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Abstract 
The emergence of Cyber Physical System has dramatically impacted the use of 

traditionally centralized control system in responding to unexpected events. Rush 

order is quite common unexpected event in the current dynamic market 

characteristics and has significant perturbing ability to a centrally predictive 

schedule. This paper is aimed to propose a Consensus algorithm for Multi-agent 

based Manufacturing system (CoMM) to control the rush order and henceforth 

minimize a makespan. Consensus is an algorithmic procedure applied in control 

theory which allows convergence of state between locally autonomous agents 

collaborating for their common goal. Leader-Follower communication approach 

was used among the multi-agent to deal with the perturbing event. Each agent 

decides when to broadcast its state to neighbor agents and the controlling decision 

depends on the behavior of this state. The consensus algorithm is initially modeled 

by networking all contributing agents. After this, it is validated with simulation 

experiment based on academic full-sized application platform called 

TRACILOGIS platform. The results showed that the consensus algorithm has 

significantly minimized the impact of rush order on makespan of manufacturing 

orders launched on a system. 
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1. Introduction 
The requirement for short life cycle products is urging manufacturing industries to 

focus on control systems that network physical and computational components. 

This demands continuous search for control systems that balance between local 

and global decisions within their system. However, efficient utilization of 

resources and time in such dynamically changing environment is not easy due to 

complex & delayed communication between components. Consequently, these 

industries are adapting smart transformation process of services supported by 

autonomous and communicative decision entities2. Making these decisional 

entities to decide autonomously and realize their online monitoring has been used 

as the best control approach for the previous decades. It is still one of the 

significant solution searches for resource allocation and sequence management. 

Nevertheless, as it is presented in [2, 3], drawbacks such as limited capacity to 

predict process outcomes, own goal orientation, least commitment about other 

entity’s offer etc. are critical issues under this control approach.  

These challenges have pushed industries and research institutes to look for 

alternative control approaches that assimilate locally autonomous decision entities 

with some other coordinating entities. This seizes collaborative decision support 

system. In such organizational sociability, decision entities must negotiate with 

their neighbor entities and maintain some social relationships at their operational 

and structural levels [4]. As part of this sociability, this paper is aimed to 

investigate the application of consensus algorithm for multi-agent based 

manufacturing system (CoMM) to control unexpected event called rush order. 

Rush order is an implicit customer’s priority request for his/her products to be 

delivered very quickly [5, 6]. Literatures have treated rush order as a special 

disturbance that disrupts performance of an entire shop floor [7]. Accepting this 

perturbation could trade-off manufacturing lead time and resource utilization if an 

immediate action is not steadily taken. Immediate to its happening, it must be 

inserted to a current schedule by making optimal rearrangement of all resources 

available within a system. Meanwhile, local and global decision entities must 

work cooperatively in order to minimize myopic behavior of locally autonomous 

entities during such decision change.  

The consensus algorithm was implemented using leader-follower 

communication approach with time varying communication topology. The leader 

agents coordinate their group of followers using a state in relation with their 

behavior. Convergence state is used to indicate the agreement of agents to work 

together towards a common goal. The proposed algorithm is simulated 

considering an industrial problem and a full-sized academic application test-bed 

platform. The results contribute some findings on the field of negotiation and 

cooperation among the multi-agents by considering not only their own state but 

also the state of neighbors after occurrence of the unexpected event. It reduces the 

impact of the rush order on an overall production performance and hence 

                                                           
2Decision entity is a building unit (products, machines, order, etc.) within manufacturing system with 
capability to show physical & informational communication behavior, make decisions, and act for 

decision [1]. 
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minimizes a makespan. The rest of the paper is organized as follow: Section 2 

surveys multi-agent systems (MAS) based cooperative decision and the way 

agents reach their consensus. Two sub-sections with cooperative decision 

approach in the first sub-section and consensus theory based control algorithm in 

the second sub-section are addressed. Section 3 presents and formalizes the 

industrial problem. Section 4 proposes the consensus algorithm for the problem 

statement presented in section 3. In addition to this, it adapts the applicability of 

the algorithm by designing a new informational state. Section 5 simulates & 

validates the proposed algorithm and discusses its experimental results. It uses the 

application platform as a case study. Finally, section 6 concludes based on the 

results obtained and forwards its future work on how the simulation experiment 

could be implemented in an actual industrial environment.  

