent space of p~!(P) at E). The preceding
theorem implies that in case A, the image of T'f; p — T fo p is contained in ¢~'(A¢), and in case
B, its image is contained in Ty, _,.

Remarks: — It is proved in [II] that given a quasi locally free sheaf £ on Y (i.e. a sheaf
locally isomorphic to a direct sum aOy @ bO¢), there exists a smooth curve S, P’ € 5’ a
morphism f:S" — S such that f(P') = P, with non zero tangent map at P’, and a coherent
sheaf & on f*C flat on S’ and such that £, = F, i.e. E can be deformed to sheaves on the
reduced curves with two components.

— In [6] many examples of non-empty moduli spaces of stable sheaves containing quasi locally
free sheaves of rigid type are given.

Notation: In this paper, an algebraic variety is a quasi-projective scheme over C.
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1.3. OUTLINE OF THE PAPER

Section 2 contains definitions and properties of primitive multiple curves of any multiplicity,
with some particular results for ribbons. This section contains also a description of the Kodaira-
Spencer elements that are used here.

Section 3 is devoted to the study of quasi locally free sheaves of rigid type on a primitive
multiple curve, and to their deformations. In particular we give an answer to question (ii).
Some results are valid in any multiplicity.

In section 4 we recall some definitions concerning maximal reducible deformations of ribbons,
i.e. deformations to reduced curves with two components intersecting transversally. We recall
also some results about deformations of quasi locally free sheaves of rigid type on ribbons to
sheaves on the reduced curves with two components.

In section 5 we prove the main result of this paper, i.e. the theorem 5.2.1.

2. PRELIMINARIES

2.1. PRIMITIVE MULTIPLE CURVES AND QUASI LOCALLY FREE SHEAVES

(cf. [, [21, [, 1], [6], [7], [8], [12]).

2.1.1. Definitions — Let C' be a smooth connected projective curve. A multiple curve with
support C'is a Cohen-Macaulay scheme Y such that Y,., = C.

Let n be the smallest integer such that Y = C(»=1 C*=1 heing the k-th infinitesimal neigh-
bourhood of C, i.e. Jou1) = 3’5 . We have a filtration C' =C, CcCyC---C C,, =Y where
C; is the biggest Cohen-Macaulay subscheme contained in Y N C#~Y. We call n the multiplicity
of Y. We say that Y is primitive if, for every closed point = of C| there exists a smooth surface
S, containing a neighbourhood of = in Y as a locally closed subvariety. In this case, L = ¢ /I,
is a line bundle on C' and we have J¢, = ch, Jo; /3¢, = L7 for 1 < j <n. We call L the line
bundle on C' associated to Y. Let P € C. Then there exist elements y, t of mg p (the maximal
ideal of Og p) whose images in mg p/m3 p form a basis, and such that for 1 <7 < n we have

Je,p = (y') -
We will write O,, = O¢, and we will see O; as a coherent sheaf on C),, with schematic support

2.1.2. The canonical filtrations — Let € be a coherent sheaf on Y. The first canonical filtration
of £, 0=2¢,C&, 1 C---C& =&, is defined as follows: for 0 <i < n, we have &; =JLE.
For 0 < i < n, the sheaf G;(€) = &;/&;41 is concentrated on C. The same definition applies if
€ is a coherent sheaf on a non-empty open subset of Y. The pair

(&) = ((k(Go(&)), ... . 1k(Gr-1(€)) , (deg(Go(£)),..., deg(Gn-1(€)))
is called the complete type of €.

Let X be an algebraic variety and E a coherent sheaf on X x Y, flat on X. We can also define
the first canonical filtration of E, 0 =E, CE, ; C--- CEy=E, by E; = p};-(J5)E .
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The second canonical filtration of €, 0 = EO ceMc...c &M =¢ is defined as follows: for
0<i<nand P e, 85? is the set of u € €p such that TC’Pu = 0. For 1 <i < n, the sheaf
GO (&) = €W /e is concentrated on C.

2.1.3. The case of double curves — If n =2, let € be a coherent sheaf on Y = (5. Then we
have canonical exact sequences

0—& —&—&c—0, 0—&eM se _se@ e @l —0.

2.1.4. Quasi locally free sheaves — Let P € C' and M a Oy, p-module of finite type. We say that
M is quasi free if there exist integers m; > 0, 1 < ¢ <n, such that M ~ @} ,m;0; p. These
integers are uniquely determined. In this case we say that M is of type (mq,...,my,).

