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NON-REDUCED MODULI SPACES OF SHEAVES ON MULTIPLE CURVES

JEAN–MARC DRÉZET

Abstract. Some coherent sheaves on projective varieties have a non reduced versal deforma-
tion space. For example, this is the case for most unstable rank 2 vector bundles on P2 (cf.
[18]). In particular, it may happen that some moduli spaces of stable sheaves are non reduced.

We consider the case of some sheaves on ribbons (double structures on smooth projective
curves): the quasi locally free sheaves of rigid type. Let E be such a sheaf.

– Let E be a flat family of sheaves containing E. We find that it is a reduced deformation
of E when some canonical family associated to E is also flat.

– We consider a deformation of the ribbon to reduced projective curves with two components,
and find that E can be deformed in two distinct ways to sheaves on the reduced curves. In
particular some componentsM of the moduli spaces of stable sheaves deform to two components
of the moduli spaces of sheaves on the reduced curves, and M appears as the “limit” of varieties
with two components, whence the non reduced structure of M.

Mathematics Subject Classification : 14D20, 14B20

1. Introduction

Let Y be a projective variety over C and E a coherent sheaf on Y . Let (VE, v0,EE, α) be a
semi-universal deformation of E ((VE, v0) is a germ of an analytic variety, EE is a coherent sheaf
on Y × VE and α : EE,s0 → E is an isomorphism, cf. [17]). It may happen that VE is not
reduced at s0, for example in the case of unstable rank-2 vector bundles on P2 (cf. [18]). We
will study here the case of some sheaves on multiple curves (in particular on ribbons, i.e. double
structures on smooth projective curves), and try to see why VE is not reduced, and similarly
why some moduli spaces of stable sheaves on Y are not reduced.

If F is a flat family of sheaves on Y parametrised by the germ (T, t0) of an analytic variety,
and if Ft0 ' E, there is a morphism φ : (T, t0)→ (VE, v0) such that (IX × φ)∗(EE) ' F, with
a uniquely defined tangent map

Tt0T −→ Tv0VE = Ext1OX
(E,E) .

If T is reduced then φ can be factorized to VE,red, the reduced germ associated to VE:

φ : T
φ′ // VE,red

� � // VE . It is then natural to ask:

(i) What is the tangent space Tv0VE,red ⊂ Ext1OX
(E,E) ?

(ii) Under which conditions on F, when T is non reduced, is φ a morphism to VE,red ?

and the more vague question

(iii) Why can VE be non reduced ?

The problem can also be stated in terms of moduli spaces of stable sheaves: let OY (1) be an
ample line bundle on Y and PE the Hilbert polynomial of E. Let M be the moduli space of
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2 JEAN–MARC DRÉZET

sheaves on Y , stable with respect to OX(1), and with Hilbert polynomial PE. Suppose now
that E is stable. We can then ask

(i’) What is the tangent space TEMred ⊂ TEM ?
(ii’) If F is a flat family of stable sheaves with Hilbert polynomial PE, parametrised by a

variety T , we get a morphism φ : T →M. Under which conditions on F, when T is non
reduced, is φ a morphism to Mred ?

(iii’) Why can M be non reduced ?

We suppose now that Y is a primitive multiple curve (i.e. a Cohen-Macaulay scheme whose
associated reduced scheme is a projective smooth curve, and such that Y is locally embeddable
in a smooth surface). In this case, there is a canonical filtration of E, and the first result
of this paper (theorem 3.2.1) is that the associated reduced scheme VE,red of VE corresponds
to deformations of E such that this associated filtration deforms flatly together with a flat
deformation of E. A similar result has been proved in [18] for unstable rank-2 vector bundles
on P2.
Suppose now that Y is a ribbon (a primitive multiple curve of multiplicity 2). For suitable
sheaves E, we have seen in [11] that the fact that VE is not reduced can also be explained
by considering deformations of Y to reduced curves with two irreducible components and the
associated deformations of E: in fact E can be deformed in two distinct ways to sheaves on
the deformations of Y . In other words the deformation space VE can be seen as the “limit”
of two sequences of deformation spaces of sheaves on the reduced curves with two irreducible
components, whence the non reduced structure on VE.
The second result of this paper (theorem 5.2.1) is a description of the part of the non reduced
structure of VE that comes from such a deformation of Y .

1.1. First result – Good families of sheaves on multiple curves

Let Y be a primitive multiple curve and C = Yred the associated smooth curve. Let IC be the
ideal sheaf of C in Y . The multiplicity of Y is the smallest integer n such that InC = 0. We have
a filtration C = C1 ⊂ · · · ⊂ Cn = Y , where for 1 ≤ i ≤ n, Ci is the subscheme corresponding
to the ideal sheaf IiC (Ci is a primitive multiple curve of multiplicity i).
A coherent sheaf E on Y is called quasi locally free if there exist integers m1, . . . ,mn such that

E is locally isomorphic to
n⊕
i=1

OCi
⊗ Cm1 . The sequence (m1, . . . ,mn) is called the type of E.

Let X be a connected algebraic variety, and E a coherent sheaf on X × Y , flat on X, such that
for every closed point x ∈ X, Ex is quasi locally free of type (m1, . . . ,mn). For 0 ≤ i ≤ n let
Ei = IiCE (so that Ei/Ei+1 is concentrated on X × C). We say that E is a good family if for
0 ≤ i < n the sheaf Ei/Ei+1 on X × C is flat on X (which is equivalent to say that it is locally
free on C). Then we have the theorem 3.2.1:

Theorem: 1 – The sheaf E is a good family if and only if it is locally isomorphic to⊕n
i=1OX×Ci

⊗ Cmi.
2 – If E is a good family on X × Y , then for every x ∈ X the image of the Kodaïra-Spencer
morphism of E

ωx(E) : TXx −→ Ext1OY
(Ex,Ex)
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is contained in H1(End(Ex)).

For the sheaves on ribbons studied in 1.2, H1(End(Ex)) is the tangent space of VEx,red, and if
E is a good family then the image of the canonical morphism to VEx associated to E at x is
contained in VEx,red.

