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Abstract

We provide constructive versions of Hilbert’s syzygy theorem for

Z and Z/NZ following Schreyer’s method. Moreover, we extend these

results to arbitrary coherent strict Bézout rings with a divisibility test

for the case of finitely generated modules whose module of leading

terms is finitely generated.
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Introduction

This paper is written in the framework of Bishop style constructive mathem-
atics (see [2, 3, 11, 12]). It can be seen as a sequel to the papers [10, 16].
The main goal is to obtain constructive versions of Hilbert’s syzygy theorem
for Bézout domains of Krull dimension ≤ 1 with a divisibility test and for
coherent zero-dimensional Bézout rings with a divisibility test (e.g. for Z and
Z/NZ, see [11, 13, 18, 19]) following Schreyer’s method. These two cases are
instances of Gröbner rings. Moreover, we extend these results to arbitrary
coherent strict Bézout rings with a divisibility test for the case of finitely
generated modules whose module of leading terms is finitely generated.

1 Gröbner bases for modules over a discrete

ring

General context. In this article, R is a commutative ring with unit,
X1, . . . , Xn are n indeterminates (n ≥ 1), R[X] = R[X1, . . . , Xn], Hm ≃
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Am(R[X ]) is a free R[X]-module with basis (e1, . . . , em) (m ≥ 1), and > is
a monomial order on Hm (see Definition 1.3).

We start with recalling the following constructive definitions.

Definition 1.1.

• R is discrete if it is equipped with a zero test: equality is decidable.

• R is zero-dimensional and we write dim R ≤ 0 if

∀a ∈ R ∃k ∈ N ∃x ∈ R ak(ax− 1) = 0.

• R has Krull dimension ≤ 1 and we write dim R ≤ 1 if

∀a, b ∈ R ∃k, ℓ ∈ N ∃x, y ∈ R bℓ(ak(ax− 1) + by) = 0.

• Let U be an R-module. The syzygy module of a p-tuple (v1, . . . , vp) ∈
Up is

Syz(v1, . . . , vp) := { (b1, . . . , bp) ∈ Rn ; b1v1 + · · ·+ bpvp = 0 }.

The syzygy module of a single element v is the annihilator Ann(v) of v.

• An R-module U is coherent if the syzygy module of every p-tuple of
elements of U is finitely generated,1 i.e. if there is an algorithm providing a
finite system of generators for the syzygies, and an algorithm that represents
each syzygy as a linear combination of the generators. R is coherent if it is
coherent as an R-module. It is well known that a module is coherent iff on
the one hand any intersection of two finitely generated submodules is finitely
generated, and on the other hand the annihilator of every element is a finitely
generated ideal.

• R is local if, for every element x ∈ R, either x or 1 + x is invertible.

• R is equipped with a divisibility test if, given a, b ∈ R, one can answer
the question a ∈? 〈b〉 and, in the case of a positive answer, one can explicitly
provide c ∈ R such that a = bc.

• R is strongly discrete if it is equipped with a membership test for
finitely generated ideals, i.e. if, given a, b1, . . . , bp ∈ R, one can answer the
question a ∈? 〈b1, . . . , bp〉 and, in the case of a positive answer, one can
explicitly provide c1, . . . , cp ∈ R such that a = c1b1 + · · ·+ cpbp.

1In contradistinction to Bourbaki and to the Stacks project, we do not require U to be
finitely generated.
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• R is a valuation ring2 if every two elements are comparable w.r.t. di-
vision, i.e. if, given a, b ∈ R, either a | b or b | a. A valuation ring is a local
ring; it is coherent iff the annihilator of any element is principal. A valuation
domain is coherent. A valuation ring is strongly discrete iff it is equipped
with a divisibility test.

• R is a Bézout ring if every finitely generated ideal is principal, i.e. of
the form 〈a〉 = Ra with a ∈ R. A Bézout ring is strongly discrete iff it
is equipped with a divisibility test; it is coherent iff the annihilator of any
element is principal. To be a valuation ring is to be a Bézout local ring
(see [11, Lemma IV-7.1]).

• A Bézout ring R is strict if for all b1, b2 ∈ R we can find d, b′
1, b′

2, c1, c2 ∈
R such that b1 = db′

1, b2 = db′
2, and c1b′

1 + c2b′
2 = 1. Valuation rings and

Bézout domains are strict Bézout rings; a quotient or a localisation of a strict
Bézout ring is again a strict Bézout ring (see [11, Exercise IV-7 pp. 220–221,
solution pp. 227–228]). A zero-dimensional Bézout ring is strict (because it
is a “Smith ring”, see [7, Exercice XVI-9 p. 355, solution p. 526] and [11,
Exercise IV-8 pp. 221-222, solution p. 228]).

Remark 1.2. In some cases, e.g. euclidean domains or polynomial rings over
a discrete field, a strongly discrete ring is equipped with a division algorithm
which, for arbitrary a ∈ R and (b1, . . . , bp) ∈ Rp, provides an expression
a = c′

1b1 + · · ·+ c′
pbp + e with quotients c′

1, . . . , c′
p and a remainder e, where

e = 0 iff a ∈ 〈b1, . . . , bp〉. When a strongly discrete ring is not equipped
with a division algorithm, we shall consider that the division is trivial if
a /∈ 〈b1, . . . , bp〉: the quotients vanish and e = a. In the case of Bézout rings,
dividing a by (b1, . . . , bp) amounts to dividing a by the gcd d of (b1, . . . , bp),
since a = c′d + e can be read as a = (c′c1)b1 + · · · + (c′cp)bp + e, where
d = c1b1 + · · ·+ cpbp.

Definition 1.3 (Monomial orders on finite-rank free R[X]-modules, see [1,
5]).

(1) A monomial in Hm is a vector of type Xαeℓ (1 ≤ ℓ ≤ m), where
Xα = Xα1

1 · · ·Xαn
n is a monomial in R[X]; the index ℓ is the position of the

monomial. The set of monomials in Hm is denoted by Mm
n , with M1

n
∼= Mn

(the set of monomials in R[X ]). E.g., X1X3
2 e2 is a monomial in Hm, but

2X1e3, (X1 + X3
2 )e2 and X1e2 + X3

2 e3 are not.

2Here we follow Kaplansky’s definition: R may have nonzero zerodivisors. In [19] it is
required that a valuation ring be strongly discrete. We prefer to add this hypothesis when
the argument requires it, so as to discriminate the algorithms that rely on the divisibility
test from those that do not.
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If M = Xαeℓ and N = Xβek, we say that M divides N if ℓ = k and Xα

divides Xβ . E.g., X1e1 divides X1X2e1, but does not divide X1X2e2. Note
that in the case that M divides N , there exists a monomial Xγ in R[X] such
that N = XγM : in this case we define N/M := Xγ ; e.g., (X1X2e1)/(X1e1) =
X2.

A term in Hm is a vector of type cM , where c ∈ R\{0} and M ∈ M
m
n . We

say that a term cM divides a term c′M ′, with c, c′ ∈ R\{0} and M, M ′ ∈Mm
n ,

if c divides c′ and M divides M ′.

(2) A monomial order on Hm is a relation > on Mm
n such that

(i) > is a total order on M
m
n ,

(ii) XαM > M for all M ∈Mm
n and Xα ∈Mn \ {1},

(iii) M > N =⇒ XαM > XαN for all M, N ∈Mm
n and Xα ∈Mn.

Note that, when specialised to the case m = 1, this definition coincides with
the definition of a monomial order on R[X].

When R is discrete, any nonzero vector h ∈ Hm can be written as a sum
of terms

h = ctMt + ct−1Mt−1 + · · ·+ c1M1,

with cℓ ∈ R \ {0}, Mℓ ∈ Mm
n , and Mt > Mt−1 > · · · > M1. We define the

leading coefficient, leading monomial, and leading term of h as in the ring
case: LC(h) = ct, LM(h) = Mt, LT(h) = ctMt. Letting Mt = Xαeℓ with
Xα ∈ Mm

n and 1 ≤ ℓ ≤ m, we say that α is the multidegree of h and write
mdeg(h) = α, and that the index ℓ is the leading position of h and write
LPos(h) = ℓ.

We stipulate that LT(0) = 0 and mdeg(0) = −∞, but we do not define
LPos(0).

(3) A monomial order on R[X] gives rise to the following canonical
monomial order on Hm: for monomials M = Xαeℓ and N = Xβek ∈ Mm

n ,
let us define that

M > N if

∣

∣

∣

∣

∣

either Xα > Xβ

or both Xα = Xβ and ℓ < k.

This monomial order is called term over position (TOP) because it gives more
importance to the monomial order on R[X] than to the vector position. E.g.,
when X2 > X1, we have

X2e1 > X2e2 > X1e1 > X1e2.
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Definition 1.4 (Gröbner bases and Schreyer’s monomial order). Let R be
a discrete ring. Consider G = (g1, . . . , gp), gj ∈ Hm \ {0}, and the finitely
generated submodule U = 〈g1, . . . , gp〉 = R[X]g1 + · · ·+ R[X]gp of Hm.

(1) The module of leading terms of U is LT(U) := 〈LT(u) ; u ∈ U 〉.

(2) G is a Gröbner basis for U if LT(U) = 〈LT(G)〉 :=
〈LT(g1), . . . , LT(gp)〉.

(3) Let (ǫ1, . . . , ǫp) be the canonical basis of R[X]p. Schreyer’s monomial
order induced by > and (g1, . . . , gp) on R[X]p is the order denoted by >g1,...,gp

,
or again by >, defined as follows:

Xαǫℓ > Xβǫk if

∣

∣

∣

∣

∣

either LM(Xαgℓ) > LM(Xβgk)

or both LM(Xαgℓ) = LM(Xβgk) and ℓ < k.