Let € be a coherent sheaf on a non-empty open subset V' C Y. We say that € is quasi locally free
at a point P of V' if there exists a neighbourhood U C V of P and integers m; > 0,1 < < n,

such that for every Q) € U, €¢ is quasi free of type my,...,m,. The integers my,...,m, are
uniquely determined and depend only of €, and (my,...,m,) is called the type of €.

We say that € is quasi locally free if it is quasi locally free at every point of V. The module €p
is quasi locally free at P if and only if the O¢ p-modules G;(Ep) are free, and € is quasi locally
free if and only if the sheaves G;(€) are locally free on C.

2.2. GENERALISATION OF THE KODATRA-SPENCER MORPHISM

Let S be a smooth curve and sy € S a closed point. Let p: X — S be a flat projective morphism
of algebraic varieties. Let Y = p~!(sg). It is a projective variety. Let €, & be coherent sheaves
on X, flat on S, such that there exists an isomorphism &y ~ 81y. Let £ = &y. Let Y3 be the
second infinitesimal neighbourhood of Y in X. If 362) is the second infinitesimal neighbourhood

of sgin S, we have Y, = p‘l(s(()2)). The ideal sheaf Jy- of Y in Y5 is isomorphic to Oy. We have
canonical exact sequences

0—>E=E®Jy —>&y, —>E—>0

O—>E:E®JYL>ETY2—>E—>O
(the injectivity of i and i’ follows easily from the flatness of €, & over S). Let
o,0 € EXtéY2 (E, E) correspond to these extensions.

Let 0 - F —93 — E — 0 be an exact sequence of coherent sheaves on Y;. The canonical
morphism F ® Jy — F induces a morphism F ® Jy — E, which vanishes if and only if F is
concentrated on Y. In this way we get an exact sequence

0 — Exty, (E, E) — Exty, (E, E) — End(E) .

We have p(c)=p(c') =1Ip. So we have wge =0 — o' € Exty (E,E). We call wge the
Kodaira-Spencer element associated to &, E'.
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Connections with the Kodaira-Spencer morphism — Suppose the X is the trivial family:
X=Y xS. Let

wso : TsyS — Exty (E, E)
be the Kodaira-Spencer morphism of €. Suppose that & is the trivial family: &' = p} (F)
(where py is the projection Y x S — S). The isomorphism Jy ~ Oy is defined by the choice
of a generator ¢ of the maximal ideal of sy in S. Let u be the associated element of 7 S. Then
we have we g = ws,(u).

3. QUASI LOCALLY FREE SHEAVES OF RIGID TYPE

We keep the notations of

3.1. DEFINITIONS AND BASIC PROPERTIES

A quasi locally free sheaf € on Y is called of rigid type if it is locally free or locally isomorphic
to a0, & Oy for some integers a > 0, 1 < k < n. The set of isomorphism classes of quasi locally
free sheaves of rigid type of fized complete type (cf. is an open family (cf. [6], 6-): let
X be an algebraic variety, [E a coherent sheaf on X x Y, flat on X, and z € X a closed point.
Suppose that E, is quasi locally free of rigid type. Then there exists an open subset U of X
containing x such that, for every 2’ € U, E,/ is quasi locally free and o(E,/) = o(E,).
More generally, let € be a quasi locally free sheaf on Y, locally isomorphic to aO,, & bO;, with
a,b> 0,1 <k < n. By [0], proposition 5.1, there exists a vector bundle E on Y and a surjective
morphism

p:E— €&
inducing an isomorphism Ejc ~ €c. Let £ = ker(¢). By [6], lemme 5.2, £ is a vector bundle
of rank b on C,_j. Let P € (C, and z € Oyp an equation of C. At P the exact sequence
0L —>E— &— 0 isisomorphic to the trivial one

0— ()eC'~0, 1poC — 0,p@(C*PC’) — (9,pRCY) & (Opp ®C") — 0.

3.1.1. Lemma: There is a canonical isomorphism
Lo, ~ (EW/E, 1) @I .

Proof. Let P € C, z € Oy,p an equation of C and u € Eg). Let v € Ep be such that ¢p(v) = wu.
Then we have ¢p(z¥v) = zFu =0, hence 2*v € Lp. If v/ € Ep is such that ¢p(v') = u, we
have w = v’ — v € Lp, hence the image of 2% = zFv + 2w in Lp/2*Lp is the same as that of
zFv. By associating zFv to u ® z¥ we define a morphism 6: & @I — Ly, If u € &,k p,
let u' € €p be such that u = 2" *u/. Let v € Ep be such that ¢p(v') = v’. Then we can take
v = 2""% and then z*v = 0, hence 0p(u ® z¥) = 0. It follows that ¢ induces a morphism

0:(EW /e k) @TE — Lig, -
In the above description of the exact sequence 0 - L — E — & — 0,

we have ng)/gn_hp =0rp®C’ and 0p = (Orp ®C*) @ (2%) — (2F) ® C® is the identity
morphism. Hence ¢ is an isomorphism. 0
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The sheaf £c, is a vector bundle of rank b, on Cy if 2k < n, and on C,_y if 2k > n.