1.2. Second result – The non-reduced structure of the deformation spaces of sheaves
on a ribbon Y and its relations with the deformations of Y

Suppose that Y is a ribbon (a primitive multiple curve of multiplicity 2). Let C = Yred. For
vector bundles VE is smooth (because in this case Ext2OY

(E,E) = {0}). We will consider
quasi-locally free sheaves of rigid type (defined and studied in [6]), i.e. coherent sheaves locally
isomorphic to rOY ⊕ OC for some integer r. Deformations of these sheaves are also quasi-
locally free sheaves of rigid type, and deg(E|C) is invariant under deformation.

For these sheaves, for (i) we have from [6]: Tv0VE,red = H1(End(E)). Let L be the ideal sheaf
of C in Y . It is a line bundle on C. We will prove in 3.1.3 that

Tv0VE/Tv0VE,red ' H0(Ext1OY
(E,E)) ' H0(L∗) .

We suppose that deg(L) < 0, and consider a maximal reducible deformation of Y , i.e. a flat
morphism π : C→ S, and P ∈ S, such that

– S is a smooth curve and CP ' Y .
– C is a reduced algebraic variety with two irreducible components C1,C2.
– For i = 1, 2, let πi : Ci → S be the restriction of π. Then π−1i (P ) = C and πi is a
flat family of smooth irreducible projective curves.

– For every s ∈ S\{P}, the components C1,s,C2,s of Cs meet transversally.

For every s ∈ S\{P}, C1,s and C2,s meet in exactly − deg(L) points. It is proved in [10] that
such a deformation exists if L can be written as L = OC(−P1 − · · · − Pk), for distinct points
P1, . . . , Pk of C. In this case we can construct C such that if Z is the closure of the set of
intersections points of the components C1,s, C2,s of Cs, s 6= P , we have Z ∩ C = {P1, . . . , Pk}.
We denote by ∆C ⊂ H0(L∗) the 1-dimensional subspace generated by the isomorphism
L ' OC(−P1 − · · · − Pk). Note that this parameter ∆C of C lies in the vector space
Tv0VE/Tv0VE,red which measures the non-reduceness of VE.

To relate the deformations of E and those of Y we use the Kodaïra-Spencer elements associated
to pairs of sheaves on C (cf. 2.2). Let E1, E2 be coherent sheaves on C, flat on S, and such that
E1,P = E2,P = E. Then we define

ωE1,E2 ∈ Ext1OY
(E,E)

On the second neighbourhood Y2 of Y in C we have exact sequences
0 −→ E −→ Ei|Y2 −→ E −→ 0

for i = 1, 2, and associated elements σi ∈ Ext1OY2
(E,E). The difference ωE1,E2 = σ1 − σ2 lies

in Ext1OY
(E,E).
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Let E be a coherent sheaf on C, flat on S and such that E|Y = E. Recall that E is locally
isomorphic to rOY ⊕ OC with r > 0. Then from [11] there are two possibilities: for every
s ∈ S\{P} in a neighbourhood of P

1) Es|C1,s\Z is locally free of rank r and Es|C2,s\Z is locally free of rank r + 1,
2) Es|C1,s\Z is locally free of rank r + 1 and Es|C2,s\Z is locally free of rank r,

(that is: E is of rank r on one of the components of C and of rank r + 1 on the other). So we
see that E can be deformed in two distinct ways to sheaves on the reduced curves with two
components.
We then consider two such coherent sheaves E[1], E[2], on C, and we have two cases:
Case A

– E
[1]
s is of rank r on C2,s\Z and of rank r + 1 on C1,s\Z.

– E
[2]
s is of rank r + 1 on C2,s\Z and of rank r on C1,s\Z.

Case B

– E
[1]
s and E

[2]
s are of rank r on C2,s\Z and of rank r + 1 on C1,s\Z.

Let
φ : Ext1OY

(E,E) −→ H0(Ext1OY
(E,E)) ' H0(L∗)

be the canonical morphism. Recall that its kernel H1(End(E)) corresponds to good deforma-
tions of E, or deformations parametrised by a reduced variety (cf. 1.1). Then we have (theorem
5.2.1)

Theorem : 1 – In case A, φ(ωE[1],E[2]) generates ∆C.

2 – in case B, we have φ(ωE[1],E[2]) = 0.

This means that the “non-reduced part” of the deformation of E to sheaves on C in
Tv0VE/Tv0VE,red, corresponds to some parameter of the deformation of Y to reduced curves
with two components. If E is stable, we have two canonical morphisms fi : U →M, i = 1, 2,
corresponding to E[i], where U is a neighbourhood of P in S and ρ : M→ S is the relative
moduli space of stable sheaves on C containing E, and we have fi(P ) = E. The image of
Tf1,P − Tf2,P is contained in Ext1OY

(E,E) (the tangent space of ρ−1(P ) at E). The preceding
theorem implies that in case A, the image of Tf1,P − Tf2,P is contained in φ−1(∆C), and in case
B, its image is contained in TMred

.

Remarks: – It is proved in [11] that given a quasi locally free sheaf E on Y (i.e. a sheaf
locally isomorphic to a direct sum aOY ⊕ bOC), there exists a smooth curve S ′, P ′ ∈ S ′, a
morphism f : S ′ → S such that f(P ′) = P , with non zero tangent map at P ′, and a coherent
sheaf E′ on f ∗C flat on S ′ and such that E′P ′ = E, i.e. E can be deformed to sheaves on the
reduced curves with two components.
– In [6] many examples of non-empty moduli spaces of stable sheaves containing quasi locally
free sheaves of rigid type are given.

Notation: In this paper, an algebraic variety is a quasi-projective scheme over C.
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1.3. Outline of the paper

Section 2 contains definitions and properties of primitive multiple curves of any multiplicity,
with some particular results for ribbons. This section contains also a description of the Kodaïra-
Spencer elements that are used here.

Section 3 is devoted to the study of quasi locally free sheaves of rigid type on a primitive
multiple curve, and to their deformations. In particular we give an answer to question (ii).
Some results are valid in any multiplicity.

In section 4 we recall some definitions concerning maximal reducible deformations of ribbons,
i.e. deformations to reduced curves with two components intersecting transversally. We recall
also some results about deformations of quasi locally free sheaves of rigid type on ribbons to
sheaves on the reduced curves with two components.

