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ABSTRACT

We present ongoing works exploring the use of artificial in-
telligence and machine learning in computer-assisted mu-
sic composition. The OM-AI library for OpenMusic im-
plements well-known techniques for data classification and
prediction, in order to integrate them in composition work-
flows. We give examples using simple musical structures,
highlighting possible extensions and applications.

1. INTRODUCTION

The idea of making programs capable of composing ap-
peared early in the history of computer music [1]. To-
day artificial intelligence and machine learning are com-
monly used for research on computational creativity [2],
“autonomous” generative and/or improvisation systems [3–
5], or real-time performance monitoring and interaction
[6]. However, apart from a few examples [7, 8], machine
learning and AI are rarely exploited by composers as a
means for writing music.

Computer-assisted composition systems develop explicit
computational approaches through the use of end-user pro-
gramming languages [9]. At the forefront of this approach,
OpenMusic is a popular visual programming environment
allowing users to process and generate scores, sounds and
many other kinds of musical structures [10].

We present ongoing works exploring the use of AI and
machine learning techniques in this environment. In con-
trast to approaches aimed at autonomous creative systems,
our aim is to apply these techniques as composition assis-
tance in the classification and processing of musical struc-
tures and parameters. Therefore we target a “composer-
centered” machine learning approach [11] allowing users
of computer-assisted composition systems to implement
experimental cycles including preprocessing, training, and
setting the parameters of machine learning models for the
data generation, decision support or solving other generic
problems.
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2. TOOLS AND ALGORITHMS

The OM-AI library for OpenMusic provides basic tools from
the domain, with elementary algorithms to classify vectors
in a multidimensional feature space [12].

2.1 Vector Space

A generic data structure called VECTOR-SPACE is used to
store vectorized data and information necessary to train
and run machine learning and classification models. The
structure is simple and generic; it is initialized with a list
of entries (key, value) for a hash-table of vectors, where
keys can be strings or any other unique identifiers for the
different vectors.

Feature-vectors are also stored as hash-tables using de-
scriptor names as keys. It is assumed that each feature-
vector contains the same set of descriptors. Descriptor
names can also be input to the VECTOR-SPACE initializa-
tion for facilitating visualization and query operations. A
graphical interface allows the 2D and 3D visualization of
vectors in the feature space, selecting two or three descrip-
tors as projection axes (see Figure 1).

Figure 1. 2-D vector space visualization.

2.2 Clustering and Classification

Within the VECTOR-SPACE, built-in or user-defined dis-
tance-functions are used to compute measurements of sim-
ilarity between feature-vectors (i.e. distance within the fea-
ture space) and centroids for any set of vectors. These
operations are applied in various algorithms for automatic
clustering and classification.

The k-means algorithm performs “unsupervised” cluster-
ing by grouping feature-vectors around a given number of
centroids. This process can be done in a visual program
(see Figure 2) or interactively from within the VECTOR-
SPACE graphical interface (as in Figure 1).

mailto:anders@avinjar.no
mailto:jean.bresson@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Figure 2. A simple example of clustering applied to a se-
quence of notes. Feature-vectors are formatted and input
to the VECTOR-SPACE object. From there, the k-means al-
gorithm clusters the data based on the specified features
(pitch, duration, velocity). Vectors are output and split by
clusters to generate four separate voices.

Supervised classification approaches (based on prelimi-
nary labelling information) are also available. In our generic
model, a class is represented by a unique label and a list of
IDs corresponding to known members of this class (this is
typically determined during a preliminary training stage).
Based on this information (which implicitly labels all known
class members), it is possible to compare any unlabelled
vector with centroid feature-vectors of the different classes,
or its similarity with an established neighbourhood in the
multidimensional feature space (k-NN). Such comparison
allow to determine a measure of likelihood for this vector
belonging to a certain class.

3. MUSICAL DESCRIPTORS

An extensible set of description algorithms allows to ex-
tract features from musical objects (harmonies, chord se-
quences, temporal attributes etc.). These features can be
combined freely to constitute the vectors representing mu-
sical data in the different OM-AI algorithms.

Currently available descriptors include pitch statistics:
most common pitch or pitch class, pitch histograms, mean
pitch, pitch variety, interval between prevalent pitches, rel-
ative pitch prevalence, importance of different registers,
tonal centers, etc., and melodic features: intervals, arpeg-
gios and repetitions, melodic motions and arcs, etc.

We are currently working on extending the set of pro-
vided feature extraction algorithms and experimenting with
more advanced musical examples.

4. RESOURCES AND DOWNLOAD

The sources of OM-AI are open and available along with
documentation and examples at:
https://github.com/openmusic-project/OMAI
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