2. Survey of related works 

2.1 Surveys related to cooperative decisions 

The developments in communication and sensing have evolved significant interest 

and research activity in the area of cooperative MAS. For example, in intelligent 

manufacturing system, it is well accepted that MAS based control system is a 

good way to deal with disturbances and decision changes. Agents in such control 

system are characterized by their autonomy in which decisions at the time of 

necessity are made by these agents. This helps to create robust system with respect 

to time-varying communication. Without being exhaustive, some intelligent 

control systems based on MAS could be cited: Leitão [8], Isern et al. [9], Xiong 

and Fu [10] etc.  In all these citations, it is addressed that the applicability of MAS 

is characterized by their large scale in terms of number of agents, dynamic nature, 

and complex functionality. It is presented in Isern et al. [9] that, even though 

agents are perceived as autonomous entities, they are also members of a society. 

They have to exchange information with other group of agents and maintain some 

relationships at an organizational level. Consequently, the mere presence of 

multiple agents makes an environment appear dynamic from the point of view of 

each agent with the control system they follow. 

 This shows that unless the multi-agents are cooperative, the required 

performance within a manufacturing system could not be efficiently achieved. 

Even though individual agents can generate and execute their plans independently, 

conflicts may arise and hence they need to coordinate their course of action. This 

cooperation is proved by different authors. For instance, Caridi and Cavalieri [11] 

have presented that optimal global performance could be achieved if several 

decision making agents, distributed inside manufacturing cells, cooperate and 

interact for common offer. Wooldridge [12] has added negotiation among agents 

is foreseen to host a robust-predictive-reactive scheduling and also to tackle 

myopia. Myopia, a word from [13], is drawback of autonomous agents during 

their execution process. These include limited capacity to predict process 

outcomes, least commitment about neighbor agents etc. Hence, reducing these 

drawbacks must be the target of the multi-agents and minimizing these drawbacks 

is highly dependent on structural, operational, and behavioral designs, Table 1.  
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 Tonino et al. [14] illustrated the investigations of different agent negotiation 

approaches including game-theoretic, heuristic-based, and argumentation-based 

approaches. Three of them emphasize the importance of exchanging information 

between agents in order to mutually influence their behaviors. The game-theoretic 

approach helps to determine an optimal strategy by analyzing the interaction of 

agents as a game rule between identical and self-interested participants [15, 16]. 

But it is known for unbounded computational resources as limitation. To 

overcome this limitation, the heuristic approach has come with the principle of 

produce good enough rather than optimal outcomes [17]. Irrespective of its 

advantage, this approach is also known for its sub-optimal outcome as it does not 

examine the full space of possible outcomes [18]. Subsequently, argumentation-

based negotiation approach has evolved to overcome the knowledge limitations of 

agents in game-theoretic and heuristic negotiation approaches. As it has been 

surveyed by Rahwan et al. [19], argumentation-based negotiation approach allows 

agents to exchange additional information or to argue about their beliefs & other’s 

mental attitudes during their negotiation time. Agents accept, reject, or critique an 

offer proposed by other agent until they agree on this offer. Meanwhile, 

argumentation-based negotiation approach has been gained increasing popularity 

for its potential ability to overcome the limitations of other conventional 

approaches. As a continuation of developing negotiation protocols for improving 

manufacturing system’s performance, Xiong and Fu [10] have presented the role 

of cooperative multi-agents. They designed an immune multi-agent scheduling 

system to solve a flexible job shop scheduling problem.  

Table 1Controlling methods of multi-agent 

Design  Control approach   Role  Examples Citations   

Structural 

cooperation 

Task determination 

through command 

cooperation 

Overall 

system 

view 

Robotic 

system  
[4, 13] 

Operational 

cooperation 

Belief, Desire, and 

Intention alteration 

through 

communication 

protocols 

Sharing 

equal rights 

by direct 

information 

exchange 

Negotiation 

& consensus: 

member 

debate to 

make law  

[11, 14, 

19] 

 

Bio-inspired 

(behavioral 

cooperation) 

Modification of 

route using 

pheromones  

Food 

searching: 

pheromone 

based route 

exploration   

Ant and  

Termite 

colonies 

[20–22] 

Physical-

inspired 

Machines emit 

attractive fields to 

attract jobs 

Potential 

field 

Electrical 

fields  
[23] 
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Mezgebe et al. [24] have also proposed negotiation model considering smart 

product agents scheduled to be processed on different resource agents. The 

communication protocol was fully controlled by product agents and role of Radio 

Frequency Identification (RFID) technology was used to help detect disturbances 

and send back to product agents for its management. However, the role of giving 

and accepting consent to provide one’s state and follow a common protocol was 

not well addressed. That is why consensus paradigm is explored to formalize such 

consent and hence to share one’s state for the interest of a whole.  