In section 5 we prove the main result of this paper, i.e. the theorem 5.2.1.

2. Preliminaries

2.1. Primitive multiple curves and quasi locally free sheaves

(cf. [1], [2], [4], [5], [6], [7], [8], [12]).

2.1.1. Definitions – Let C be a smooth connected projective curve. A multiple curve with
support C is a Cohen-Macaulay scheme Y such that Yred = C.

Let n be the smallest integer such that Y = C(n−1), C(k−1) being the k-th infinitesimal neigh-
bourhood of C, i.e. IC(k−1) = IkC . We have a filtration C = C1 ⊂ C2 ⊂ · · · ⊂ Cn = Y where
Ci is the biggest Cohen-Macaulay subscheme contained in Y ∩ C(i−1). We call n the multiplicity
of Y . We say that Y is primitive if, for every closed point x of C, there exists a smooth surface
S, containing a neighbourhood of x in Y as a locally closed subvariety. In this case, L = IC/IC2

is a line bundle on C and we have ICj
= I

j
C , ICj

/ICj+1
= Lj for 1 ≤ j < n. We call L the line

bundle on C associated to Y . Let P ∈ C. Then there exist elements y, t of mS,P (the maximal
ideal of OS,P ) whose images in mS,P/m

2
S,P form a basis, and such that for 1 ≤ i < n we have

ICi,P = (yi) .

We will write On = OCn and we will see Oi as a coherent sheaf on Cn with schematic support
Ci if 1 ≤ i < n.

2.1.2. The canonical filtrations – Let E be a coherent sheaf on Y . The first canonical filtration
of E, 0 = En ⊂ En−1 ⊂ · · · ⊂ E0 = E, is defined as follows: for 0 ≤ i ≤ n, we have Ei = IiCE.
For 0 ≤ i < n, the sheaf Gi(E) = Ei/Ei+1 is concentrated on C. The same definition applies if
E is a coherent sheaf on a non-empty open subset of Y . The pair

σ(E) =
(
(rk(G0(E)), . . . , rk(Gn−1(E)) , (deg(G0(E)), . . . , deg(Gn−1(E))

)
is called the complete type of E.

Let X be an algebraic variety and E a coherent sheaf on X × Y , flat on X. We can also define
the first canonical filtration of E, 0 = En ⊂ En−1 ⊂ · · · ⊂ E0 = E, by Ei = p∗Y (IiC)E .
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The second canonical filtration of E, 0 = E(0) ⊂ E(1) ⊂ · · · ⊂ E(n) = E, is defined as follows: for
0 ≤ i ≤ n and P ∈ C, E(i)

P is the set of u ∈ EP such that IiC,Pu = 0. For 1 ≤ i ≤ n, the sheaf
G(i)(E) = E(i)/E(i−1) is concentrated on C.

2.1.3. The case of double curves – If n = 2, let E be a coherent sheaf on Y = C2. Then we
have canonical exact sequences

0 −→ E1 −→ E −→ E|C −→ 0 , 0 −→ E(1) −→ E −→ E(2) ' E1 ⊗ L∗ −→ 0 .

2.1.4. Quasi locally free sheaves – Let P ∈ C andM a OY,P -module of finite type. We say that
M is quasi free if there exist integers mi ≥ 0, 1 ≤ i ≤ n, such that M ' ⊕ni=1miOi,P . These
integers are uniquely determined. In this case we say that M is of type (m1, . . . ,mn).

Let E be a coherent sheaf on a non-empty open subset V ⊂ Y . We say that E is quasi locally free
at a point P of V if there exists a neighbourhood U ⊂ V of P and integers mi ≥ 0, 1 ≤ i ≤ n,
such that for every Q ∈ U , EQ is quasi free of type m1, . . . ,mn. The integers m1, . . . ,mn are
uniquely determined and depend only of E, and (m1, . . . ,mn) is called the type of E.

We say that E is quasi locally free if it is quasi locally free at every point of V . The module EP
is quasi locally free at P if and only if the OC,P -modules Gi(EP ) are free, and E is quasi locally
free if and only if the sheaves Gi(E) are locally free on C.

2.2. Generalisation of the Kodaïra-Spencer morphism

Let S be a smooth curve and s0 ∈ S a closed point. Let ρ : X→ S be a flat projective morphism
of algebraic varieties. Let Y = ρ−1(s0). It is a projective variety. Let E, E′ be coherent sheaves
on X, flat on S, such that there exists an isomorphism E|Y ' E′|Y . Let E = E|Y . Let Y2 be the
second infinitesimal neighbourhood of Y in X. If s(2)0 is the second infinitesimal neighbourhood
of s0 in S, we have Y2 = ρ−1(s

(2)
0 ). The ideal sheaf IY of Y in Y2 is isomorphic to OY . We have

canonical exact sequences

0 // E = E ⊗ IY
i // E|Y2

// E // 0

0 // E = E ⊗ IY
i′ // E′|Y2

// E // 0

(the injectivity of i and i′ follows easily from the flatness of E, E′ over S). Let
σ, σ′ ∈ Ext1OY2

(E,E) correspond to these extensions.

Let 0→ E → F → E → 0 be an exact sequence of coherent sheaves on Y2. The canonical
morphism F ⊗ IY → F induces a morphism E ⊗ IY → E, which vanishes if and only if F is
concentrated on Y . In this way we get an exact sequence

0 // Ext1OY
(E,E) // Ext1OY2

(E,E)
p // End(E) .

We have p(σ) = p(σ′) = IE. So we have ωE,E′ = σ − σ′ ∈ Ext1OY
(E,E). We call ωE,E′ the

Kodaïra-Spencer element associated to E, E′.
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Connections with the Kodaïra-Spencer morphism – Suppose the X is the trivial family:
X = Y × S. Let

ωs0 : Ts0S −→ Ext1OY
(E,E)

be the Kodaïra-Spencer morphism of E. Suppose that E′ is the trivial family: E′ = p∗Y (E)
(where pY is the projection Y × S → S). The isomorphism IY ' OY is defined by the choice
of a generator t of the maximal ideal of s0 in S. Let u be the associated element of Ts0S. Then
we have ωE,E′ = ωs0(u).