Schreyer’s monomial order is defined on R[X ]p in the same way as when R

is a discrete field (see [8, p. 66]).

2 The algorithms

The context

Let us now present the algorithms to be discussed in this article in a form
that adapts as well to the case where R is a coherent valuation ring with a
divisibility test as to the case where R is a coherent strict Bézout ring with a
divisibility test (note that the former case is the local case of the latter). This
is achieved by appeals to “find . . . such that . . .” commands that will adapt
to the corresponding framework. I.e., the following context is needed for the
algorithms, except that coherence and strictness is not used in the division
algorithm and that the divisibility test is not used for the computation of
S-polynomials.

Context 2.1. The algorithms take place in a coherent strict Bézout ring R

with a divisibility test. In the local case, R is a coherent valuation ring with
a divisibility test.

The division algorithm

This algorithm takes place in Context 2.1 for R; note however that coherence
and strictness are not used here. Like the classical division algorithm for
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F[X ]m with F a discrete field (see [19, Algorithm 211]), this algorithm has
the following goal.

Input h ∈ Hm, h1, . . . , hp ∈ Hm \ {0}.
Output q1, . . . , qp ∈ R[X] and r ∈ Hm such that











h = q1h1 + · · ·+ qphp + r,

LM(h) ≥ LM(qj) LM(hj) whenever qj 6= 0,

T /∈ 〈LT(h1), . . . , LT(hp)〉 for each term T of r.

Definition and notation 2.2. The vector r is called a remainder of h on

division by H = (h1, . . . , hp) and is denoted by r = h
H

.

This notation would gain in precision if it included the dependence of the
remainder on the algorithm mentioned in Remark 1.2.

Division algorithm 2.3.

1 l o c a l v a r i a b l e s j : {1, . . . , p} , D : subset of {1, . . . , p} ,

2 c, cj , d, e : R , h′ : Hm ;

3 q1 ← 0 ; . . . ; qp ← 0 ; r ← 0 ; h′ ← h ;

4 while h′ 6= 0 do

5 D ← { j ; LM(hj) | LM(h′) } ;

6 f i nd d, cj (j ∈ D) such that

7 d = gcd(LC(hj))j∈D =
∑

j∈D cj LC(hj) ;

8 f i nd c, e such that

9 LC(h′) = cd + e (with e = 0 iff d divides LC(h′), see Remark 1.2) ;

10 f o r j i n D do

11 qj ← qj + ccj(LM(h′)/ LM(hj))
12 od ;

13 r ← r + e LM(h′) ;

14 h′ ← h′ −∑

j∈D ccj(LM(h′)/ LM(hj))hj − e LM(h′)

15 od

By convention, if D is empty, then d = 0. At each step of the algorithm, the
equality h = q1h1 + · · ·+ qphp + h′ + r holds while mdeg(h′) decreases.

Note that in the case of a valuation ring, the gcd d is an LC(hj0
) dividing

all the LC(hj), and the Bézout identity may be given by setting cj0
= 1 and

cj = 0 for j 6= j0: see Algorithm 3.1.

The S-polynomial algorithm

This algorithm takes also place in Context 2.1 for R. Note however that the
divisibility test is not used here; only the zero test is used. This algorithm
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is a key tool for constructing a Gröbner basis and has been introduced by
Buchberger [4] for the case where the base ring is a discrete field. It has the
following goal.

Input f, g ∈ Hm \ {0}.
Output the S-polynomial given by bXβ and aXα as S(f, g) = bXβf − aXαg:

if f = g, then bXβ = b is a generator of Ann(LC(f)) and aXα = 0;
otherwise, if LM(f) = Xµei and LM(g) = Xνei, then S(f, g) =

bX(ν−µ)+

f − aX(µ−ν)+

g with b LC(f) = a LC(g), gcd(a, b) = 1;
otherwise, S(f, g) = 0.

Here α+ = (max(α1, 0), . . . , max(αn, 0)) is the positive part of α ∈ Zn.

S-polynomial algorithm 2.4.

1 l o c a l v a r i a b l e s a, b : R , µ, ν : Nn ;

2 i f f = g then

3 f i nd b such that Ann(LC(f)) = 〈b〉 ;
4 S(f, f)← bf
5 e l s e

6 i f LPos(f) 6= LPos(g) then

7 S(f, g)← 0
8 e l s e

9 µ← mdeg(f) ; ν ← mdeg(g) ;

10 f i nd a, b such that

11 gcd(a, b) = 1,
12 a gcd(LC(f), LC(g)) = LC(f),
13 b gcd(LC(f), LC(g)) = LC(g) ;

14 S(f, g)← bX(ν−µ)+

f − aX(µ−ν)+

g
15 f i

16 f i

Note the following important properties of S(f, g):

• If LM(f) = Xµei and LM(g) = Xνei, then either S(f, g) = 0 or

LM(S(f, g)) < Xsup(µ,ν)ei; if LPos(f) 6= LPos(g), then S(f, g) = 0;

• S(Xδf, Xδg) = XδS(f, g) for all δ ∈ Nn.

S(f, f) is called the auto-S-polynomial of f . It is designed to produce
cancellation of the leading term of f by multiplying f with a generator of the
annihilator of LC(f). If the leading coefficient of f is regular, then S(f, f) = 0
as in the discrete field case. In case R is a domain, this algorithm is not
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supposed to compute auto-S-polynomials and we can remove lines 2–5 and 16:
if nevertheless executed with f = g, it yields S(f, f) = 0.

The S-polynomial S(f, g) is designed to produce cancellation of the lead-
ing terms of f and g. It is worth pointing out that S(f, g) is not uniquely
determined (up to a unit) when R has nonzero zerodivisors. Also S(g, f) is
generally not equal (up to a unit) to S(f, g) (in the discrete field case, this
ambiguity is taken care of by making the S-polynomial monic). These issues
are repaired through the consideration of the auto-S-polynomials S(f, f) and
S(g, g).

Note that in the case of a valuation ring, the computation of the coeffi-
cients a, b is particularly easy: see Algorithm 3.2.

Buchberger’s algorithm

This algorithm takes place in Context 2.1 for R. Here coherence, strict-
ness, and the divisibility test are used. Concerning the termination of the
algorithm, see Section 4.

This algorithm has the following goal.

Input g1, . . . , gp ∈ Hm \ {0}.
Output a Gröbner basis (g1, . . . , gp, . . . , gt) for 〈g1, . . . , gp〉.

Buchberger’s algorithm 2.5.

1 l o c a l v a r i a b l e s S : Hm , i, j, u : N ;

2 t← p ;

3 repeat

4 u← t ;

5 f o r i from 1 to u do

6 f o r j from i to u do

7 S ← S(gi, gj)
(g1,...,gu)

by Algo r i t hms 2.4 and 2.3 ;

8 i f S 6= 0 then

9 t← t + 1 ;

10 gt ← S
11 f i

12 od

13 od

14 u n t i l t = u

This algorithm is almost the same algorithm as in the case where the
base ring is a discrete field. The modifications are in the definition of S-
polynomials, in the consideration of the auto-S-polynomials, and in the divi-
sion of terms (see Item (1) of Definition 1.3). In line 7, the algorithm may be
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sped up by computing the remainder w.r.t. (g1, . . . , gt) instead of (g1, . . . , gu)
only.

Remark 2.6. If the algorithm terminates, then we can transform the obtained
Gröbner basis into a Gröbner basis (g′

1, . . . , g′
t′) such that no term of an

element g′
j lies in 〈LT(g′

k) ; k 6= j 〉 by replacing each element of the Gröbner
basis with a remainder of it on division by the other nonzero elements and
by repeating this process until it stabilises. Such a Gröbner basis is called a
pseudo-reduced Gröbner basis.

The syzygy algorithm for terms

This algorithm takes also place in Context 2.1 for R. Note however that
the divisibility test is not used here; only the zero test is used. It has the
following goal.

Input terms T1, . . . , Tp ∈ Hm.
Output a generating system (Si,j)1≤i≤j≤p,LPos(Tj)=LPos(Ti) for Syz(T1, . . . , Tp).

In this algorithm, (ǫ1, . . . , ǫp) is the canonical basis of R[X]p.

Syzygy algorithm for terms 2.7.

1 l o c a l v a r i a b l e s i, j : {1, . . . , p} , J : subset of {1, . . . , p} ,

2 a, b : R , α, β : Nn ;

3 f o r i from 1 to p do

4 J ← { j ≥ i ; LPos(Tj) = LPos(Ti) } ;

5 f o r j i n J do

6 compute bXβ , aXα such that S(Ti, Tj) = bXβTi − aXαTj

7 by Algo r i thm 2.4 ;

8 Si,j ← bXβǫi − aXαǫj

9 od

10 od

Schreyer’s syzygy algorithm

This algorithm takes also place in Context 2.1 for R. It has the following
goal.

Input a Gröbner basis (g1, . . . , gp) for a submodule of Hm.
Output a Gröbner basis (ui,j)1≤i≤j≤p,LPos(gj)=LPos(gi) for Syz(g1, . . . , gp)

w.r.t. Schreyer’s monomial order induced by > and (g1, . . . , gp).

In this algorithm, (ǫ1, . . . , ǫp) is the canonical basis of R[X]p.
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Schreyer’s syzygy algorithm 2.8.