2.2 Surveys related to consensus in cooperative decisions 

Literatures on MAS have revealed that negotiation and cooperation are good 

elements of networked agents to reach at their final offer called consensus. 

Consensus is an algorithmic procedure to negotiate among groups of agents and 

hence asymptotically reach an agreement for the best interest of whole [25]. It 

pursues certain quantities of interest with or without predefined common 

orientation of individual agents. Currently, it becomes applicable in mathematics, 

physics, control theory etc. and its applicability is revealed in synchronization of 

collaborative decision support systems [26].  These applicability’s include 

rendezvous in the space [27, 28], flocking [29, 30], decentralized scheduling in 

networking domain [31], sensor networks [32], coupled oscillators [33] among 

many others. In all these application domains, agents not only update their own 

state but also the state of neighbors. This helps to design an update law and hence 

to converge to a common value based on the designed update law.  

 Consequently, these and other researchers have been worked to design 

different control laws and protocols. Dimarogonas and Kyriakopoulos [27] for 

example, have proposed discontinuous and time-invariant non-holonomic control 

law so as to examine stability of a system. They described convergence of 

designed multi-agent system relies on connectivity of a communication graph that 

represents an inter-agent communication topology. Lee and Spong [29] on their 

flocking study have proposed a provably-stable flocking control law. It was 

proposed considering a stable flocking of multiple inertial agents (keeping their 

shape and velocity). It ensured that internal group formation is exponentially 

stabilized to a desired shape while all agents’ velocities converge to a centroid 

velocity with time-invariant evolution. Moore and Lucarelli [31] have also 

proposed consensus variables with nearest-neighbor communication topology to 

solve a decentralized adaptive scheduling of tasks or mission timing problems. On 

the other hand, Ren and Beard [34] have hypothesized that to reach consensus 

among group of agents, there must be a shared variable of interest called 

informational state. Wang and Shao [35] have strengthened the role of 

informational state by developing consensus protocol where state of neighbor 

agent is continuously controlled by state of initial agent. All the above reviews 

indicate that there has been a great extent of concern on consensus algorithm to 

solve conflicting problems among own goal oriented agents.   

 To sum-up the survey, many researchers have given due attention to the 

applicability of sociability based multi-agent systems for controlling 

communication problems. However, its applicability for manufacturing control 
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problems and specifically to scheduling problems was not well investigated and 

studied. It was highly comprehended with challenges such as difficulty to 

guarantee minimal level of information & operational performance, difficulty of 

synchronization, lack of commercial platforms etc. Jimenez et al. [4], for instance, 

have confirmed the difficulty of synchronization of the level of autonomy of 

contributing entities. Therefore, further exploration on different MAS based 

control algorithm that help synchronize these agents and hence create robust 

system with respect to time-variant communications is becoming another research 

area [36]. And to the best of author(s) knowledge, the consensus algorithm from 

consensus theory has rarely been adapted to decision making algorithm or not yet 

implemented in flexible manufacturing systems (FMS). Thus, this paper presents 

the application of the algorithm to minimize non-value adding activities created 

after unexpected disturbance and hence minimize makespan of a manufacturing 

process.  

3. Problem statement 
A make-to-order impregnation and lamination flow shop, inspired from a particle 

board manufacturing factory called Maichew Particle Board Manufacturing 

Company, is considered to set the problem statement, Fig. 1. Sanding of raw 

board, polishing & inspecting, lamination, and varnishing are its sequential 

operational activities. Its products are supplied to subsequent job shop or external 

customers to serve as raw materials for office furnitures, kitchen cabinets, 

computer desks etc. The flow shop has a capacity to produce different standard 

and variety of products for different manufacturing orders by changing its setup 

for each order. Meanwhile, the company’s planning department proposes a weekly 

predictive (centralized) schedule for each customer orders (each with their own 

product types) the flow shop receives. If perturbation and decision changes are not 

noticed, this predictive schedule proposed at the beginning of the execution 

process realizes the full completion of all orders received with best rewards.  