3. Quasi locally free sheaves of rigid type

We keep the notations of 2.1.

3.1. Definitions and basic properties

A quasi locally free sheaf E on Y is called of rigid type if it is locally free or locally isomorphic
to aOn ⊕ Ok for some integers a ≥ 0, 1 ≤ k < n. The set of isomorphism classes of quasi locally
free sheaves of rigid type of fixed complete type (cf. 2.1.2) is an open family (cf. [6], 6-): let
X be an algebraic variety, E a coherent sheaf on X × Y , flat on X, and x ∈ X a closed point.
Suppose that Ex is quasi locally free of rigid type. Then there exists an open subset U of X
containing x such that, for every x′ ∈ U , Ex′ is quasi locally free and σ(Ex′) = σ(Ex).
More generally, let E be a quasi locally free sheaf on Y , locally isomorphic to aOn ⊕ bOk, with
a, b > 0, 1 ≤ k < n. By [6], proposition 5.1, there exists a vector bundle E on Y and a surjective
morphism

φ : E −→ E

inducing an isomorphism E|C ' E|C . Let L = ker(φ). By [6], lemme 5.2, L is a vector bundle
of rank b on Cn−k. Let P ∈ C, and z ∈ OY,P an equation of C. At P the exact sequence
0→ L→ E→ E→ 0 is isomorphic to the trivial one
0 −→ (zk)⊗ Cb ' On−k,P ⊗ Cb −→ On,P ⊗ (Ca ⊕ Cb) −→ (On,P ⊗ Ca)⊕ (Ok,P ⊗ Cb) −→ 0.

3.1.1. Lemma: There is a canonical isomorphism

L|Ck
' (E(k)/En−k)⊗ IkC .

Proof. Let P ∈ C, z ∈ OY,P an equation of C and u ∈ E
(k)
P . Let v ∈ EP be such that φP (v) = u.

Then we have φP (zkv) = zku = 0 , hence zkv ∈ LP . If v′ ∈ EP is such that φP (v′) = u, we
have w = v′ − v ∈ LP , hence the image of zkv′ = zkv + zkw in LP/z

kLP is the same as that of
zkv. By associating zkv to u⊗ zk we define a morphism θ : E(k) ⊗ IkC → L|Ck

. If u ∈ En−k,P ,
let u′ ∈ EP be such that u = zn−ku′. Let v′ ∈ EP be such that φP (v′) = u′. Then we can take
v = zn−kv′, and then zkv = 0, hence θP (u⊗ zk) = 0. It follows that φ induces a morphism

θ : (E(k)/En−k)⊗ IkC −→ L|Ck
.

In the above description of the exact sequence 0→ L→ E→ E→ 0,
we have E

(k)
P /En−k,P = Ok,P ⊗ Cb, and θP = (Ok,P ⊗ Cb)⊗ (zk)→ (zk)⊗ Cb is the identity

morphism. Hence φ is an isomorphism. �
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The sheaf L|Ck
is a vector bundle of rank b, on Ck if 2k ≤ n, and on Cn−k if 2k > n.

3.1.2. Corollary: There is a canonical isomorphism

Ext1OY
(E,E) ' Hom((E(k)/En−k)⊗ IkC ,E

(k)/En−k) .

Proof. From the exact sequence 0→ L→ E→ E→ 0, we deduce the exact sequence
Hom(E,E) −→ Hom(L,E) −→ Ext1OY

(E,E) −→ 0 ,

and the result follows easily using local isomorphisms of E with aOn ⊕ bOk and lemma 3.1.1. �

If E is of rigid type (i.e. if b = 1), then E(k)/En−k is a line bundle on Cinf(k,n−k), and it follows
that

Ext1OY
(E,E) ' Hom(IkC|Cinf(k,n−k)

,Oinf(k,n−k)) .

It follows that we have an exact sequence

0 // H1(End(E)) // Ext1OY
(E,E) // Hom(IkC|Cinf(k,n−k)

,Oinf(k,n−k)) // 0

H0(Ext1OY
(E,E))

3.1.3. The case of double curves – If n = 2 we have k = 1 and from corollary 3.1.2
Ext1OY

(E,E) ' L∗ .

3.1.4. Remark: Let Let X be an algebraic variety, E a coherent sheaf on X × Y , flat on X,
such that for every closed point x ∈ X, Ex is quasi locally free of rigid type. Let x ∈ X, and

ωx(E) : TXx −→ Ext1OY
(Ex,Ex)

the Kodaïra-Spencer morphism of E. Let Xred be the reduced subscheme associated to X.
Then the image of Kodaïra-Spencer morphism of EXred×Y

ωx(EXred×Y ) : TXred,x −→ Ext1OY
(Ex,Ex)

is contained in H1(End(Ex)). Suppose that E is a complete deformation of Ex (i.e. ωx(E) is
surjective), and that Ex is simple. Then im(ωx(E|Xred×Y )) = H1(End(Ex)) (cf. [6], théorème
6.10, corollaire 6.11).

3.2. Families of quasi locally free sheaves of rigid type

Letm1, . . . ,mn be non negative integers. LetX be a connected algebraic variety, U ⊂ X × Y an
open subset such that pX(U) = X (where pX is the projection X × Y → X) and E a coherent
sheaf on U , flat on X, such that for every closed point x ∈ X, Ex is quasi locally free of type
(m1, . . . ,mn). We say that E is a good family if for 0 ≤ i < n the sheaf Ei/Ei+1 on (X × C) ∩ U
is flat on X (where 0 = En ⊂ En−1 ⊂ · · · ⊂ E0 = E is the first canonical filtration of E). If E
is a good family then by [13], exposé IV, proposition 1.1, for 0 ≤ i < n, Ei is a flat family of
sheaves on Cn−i, and by [16], lemma 1.27, Ei/Ei+1 is a vector bundle on X × C.
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3.2.1. Theorem: 1 – The sheaf E is a good family if and only if it is locally isomorphic to⊕n
i=1 OX×Ci

⊗ Cmi.

2 – If E is a good family on X × Y , then for every x ∈ X the image of the Kodaïra-Spencer
morphism of E

ωx(E) : TXx −→ Ext1OY
(Ex,Ex)

is contained in H1(End(Ex)).