1 l o c a l v a r i a b l e s i, j : {1, . . . , p} , J : subset of {1, . . . , p} ,

2 a, b : R , α, β : Nn , qℓ : R[X] ;

3 f o r i from 1 to p do

4 J ← { j ≥ i ; LPos(gj) = LPos(gi) } ;

5 f o r j i n J do

6 compute bXβ , aXα such that S(gi, gj) = bXβgi − aXαgj

7 by Algo r i thm 2.4 ;

8 compute q1, . . . , qp such that

9 S(gi, gj) = q1g1 + · · ·+ qpgp by Algo r i thm 2.3 (note that
10 LM(S(gi, gj)) ≥ LM(qℓ) LM(gℓ) whenever qℓ 6= 0) ;

11 ui,j ← bXβǫi − aXαǫj − q1ǫ1 − · · · − qpǫp

12 od

13 od

The polynomials q1, . . . , qp of lines 8–10 may have been computed while
constructing the Gröbner basis.

Remark 2.9. For an arbitrary system of generators (h1, . . . , hr) for a submod-
ule U of Hm, the syzygy module of (h1, . . . , hr) is easily obtained from the
syzygy module of a Gröbner basis for U (see [19, Theorem 296]).

3 The algorithms in the case of a valuation

ring

This is the case of a local Bézout ring. We consider a coherent valuation
ring R with a divisibility test. In this case, we get simplified versions of the
algorithms given in Section 2. We recover the algorithms given in [16, 19],
but for modules instead of ideals. In particular, we generalise Buchberger’s
algorithm to convenient valuation rings and modules. Note that the algorithm
given in [16] contains a bug which is corrected in the corrigendum [17] to the
papers [10, 16].

Division algorithm 3.1 (see [19, Definition 226]). Let R be a valuation
ring with a divisibility test. In the Division algorithm 2.3, instead of defining
the set D and finding the gcd d, one may look out for the first LT(hi) such
that LT(hi) divides LT(h′); in case of success, the algorithm proceeds with
this index i, and the Bézout identity of line 7 is not needed.

1 l o c a l v a r i a b l e s i : {1, . . . , p} , c : R , h′ : Hm , n o t d i v : boo l ean ;

2 q1 ← 0 ; . . . ; qp ← 0 ; r ← 0 ; h′ ← h ;
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3 while h′ 6= 0 do

4 i← 1 ;

5 n o t d i v ← true ;

6 while i ≤ p and n o t d i v do

7 i f LT(hi) | LT(h′) then

8 f i nd c such that c LC(hi) = LC(h′) ;

9 qi ← qi + c(LM(h′)/ LM(hi)) ;

10 h′ ← h′ − c(LM(h′)/ LM(hi))hi ;

11 n o t d i v ← f a l s e

12 e l s e

13 i← i + 1
14 f i

15 od ;

16 i f n o t d i v then

17 r ← r + LT(h′) ;

18 h′ ← h′ − LT(h′)
19 f i

20 od

S-polynomial algorithm 3.2 (see [19, Definition 229]). Let R be a coherent
valuation ring. We define the S-polynomial of two nonzero vectors in Hm

by the S-polynomial algorithm 2.4. In this algorithm, the finding of a, b in
lines 10-13 will take the following simple form, typical for valuation rings:

f i nd a, b such that

a LC(g) = b LC(f) with a = 1 or b = 1

This does not rely on the divisibility test: the explicit disjunction “a divides
b or b divides a” is sufficient. When we have a divisibility test, the following
expression arises for S(f, g) with f 6= g, LPos(f) = LPos(g), mdeg(f) = µ,
mdeg(g) = ν:

S(f, g) =

{

X(ν−µ)+

f − aX(µ−ν)+

g if LC(g) | LC(f), where LC(f) = a LC(g)

bX(ν−µ)+

f − X(µ−ν)+

g otherwise, where b LC(f) = LC(g).

Note also that the annihilator Ann(LC(f)) appearing in the computation of
the auto-S-polynomial is principal because R is a coherent valuation ring:
there is a b such that Ann(LC(f)) = bR (b being defined up to a unit, see [11,
Exercise IX-7]).

Example 3.3 (S-polynomials over R = F2[Y ]/〈Y r〉, r ≥ 2, a generalisa-
tion of [19, Example 231]). The ring R = F2[Y ]/〈Y r〉 = F2[y] (where
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y = Y ) is a zero-dimensional coherent valuation ring with nonzero zerodi-
visors (Ann(yk) = 〈yr−k〉). Each nonzero element a of this ring may be
written in a unique way as yk(1 + yb) with k = 0, . . . , r− 1 and 1 + yb a unit.
Let f 6= g ∈ R[X]\{0} and µ = mdeg(f), ν = mdeg(g). If LC(g) = yk(1+yb)
and LC(f) = yℓ(1 + yc), then

S(f, g) =

{

X(ν−µ)+

f − (1 + yc)(1 + yb)−1yℓ−kX(µ−ν)+

g if k ≤ ℓ

(1 + yb)(1 + yc)−1yk−ℓX(ν−µ)+

f −X(µ−ν)+

g if k > ℓ

=
up to a unit

{

(1 + yb)X(ν−µ)+

f − (1 + yc)yℓ−kX(µ−ν)+

g if k ≤ ℓ

(1 + yb)yk−ℓX(ν−µ)+

f − (1 + yc)X(µ−ν)+

g if k > ℓ.

For the computation of the auto-S-polynomial S(f, f), two cases may arise:

• If LC(f) is a unit, then S(f, f) = 0.

• If LC(f) is yk (k > 0) up to a unit, then S(f, f) = yr−kf .

E.g., with r = 2, using the lexicographic order for which X2 > X1 and
considering the polynomials f = yX2 + X1 and g = yX1 + y, we have:

S(f, g) = X1f −X2g = X2
1 + yX2, S(f, f) = yf = yX1, S(g, g) = yg = 0.

4 Termination of Buchberger’s algorithm for a

Bézout ring

The following lemma provides a necessary and sufficient condition for a term
to belong to a module generated by terms over a coherent strict Bézout ring
with a divisibility test.

Lemma 4.1 (Term modules, see [19, Lemma 227]). Let R be a coherent strict
Bézout ring with a divisibility test. Let U be a submodule of Hm generated
by a finite collection of terms aαXαeiα

with α ∈ A. A term bXβer lies in U
iff there is a nonempty subset A′ of A such that Xαeiα

divides Xβer for
every α ∈ A′ (i.e. iα = r and Xα | Xβ) and gcdα∈A′(aα) divides b. In the
local case, there hence is an aα with α ∈ A′ that divides b.

Proof. The condition is clearly sufficient. For the necessity, write

bXβer =
∑

α∈Ã
cαaαXγαXαeiα

with Ã ⊆ A, cα ∈ R \ {0}, and Xγα ∈ Mn. Then b =
∑

α∈A′ cαaα, where A′

is the set of those α such that γα + α = β and iα = r. For each α ∈ A′, Xα
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divides Xβ . Since the gcd of the aα’s with α ∈ A′ divides every aα, it also
divides b.

The following lemma is a key result for the characterisation of Gröbner
bases by means of S-polynomials: see [6, Chapter 2, §6, Lemma 5] and, for
valuation rings, [19, Lemma 233, adding the hypothesis of coherence].

Lemma 4.2. Let R be a coherent strict Bézout ring and f1, . . . , fp ∈ Hm \
{0} with the same leading monomial M . Let c1, . . . , cp ∈ R. If c1f1 +
· · · + cpfp vanishes or has leading monomial < M , then c1f1 + · · · + cpfp

is a linear combination with coefficients in R of the S-polynomials S(fi, fj)
with 1 ≤ i ≤ j ≤ p.

Proof. Let us write, for j 6= i, LC(fj) = di,jai,j with di,j =
gcd(LC(fi), LC(fj)), so that gcd(ai,j , aj,i) = 1 and S(fi, fj) = ai,jfi − aj,ifj .
For each permutation i1, . . . , ip of 1, . . . , p, we shall transform the sum
ai1,i2

· · · aip−1,ip
(c1f1 + · · ·+ cpfp) by replacing successively

ai1,i2
fi1

by S(fi1
, fi2

) + ai2,i1
fi2

,

...
...

aip−1,ip
fip−1

by S(fip−1
, fip

) + aip,ip−1
fip

.

At the end, the sum will be a linear combination of S(fi1
, fi2

), S(fi2
, fi3

), . . . ,
S(fip−1

, fip
), and fip

; let z be the coefficient of fip
in this combination. The

sum as well as each of the S-polynomials vanish or have leading monomial
< M , so that the hypothesis yields z LC(fip

) = 0; therefore zfip
is a multiple

of S(fip
, fip

).
It remains to obtain a Bézout identity w.r.t. the products ai1,i2

· · · aip−1,ip
,

because it yields an expression of c1f1 + · · · + cpfp as a linear combination
of the required form. For this, it is enough to develop the product of the
(

s
2

)

Bézout identities w.r.t. ai,j and aj,i, 1 ≤ i < j ≤ p: this yields a sum

of products of
(

s
2

)

terms, each of which is either ai,j or aj,i, 1 ≤ i < j ≤ p,
so that it is indexed by the tournaments on the vertices 1, . . . , p; every such
product contains a product of the above form ai1,i2

· · ·aip−1,ip
because every

tournament contains a hamiltonian path (see [14]).

Remark 4.3. The above proof results from an analysis of the following proof
in the case where R is local and m = 1, which entails in fact the general
case. Since R is a valuation ring, we may consider a permutation i1, . . . , ip

of 1, . . . , p such that LC(fip
) | LC(fip−1

) | · · · | LC(fi1
). Thus S(fi1

, fi2
) =

fi1
−ai2,i1

fi2
, . . . , S(fip−1

, fip
) = fip−1

−aip,ip−1
fip

for some ai2,i1
, . . . , aip,ip−1

.
Then, by replacing successively fik

by S(fik
, fik+1

) + aik+1,ik
fik+1

, the linear
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combination c1f1 + · · · + cpfp may be rewritten as a linear combination of
S(fi1

, fi2
), . . . , S(fip−1

, fip
), and fip

, with the coefficient of fip
turning out

to lie in Ann(LC(fip
)).