3.1.2. Corollary: There is a canonical isomorphism
Eaty, (€,€) = Hom((€W /&) @I, €W [€,y) .

Proof. From the exact sequence 0 - £ — E — & — 0, we deduce the exact sequence
Hom(E, &) — Hom(L, &) — Eaty (€,€) — 0,
and the result follows easily using local isomorphisms of € with aO,, ® b0, and lemmal3.1.1 [

If € is of rigid type (i.e. if b= 1), then E® /&, _, is a line bundle on Cint(kn—k), and it follows
that
Eaty, (€,8) ~ Hom(ﬂé‘c

inf(k,n—k)’

Oint(k,n—k)) -
It follows that we have an exact sequence

0 — H'(&nd(€)) — Exty, (€,€) — Hom(J’g,CmW_k), Oint(kn—t)) —= 0

HO(Exty, (E,€))

3.1.3. The case of double curves — If n = 2 we have k = 1 and from corollary
Eaty, (€,8) ~ L*.

3.1.4. Remark: Let Let X be an algebraic variety, E a coherent sheaf on X x Y, flat on X,
such that for every closed point x € X, E, is quasi locally free of rigid type. Let x € X, and

we(E) : TX, — Extg, (Es, E,)

the Kodaira-Spencer morphism of E. Let X,.q be the reduced subscheme associated to X.
Then the image of Kodaira-Spencer morphism of Ex _,xy

wz(EXrede) : TXred,z — EXt(lgy (Ex,Ex)

is contained in H'(End(E,)). Suppose that E is a complete deformation of E, (i.e. w,(E) is
surjective), and that E, is simple. Then im(w,(E |y, ,xv)) = H'(End(E,)) (cf. [6], théoréme
6.10, corollaire 6.11).

3.2. FAMILIES OF QUASI LOCALLY FREE SHEAVES OF RIGID TYPE

Let mq, ..., m, be non negative integers. Let X be a connected algebraic variety, U C X x Y an
open subset such that px(U) = X (where px is the projection X x Y — X) and E a coherent
sheaf on U, flat on X, such that for every closed point x € X, E, is quasi locally free of type
(mq,...,my). We say that E is a good family if for 0 < i < n the sheaf E;/E;,; on (X x C)NU
is flat on X (where 0 =E, CE,_; C--- C Ey = E is the first canonical filtration of E). If E
is a good family then by [I3], exposé IV, proposition 1.1, for 0 <i < n, E; is a flat family of
sheaves on C,,_;, and by [16], lemma 1.27, E;/E;,; is a vector bundle on X x C.
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3.2.1. Theorem: 1 — The sheaf E is a good family if and only if it is locally isomorphic to
Di—1 Oxxc, @ C™.
2 — IfE is a good family on X XY, then for every x € X the image of the Kodaira-Spencer
morphism of E

wy(E) : TX, — Extg, (E,, E,)
is contained in H'(End(E,)).

Proof. Suppose that E is locally isomorphic to €;_; Oxxc, ® C™. Then it is obvious that the
sheaves E;/E;, are vector bundles on (X x C') N U, hence they are flat on X and E is a good
family. On the other hand, the local structure of E does not vary when z varies, hence for every
P € C, the image of im(w,(E)) in Ext(lgyyp (E; p,E; p) must be 0, so im(w,(E)) C H'(End(E,)).

Conversely, suppose that E is a good family. The proof that E is locally isomorphic to
DB, Oxxc, ® C™ is similar to that of théoréme 6.5 of [6]. We make an induction on n.
The result for n =1 follows from [16], lemma 1.27. Suppose that it is true for n — 1 > 1. We
make an induction on m,,.

Suppose that m, = 0. Let k be the smallest integer such that m, =0 for £k +1 < g < n.
Then we have k <n, and for every z € X, E, is concentrated on C%. Then E is con-
centrated on (X x Cy)NU: this follows easily by induction on k from the exact sequence
0—=E; =+ E — Exxc)nv — 0, using the fact that E, is flat on X. By the induction hypothe-
sis (on (X x Cy) NU), E is locally isomorphic to @), Oxxc, ® C™.

Suppose that the result is true for m, —1 > 0. Let P € C, x € X such that Q = (z, P) € U.