Proof. Suppose that E is locally isomorphic to
⊕n

i=1 OX×Ci
⊗ Cmi . Then it is obvious that the

sheaves Ei/Ei+1 are vector bundles on (X × C) ∩ U , hence they are flat on X and E is a good
family. On the other hand, the local structure of E does not vary when x varies, hence for every
P ∈ C, the image of im(ωx(E)) in Ext1OY,P

(Ex,P ,Ex,P ) must be 0, so im(ωx(E)) ⊂ H1(End(Ex)).
Conversely, suppose that E is a good family. The proof that E is locally isomorphic to⊕n

i=1OX×Ci
⊗ Cmi is similar to that of théorème 6.5 of [6]. We make an induction on n.

The result for n = 1 follows from [16], lemma 1.27. Suppose that it is true for n− 1 ≥ 1. We
make an induction on mn.

Suppose that mn = 0. Let k be the smallest integer such that mq = 0 for k + 1 ≤ q ≤ n.
Then we have k < n, and for every x ∈ X, Ex is concentrated on Ck. Then E is con-
centrated on (X × Ck) ∩ U : this follows easily by induction on k from the exact sequence
0→ E1 → E→ E(X×C)∩U → 0, using the fact that E1 is flat on X. By the induction hypothe-
sis (on (X × Ck) ∩ U), E is locally isomorphic to

⊕n
i=1OX×Ci

⊗ Cmi .

Suppose that the result is true for mn − 1 ≥ 0. Let P ∈ C, x ∈ X such that Q = (x, P ) ∈ U .
For every open subset V ⊂ X × Y and x′ ∈ X, let Vx′ = V ∩ ({x} × Y ). Let Z ⊂ U be an open
affine subset containing Q such that there is an isomorphism

Ex|Zx '
n⊕
i=1

Oi|Zx ⊗ Cmi ,

and that ∆ = p∗Y (IC) (which is a line bundle on (X × Cn−1) ∩ U) is trivial on (X × Cn−1) ∩ Z.
Let ζ ∈ H0(∆) be a section inducing an isomorphism ∆ ' O(X×Cn−1)∩Z . Let σ ∈ H0(Ex|Zx)
be defined by some non zero element of Cmn , and σ ∈ H0(E|Z) extending σ. Then
ζn−1σ ∈ H0(Z,En−1), En−1 is a vector bundle on (X × C) ∩ Z, and s = ζn−1σ|Zx does not
vanish on Zx. Let T ⊂ Z be the open subset where s does not vanish. Let x′ ∈ X be
such that Tx′ 6= ∅, and W ⊂ Tx′ an open subset such that E|W '

⊕n
i=1Oi|W × Cmi . Then

σ|W : On|W → On|W → Cmn does not vanish at any point. It follows that

coker(σ|W ) '

(
n−1⊕
i=1

Oi|W ⊗ Cmi

)
⊕
(
On|W ⊗ Cmn−1

)
.

From [13], exposé IV, corollaire 5.7, F = coker(σ|T ) is flat on X. It is a family of quasi locally
free sheaves of type (m1, . . . ,mn−1,mn − 1), and it is easy to verify that it is a good family. From
the induction hypothesis we can assume, by replacing T with a smaller affine neighbourhood
of Q, that

F '

(
n−1⊕
i=1

O(X×Ci)∩T ⊗ Cmi

)
⊕
(
OT ⊗ Cmn−1

)
.
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Hence we have an exact sequence

0 −→ OT −→ E|T −→

(
n−1⊕
i=1

O(X×Ci)∩T ⊗ Cmi

)
⊕
(
OT ⊗ Cmn−1

)
−→ 0 .

Now we have Ext1OT
(O(X×Ci)∩T ,OT ) = {0} for 1 ≤ i ≤ n : it suffices to prove that

Ext1OT
(O(X×Ci)∩T ,OT ) = 0. This follows easily from the resolution

· · · // OT
×ζi // OT

×ζn−i

// OT
×ζi // OT

// O(X×Ci)∩T .

Hence E|T '
n⊕
i=1

O(X×Ci)∩T ⊗ Cmi , and the result is proved for mn. �

Let E be a good family of quasi locally free sheaves of rigid type parametrised by X, and x ∈ X
a closed point. Suppose that Ex is simple. Let (S, s0,E, α) be a semi-universal deformation of
Ex. Let f : S(x)→ S be the morphism induced by E (where S(x) is the germ defined by E
around x). Then TSs0 is canonically isomorphic to Ext1OY

(Ex,Ex), and by [6], théorème 6.10
and corollaire 6.11, we have

TSred,s0 = H1(End(Ex)) .
It follows easily from theorem 3.2.1 that the image of Tfx : TXx → TSs0 is contained in
TSred,s0 and that the image of f is contained in Sred. Hence if M is the moduli space of
stable sheaves corresponding to Ex and X is connected, the image of the canonical morphism
fE : X →M associated to E is contained in M red.

4. Coherent sheaves on reducible deformations of primitive double curves

4.1. Maximal reducible deformations

(cf. [9], [10], [11])
Let C be a projective irreducible smooth curve and Y = C2 a primitive double curve, with
underlying smooth curve C, and associated line bundle L on C. Let S be a smooth curve,
P ∈ S and π : C→ S a maximal reducible deformation of Y (cf. [9]), i.e. a deformation C of
Y as in 1.2.
For every z ∈ S\{P}, C1,z and C2,z meet in exactly − deg(L) points.
Let Z ⊂ C be the closure in C of the locus of the intersection points of the components of π−1(z),
z 6= P . Since S is a curve, Z is a curve of C1 and C2. It intersects C in a finite number of
points. If x ∈ C, let rx be the number of branches of Z at x and sx the sum of the multiplicities
of the intersections of these branches with C. If x ∈ Z, then the branches of Z at x intersect
transversally with C, and we have rx = sx. We have

L ' OC(−
∑
x∈Z∩C

rxx) ' IZ∩C,C .