Lemma 4.2 enables us to generalise some classical results on the existence
and characterisation of Gröbner bases to the case of coherent strict Bézout
rings with a divisibility test. See [19, Theorem 234] for the case of valuation
rings and ideals.

Theorem 4.4 (Buchberger’s criterion for Gröbner bases). Let R be a coher-
ent strict Bézout ring with a divisibility test and U = 〈g1, . . . , gp〉 a nonzero
submodule of Hm. Then G = (g1, . . . , gp) is a Gröbner basis for U iff the
remainder of S(gi, gj) on division by G vanishes for all pairs i ≤ j.

Theorem 4.4 entails that Buchberger’s algorithm 2.5 constructs a Gröbner
basis for finitely generated ideals of coherent valuation rings with a divisib-
ility test when such a basis exists (compare [19, Algorithm 235]). The two
following theorems provide a general explanation for the termination of Buch-
berger’s algorithm and are therefore pivotal.

Theorem 4.5 (Termination of Buchberger’s algorithm, case m = 1). Let
R be a coherent valuation ring with a divisibility test, I a nonzero finitely
generated ideal of R[X], and > a monomial order on R[X]. If LT(I) is
finitely generated, then Buchberger’s algorithm 2.5 computes a finite Gröbner
basis for I.

Proof. Let f1, . . . , fp ∈ R[X] \ {0} be generators of I. Let LT(I) = 〈LT(g1),
. . . , LT(gr)〉 with gi ∈ I \ {0}. Let 1 ≤ k ≤ r. As gk ∈ I, there exist E ⊆
{1, . . . , p} and hi ∈ R[X] \ {0}, i ∈ E, such that

gk =
∑

i∈E
hifi (4.1)

with mdeg(gk) ≤ supi∈E(mdeg(MiNi)) =: γ (we call it the multidegree of
the expression (4.1) for gk w.r.t. the generating set {f1, . . . , fp} of I), where
Mi = LM(hi) and Ni = LM(fi). Let F = { i ∈ E ; mdeg(MiNi) = γ }.

Case 1: mdeg(gk) = γ, say mdeg(gk) = mdeg(Mi0
Ni0

) for some i0 ∈ F .
As the leading coefficients of the hifi’s with i ∈ F are comparable w.r.t.
division, we can suppose that all of them are divisible by the leading coefficient
of hi0

fi0
. It follows that LT(gk) ∈ 〈LT(fi0

)〉 ⊆ 〈LT(f1), . . . , LT(fp)〉.
Case 2: mdeg(gk) < γ. We have

gk =
∑

i/∈F
hifi +

∑

i∈F
hifi

=
∑

i/∈F
hifi +

∑

i∈F
(hi − LT(hi))fi +

∑

i∈F
LT(hi)fi.
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Letting ci = LC(hi), we get

mdeg
(

∑

i∈F
ciMifi

)

< γ.

By virtue of Lemma 4.2, there exists a finite family (ai,j) of elements of R

such that
∑

i∈F
ciMifi =

∑

i≤j∈F
ai,jS(Mifi, Mjfj).

But, for i ≤ j ∈ F , letting Ni,j = lcm(Ni, Nj) and writing S(fi, fj) =

a
Ni,j

Ni
fi + b

Ni,j

Nj
fj for some a, b ∈ R, we have S(Mifi, Mjfj) = a Xγ

MiNi
Mifi +

b Xγ

Mj Nj
Mjfj = Xγ

Ni,j
S(fi, fj). It follows that

∑

i∈F
ciMifi =

∑

i≤j∈F
ai,jmi,jS(fi, fj),

where the mi,j ’s are monomials. Thus we obtain another expression for gk,

gk =
∑

i/∈F
hifi +

∑

i∈F
(hi − LT(hi))fi +

∑

i≤j∈F
ai,jmi,jS(fi, fj),

and the multidegree of this expression, now w.r.t. the generating set of I
obtained by adding the elements S(fi, fj), i ≤ j ∈ F , to the f1, . . . , fp, is < γ.
Reiterating this, we end up with a situation like that of Case 1 for all the gk’s
because the set of monomials is well-ordered. So we reach the termination
condition in Algorithm 2.5 after a finite number of steps.

Theorem 4.6 (Termination of Buchberger’s algorithm). Let R be a coher-
ent strict Bézout ring with a divisibility test and U a nonzero finitely gen-
erated submodule of Hm. If LT(U) is finitely generated, then Buchberger’s
algorithm 2.5 computes a Gröbner basis for U .

Proof. It suffices to prove the result when R is local and m = 1, in which case
this is Theorem 4.5. Let us explain in a few words how to pass from the local
to the global case (compare [19, Section 3.3.11] and [9]). Suppose that we
are computing S(f, g) and that the leading coefficients a and b of f and g are
uncomparable under division. A key fact is that if we write a = gcd(a, b) a′,
b = gcd(a, b) b′ with gcd(a′, b′) = 1, then a divides b in R[ 1

a′
], b divides a in

R[ 1
b′

], and the two multiplicative subsets a′N and b′N are comaximal because
1 ∈ 〈a′, b′〉. Then R splits into R[ 1

a′
] and R[ 1

b′
], and we can continue as if R

were a valuation ring. If mdeg(f) = µ and mdeg(g) = ν, then S(f, g) is being
computed as follows:

• in the ring R[ 1
b′

], S(f, g) = X(ν−µ)+

f − a′

b′
X(µ−ν)+

g =: S1;
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• in the ring R[ 1
a′

], S(f, g) = b′

a′
X(ν−µ)+

f −X(µ−ν)+

g =: S2.

But, letting S := b′X(ν−µ)+

f − a′X(µ−ν)+

g, we have

S = b′S1 = a′S2.

As S is equal to S1 up to a unit in R[ 1
b′

], and to S2 in R[ 1
a′

], it can replace
both of them, and thus there was no need to open the two branches R[ 1

a′
]

and R[ 1
b′

].

When is a valuation ring a Gröbner ring?

We recall here some results given in [19] on the interplay between the concepts
of Gröbner ring, Krull dimension, and archimedeanity; here are the relevant
definitions.

Definition 4.7.

• The (Jacobson) radical Rad(R) of an arbitrary ring R is the ideal
{ a ∈ R ; 1 + aR ⊆ R× }, where R× is the unit group of R.

• The residual field of a local ring R is the quotient R/ Rad(R). The
local ring R is residually discrete if its residual field is discrete: this means
that x ∈ R× is decidable. A nontrivial local ring R is residually discrete iff
it is the disjoint union of R× and Rad(R).

• A residually discrete valuation ring R is archimedean if

∀a, b ∈ Rad(R) \ {0} ∃k ∈ N a | bk.

• A strongly discrete ring R is a Gröbner ring if for every n ∈ N and every
finitely generated ideal I of R[X ] endowed with the lexicographic monomial
order, the module LT(I) is finitely generated as well.

One sees easily that a Gröbner ring is coherent ([19, Proposition 224]).
Moreover if R is Gröbner, then so is R[Y ].

For a coherent valuation ring with a divisibility test, it is proved in [19]
that archimedeanity is equivalent to being a Gröbner ring (at least when
we assume that there is no nonzero zerodivisor or there exists a nonzero
zerodivisor, see [19, Theorem 272]). For a valuation domain with a divisibility
test, it is proved that the condition is equivalent to having Krull dimension≤ 1
([19, Theorem 256]). This implies that a strongly discrete Prüfer domain is
Gröbner iff it has Krull dimension ≤ 1 ([18, Corollary 6]). This applies to
Bézout domains with a divisibility test. When a coherent valuation ring with
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a divisibility test has a nonzero zerodivisor, it is proved that archimedeanity
is equivalent to being zero-dimensional ([19, Proposition 265]).

Let us now, for the comfort of the reader, provide simple arguments for
some of these results. Recall that a ring R has Krull dimension ≤ 1 if, given
a, b ∈ R,

∃k, ℓ ∈ N ∃x, y ∈ R bℓ(ak(ax − 1) + by) = 0; (4.2)

when b is regular and a ∈ Rad(R), we get that ak = zb for some k and
some z. This shows that a valuation domain of Krull dimension ≤ 1 is
archimedean. Conversely, an equality ak = zb is a particularly simple case
of (4.2) (take x = 0). Also, when a is invertible, one has ax − 1 = 0 for
some x, which is also a form of (4.2). So, if in a local ring the disjunction “x is
invertible or x ∈ Rad(R)” is explicit (i.e. if the residual field is discrete), then
archimedeanity implies Krull dimension ≤ 1. Summing up, an archimedean
valuation ring with a divisibility test has Krull dimension≤ 1, and a valuation
domain with Krull dimension ≤ 1 is archimedean: so a valuation domain is
archimedean iff it has Krull dimension ≤ 1.

Recall now that for a local ring, being zero-dimensional means that every
element is invertible or nilpotent. Let us consider a valuation ring with a
divisibility test containing a nonzero zerodivisor x. We have xy = 0 with
y 6= 0. If x = yz, then y2z = 0, so that x2 = 0. If y = xz, then y2 = 0. So we
have a nonzero nilpotent element u. In this case archimedeanity is equivalent
to being zero-dimensional. Indeed, assume first archimedeanity. For an a ∈
Rad(R), we have u | ak, so a2k = 0. Then assume zero-dimensionality. For
any a, b ∈ Rad(R), we have a k such that ak = 0, so b | ak.