For every open subset V C X x Y and 2’ € X, let Vy =V N ({z} xY). Let Z C U be an open
affine subset containing () such that there is an isomorphism

Eyz, =~ @Oi\Zz ®C™
i=1

and that A = p} (J¢) (which is a line bundle on (X x C,,_1) N U) is trivial on (X x C,,—;) N Z.
Let ¢ € H(A) be a section inducing an isomorphism A ~ O(xxc, )z Let o € HY(E,z,)
be defined by some non zero element of C™, and 7€ H°(E|;) extending o. Then
("5 e H'(Z,E,_1), E,_; is a vector bundle on (X x C)NZ, and s= (""" does not
vanish on Z,. Let T'C Z be the open subset where s does not vanish. Let 2’ € X be
such that T,y # 0, and W C T,y an open subset such that Eju ~ @._; Oyw x C™. Then
ow : Opw — Opw — C™ does not vanish at any point. It follows that

n—1
coker(a)w) ~ (@ Oijw ® @m) ® (Opw @ C™ 1) .
i=1

From [13], exposé IV, corollaire 5.7, F = coker(ar) is flat on X. It is a family of quasi locally
free sheaves of type (my, ..., m,_1,m, — 1), and it is easy to verify that it is a good family. From
the induction hypothesis we can assume, by replacing 7" with a smaller affine neighbourhood
of ), that

n—1
F ~ <@ Oxxcynr ® (Cmi) ® (0r0C™1) .
i=1
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Hence we have an exact sequence
n—1

0—0r — Er — (@ Oxxciynr @ Cmi) & (0r@C™) —0.
i=1

Now we have Ext(lgT(O(XXoi)mT, Or) = {0} for 1 < i <mn : it suffices to prove that
Sxt(lgT(O( xxc)nt, Or) = 0. This follows easily from the resolution

Xci chfi Xci

Or Or Or

Or Oxxent -

Hence Eqp ~ @ O(xxcyynr ® C™, and the result is proved for m,. O
i=1

Let E be a good family of quasi locally free sheaves of rigid type parametrised by X, and z € X
a closed point. Suppose that E, is simple. Let (S, so, €, @) be a semi-universal deformation of
E.. Let f:S(z) — S be the morphism induced by E (where S(z) is the germ defined by E
around z). Then T'S,, is canonically isomorphic to Exty _(E,,E,), and by [6], théoreme 6.10
and corollaire 6.11, we have
TSreds, = H'(End(E,)) .

It follows easily from theorem that the image of Tf,:TX, — TS, 1is contained in
T'Sred,s, and that the image of f is contained in Sieq. Hence if M is the moduli space of
stable sheaves corresponding to E, and X is connected, the image of the canonical morphism
fe : X = M associated to E is contained in M ...

4. COHERENT SHEAVES ON REDUCIBLE DEFORMATIONS OF PRIMITIVE DOUBLE CURVES

4.1. MAXIMAL REDUCIBLE DEFORMATIONS

(ct. 91, [10], [11])

Let C' be a projective irreducible smooth curve and Y = C5 a primitive double curve, with
underlying smooth curve C, and associated line bundle L on C'. Let S be a smooth curve,
PeSand 7:C— S amazimal reducible deformation of Y (cf. [9]), i.e. a deformation € of

Y as in L2l
For every z € S\{P}, €y, and C, . meet in exactly — deg(L) points.

Let Z C € be the closure in € of the locus of the intersection points of the components of 771(z2),
z # P. Since S is a curve, Z is a curve of C; and Cy. It intersects C' in a finite number of
points. If x € C, let r, be the number of branches of Z at x and s, the sum of the multiplicities
of the intersections of these branches with C'. If z € Z, then the branches of Z at x intersect
transversally with C', and we have r, = s,. We have

L ~ Oc(— Z rxx) ~ jZﬁC,C i
xeZNnC

For every € C', there exists an unique integer p > 0 such that Jo,/((71,m2)) is generated by
the image of (7)1, 0), for some \; € Og, , not divisible by ;. Moreover (7] A1, 0) is a generator
of the ideal Je, ¢, of €3 in C, and )\ is a generator of the ideal of Z in C; at . The integer p



NON-REDUCED MODULI SPACES OF SHEAVES 11

does not depend on z. Of course we have a symmetric result: o, /((71,m2)) is generated by
the image of (0, 5 \2), for some Ay € O, , not divisible by . Moreover (0, 75\2) is a generator
of the ideal Je, ¢, of C; in €, and A, is a generator of the ideal of Z in Cy at . We can even
assume that (A1, A2) € O¢.

In this paper we will always assume that p = 1.