For every ∈ C , there exists an unique integer p > 0 such that IC,x/〈(π1, π2)〉 is generated by
the image of (πp1λ1, 0), for some λ1 ∈ OC1,x not divisible by π1. Moreover (πp1λ1, 0) is a generator
of the ideal IC1,C,x of C2 in C, and λ1 is a generator of the ideal of Z in C1 at x. The integer p
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does not depend on x. Of course we have a symmetric result: IC,x/〈(π1, π2)〉 is generated by
the image of (0, πp2λ2), for some λ2 ∈ OC2,x not divisible by π2. Moreover (0, πp2λ2) is a generator
of the ideal IC2,C,x of C1 in C, and λ2 is a generator of the ideal of Z in C2 at x. We can even
assume that (λ1, λ2) ∈ OC,x.

In this paper we will always assume that p = 1.

Let Z0 = C1 ∩ C2 ⊂ C. We have then Z0 = Z ∪ C. The ideal sheaf L1 = IZ0,C1 (resp.
L2 = IZ0,C2) of Z0 in C1 (resp. C2) at x is generated by λ1π1 (resp. λ2π2). Hence L1 (resp. L2) is
a line bundle on C1 (resp. C2). The ideal sheaf IZ,C1 (resp. IZ,C2) of Z in C1 (resp. C2) is canoni-
cally isomorphic to L1 (resp. L2). We have also canonical isomorphisms L1|C ' L2|C ' L. It is
also possible, by replacing S with a smaller neighbourhood of P , to assume that L1|Z0 ' L2|Z0 .
Let L = L1|Z0 = L2|Z0 . We have IC1,C = L2 and IC2,C = L1.

There exists a maximal reducible deformation of Y either if deg(L) = 0, or if deg(L) < 0
and there exists − deg(L) distinct points P1, . . . , Pd of C (with d = − deg(L)) such that
L = OC(−P1 − · · · − Pd). And in the second case we can even assume that
Z ∩ C = {P1, . . . , Pd}. For such a deformation C we denote by ∆C the line in H0(L∗) generated
by the canonical section of L∗ = OC(P1 + · · ·+ Pd).

4.2. Coherent sheaves on reduced reducible curves

(cf. [11], 4-)

Let D be a projective curve with two components D1, D2 intersecting transversally, and
Z = D1 ∩D2. Let E be a coherent sheaf on D. Then the following conditions are equiva-
lent:

(i) E is pure of dimension 1.
(ii) E is of depth 1.
(iii) E is locally free at every point of X belonging to only one component, and if x ∈ Z,

then there exist integers a, a1, a2 ≥ 0 and an isomorphism
Ex ' aOX,x ⊕ a1OD1,x ⊕ a2OD2,x .

(iv) E is torsion free, i.e. for every x ∈ X, every element of OX,x which is not a zero divisor
in OX,x is not a zero divisor in Ex.

(v) E is reflexive.

Let Ei = E|Di
/Ti, where Ti is the torsion subsheaf. It is a vector bundle on Di. Let x ∈ Z.

Then there exists a finite dimensional vector space W , surjective maps fi : Ei,x → W , such
that the OD,x-module Ex is isomorphic to {(φ1, φ2) ∈ E1(x)× E2(x); f1(φ1(x)) = f2(φ2(x))}
(where Ei(x) is the fibre at x of the sheaf Ei, and Ei,x the fibre of the corresponding vector
bundle). We have then

Ex ' (W × OD,x)⊕ (ker(f1)⊗ OD1,x)⊕ (ker(f2)⊗ OD2,x) .

We say that the sheaf is linked at x if W has the maximal possible dimension, i.e.
dim(W ) = inf(rk(E1), rk(E2)) (i.e. if in (iii) a1 = 0 or a2 = 0). We say that E is linked if
it is linked at every point of Z.
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4.3. Regular sheaves

A coherent sheaf E on C is called regular if it is locally free on C\Z0, and if for every x ∈ Z0

there exists a neighbourhood of x in C, a vector bundle E on U , i ∈ {1, 2}, and a vector bundle
F on U ∩ Ci, such that E|U ' E⊕ F .
Let E be a coherent sheaf on C. Then by [11], proposition 6.4.3, the following assertions are
equivalent:

(i) E is regular (with i = 1).
(ii) There exists an exact sequence 0→ E2 → E→ E1 → 0, where for j = 1, 2, Ej is a vector

bundle on Cj, such that the associated morphism E1|Z0 → L∗ ⊗ E2|Z0 is surjective on
a neighbourhood of C.

(iii) There exists an exact sequence 0→ E1 → E→ E2 → 0, where for j = 1, 2, Ej is a vector
bundle on Cj, such that the associated morphism E2|Z0 → L∗ ⊗ E1|Z0 is injective (as a
morphism of vector bundles) on a neighbourhood of C.

If we restrict the exact sequence of (ii) to Y we get the canonical one
0 −→ (E|Y )1 −→ E|Y −→ (E|Y )|C −→ 0 ,

(cf. 2.1) and if we restrict the exact sequence of (iii) to Y we get

0 −→ (E|Y )(1) −→ E|Y −→ (E|Y )(2) = (E|Y )1 ⊗ L∗ −→ 0 .

In particular E|Y is quasi locally free, and for s ∈ \{P} in a neighbourhood of P , Es is a linked
torsion free sheaf.

We have a similar result by taking i = 2.

For example, let E be a coherent sheaf on C, flat on S. Suppose that for every s ∈ S, Es is
torsion free, and that E|Y is quasi locally free of rigid type (cf. 3). Then E is regular ([11],
proposition 6.4.5).

5. Kodaïra-Spencer elements

We keep the notations of 4.1.

5.1. Self-extensions of OC,x on Y

We will need in 5.2 a description of the extensions
(1) 0 −→ OC,x −→ E −→ OX,x −→ 0

on Y .

Let x ∈ C. Let z ∈ OY,x be an equation of C and t ∈ OY,x over a generator of the maximal
ideal of OC,x. The extensions (1) are parametrised by Ext1OY,x

(OC,x,OC,x), which is isomorphic
to OC,x. This can be seen easily by using the free resolution of OC,x on Y :

· · · // OY,x
×z // OY,x

×z // OC,x
// 0
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For every positive integer n, let
IY,n = (z, tn) ⊂ OY,x , IC,n = (tn) ⊂ OC,x

(the ideals of nx). Then we have an obvious extension

0 // (z) ' OC,x
// IY,n // IC,n ' OC,x

// 0

and it is easy to see that it is associated to tn ∈ Ext1OY,x
(OC,x,OC,x).