So, for a coherent valuation ring with a divisibility test, if 0 is the unique
zerodivisor, archimedeanity is equivalent to having dimension ≤ 1, and if
R has a nonzero zerodivisor, archimedeanity is equivalent to being zero-
dimensional.

Now assume that R is a coherent valuation ring with a divisibility test.
We first compute (c : d) when c, d 6= 0. We note that (c : d) = 〈u〉 for some
u (since it is finitely generated). If c | d, then (c : d) = 〈1〉. If d | c, then we
have a y with c = dy. So y ∈ 〈u〉, say y = tu. Since u ∈ (c : d), we have a z
with du = cz = dyz = dutz. So du(1 − tz) = 0. If 1 − tz is invertible, then
du = 0, so that c = dy = dut = 0, which is impossible. So tz is invertible and
〈u〉 = 〈y〉: more precisely u = yt′ with t′ invertible.

Now let a, b ∈ Rad(R) \ {0}. We show that (b : a∞) is finitely generated
iff b | ak for some k. If ak = bx then (b : ak) = 〈1〉, so (b : a∞) = 〈1〉. If
(b : a∞) is finitely generated, then we have a k such that (b : ak) = (b : ak+1).
If b | ak or b | ak+1, then we are done. The other case (ak | b and ak+1 | b) is
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impossible, for if we have x, y such that b = akx = ak+1y = ak(ay), then

〈y〉 = (b : ak+1) = (b : ak) = 〈x〉 = 〈ay〉,

so that y = uay and (1 − ua)y = 0 for some u; since a ∈ Rad(R), 1 − ua is
invertible, so that y = 0, which implies b = 0, a contradiction.

We have shown that R is archimedean iff (b : a∞) is finitely generated for
all a, b ∈ Rad(R) \ {0}.

We note also that for an arbitrary commutative ring R, one has

∀a, b ∈ R 〈1 + bY, a〉 ∩R = (b : a∞).

So a coherent valuation ring R with a divisibility test is archimedean iff the
ideal 〈1 + bY, a〉 ∩ R is finitely generated for all a, b ∈ R. This condition
is fulfilled as soon as R is 1-Gröbner (i.e. satisfies the definition of Gröbner
rings with n = 1).

For other details on this topic see [19, Exercise 372 p. 207, solution p. 221,
Exercise 387 p. 218, solution p. 251].

5 The syzygy theorem and Schreyer’s al-

gorithm for a valuation ring

In the book Gröbner bases in commutative algebra, Ene and Herzog propose
the following exercise.

Problem ([8, Problem 4.11, p. 81]). Let > be a monomial order on the free
S-module F =

⊕m
j=1 Sej [where S = K[X] with K a discrete field], let U ⊂ F

be a submodule of F , and suppose that LT(U) =
⊕m

j=1 Ijej . Show that U is
a free S-module iff Ij is a principal ideal for j = 1, . . . , m.

It is obvious that this condition is sufficient. Unfortunately, it is not ne-
cessary as shows the following example, so that the statement of [8, Problem
4.11] is not correct.

Example 5.1. Let > be a TOP monomial order on K[X, Y ]2 for which Y >
X , K being a field, let e1 = (1, 0) and e2 = (0, 1), and consider the free
submodule U of K[X, Y ]2 generated by u1 = (Y, X) and u2 = (X, 0). Then
LT(u1) = Y e1, LT(u2) = Xe1, S(u1, u2) = Xu1 − Y u2 = X2e2 =: u3, and
S(u1, u3) = S(u2, u3) = 0. It follows that (u1, u2, u3) is a Gröbner basis for
U , and LT(U) = 〈Y, X〉e1⊕ 〈X2〉e2. One can see that 〈Y, X〉 is not principal
and LT(U) is not free, while U is free.

So we content ourselves with the following observation.

19



Remark 5.2. Let > be a monomial order on the free S-module F =
⊕m

j=1 Sej,
where S = R[X] and R is a valuation domain. Let U be a submodule of
F and suppose that LT(U) =

⊕m
j=1 Ijej, where Ij is a principal ideal for

j = 1, . . . , m. Then LT(U) and U are free S-modules. (Of course, this is not
true anymore if R is a valuation ring with nonzero zerodivisors. Consider e.g.
the ideal U = 〈8X + 2〉 in (Z/16Z)[X ]: we have LT(U) = 〈2〉 (so that it is
principal), but U is not free since 8U = 〈0〉.)

We shall need the following proposition, which generalises [19, Theorem
291] to the case of modules.

Proposition 5.3 (Generating set for the syzygy module of a list of terms for a
coherent valuation ring). Let R be a coherent valuation ring, Hm a free R[X]-
module with basis (e1, . . . , em), and terms T1, . . . , Tp in Hm. Considering the
canonical basis (ǫ1, . . . , ǫp) of R[X]p, the syzygy module Syz(T1, . . . , Tp) is
generated by the

Si,j ∈ R[X]p with 1 ≤ i ≤ j ≤ p and LPos(Ti) = LPos(Tj),

as computed by the Syzygy algorithm for terms 2.7.

Note that in the Syzygy algorithm for terms 2.7, the a, b will be found as
in the S-polynomial algorithm 3.2, so that we get

Si,j =











bǫi if i = j, where 〈b〉 = Ann(LC(Ti)),

Xβǫi − aXαǫj if i < j and LC(Ti) = a LC(Tj), else

bXβǫi −Xαǫj if i < j and b LC(Ti) = LC(Tj).

(5.1)

Here β = (mdeg(Tj)−mdeg(Ti))
+ and α = (mdeg(Ti)−mdeg(Tj))+.

Now we shall follow closely Schreyer’s ingenious proof [15] of Hilbert’s
syzygy theorem via Gröbner bases, but with a valuation ring instead of a
field. Schreyer’s proof is very well explained in [8, §§ 4.4.1–4.4.3].

Theorem 5.4 (Schreyer’s algorithm for a coherent valuation ring with a divis-
ibility test). Let R be a coherent valuation ring with a divisibility test. Let U
be a submodule of Hm with Gröbner basis (g1, . . . , gp). Then the relations ui,j

computed by Schreyer’s syzygy algorithm 2.8 form a Gröbner basis for the
syzygy module Syz(g1, . . . , gp) w.r.t. Schreyer’s monomial order induced by >
and (g1, . . . , gp). Moreover, for 1 ≤ i ≤ j ≤ p such that LPos(gi) = LPos(gj),

LT(ui,j) =











bǫi if i = j, with 〈b〉 = Ann(LC(gi)),

Xβǫi if i < j and LC(gj) | LC(gi), else

bXβǫi if i < j and b LC(gi) = LC(gj),

(5.2)

with β = (mdeg(gj)−mdeg(gi))
+.
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Proof (a slight modification of the proof of [8, Theorem 4.16]). Let us use
the notation of Schreyer’s syzygy algorithm 2.8. Let 1 ≤ i = j ≤ p. As
LM(qℓ) LM(gℓ) ≤ LM(S(gi, gi)) < LM(gi) whenever qℓ 6= 0, we infer that
LT(ui,i) = bǫi with 〈b〉 = Ann(LC(gi)).

Let 1 ≤ i < j ≤ p such that LPos(gi) = LPos(gj). Suppose that

LC(gi) = a LC(gj) for an a: as LM(Xβgi) = LM(aXαgj) and i < j,

LT(Xβǫi − aXαǫj) = Xβǫi w.r.t. Schreyer’s monomial order induced by >,

and because LM(qℓ) LM(gℓ) ≤ LM(S(gi, gj)) < LM(Xβgi) whenever qℓ 6= 0,

we infer that LT(ui,j) = Xβǫi; otherwise, with b such that b LC(gi) = LC(gj),

we obtain similarly LT(ui,j) = bXβǫi.
Let Equation (5.1) hold with Tℓ = LT(gℓ): then LT(ui,j) = LT(Si,j) holds

for all 1 ≤ i ≤ j ≤ p.
Let us show now that the relations ui,j form a Gröbner basis for the syzygy

module Syz(g1, . . . , gp). For this, let v =
∑p

ℓ=1 vℓǫℓ ∈ Syz(g1, . . . , gp) and let
us show that there exist 1 ≤ i ≤ j ≤ p with LPos(gi) = LPos(gj) such that
LT(ui,j) divides LT(v). Let us write LM(vℓǫℓ) = Nℓǫℓ and LC(vℓǫℓ) = cℓ for
1 ≤ ℓ ≤ p. Then LM(v) = Niǫi for some 1 ≤ i ≤ p. Now let v′ =

∑

ℓ∈S cℓNℓǫℓ,
where S is the set of those ℓ for which Nℓ LM(gℓ) = Ni LM(gi). By definition
of Schreyer’s monomial order, we have ℓ ≥ i for all ℓ ∈ S. Substituting each
ǫℓ in v′ by Tℓ, the sum becomes zero. Therefore v′ is a relation of the terms
Tℓ with ℓ ∈ S. By virtue of Proposition 5.3, v′ is an R[X]-linear combination
of the Sℓ,j with ℓ ≤ j in S. Taking into consideration Equation (5.1), we
infer, by virtue of Lemma 4.1, that LT(v′) is a multiple of LT(Si,j) for some
j ∈ S. The desired result follows since LT(v) = LT(v′).

As a consequence of Theorem 5.4, we obtain the following constructive
versions of Hilbert’s syzygy theorem for a valuation domain.

Theorem 5.5 (Syzygy theorem for a valuation domain with a divisibility
test). Let M = Hm/U be a finitely presented R[X ]-module, where R is
a valuation domain with a divisibility test. Assume that, w.r.t. the TOP
lexicographic monomial order, LT(U) is finitely generated. Then M admits a
finite free R[X ]-resolution

0→ Fp → Fp−1 → · · · → F1 → F0 →M → 0

of length p ≤ n + 1.