Let Zp=CNC;CC We have then Zy=2ZUC. The ideal sheaf L; =Jy ¢, (resp.
Ly =Jz,e,) of Zp in €y (resp. C3) at x is generated by A7y (resp. Aoms). Hence Ly (resp. Lo) is
a line bundle on €y (resp. Cs). The ideal sheaf J;e, (resp. Ize,) of Zin €y (resp. Cq) is canoni-
cally isomorphic to L; (resp. Ly). We have also canonical isomorphisms Ljjc o~ Ly ~ L. It is

also possible, by replacing S with a smaller neighbourhood of P, to assume that Lz, ~ Lojz,.
Let L = ]L1|Zo = LQ‘ZO. We have jel’e = L2 and 3627(3 = Ll.

There exists a maximal reducible deformation of Y either if deg(L) =0, or if deg(L) <0
and there exists —deg(L) distinct points Py,..., P; of C' (with d = —deg(L)) such that
L=0¢(—P, —---— P;). And in the second case we can even assume that

ZNC ={P,...,P;}. Forsuch a deformation € we denote by A the line in H(L*) generated
by the canonical section of L* = O¢(P; + -+ + P).

4.2. COHERENT SHEAVES ON REDUCED REDUCIBLE CURVES

(cf. [11], 4-)

Let D be a projective curve with two components D;, D, intersecting transversally, and
Z =DyN Dy Let € be a coherent sheaf on D. Then the following conditions are equiva-
lent:

(i) € is pure of dimension 1.
(ii) € is of depth 1.
(iii) € is locally free at every point of X belonging to only one component, and if = € Z,
then there exist integers a, a;, as > 0 and an isomorphism

85,; ~ (IOXJ D al(‘)Dl,x (&) G,QODzﬂj .
(iv) € is torsion free, i.e. for every x € X, every element of Ox , which is not a zero divisor

in Ox, is not a zero divisor in &,.
(v) € is reflexive.

Let E; = &p, /T;, where T; is the torsion subsheaf. It is a vector bundle on D;. Let x € Z.
Then there exists a finite dimensional vector space W, surjective maps f; : £;, — W, such
that the Op ,-module €, is isomorphic to {(¢1,¢2) € Er(x) X Ea(x); f1(¢1(z)) = fa(g2(x))}
(where E;(x) is the fibre at x of the sheaf E;, and E;, the fibre of the corresponding vector
bundle). We have then

€ =~ (W x0pa)® (ker(f1) ® Op, ) ® (ker(f2) ® Op, ) -

We say that the sheaf is linked at x if W has the maximal possible dimension, i.e.
dim(W) = inf(rk(Ey),1k(E2)) (i.e. if in (iil) a3 =0 or ap =0). We say that € is linked if
it is linked at every point of Z.
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4.3. REGULAR SHEAVES

A coherent sheaf € on C is called regular if it is locally free on C\Zy, and if for every x € Z
there exists a neighbourhood of = in €, a vector bundle E on U, i € {1,2}, and a vector bundle
Fon UNC;, such that &y ~E® F.

Let € be a coherent sheaf on €. Then by [I1], proposition 6.4.3, the following assertions are
equivalent:

(i) € is regular (with i =1).
(ii) There exists an exact sequence 0 — Ey — & — E; — 0, where for j = 1,2, Ej; is a vector
bundle on C;, such that the associated morphism £z, — LL* ® Ejyz, is surjective on
a neighbourhood of C'.
(iii) There exists an exact sequence 0 — Ey — & — Ey — 0, where for j = 1,2, Ej is a vector
bundle on €;, such that the associated morphism Fyz, — L* ® Eyjz, is injective (as a
morphism of vector bundles) on a neighbourhood of C'.

If we restrict the exact sequence of (ii) to Y we get the canonical one
0— (Ey)1 — &y — (Ey)jc — 0,
(cf. and if we restrict the exact sequence of (iii) to Y we get
0— Ey)Y — &y — Ey)?P =Eyr®L —0.

In particular €y is quasi locally free, and for s € \{P} in a neighbourhood of P, &, is a linked
torsion free sheaf.

We have a similar result by taking ¢ = 2.

For example, let € be a coherent sheaf on €, flat on S. Suppose that for every s € S, &, is
torsion free, and that €y is quasi locally free of rigid type (cf. [3). Then € is regular ([I1],
proposition 6.4.5).

5. KODAIRA-SPENCER ELEMENTS

We keep the notations of

5.1. SELF-EXTENSIONS OF O¢, ON Y

We will need in a description of the extensions
(1) 0—0¢cy — & —0x, —0
onY.