 However, it oftenly suffers from many external and internal perturbations & 

changes and the following two are set as the most common one: (a) last minute’s 

rush order due to highest priority and (b) extra buffer (or higher buffer size) at 

decoupling point due to the rush order. The high buffer size, which in turn results 

higher work-in-progress inventory, encounters because each product of each 

manufacturing order chooses a destination with shortest completion time 

scheduled at the central level.  

 
Fig. 1 Flow chart of impregnation and lamination shop floor 
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Accepting such perturbations could trade-off manufacturing lead time and 

resource utilization if an immediate action is not steadily taken. For example, it 

may lead to non-value adding activities such as waiting time that could be 

observed in the work centers presented in Fig. 1 

3.1 Formalizing the industrial problem 
To formalize the industrial problem, it is considered that the flow shop has 

received m manufacturing orders M1, M2, …, Mm each with its own product types 

Pi and due date dd1, dd2, …, ddm respectively. Meanwhile, the below set of 

indexes, notations, variables, and parameters have been used throughout this paper 

to design the required control algorithm. 

Indexes and notations 

r  Resource index �
mM  

Rush order 

,i j  Product indexes 
mla  Leader (or last product) agent of 

manufacturing order m 
m  Manufacturing order 

index 
�

mla  Leader (or last product) agent of rush 

order 

k  Operation index  sΦ
  

Intention based decision (and/or 

conflict) node 
n  Number of agents t s  Time where event based perturbation 

or decision change happens 

Variables 

ic  Completion date of 

product i  
mc   Completion date of manufacturing 

order m 

maxC  Makespan W
 

Waiting time of product i in a system 

Parameters 

M  Set of manufacturing 

orders 
kirw   Waiting time of product i after its 

processing in resource r or route 

completion in a system3 until its 

batch members couple it  

R
  

Set of resources within a 

system 
kirε  Exit/release time of product i 

from resource r 

kiR
 

Set of resources which 

perform operations k of 

product i 

wrt  Actual working time used by 

resource r 

imO   Set of operations of 

product i of order m 
vrt  Maximum available time of 

resource r 

kio   k
th

 operation of product i λ   Arrival rate of product i to 

resource r 

rm
 

m
th

 manufacturing order 

to be processed in 

resource r 

τ  Exit/release rate of product i from 

resource r 

                                                           
3 System defines an entire working environment of the flow shop 
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kirs  Setup time for operation 

k of product i in resource 

r 

mdd  Due date of manufacturing order 

m  

µ
 

Current time to estimate 

a completion date 
iν  Intention of agent i 

kirt   Moving time of product i 

to resource r 
ix  Informational/convergence state 

of agent i at time t 

kira  Arrival time of product i 

to resource r 
jx  Informational/convergence state 

of neighbor agent j∈ Ni 

kirp   Processing time of 

product i in resource r 
( )u t  Control action required to be used 

by each agent 

kirq  Queuing time of product 

i before its operation k in 

resource r 
iry

 Binary variable 

iTard

 

Tardiness of product i 

β
 

It is a threshold measure ranging from zero to large number that helps 

to see the effect of unexpected event.  

It compares with u(t) such that
if  is set to large, ( ) 0

if  is set to be closer to zero, otherwise

u tβ
β

→



 

Three groups of decision entities namely product, resource/machine, and 

coordinating entities are considered during the problem formulation. They 

cooperate to sustain a Master Production Schedule (MPS) developed centrally. In 

order to update the cooperation & communication between these entities, a 

pyramidal inter-agent interface (or decision kernel in Fig. 2(a)) is used by bridging 

the local entities with coordinating entities. 

 
(a) Framework for hybrid manufacturing process and meta-model decision kernel 
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(b) Synchronization of two control layers 

 

 

 

Fig. 2 MAS based cooperative decision model 

Product entities (Pi) are the decision entities, within the execution layer in Fig. 

2(a), constructed with different product types for different manufacturing orders. 

They have physical part and informational part. The physical part is the hardware 

that is in charge of the correct execution of configuration and manufacturing 

operations. The informational part is in charge of transmission of manufacturing 

orders to resources, reasoning capabilities, and validation of key performance 

indicators (KPI) within a manufacturing process, Fig. 2(b). They are the drivers of 

decision changes at the time of perturbations if the decisional system is needed to 

stay in a centralized or distributed control mode. Each product entity computes its 

completion date ci, “Eq. 1” by minimizing a non-value adding activities in 

particular waiting time (W). This gives the completion date of each manufacturing 

order as it is computed in “Eq. 2”. Hence, makespan is obtained from “Eq. 2” as it 

is modeled in “Eq. 3”. 