5.2. Proof of the main result

Let E[1], E[2] be coherent sheaves on C, flat on S. Suppose that E[1]
|Y , E

[2]
|Y are isomorphic. Let

E = E
[1]
|Y = E

[2]
|Y .

Suppose that E is quasi locally free of rigid type, and that for every s ∈ S, E[1]
s and E

[2]
s are

torsion free. Then E[1] and E[2] are regular (cf. 4.3). Suppose that for every s ∈ S\{P}, E[1]
s

and E
[2]
s are linked (this is always true on a neighbourhood of P ). It follows that there exists

an integer r such that for i = 1, 2, for every s ∈ S\{P}, E[i]
s is of rank r on C1,s\Z and r + 1 on

C2,s\Z, or of rank r on C2,s\Z and r + 1 on C1,s\Z. We suppose that r > 0. We will consider
two cases:

Case A

– E
[1]
s is of rank r on C2,s\Z and of rank r + 1 on C1,s\Z.

– E
[2]
s is of rank r + 1 on C2,s\Z and of rank r on C1,s\Z.

Case B

– E
[1]
s and E

[2]
s are of rank r on C2,s\Z and of rank r + 1 on C1,s\Z.

We want to study ωE[1],E[2] ∈ Ext1OY
(E,E) (cf. 2.2).

Recall that Ext1OY
(E,E) ' H0(L∗) (cf. 3.1.2, 3.1.3). From 4.1, C induces a one dimensional

subspace ∆C ⊂ H0(L∗).

Let Y2 be the second infinitesimal neighbourhood of Y in C. Let t ∈ OS,P be a generator of the
maximal ideal. We will also denote by π (resp. πi, i = 1, 2) the regular function t ◦ π (resp.
t ◦ πi) defined on a neighbourhood of C. Then Y2 is defined in a neighbourhood of Y by the
equation π2 = 0. Let I be the ideal sheaf of Y in Y2. We have I ' OY . For i = 1, 2 we have a
canonical exact sequence

(2) 0 −→ E ⊗ I ' E −→ E
[i]
|Y2 −→ E −→ 0 ,

associated to σi ∈ Ext1OY2
(E ⊗ I, E).

Given an extension 0→ E ⊗ I→ F → E → 0 on Y2, the canonical morphism F ⊗ I→ F

induces an endomorphism of E. In this way we get a canonical morphism
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Ext1OY2
(E,E ⊗ I)→ End(E), whose kernel corresponds to extensions such that F is concen-

trated on Y . Hence we have an exact sequence

0 // Ext1OY
(E ⊗ I, E) // Ext1OY2

(E ⊗ I, E)
θ // End(E) .

The image of σi, i = 1, 2, is IE. Hence, by using the action of Aut(E), we see that θ is surjective,
and that we have an exact sequence

0 // Ext1OY
(E ⊗ I, E) // Ext1OY2

(E ⊗ I, E)
θ // End(E) // 0 .

Recall that ωE[1],E[2] = σ1 − σ2. Let

φ : Ext1OY
(E,E) −→ H0(Ext1OY

(E,E))

be the canonical morphism.

5.2.1. Theorem : 1 – In case A, φ(ωE[1],E[2]) generates ∆C.

2 – in case B, we have φ(ωE[1],E[2]) = 0.

Proof. We will only prove 1. The proof of 2 follows easily.

Let x ∈ C. Since Ex ' rOY,x ⊕ OC,x, we have Ext1OY,x
(Ex, Ex) ' Ext1OY ,x

(OC,x,OC,x). We will
give an explicit description of the extension

0 −→ OC,x −→ V −→ OC,x −→ 0

corresponding to φ(ωE[1],E[2])(x) ∈ Ext1OY
(OC,x,OC,x), and from 5.1, 1 will follow from the fact

that V ' OY,x if x 6∈ Z ∩ C, and V ' IY,1 if x ∈ Z ∩ C.

Let τ1, τ2 ∈ Ext1OY2,x
(Ex, Ex) be the images of σ1, σ2 respectively. We have also an exact

sequence
0 −→ Ext1OY,x

(Ex, Ex) −→ Ext1OY2,x
(Ex, Ex) −→ End(Ex) ,

and τ1 − τ2 ∈ Ext1OY,x
(Ex, Ex). In a neighbourhood of x in C, E[1] is isomorphic to rOC ⊕ OC1 ,

and E[2] is isomorphic to rOC ⊕ OC2 . We can suppose that these isomorphisms are the same on
Y . The exact sequence (2) is the canonical exact sequence

0 // rOY,x ⊕ OC,x
// rOY2,x ⊕ OCi∩Y2,x

// rOY,x ⊕ OC,x
// 0

Ex E
[i]
x Ex

Note that OCi∩Y2,x = OCi,x/(π
2
1). We have τ1 − τ2 ∈ Ext1OY2,x

(OC,x,OC,x) ⊂ Ext1OY2,x
(Ex, Ex).

We have τ1 − τ2 = η1 − η2, where ηi ∈ Ext1OY2,x
(OC,x,OC,x) is associated to the canonical

exact sequence

0 // OC,x
// OCi,x/(π

2
i ) // OC,x

// 0

πi.OCi,x/(π
2
i ) OCi,x/(πi)
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If β ∈ OCi,x, the image of πiβ in OCi,x/(π
2
i ) depends only on β|C . So for every α ∈ OC,x we can

define πiα ∈ OCi,x/(π
2
i ). Let

N =
{

(π1α,−π2α) ∈ OCi,x/(π
2
1)× OC2,x/(π

2
2) ; α ∈ OC,x

}
,

which is a sub-OC,x-module of OCi,x/(π
2
1)× OC2,x/(π

2
2). Let

U =
[
OCi,x/(π

2
1)× OC2,x/(π

2
2)
]
/N .