Let x € C. Let z € Oy, be an equation of C' and t € Oy, over a generator of the maximal
ideal of O¢,. The extensions 1) are parametrised by Extéyz((f)c’x, Ocz), which is isomorphic
to O¢ . This can be seen easily by using the free resolution of O¢, on Y:

Xz Xz

OY:(:

)

Oca 0

éOva ”
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For every positive integer n, let
jY,n = (Zatn) C oY,xa jC,n = (tn> C OC,:L‘

(the ideals of nx). Then we have an obvious extension

00— (Z) = OC,m jY,n jC,n = OC,:E —0

and it is easy to see that it is associated to t" € Ext(loyyz((‘)(;@, Oca)-

5.2. PROOF OF THE MAIN RESULT

Let €01, €2 be coherent sheaves on €, flat on S. Suppose that &

v SE,] are isomorphic. Let

_ el _ el
E=¢) =c¢ll.

Suppose that E is quasi locally free of rigid type, and that for every s € S, el and e are

torsion free. Then €M and & are regular (cf. . Suppose that for every s € S\{P}, ell
and €2 are linked (this is always true on a neighbourhood of P). It follows that there exists

an integer 7 such that for i = 1,2, for every s € S\{P}, & is of rank r on C1s\Z and 7+ 1 on
Ca,5\Z, or of rank r on Cy,\Z and r 4+ 1 on C; ,\Z. We suppose that r > 0. We will consider
two cases:

Case A

- SE] is of rank 7 on €y \Z and of rank r + 1 on C; 4\Z.
— @ s of rank r + 1 on Cs.5\Z and of rank r on € 4\Z.

Case B
— &l and € are of rank 7 on Cys\Z and of rank r 4+ 1 on C; 4\Z.

We want to study wen e € Exty (E, E) (cf. .
Recall that Extéy(E, E) ~ HO(L*) (cf. 3.1.2,3.1.3). From , C induces a one dimensional
subspace Ae C H(L*).

Let Y5 be the second infinitesimal neighbourhood of Y in €. Let t € Og p be a generator of the
maximal ideal. We will also denote by 7 (resp. m;, i = 1,2) the regular function ¢ o 7 (resp.
t o m;) defined on a neighbourhood of C'. Then Y5 is defined in a neighbourhood of Y by the
equation 72 = 0. Let J be the ideal sheaf of Y in Y5. We have J ~ Oy-. For i = 1,2 we have a
canonical exact sequence

(2) 0—E@I~E— &y — E—0,
associated to o; € Ext(l()YQ (F®I,E).

Given an extension 0 - F®J —F —- E — 0 on Y5, the canonical morphism F®JI —F
induces an endomorphism of E. In this way we get a canonical morphism
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Extéy2 (E,E ®J) — End(FE), whose kernel corresponds to extensions such that F is concen-
trated on Y. Hence we have an exact sequence

0 — Extg, (E ©J, E) — Extg, (E®7, E) —  End(E) .

The image of 0;, 1 = 1,2, is [g. Hence, by using the action of Aut(F), we see that 6 is surjective,
and that we have an exact sequence

0 — Exty, (B ® I, E) — Extfy (E®J, ) —— End(E) —0 .

Recall that wep g = 01 — 2. Let
¢ : Exty (E,E) — H°(Eaty, (E,E))

be the canonical morphism.

5.2.1. Theorem : 1 — In case A, ¢(wen g21) generates Ae.

2 — in case B, we have ¢(wen gi2) = 0.

Proof. We will only prove 1. The proof of 2 follows easily.

Let z € C. Since E, ~ rOy,, ® Oc,, we have Exty (B, Ey) ~ Exty, (Ocq, Ocy). We will
give an explicit description of the extension

0—0¢c; —V—0¢c, —0

corresponding to ¢(wep g21)(x) € Exty, (Oce, Ocy), and from [5.1] 1 will follow from the fact
that Vo~ Oy, ifz ¢ZNC,and V~Jy, ifzeZNC.

Let 71,17 € Extéyzz(Ew,Ex) be the images of 01,09 respectively. We have also an exact
sequence

0 — Exty, (B, Ey) — Exty, (B, B;) — End(E,) ,
and 71 — T € Extéyz(Ex, E.). In a neighbourhood of z in €, &M is isomorphic to 70¢ ® Oe,,
and € is isomorphic to 70 @ O¢,. We can suppose that these isomorphisms are the same on
Y. The exact sequence is the canonical exact sequence

0—— 7001/',:): @ OC,{Z‘ - TOYQ,:L" S OGZﬂYg,x - 70OY,:13 @ OC,x —0

E, ell E,
Note that Ogvs,e = Oc,o/ (7). We have 1 —m € Exty, (Ocu. Oce) C Exto, (B, Ey).