( )

( )

,

,

   

  

im ki

im ki

mi kir kirir kir
k O r R

mkirir kir
k O r R

y W ipc s t M

W y iq w M

µ
∈ ∈

∈ ∈

= + + + + ∀ ∈ 

= + ∀ ∈ 

i

i

 (1) 

( )max
m

m la i
i M

cc c
∈

= =  (2) 

( )max max m
m M

C c
∈

=  (3) 

With an objective to minimize Cmax 

Subjected to  

( 1) , , ,(1) m kii k kir imik
c p i r k Oc M R−≥ + ∀ ∈ ∈ ∀ ∈ (3a) 

(2) ( ( )), ,

im

m kii kir kir
k

W i rpdd t M R
O

µ
∈

≤ − + + ∀ ∈ ∈ (3b) 

Legend 
 

Informational updating  
 

Interaction among decisional entities 
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> 0, if , , ,
(3)

0 ,otherwise

m ki im

kir

i r k OM R
q

λ τ> ∀ ∈ ∈ ∈
≅

 (3c) 

> 0, if 0, , ,
(4)

0,  otherwise

m ki imkir
kir

i r kq OM R
w

> ∀ ∈ ∈ ∈
≅

 (3d) 

- ,0)= max ( = max(5) ( - ,0)Tard Td dardd d
m

mi i m mi
i m M

c
M

C
∈ ∈

  (3e) 

(6) 1,r
m M

r Rm
∈

= ∀ ∈  (3f) 

(7) 1,
ki

ir im
r R

y k O
∈

= ∀ ∈  (3g) 

max
{ ,(8) , } 0C Wci ≥  (3h) 

(9) {0,1}
iry ∈  (3i) 

Constraint “3a” indicates precedence constraint such that in order a product i to be 

processed in resource r, it must initially be processed in resource r-1. Constraints 

“3b-3d” present a quick decision at decision node Φs by product entities to 

minimize their waiting time after occurrence of unexpected event. Constraint “3e” 

also presents no product tardiness if its completion date ends before a due date. 

Constraint “3f” ensures only one manufacturing order and/or product is executed 

on one resource at a time. Constraint “3g” presents the requirement of r resources 

to perform k operations of product i. Constraint “3h” ensures that all variables are 

non-negative. Constraint “3i” presents a binary variable which is set to 1 if 

product i is processed on r∈Rki, 0 otherwise. 

Resource/machine entities (Rr) are the other physical elements of the execution 

layer in Fig. 2(a) configured with hardware and control parts. The hardware part 

executes manufacturing operations sent by product entities and the control part 

controls the hardware operations. In case of unpredictable bottleneckness of either 

resource, others have the capability to perform all operations left unprocessed. 

Meanwhile, each resource is responsible to perform additional operation k+1 for a 

single product of either manufacturing orders. Changeovers of production from 

one product type to another associates setup times and resource entities are 

expected to fully utilize their capacity. Taking this hypothesis, resources calculate 

their utilization (ρ) based on the model presented in “Eq. 4”. Product’s 

prioritization has to be validated by recalculating this utilization rate for their 

every acceptance. 

*100%
 

twr

tvr

ρ = (4) 

This computation is necessary in order to process products if their arrival rate does 

not affect the computed utilization rate. If not, the control part of the resource 

queries all sequencially approaching products to smartly wait in buffer zone until 

its setup is completed. This makes product entities to smartly wait by estimating 

their queuing time and route forward for processing after the resource’s setup is 

adjusted.  
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Coordinating entities are set of centralized coordinators (or informational control 

system, CS) within the coordinating layer in Fig. 2(a). They prepare and dispatch 

an MPS to be executed by the executing agents in the execution layer. Product and 

resource entities stipulate these coordinating entities that statically advice and 

update adaptive cooperation to have a shared schedule among all the decision 

entities. Meanwhile, these coordinating entities manages a myopia [13] by 

cooperating with the local decision entities & dynamically creating bilateral output 

generating communications, Fig. 2(b). 