Proof. It suffices to prove that U has a free R[X]-resolution of length p ≤ n.
Let us use the lexicographic monomial order with Xn > Xn−1 > · · · > X1 on
R[X]. Let (g1, . . . , gp) be a Gröbner basis for U w.r.t. the corresponding TOP
order. We can w.l.o.g. suppose that whenever LM(gi) and LM(gj) involve the
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same basis element for some i < j, say LM(gi) = Niǫk and LM(gj) = Njǫk,
then Ni > Nj . More precisely, whenever Ni = Nj, one of LC(gi) and LC(gj)
divides the other, say LC(gj) = b LC(gi), and the corresponding gj may be
reduced into gj − bgi. In a nutshell, all the possible reductions between the
LT(gk)’s are being exhausted. Now, since we have used the lexicographic
order with Xn > Xn−1 > · · · > X1, it turns out that the indeterminate Xn

cannot appear in the leading terms of the ui,j ’s in (5.2). Thus, after at most
n computations of the iterated syzygies, we reach a situation where none of
the indeterminates Xn, . . . , X1 appears in the leading terms of the computed
Gröbner basis for the iterated syzygy module. This implies that the iterated
syzygy module is free (as noted in Remark 5.2).

Remark 5.6. In the proof of this theorem, we need to work with the TOP
lexicographic monomial order. We do not know what happens for other
monomial orders. This applies also to Theorems 5.9 and 6.2.

Corollary 5.7 (Syzygy theorem for a valuation domain of Krull dimen-
sion ≤ 1 with a divisibility test). Let M = Hm/U be a finitely presented
R[X]-module, where R is a valuation domain of Krull dimension ≤ 1 with a
divisibility test. Then M admits a finite free R[X]-resolution

0→ Fp → Fp−1 → · · · → F1 → F0 →M → 0

of length p ≤ n + 1.

Example 5.8. Let g1 = Y 4−Y, g2 = 2Y, g3 = X3− 1 ∈ Z2Z[X, Y ], and let us
use the lexicographic order >1 for which Y >1 X . We have

S(g1, g2) = 2g1 − Y 3g2 = −2Y = −g2,

S(g1, g3) = X3g1 − Y 4g3 = Y 4 − Y X3 = g1 − Y g3,

S(g2, g3) = X3g2 − 2Y g3 = 2Y = g2.

Thus (g1, g2, g3) is a (pseudo-reduced) Gröbner basis for I = 〈g1, g2, g3〉 and
LT(I) = 〈Y 4, 2Y, X3〉. By Theorem 5.4, u1,3 = (X3 − 1, 0,−Y 4 + Y ), u1,2 =
(2,−Y 3 + 1, 0), u2,3 = (0, X3 − 1,−2Y ) form a (pseudo-reduced) Gröbner
basis for the syzygy module Syz(g1, g2, g3) w.r.t. Schreyer’s monomial order
>2 induced by >1 and (g1, g2, g3). In particular,

LT(Syz(g1, g2, g3)) = 〈LT(u1,3), LT(u1,2), LT(u2,3)〉
= 〈X3ǫ1, 2ǫ1, X3ǫ2〉 = 〈2, X3〉ǫ1 ⊕ 〈X3〉ǫ2,
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where (ǫ1, ǫ2, ǫ3) stands for the canonical basis of Z2Z[X, Y ]3. We have

S(u1,3, u1,2) = 2u1,3 −X3u1,2 = (−2, Y 3X3 −X3,−2Y 4 + 2Y )

= −u1,2 + (Y 3 − 1)u2,3,

S(u1,3, u2,3) = S(u1,2, u2,3) = 0.

We recover that (u1,3, u1,2, u2,3) is a Gröbner basis for Syz(g1, g2, g3). By
Theorem 5.4, the element u1,3;1,2 = (2,−X3 + 1,−Y 3 + 1) forms a (pseudo-
reduced) Gröbner basis for the syzygy module Syz(u1,3, u1,2, u2,3) w.r.t.
Schreyer’s monomial order >3 induced by >2 and (u1,3, u1,2, u2,3). In particu-
lar, LT(Syz(u1,3, u1,2, u2,3)) = 〈LT(u1,3;1,2)〉 = 〈2〉ǫ′

1, where (ǫ′
1, ǫ′

2, ǫ′
3) stands

for the canonical basis of Z2Z[X, Y ]3. By Remark 5.2, Syz(u1,3, u1,2, u2,3)
is free. We conclude that I admits the following length-2 free Z2Z[X, Y ]-
resolution:

0 −→ Z2Z[X, Y ]
u1,3;1,2−−−−→ Z2Z[X, Y ]3

( u1,3

u1,2

u2,3

)

−−−−−→ Z2Z[X, Y ]3

( g1
g2
g3

)

−−−−→ I → 0.

It follows that Z2Z[X, Y ]/I admits the following length-3 free Z2Z[X, Y ]-
resolution:

0→ Z2Z[X, Y ]→ Z2Z[X, Y ]3 → Z2Z[X, Y ]3 → Z2Z[X, Y ]
π→Z2Z[X, Y ]/I → 0.

Another consequence of Theorem 5.4 is the following result.

Theorem 5.9 (Syzygy theorem for a coherent valuation ring with nonzero
zerodivisors and a divisibility test). Let M = Hm/U be a finitely presented
R[X]-module, where R is a coherent valuation ring with a divisibility test and
nonzero zerodivisors. Assume that, w.r.t. the TOP lexicographic monomial
order, LT(U) is finitely generated. Then M admits a resolution by finite
free R[X]-modules

· · · ϕp+3−→ Fp
ϕp+2−→ Fp

ϕp+1−→ Fp
ϕp−→ Fp−1

ϕp−1−→ · · · ϕ2−→ F1
ϕ1−→ F0

ϕ0−→M −→ 0

such that for some p ≤ n + 1,

• LT(Ker(ϕp)) =
⊕mp

j=1〈bj〉ǫj with b1, . . . , bmp
∈ R and (ǫ1, . . . , ǫmp

) a
basis for Fp,

• LT(Ker(ϕp+2k−1)) =
⊕mp

j=1 Ann(bj)ǫj for k ≥ 1,

• LT(Ker(ϕp+2k)) =
⊕mp

j=1 Ann(Ann(bj))ǫj for k ≥ 1,
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and at each step where indeterminates remain present, the considered
monomial order is Schreyer’s monomial order (as in the proof of The-
orem 5.5).

Proof. The part

Fp
ϕp−→ Fp−1

ϕp−1−→ · · · ϕ2−→ F1
ϕ1−→ F0

ϕ0−→M −→ 0

of the free R[X]-resolution with p ≤ n + 1 and LT(Ker(ϕp)) =
⊕mp

j=1〈bj〉ǫj

follows from the proof of Theorem 5.5. W.l.o.g., the bj ’s are 6= 0. Let us
denote by (g1, . . . , gmp

) a Gröbner basis for Ker(ϕp) such that LT(gj) = bjǫj

for 1 ≤ j ≤ mp. So S(gi, gj) = 0 for i < j. Thus the fact that
LT(Ker(ϕp+1)) =

⊕mp

j=1 Ann(bj)ǫj , LT(Ker(ϕp+2)) =
⊕mp

j=1 Ann(Ann(bj))ǫj ,
etc. follows immediately from Theorem 5.4. Finally, let us recall the equality
Ann(Ann(Ann(I))) = Ann(I) for an ideal I.

Let us point out that this shows that the free resolution is in general not
a finite one.

Corollary 5.10 (Syzygy theorem for a zero-dimensional coherent valuation
ring with a divisibility test). Let M = Hm/U be a finitely presented R[X]-
module, where R is a zero-dimensional coherent valuation ring3 with a divisib-
ility test. Then M admits a free R[X]-resolution as described in Theorem 5.9.

Example 5.11. Let g1 = Y 4 − Y, g2 = 2Y, g3 = X3 − 1 ∈ (Z/4Z)[X, Y ], and
let us use the lexicographic order >1 for which Y >1 X . We have

S(g1, g1) = 0g1 = 0, S(g1, g2) = 2g1 − Y 3g2 = −2Y = −g2,

S(g2, g2) = 2g2 = 0, S(g2, g3) = X3g2 − 2Y g3 = 2Y = g2,

S(g3, g3) = 0g3 = 0, S(g1, g3) = X3g1 − Y 4g3 = Y 4 − Y X3 = g1 − Y g3.

Thus (g1, g2, g3) is a (pseudo-reduced) Gröbner basis for I = 〈g1, g2, g3〉 and
LT(I) = 〈Y 4, 2Y, X3〉. By Theorem 5.4, u1,3 = (X3 − 1, 0,−Y 4 + Y ), u1,2 =
(2,−Y 3 + 1, 0), u2,3 = (0, X3 − 1,−2Y ), u2,2 = (0, 2, 0) form a (pseudo-
reduced) Gröbner basis for the syzygy module Syz(g1, g2, g3) w.r.t. Schreyer’s
monomial order >2 induced by >1 and (g1, g2, g3). In particular,

LT(Syz(g1, g2, g3)) = 〈LT(u1,3), . . . , LT(u2,2)〉
= 〈X3ǫ1, 2ǫ1, X3ǫ2, 2ǫ2〉 = 〈2, X3〉ǫ1 ⊕ 〈2, X3〉ǫ2,

3Note that a zero-dimensional ring without nonzero zerodivisors is a discrete field.
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where (ǫ1, ǫ2, ǫ3) stands for the canonical basis of (Z/4Z)[X, Y ]3. We have

S(u1,3, u1,3) = 0u1,3 = 0,

S(u1,3, u1,2) = 2u1,3 −X3u1,2

= (−2, Y 3X3 −X3,−2Y 4 + 2Y )

= −u1,2 + (Y 3 − 1)u2,3,

S(u1,3, u2,3) = S(u1,3, u2,2) = 0,

S(u1,2, u1,2) = 2u1,2 = (0,−2Y 3 + 2, 0)

= (−Y 3 + 1)u2,2,

S(u1,2, u2,3) = S(u1,2, u2,2) = 0,

S(u2,3, u2,3) = 0u2,3 = 0,

S(u2,3, u2,2) = 2u2,3 −X3u2,2

= (0,−2, 0Y )

= (0,−2, 0)

= −u2,2,

S(u2,2, u2,2) = 2u2,2 = 0.