We have 711 — 75 =mn; — 19, where n; € Extéy2 I(qu, Oc.) 1is associated to the canonical
exact sequence

0 OC,CE Oeiyﬂf/(ﬂ-’?) OC,UE 0

7;.0¢, 2/ (77) Oc, 2/ (i)
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If 5 € Og, s, the image of ;5 in O, ,/(77) depends only on fc. So for every a € O¢, we can
define ma € Op, /(72). Let

N = {(7r104, —maa) € Op, /(7)) X O¢,0/(73) ; @ € qu} )
which is a sub-O¢ ,-module of Og, ,/(7%) x O¢,./(73). Let
U = [Oc,./(m7) X Ocyu/(m3)] /N .
The morphism
b U ——- OC,I X qu
(a1, ag) —— (aqc, ag)c)

is surjective. We have ker(®) = {(771)\1,7r2)\2); A1, Ag € OC,z}/N- We have ker(®) ~ O¢,, the
isomorphism being defined by

v:0cys ker(®)

a———— (ma, 0) = (0, ma).
Hence we have an exact sequence
(3) 0—0c; —U—00c,®0c, — 0.

We have an inclusion

u

fi1: Oc, o/ (77)
a) —— (ay, 0),

and similarly ps : Og, ./ (73) < U. We have a commutative diagram with exact rows

0—— OC@ I Oehx/(ﬂ'%) Oc’x 0
K1 H
0—= 00, — 21U Ocu ® Oce —=0,

where p is the inclusion in the first factor.

Let v € Exty, ,(Oce @ Oc, Oc) = Exty, ,(Oca, Oce) ® Exty, ,(Oc, Oc,)  associated to
(3). From the preceding diagram and proposition 4.3.1 of [3], the first component of v is
;. Similarly the second component of v is 75. So we have v = (ny,12). It follows that n; — 1y
corresponds to the top exact sequence in the following commutative diagram

0 _— 0071, \7 OC,IE O

where 9 :a— (o,—a),and V= {(a,ﬁ) e W aec+ fie= O}.

If (u1,us) € Oc,/(71) X O¢,/(73) is such that wuyc + ugec =0, we will denote by [uy, us]
the corresponding element of V.

We have 7V = {0}, i.e. the top exact sequence is a sequence of Oy ,-modules.
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The case x ¢ ZNC — We have then O¢, = {(al,ag) € 0¢, 2 X O¢yu; 1jc = 042|C} . Let
f: Oe,w A%

1 [1,-1] .

We now prove that f induces an isomorphism Oy, ~ V. It is obvious that f is surjective and
that (m) C ker(f). Suppose that (ay,az) € Q¢ is such that f(ay,as) = 0. We can then write
(a1, —ag) = (mpPr, —m2B2) + (Wfﬁl, —7T2€§) )

with fijc = Byc. Hence (fi,2) € O¢, and
(a1, 00) = . [(51,52) +(71€1,W2€2)} .
We have (01, 82) + (m1€1,ma€) € Op,, hence (aq,as) € (7).

The case © € ZNC — We have then an isomorphism
0 : Oel,x/<7rl)\1) — 0627:13/(71'2)\2)
such that 6(m) = 7y, 0(a)c = ajc for every a € Oc, /(m A1) (cf. [i.1)). The restrictions Ajjc,

i = 1,2 are generators of the maximal ideal of O¢,. We can also assume that () = Xo2. We
have then

(4) e = {(a1,02) € O, 4 X Oe, 0 ; Olar) =2} .
We now prove that V ~J, (the ideal sheaf of {z} in V). Let z = (mA1,0), t = (A1, A2) in
Oc (cf. ) We have J, = (t, 2), z is an equation of C' (in Y) and #¢ is a generator of the
maximal ideal of O¢,. Then there exists a unique morphism p:J, —V such that
10<t> = [17_1] ) p(Z) = [77170] :
To prove this we have only to show that if a, 8 € Oy, are such that az + St = 0, then we have
Bll, —1] + a|m,0] =0 in V. We have az+ t =0 if and only if we can write « = et + vz,
B = —ez, with €,7 € Oy,. We have then
Bl1, —1] + alr,0] = —ez[l, —1] + (et + v2)[m, 0]

= 6()\1, )\2)[7’(’1, O] - 6(71'1)\1, O)[]., —1] + ’}/[71'%/\1, 0]

= 0.
Now we show that p is injective. Suppose that (o, as), (51, 52) € Oe, are such that

p((an, a0)z + (B, 52)t) = 0.
Then we have
(a1, a)[my, 0] + (B1, Bo)[1, —1] = [aqm + B, —Ba] = 0.
Hence we can write
(aami + Br, =) = (mm, —mem) + (w761, m302) |
for some 7;,0; € Og, ., such that 70 = mc, i.e.
(5) oaqm + B = mT 47w, Bo =Ty — a5 .