4. Proposal: Consensus algorithm to deal with rush order 
The performance of CoMM has been shown by applying to flexible route of 

product entities. It is aimed at maintaining the same performance of planned 

schedule after a disruptive rush order event has occurred. To provide such 

adaptability and ensure coherency to a global objective, agents have used a 

Leader-Follower based communication approach. Leader-Follower consists of a 

group of leader agents with some amount of power to facilitate cooperation among 

a large group of their followers [37]. 

4.1 Preliminaries on consensus 
A communication topology is represented using graph; G = (Vn, En) for n nodes, 

where Vn is the set of vertex and/or decision entities ranging from 1 to n, En ⊆ Vn 

× Vn is the set of communication edge ranging from 1 to n-1. All edges are said 

connected if agents {i, j}∈En⇔{j, i}∈En. The graph theory also defines a 

Laplacian matrix, Ln=Dn-An; where An = {aij}∈Rn*n is the adjacency matrix, Dn= 

{di}∈R
n*n

 is the degree matrix with , i jd ai ij= ∀ ≠ , and aij is the (i,j) entry of 

the adjacency matrix at time t, 

1 1, connected, , ( , )&( , )
Such that

0 0,otherwise; , ( , )&( , )

i j i j j ia a Enij ji

i j i j j ia a Enij ji

= ⇔ = ∀ ≠ ∈
 =  = ∀ = ∈

 

The connectivity among agents during their communication is also proved by 

respecting interdependence of different performance measures that help them to 

improve their adaptability, Algorithm 1 

Algorithm 1: Dependence of agents’ state 

n communicating agents, with n≥2 and i≠j, must converge to a common goal by 

designing state xi and considering interdependent performance measuring 

parameters, “Eq. 5a”. Likewise, an agent ‘i’ has to share state of its neighboring 

agent ‘j’ and use this state as an estimator of its future behavior for execution on 

a time varying communication topology, “Eq. 5b”.  

( ) ( , ), & ,mi ju t f x x i j i jM= ∀ ∈ ≠ (5a) 

( 1) ( ( ), ( ), ( )),i i i j ix t g x t u t u t j N+ = ∀ ∈  (5b) 

This dependence would be attained if all decision entities are able to cooperate 

with each other and evaluate the impact of unexpected event on neighboring 

agents, Algorithm 2.  
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Algorithm 2: Consensus priority protocol  

Input: {( ), ( ), }, , ,kir m kikir i imkir kirkir
sp W i r kpt t dd OM R+ + + + ∀ ∈ ∈ ∀ ∈   

Set n communicating agents with n≥2 and i≠j 

For i = 1, 2, …, n and j = 1, 2, …, n, do 

If intention based conflict between i & j in decision node Φs, 

  Compute state xi and xj & exchange the computed state 

  Compute u(t), “Eq. 6”; 

  If u(t)>β(threshold); 

     Execute a priority offer requested by agent i,  

  Else flout the priority 

End if 

End for 

Output: { }argmax ,

m

ila
i

c m Mc cm
M∈

= = ∀ ∈  

Each agent during the protocol considers three operational characteristics, 

 The information that agent i has about the probablistic occurrence of an 

event (the rush order in our case) 

 State xi that agent i would wish to achieve at minimal waiting time 

 Intention that agent i has agreed to cooperate with others in order to 

minimize the impact of an event on its makespan Cmax 

Hence, a consensus model [34] that guarantees these characteristics and a 

convergence for collective decision by all agents is given as in “Eq. 6”.  

( ) ( [ ( ) ( )]), ,

i

ij i j
j

u t t t i j na x x
N∈

= − − ∀ ∈  (6) 

Alternatively, “Eq. 6” can be rewritten in matrix form as in “Eq. 7” 

{ }( ) ( ) ( )nu t t x tL= − (7) 

Where x = [x1, x2, …, xn]
T is the information state of each agent i, 

*( ) [ ( )] n n
n ijt tlL R= ∈  is non-symmetrical Laplacian matrix. 

In “Eq. 6”, each agent i must create its own informational state xi and then after 

reach consensus with neighbor agents’ j to approve a requested priority offer. To 

create the information state, each agent sets an event time as xi(0) where it initially 

meets with its neighbor agents j [34]. This promises that the common value is 

converged combination of all the initial informational states. After all the n agents 

have shared their interest, consensus is reached when the variability of interest 

among them approach towards zero, “Eq. 8”.  

| ( ) ( )| 0, , m

t

t t i jx x Mi j
→∞

− → ∀ ∈  (8) 

4.2 Design and adaptation of informational state 

The m manufacturing orders with their communication and execution topology 

shown in Fig. 3 are considered to design and adapt our state.  
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Fig. 3 Communication topology among different entities 

Initially, manufacturing orders are made to enter a system based on shortest 

processing time (SPT) first dispatch list presented in Axiom 1 below. 