We recover that (u1,3, u1,2, u2,3, u2,2) is a Gröbner basis for Syz(g1, g2, g3). By
Theorem 5.4, u1,3;1,2 = (2,−X3 + 1,−Y 3 + 1, 0), u1,2;1,2 = (0, 2, 0, Y 3 − 1),
u2,3;2,2 = (0, 0, 2,−X3 + 1), u2,2;2,2 = (0, 0, 0, 2) form a (pseudo-reduced)
Gröbner basis for the syzygy module Syz(u1,3, u1,2, u2,3, u2,2) w.r.t. Schreyer’s
monomial order >3 induced by >2 and (u1,3, u1,2, u2,3, u2,2). In particular,

LT(Syz(u1,3, u1,2, u2,3, u2,2)) = 〈LT(u1,3;1,2), . . . , LT(u2,2;2,2)〉
= 〈2ǫ′

1, . . . , 2ǫ′
4〉 = 〈2〉ǫ′

1 ⊕ 〈2〉ǫ′
2 ⊕ 〈2〉ǫ′

3 ⊕ 〈2〉ǫ′
4,

where (ǫ′
1, . . . , ǫ′

4) stands for the canonical basis of (Z/4Z)[X, Y ]4. By
Theorem 5.4, we find four vectors u(1,3;1,2),(1,3;1,2), . . . , u(2,2;2,2),(2,2;2,2) ∈
(Z/4Z)[X, Y ]4 forming a (pseudo-reduced) Gröbner basis for the syzygy mod-
ule Syz(u1,3;1,2, . . . , u2,2;2,2) w.r.t. Schreyer’s monomial order >4 induced by
>3 and (u1,3;1,2, . . . , u2,2;2,2). In particular,

LT(Syz(u1,3;1,2, . . . , u2,2;2,2)) = 〈LT(u(1,3;1,2),(1,3;1,2)), . . . , LT(u(2,2;2,2),(2,2;2,2))〉
= 〈2〉ǫ′

1 ⊕ 〈2〉ǫ′
2 ⊕ 〈2〉ǫ′

3 ⊕ 〈2〉ǫ′
4,

etc. We conclude that I admits the free (Z/4Z)[X, Y ]-resolution

· · · ϕ3−→ (Z/4Z)[X, Y ]4
ϕ2−→ (Z/4Z)[X, Y ]4

ϕ1−→ (Z/4Z)[X, Y ]3
ϕ0−→ I −→ 0

such that LT(Ker(ϕi)) = 〈2〉ǫ′
1 ⊕ 〈2〉ǫ′

2 ⊕ 〈2〉ǫ′
3 ⊕ 〈2〉ǫ′

4 for i ≥ 1.

6 The syzygy theorem and Schreyer’s al-

gorithm for a Bézout ring

As explained in the proof of Theorem 4.6, one can avoid branching when
computing a dynamical Gröbner basis (see [10, 16, 19]) for a Bézout domain

25



of Krull dimension ≤ 1 (e.g. Z and the ring of all algebraic integers—note that
the last one is not a PID) or a zero-dimensional coherent Bézout ring. Note
that this is not possible for Prüfer domains of Krull dimension ≤ 1 which are
not Bézout domains (e.g. Z[

√
−5], see [10, Section 4]).

Let us now generalise the results of Section 5 to the case of coherent strict
Bézout rings.

Theorem 6.1 (Schreyer’s algorithm for Bézout rings). We consider a co-
herent strict Bézout ring R with a divisibility test. Let U be a submodule
of Hm with Gröbner basis (g1, . . . , gp). Then the relations ui,j computed
by Algorithm 2.8 form a Gröbner basis for the syzygy module Syz(g1, . . . , gp)
w.r.t. Schreyer’s monomial order induced by > and (g1, . . . , gp).

Proof. This follows directly from the local case given by Theorem 5.4: see
the proof of Theorem 4.6 for an explanation.

Theorem 6.2 (Syzygy theorem for a Bézout domain with a divisibility test).
Let M = Hm/U be a finitely presented R[X ]-module, where R is a Bézout
domain with a divisibility test. Assume that, w.r.t. the TOP lexicographic
monomial order, LT(U) is finitely generated. Then M admits a finite free
R[X]-resolution

0→ Fp → Fp−1 → · · · → F1 → F0 →M → 0

of length p ≤ n + 1.

Proof. This follows directly from the local case.

Corollary 6.3 (Syzygy theorem for a one-dimensional Bézout domain with
a divisibility test). Let M = Hm/U be a finitely presented R[X ]-module,
where R is a Bézout domain of Krull dimension ≤ 1 with a divisibility test.
Then M admits a finite free R[X]-resolution

0→ Fp → Fp−1 → · · · → F1 → F0 →M → 0

of length p ≤ n + 1.

Let us now treat the case of zero-dimensional coherent Bézout rings.

Theorem 6.4 (Syzygy theorem for a zero-dimensional Bézout ring with a
divisibility test). Let M = Hm/U be a finitely presented R[X ]-module, where
R is a coherent zero-dimensional Bézout ring with a divisibility test. Then M
admits a free R[X]-resolution

· · · ϕp+3−→ Fp
ϕp+2−→ Fp

ϕp+1−→ Fp
ϕp−→ Fp−1

ϕp−1−→ · · · ϕ2−→ F1
ϕ1−→ F0

ϕ0−→M −→ 0

such that for some p ≤ n + 1,

26



• LT(Ker(ϕp)) =
⊕mp

j=1〈bj〉ǫj with b1, . . . , bmp
∈ R and (ǫ1, . . . , ǫmp

) a
basis for Fp,

• LT(Ker(ϕp+2k−1)) =
⊕mp

j=1 Ann(bj)ǫj for k ≥ 1,

• LT(Ker(ϕp+2k)) =
⊕mp

j=1 Ann(Ann(bj))ǫj for k ≥ 1,

and at each step where indeterminates remain present, the considered
monomial order is Schreyer’s monomial order.

Proof. This follows directly from the local case.

The case of the integers

The following theorems are particular cases of Theorem 6.1 and Corollary 6.3
for R = Z.

Theorem 6.5 (Schreyer’s algorithm for R = Z). Let U be a submodule
of Hm with Gröbner basis (g1, . . . , gp). Then the relations ui,j computed
by Algorithm 2.8 form a Gröbner basis for the syzygy module Syz(g1, . . . , gp)
w.r.t. Schreyer’s monomial order induced by > and (g1, . . . , gp). Moreover,
for 1 ≤ i < j ≤ p such that LPos(gi) = LPos(gj), we have

LT(ui,j) =
LC(gj)

gcd(LC(gi),LC(gj)) X(mdeg(gj )−mdeg(gi))+

ǫi.

Theorem 6.6 (Syzygy theorem for R = Z). Let M be a finitely generated
Z[X ]-module. Then M admits a finite free Z[X ]-resolution

0→ Fp → Fp−1 → · · · → F1 → F0 →M → 0

of length p ≤ n + 1.

Example 6.7. Let g1 = Y 2 − X + 3, g2 = 4X2 − 4, g3 = 6X + 6 ∈ Z[X, Y ],
and let us use the lexicographic order >1 for which Y >1 X . We have:

S(g1, g2) = 4X2g1 − Y 2g2 = 4g1 + (−X + 3)g2,

S(g1, g3) = 6Xg1 − Y 2g3 = −6g1 + (−X + 3)g3,

S(g2, g3) = 3g2 − 2Xg3 = −2g3.

Thus (g1, g2, g3) is a Gröbner basis for I = 〈g1, g2, g3〉 and LT(I) =
〈Y 2, 4X2, 6X〉. By Theorem 6.5, u1,2 = (4X2 − 4,−Y 2 + X − 3, 0), u1,3 =
(6X + 6, 0,−Y 2 + X− 3), u2,3 = (0, 3,−2X + 2) form a Gröbner basis for the
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syzygy module Syz(g1, g2, g3) w.r.t. Schreyer’s monomial order >2 induced
by >1 and (g1, g2, g3). In particular,

LT(Syz(g1, g2, g3)) = 〈LT(u1,2), LT(u1,3), LT(u2,3)〉 = 〈4X2ǫ1, 6Xǫ1, 3ǫ2〉
= 〈4X2, 6X〉ǫ1 ⊕ 〈3〉ǫ2 = 2〈2X2, 3X〉ǫ1 ⊕ 〈3〉ǫ2 = 2〈X2, 3X〉ǫ1 ⊕ 〈3〉ǫ2,

where (ǫ1, ǫ2, ǫ3) stands for the canonical basis of Z[X, Y ]3. Thus

u′
1,2 = Xu1,3 − u1,2 = (2X2 + 6X + 4, Y 2 −X + 3,−Y 2X + X2 − 3X), u1,3, u2,3

form a reduced Gröbner basis for Syz(g1, g2, g3). We have:

S(u′
1,2, u1,3) = 3u′

1,2 −Xu1,3 = 2u1,3 + (Y 2 −X + 3)u2,3,

S(u′
1,2, u2,3) = S(u1,3, u2,3) = 0.