The morphism
Φ : U // OC,x × OC,x

(α1, α2)
� // (α1|C , α2|C)

is surjective. We have ker(Φ) =
{

(π1λ1, π2λ2);λ1, λ2 ∈ OC,x

}
/N . We have ker(Φ) ' OC,x, the

isomorphism being defined by

ν : OC,x
// ker(Φ)

α � // (π1α, 0) = (0, π2α).

Hence we have an exact sequence
(3) 0 −→ OC,x −→ U −→ OC,x ⊕ OC,x −→ 0 .

We have an inclusion
µ1 : OC1,x/(π

2
1) // U

α1
� // (α1, 0),

and similarly µ2 : OC2,x/(π
2
2) ↪→ U. We have a commutative diagram with exact rows

0 // OC,x
// OC1,x/(π

2
1) //

� _

µ1

��

OC,x
//

� _

µ

��

0

0 // OC,x
ν // U // OC,x ⊕ OC,x

// 0 ,

where µ is the inclusion in the first factor.

Let γ ∈ Ext1Y2,x(OC,x ⊕ OC,x,OC,x) = Ext1Y2,x(OC,x,OC,x)⊕ Ext1Y2,x(OC,x,OC,x) associated to
(3). From the preceding diagram and proposition 4.3.1 of [3], the first component of γ is
η1. Similarly the second component of γ is η2. So we have γ = (η1, η2). It follows that η1 − η2
corresponds to the top exact sequence in the following commutative diagram

0 // OC,x
// V //
� _

��

OC,x
//

ψ

��

0

0 // OC,x
// U // OC,x ⊕ OC,x

// 0

where ψ : α 7→ (α,−α), and V =
{

(α, β) ∈ U;α|C + β|C = 0
}
.

If (u1, u2) ∈ OCi,x/(π
2
1)× OC2,x/(π

2
2) is such that u1|C + u2|C = 0, we will denote by [u1, u2]

the corresponding element of V.

We have πV = {0}, i.e. the top exact sequence is a sequence of OY,x-modules.
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The case x 6∈ Z ∩ C – We have then OC,x =
{

(α1, α2) ∈ OC1,x × OC2,x;α1|C = α2|C
}
. Let

f : OC,x
// V

1 � // [1,−1] .

We now prove that f induces an isomorphism OY,x ' V. It is obvious that f is surjective and
that (π) ⊂ ker(f). Suppose that (α1, α2) ∈ OC,x is such that f(α1, α2) = 0. We can then write

(α1,−α2) = (π1β1,−π2β2) + (π2
1ε1,−π2ε22) ,

with β1|C = β2|C . Hence (β1, β2) ∈ OC,x, and

(α1, α2) = π.
[
(β1, β2) + (π1ε1, π2ε2)

]
.

We have (β1, β2) + (π1ε1, π2ε2) ∈ OCx , hence (α1, α2) ∈ (π).

The case x ∈ Z ∩ C – We have then an isomorphism
θ : OC1,x/(π1λ1) −→ OC2,x/(π2λ2)

such that θ(π1) = π2, θ(α)|C = α|C for every α ∈ OC1,x/(π1λ1) (cf. 4.1). The restrictions λi|C ,
i = 1, 2 are generators of the maximal ideal of OC,x. We can also assume that θ(λ1) = λ2. We
have then
(4) OC,x =

{
(α1, α2) ∈ OC1,x × OC2,x ; θ(α1) = α2

}
.

We now prove that V ' Ix (the ideal sheaf of {x} in Y ). Let z = (π1λ1, 0), t = (λ1, λ2) in
OC,x (cf. (4)). We have Ix = (t, z), z is an equation of C (in Y ) and t|C is a generator of the
maximal ideal of OC,x. Then there exists a unique morphism ρ : Ix → V such that

ρ(t) = [1,−1] , ρ(z) = [π1, 0] .

To prove this we have only to show that if α, β ∈ OY,x are such that αz + βt = 0, then we have
β[1,−1] + α[π1, 0] = 0 in V. We have αz + βt = 0 if and only if we can write α = εt+ γz,
β = −εz, with ε, γ ∈ OY,x. We have then

β[1,−1] + α[π1, 0] = −εz[1,−1] + (εt+ γz)[π1, 0]

= ε(λ1, λ2)[π1, 0]− ε(π1λ1, 0)[1,−1] + γ[π2
1λ1, 0]

= 0 .

Now we show that ρ is injective. Suppose that (α1, α2), (β1, β2) ∈ OC,x are such that
ρ((α1, α2)z + (β1, β2)t) = 0 .

Then we have
(α1, α2)[π1, 0] + (β1, β2)[1,−1] = [α1π1 + β1,−β2] = 0 .

Hence we can write
(α1π1 + β1,−β2) = (π1τ1,−π2τ2) + (π2

1θ1, π
2
2θ2) ,

for some τi, θi ∈ OCi,x such that τ1|C = τ2|C , i.e.

(5) α1π1 + β1 = π1τ1 + π2
1θ1 , β2 = π2τ2 − π2

2θ2 .

Let
u = (α1, α2)z + (β1, β2)t =

(
λ1(α1π1 + β1), λ2β2

)
.
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From (5) we see that β1 is a multiple of π1, and β2 a multiple of π2: β1 = π1β
′
1, β2 = π2β

′
2. We

have then u =
(
π1λ1(α1 + β′1), π2λ2β

′
2

)
. We have

α1 + β′1 = τ1 + π1θ1 , β
′
2 = τ2 − π2θ2 .

Hence (α1 + β′1)|C = β′2|C and
(
λ1(α1 + β′1), λ2β

′
2

)
∈ OC,x. It follows that u = 0 in OY,x.

Now we show that ρ is surjective. Let [α, β] ∈ V. Then α|C = −β|C . Let µ ∈ OC1,x be such
that (µ,−β) ∈ OC,x. We have

[α, β]− (µ,−β)[1,−1] = [α− µ, 0] .

We can write α− µ = π1ζ, ζ ∈ OC1,x. Let δ ∈ OC2,x be such that (ζ, δ) ∈ OC,x. We have then
[α, β] = (µ,−β)[1,−1] + (ζ, δ)[π1, 0] = ρ((µ,−β)t+ (ζ, δ)z) .

�
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