Axiom 1: Initial dispatch list 

(Mm)≺ (Mm-1) ≺ (Mm-2)…≺ (M1) such that the last operation k of product i of Mm-1 

has to be completed in next resource r before the last operation k of product i of 

Mm is started and same for others. 
 

While manufacturing orders route according to this dispatch list, it is taken that 

Mm becomes a rush order after t+∆t, Axiom 2.  

Axiom 2: Modified dispatch list 

(Mm-1) ≺ (Mm) ≺ (Mm-2)… ≺ (M1) such that the last operation k of product i of Mm 

has to be completed in next resource r before the last operation k of product i of 

Mm-1 is started and same for others 

In order to satisfy Axiom 2, the future impact of the rush order on the cost of 

waiting time of preceding manufacturing order has to be evaluated. Deciding 

when a leader agent of �mM would broadcast its intention to leader agent of Mm-1 

sharing same decision node is the required consensus. This is necessary because if 

the leader agent of Mm-1 passes decision node Φs before that of the rush order, it 

increases its completion date without value addition. This happens because the 

coordinating agents would not allow this agent to procede the next decision node 

Φs+1 before that of the rush order. Consequently, each leader agent of each 

manufacturing order competes to minimize its waiting time and hence minimizes 

its completion date presented in “Eq. 9”. From Algorithm 1,  

( ) and ( ), ( ) , ,m kii imi j
f W f i j k rc cc OM R= = ∀ ≠ ∈ ∈ ∈

 

This gives, { }argmax ,

m

la i
i

m Mc c
M∈

= ∀ ∈  (9) 

Let *
ic  be lower bound (with ** ( )  &  

m

i kir i ikir
i M

c ddpc tµ
∈

= + + < ) of the actual 

completion date ci; g1 and g2 be a gap of this lower bound from the actual 

completion date and a margin respectively, Fig. 4. 
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 Fig. 4 System resequencing with respect to rush order 

As shown in Fig. 4, the rushed order shifts down its initial due date to a new 

due date dd-∆dd. This implies that its completion date reduces at least by the 

processing time of the preceding manufacturing order. On the contrary, the 

completion date of the preceding manufacturing order increases by the same 

amount. However, the target of products of each manufacturing order is to 

minimize its waiting time (W) in order to achieve its best individual performance. 

Thus, consensus allows ensuring a minimal tradeoff between agents’ state which 

they want to improve their own performance. Consequently, the informational 

state that makes each agent to converge towards a common value (invariant 

centroid state) d∈ +R \{0} so that “Eq. 8” would be satisfied is computed as, 

*
1

*
2

( )
( ) ,

)(

i i
mi

ii

g c c
t ix M

g dd c

−= = ∀ ∈
−

⇔
*

*

( )
( )

)(

la la
la

lala

c c
tx

dd c

−=
−

 (10) 

Where * * , \{0}la i kirpc c α α= + ∀ ∈N  

This indicates that the completion date of each product agent of the rush order 

must close to the lower bound value so as to obtain xi≅0, ∀i. To compare the 

impact of the calculated state, percentage of closeness towards zero could be used 

with an objective to reward lowest percentage values, Sect. 5.3.1. For instance, as 

shown in the first option of Fig. 4, if the completion date could be able to 

approach towards c*, the percentage of closeness declines to zero. 

5. Simulation Experiments 
5.1 Physical system description 

To validate the applicability of the proposed algorithm, an academic application 

platform called TRACILOGIS test-bed platform, Fig. 5(a), is used as case study. 