We recover that (u′
1,2, u1,3, u2,3) is a Gröbner basis for Syz(g1, g2, g3). By

Theorem 6.5, u1,2;1,3 = (3,−X − 2,−Y 2 + X − 3) forms a (pseudo-reduced)
Gröbner basis for the syzygy module Syz(u′

1,2, u1,3, u2,3) w.r.t. Schreyer’s
monomial order >3 induced by >2 and (u′

1,2, u1,3, u2,3). In particular,
LT(Syz(u′

1,2, u1,3, u2,3)) = 〈LT(u1,2;1,3)〉 = 〈3〉ǫ′
1 where (ǫ′

1, ǫ′
2, ǫ′

3) stands for
the canonical basis of Z[X, Y ]3. It follows that Syz(u′

1,2, u1,3, u2,3) is free. We
conclude that I admits the following length-2 free Z[X, Y ]-resolution:

0→ Z[X, Y ]
u1,2;1,3−−−−→ Z[X, Y ]3

( u1,2

u1,3

u2,3

)

−−−−−→ Z[X, Y ]3

( g1
g2
g3

)

−−−−→ I → 0.

The case of Z/NZ

The elements of Z/NZ are simply written as integers (their representatives
in [[0, N−1]]). When talking about the gcd of two nonzero elements in Z/NZ

we mean the gcd of their representatives in [[1, N −1]]. For a nonzero element

a in Z/NZ, letting b = gcd(N, a), the class of
N

b
in Z/NZ will be denoted

by ann(a); it generates Ann(a).

• The Division algorithm 2.3 attains its goal: the gcd and the Bézout
identity to be found in line 7 will be computed by finding d, b, bi (i ∈ D) in
Z such that d = gcd(N, gcd{LC(hi) ; i ∈ D }) = bN +

∑

i∈D bi LC(hi); the
euclidean division in line 7 will be performed in Z;

• The S-polynomial algorithm 2.4 attains its goal: note that in this case,
the generator of the annihilator of LC(f) to be found on line 3 may be taken
to be ann(LC(f)), so that the auto-S-polynomial of f is

S(f, f) = ann(LC(f))f ;
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• Buchberger’s algorithm 2.5 attains its goal.

The following theorems are particular cases of Theorems 6.1 and 6.4 for
R = Z/NZ.

Theorem 6.8 (Schreyer’s algorithm for R = Z/NZ). Let U be a submodule
of Hm with Gröbner basis (g1, . . . , gp). Then the relations ui,j computed
by Algorithm 2.8 form a Gröbner basis for the syzygy module Syz(g1, . . . , gp)
w.r.t. Schreyer’s monomial order induced by > and (g1, . . . , gp). Moreover,
for all 1 ≤ i ≤ j ≤ p such that LPos(gi) = LPos(gj), we have

LT(ui,j) =







ann(LC(gi))ǫi if i = j,

LC(gj)
gcd(LC(gi),LC(gj)) X(mdeg(gj)−mdeg(gi))+

ǫi otherwise.

Theorem 6.9 (Syzygy theorem for R = Z/NZ). Let M be a finitely presen-
ted (Z/NZ)[X ]-module. Then M admits a free (Z/NZ)[X ]-resolution

· · · ϕp+3−→ Fp
ϕp+2−→ Fp

ϕp+1−→ Fp
ϕp−→ Fp−1

ϕp−1−→ · · · ϕ2−→ F1
ϕ1−→ F0

ϕ0−→M −→ 0

such that for some p ≤ n + 1,

LT(Ker(ϕp)) =

mp
⊕

j=1

〈bj〉ǫj, LT(Ker(ϕp+1)) =

mp
⊕

j=1

N

gcd(N, bj)
ǫj,

LT(Ker(ϕp+2)) =

mp
⊕

j=1

〈bj〉ǫj, LT(Ker(ϕp+3)) =

mp
⊕

j=1

N

gcd(N, bj)
ǫj, etc.,

where (ǫ1, . . . , ǫmp
) is a basis for Fp, b1, . . . , bmp

∈ Z/NZ, and the considered
monomial order is Schreyer’s monomial order.

Example 6.10. Let g1 = Y + 1, g2 = X3 + X2 + 6, g3 = 3X2, g4 = 9 in
(Z/12Z)[X, Y ], and let us use the lexicographic order >1 for which Y >1 X .
We have

S(g1, g1) = 0g1 = 0,

S(g1, g2) = X3g1 − Y g2 = (−X2 − 6)g1 + g2,

S(g1, g3) = 3X2g1 − Y g3 = g3,

S(g1, g4) = 9g1 − Y g4 = g4,

S(g2, g2) = 0g2 = 0,

S(g2, g3) = 3g2 −Xg3 = g3 + 2g4,

S(g2, g4) = 9g2 −X3g3 = (X2 + 6)g4,

S(g3, g3) = 4g3 = 0,

S(g3, g4) = 3g3 −X2g4 = 0,

S(g4, g4) = 4g4 = 0.

Thus (g1, g2, g3, g4) is a (pseudo-reduced) Gröbner basis for I = 〈g1, g2, g3, g4〉
and LT(I) = 〈Y, X3, 3X2, 9〉. By Theorem 6.8, u1,2 = (X3 + X2 + 6,−Y − 1,
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0, 0), u1,3 = (3X2, 0,−Y − 1, 0), u1,4 = (9, 0, 0,−Y − 1), u2,3 = (0, 3,−X− 1,
−2), u2,4 = (0, 9,−X3,−X2 − 6), u3,3 = (0, 0, 4, 0), u3,4 = (0, 0, 3,−X2),
u4,4 = (0, 0, 0, 4) form a Gröbner basis for the syzygy module Syz(g1, g2, g3, g4)
w.r.t. Schreyer’s monomial order >2 induced by >1 and (g1, g2, g3, g4). In
particular,

LT(Syz(g1, g2, g3, g4)) = 〈LT(u1,2), . . . , LT(u4,4)〉
= 〈X3, 3X2, 9〉ǫ1 ⊕ 〈3, 9〉ǫ2 ⊕ 〈4, 3〉ǫ3 ⊕ 〈4〉ǫ4

= 〈X3, 3〉ǫ1 ⊕ 〈3〉ǫ2 ⊕ 〈1〉ǫ3 ⊕ 〈4〉ǫ4,

where (ǫ1, ǫ2, ǫ3, ǫ4) stands for the canonical basis of (Z/12Z)[X, Y ]4. Thus
u1,2, u′

1,4 = −u1,4 = (3, 0, 0, Y + 1), u2,3, u′
3,3 = u3,3 − u3,4 = (0, 0, 1, X2),

u4,4 form a reduced Gröbner basis for Syz(g1, g2, g3, g4). We have

S(u1,2, u′
1,4) = 3u1,2 −X3u′

1,4

= (X2 + 2)u′
1,4 + (3Y + 3)u2,3 + (3Y X + 3Y + 3X + 3)u′

3,3

+(2Y X3 + 2Y X2 + 2X3 + 2X2 + Y + 1)u4,4,

S(u′
1,4, u′

1,4) = 4u′
1,4 = (Y + 1)u4,4,

S(u2,3, u2,3) = 4u2,3 = (8X + 8)u′
3,3 + (X3 + X2 + 1)u4,4,

S(u4,4, u4,4) = 3u4,4 = 0.

By Theorem 6.8, the elements u1,2;1,4 = (3,−X3 − X2 − 2,−3Y − 3,
−3Y X − 3Y − 3X − 3,−2Y X3 − 2Y X2 − Y − 2X3 − 2X2 − 1),
u1,4;1,4 = (0, 4, 0, 0,−Y − 1), u2,3;2,3 = (0, 0, 4,−8X − 8,−X3 − X2 − 1),
u4,4;4,4 = (0, 0, 0, 0, 3) form a (pseudo-reduced) Gröbner basis for the
syzygy module Syz(u1,2, u′

1,4, u2,3, u′
3,3, u4,4) w.r.t. Schreyer’s monomial

order >3 induced by >2 and (u1,2, u′
1,4, u2,3, u′

3,3, u4,4). In particular,
LT(Syz(u1,2, u′

1,4, u2,3, u′
3,3, u4,4)) = 〈3〉ǫ′

1 ⊕ 〈4〉ǫ′
2 ⊕ 〈4〉ǫ′

3 ⊕ 〈3〉ǫ′
5, where

(ǫ′
1, . . . , ǫ′

5) stands for the canonical basis of (Z/12Z)[X, Y ]5.
We conclude that I admits the free R[X, Y ]-resolution (R = Z/12Z)

· · · ϕ4−→ R[X, Y ]4
ϕ3−→ R[X, Y ]4

ϕ2−→ R[X, Y ]5
ϕ1−→ R[X, Y ]4

ϕ0−→ I → 0

with LT(Ker(ϕ2i)) = 〈4〉ǫ′′
1 ⊕ 〈3〉ǫ′′

2 ⊕ 〈3〉ǫ′′
3 ⊕ 〈4〉ǫ′′

4 and LT(Ker(ϕ2i+1)) =
〈3〉ǫ′′

1 ⊕ 〈4〉ǫ′′
2 ⊕ 〈4〉ǫ′′

3 ⊕ 〈3〉ǫ′′
4 for i ≥ 1, where (ǫ′′

1 , . . . , ǫ′′
4) stands for the

canonical basis of R[X, Y ]4.
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