Let
u = (a1,02)z + (B, B2)t = ()\1(0417T1+51)7>\252) .
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From we see that ) is a multiple of 1, and 5 a multiple of mo: 81 = m ], P2 = w55 We
have then u = (7r1)\1(041 + 1), 7r2/\2ﬁ§). We have

a1+ B8] = m+mb, By = 7o —mby .

Hence (a1 + f7)ic = By and (Ai(on + 1), Aaffy) € Ocy. Tt follows that u = 0 in Oy,

Now we show that p is surjective. Let [a,3] € V. Then ajc = —Bc. Let p € O¢, , be such
that (u, —f) € O¢,. We have

[aaﬁ] - (M7 _ﬁ)[]-? _1] - [Oé - M?O] .
We can write o — = m(, ¢ € O¢, . Let 6 € O¢,, besuch that ((,0) € O¢,. We have then

[O‘?B] = (:ua _5)[17_1] +(C75)[7T170] = Io((:ua _5)t+<g75)2) :
U

REFERENCES

[1] Bénica, C., Forster, O. Multiple structures on space curves. In: Sundararaman , D. (Ed.) Proc. of Lefschetz
Centennial Conf. (10-14 Dec. Mexico), Contemporary Mathematics 58, AMS, 1986, 47-64.
[2] Bayer, D., Eisenbud, D. Ribbons and their canonical embeddings. Trans. of the Amer. Math. Soc., 1995,
347-3, 719-756.
[3] Drézet, J.-M. Déformations des extensions larges de faisceauz. Pacific Journ. of Math. 220, 2 (2005), 201-
297.
[4] Drézet, J.-M. Faisceauz cohérents sur les courbes multiples . Collect. Math. 2006, 57-2, 121-171.
[5] Drézet, J.-M. Paramétrisation des courbes multiples primitives Adv. in Geom. 2007, 7, 559-612.
[6] Drézet, J.-M. Faisceauz sans torsion et faisceauzr quasi localement libres sur les courbes multiples primitives.
Mathematische Nachrichten, 2009, 282-7, 919-952.
[7] Drézet, J.-M. Sur les conditions d’existence des faisceaux semi-stables sur les courbes multiples primitives.
Pacific Journ. of Math. 2011, 249-2, 291-319.
[8] Drézet, J-M. Courbes multiples primitives et déformations de courbes lisses. Annales de la Faculté des
Sciences de Toulouse 22, 1 (2013), 133-154.
[9] Drézet, J-M. Fragmented deformations of primitive multiple curves. Central European Journal of Mathe-
matics 11, n° 12 (2013), 2106-2137.
[10] Drézet, J.-M. Reducible deformations and smoothing of primitive multiple curves. Manuscripta Mathemat-
ica 148 (2015), 447-469.
[11] Dreézet, J.-M. Reachable sheaves on ribbons and deformations of moduli spaces of sheaves. To appear in
International Journal of Mathematics.
[12] Eisenbud, D., Green, M. Clifford indices of ribbons. Trans. of the Amer. Math. Soc., 1995, 347-3, 757-765.
scientifiques et industrielles 1252, Hermann, Paris (1964).
[13] Grothendieck, A. et al. SGAL. Revétements Etales et Groupe Fondamental. SGA1. Lect. Notes in Math.
224. Springer-Verlag (1971).
[14] Hartshorne, R. Algebraic geometry. Grad. Texts in Math., Vol. 52, Springer (1977).
[15] Maruyama, M. Moduli of stable sheaves II. J. Math. Kyoto Univ. 18 (1978), 577-614.
[16] Simpson, C.T. Moduli of representations of the fundamental group of a smooth projective variety I. Publ.
Math. THES 79 (1994), 47-129.
[17] Siu Y., Trautmann, G. Deformations of coherent analytic sheaves with compact supports. Memoirs of the
Amer. Math. Soc., Vol. 29, N. 238 (1981).
[18] Strgmme, S.A. Deforming vector bundles on the projective plane. Math. Ann. 263 (1983), 385-397.

INSTITUT DE MATHEMATIQUES DE JUSSIEU - PARIS RIVE GAUCHE, CASE 247, 4 PLACE JUSSIEU, F-75252
PARIS, FRANCE

Email address: jean-marc.drezet@imj-prg.fr



	1. Introduction
	2. Preliminaries
	3. Quasi locally free sheaves of rigid type
	4. Coherent sheaves on reducible deformations of primitive double curves
	5. Kodaïra-Spencer elements
	References