The sanding, polishing & inspection, lamination, and varnishing sequential 

activities of a shop floor presented in Fig. 1 are transposed to this platform for 

simulation. This platform inscribes to centrally predictive, distributed reactive, and 

hybrid control systems through its smart and cooperative agents. It is composed of 

extensive system of networks; sensors, actuators to automata, Radio Frequency 

Identification (RFID) sensors, and Production Line Controllers (PLC). It has four 

zones: Zone-A for transformation, Zone-B for buffering, Zone-C for colored pallet 

(materials to be assembled) sorting, and Zone-D for assembly/disassembly.  
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(a) Operation times (in seconds) and positions of products within the platform  

  
(b) The leader-Follower communication topology among product agents 

 

 

 

 
 

Fig. 5 The physical system and its communication topology  

If unexpected disruptive events (e.g., the rush order) occur, Zone-B helps to 

minimize cost penalties for trade-off between actual and planned completion time 

of products. It sets aside certain products to make other products take priority over 

a manipulator for example. Meanwhile, it allows for buffering of semi-processed 

products as in a real production system. As it is shown in Fig. 5(a), Dynamic 

looping time (
d
kil ), static looping time (

s
kil ), and number of looping by product i 

(ηki) in Zone-B have been used to model this buffering such that, 

1

2if rush order is not fullysatisfied

=1otherwise
, ( )

>0if rush order is not fullysatisfied

=0otherwise

ki

d
m ki ki

s
ki

i flM

l

η
η−

≥

 ∀ ∈ =




 

Legend 

Cooperative messaging among leader agents 

Forward route, Backward or buffer route 

Informational messaging among leader & their followers 
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Product, resource, roller conveyor, PLC, and RFID as coordinating agents are 

used to launch the platform. The Rr notations in Fig. 5(a) denote the four resource 

entities R1, R2, R3, and R4 for line marking, point marking, pallet assembling, and 

pastille assembling respectively. Each resource has a processing time of 2, 1, 9.5, 

and 7.7 seconds for single operation of each product Pi. In case product Pi of 

manufacturing order Mm requires, for instance, two line marking operations, 

resource R1 is responsible to perform all the additional operations. Moreover, the 

static looping time at the end of Zone-B is managed by the RFID as coordinating 

agent.  

5.2 Input data 

A central schedule for 12 manufacturing orders M1, M2,…, M12 each with their 

own product types is prepared based on real processing time of the platform, Table 

2 and Table 3. They are made to enter the platform based on Axiom 1: {(M12) ≺ 

(M11) ≺ (M10) ≺ (M9) ≺ (M8) ≺ (M7) ≺ (M6) ≺ (M5) ≺ (M4) ≺ (M3) ≺ (M2) ≺ 

(M1)}. While they route according to this dispatch list, M3 becomes rush order at 

time t = 75 seconds (Axiom 2): {{(M12) ≺ (M11) ≺ (M10) ≺ (M9) ≺ (M8) ≺ (M7) ≺ 

(M6) ≺ (M5) ≺ (M4) ≺ (M2) ≺ (M3) ≺ (M1)}. To fulfil this new dispatch list, 

product agents have used the Leader-Follower based MAS approach. The leader 

agent of M2 (P7) is made to be precedence communication neighbor of the leader 

agent of �3M (P11) and successor neighbor of that of M1 (P3), Fig. 5(b). The 

communication between product agents of these two manufacturing orders is 

taken to emulate and validate our algorithm. During the emulation, it is considered 

that all the products of successor manufacturing orders behave same as that of the 

currently interacting agents. Meanwhile, from the six decision nodes Φs shown in 

Fig. 5(a), decision nodes Φ5 and Φ6 are chosen to test the consensus. The 

communication on the other decision nodes behaves same evolution as in the state 

based decisions made in Φ5 and Φ6.  

Table 2 Intelligent components and product types of each customer order Co 

 Product components Remark 

 

 

 

Setup is 

required if there 

is position 

change of either 

components 

Product type 

(Pi) of each 

customer 

order Co 

 
    

C1 C2 C3 C4 C5 

 

 

 

 

 

 

 

Platter Line Point Pastilles Pallets 
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Table 3 Centrally predictive schedule for each manufacturing orders 

Co Mm Pi 

Processing time (in sec.) of each 

product Pi on resource Rr 
Planed ci 

(in sec.) 

ddm  

(in sec.) 
R1 R2 R3 R4 

C1 M1 

P1 2 - 19 15.4 132.75 

250 P2 2 - 19 15.4 153.75 

P3 2 - 19 15.4 174.75 

C2 M2 

P4 2 1 28.5 23.1 289.25 

600 
P5 2 1 28.5 23.1 329.25 

P6 2 1 28.5 23.1 369.25 

P7 2 1 28.5 23.1 409.25 

C3 M3 

P8 2 1 38 30.8 462.82 

800 
P9 2 1 38 30.8 493.32 

P10 2 1 38 30.8 523.82 

P11 2 1 38 30.8 554.32 

C4 

M4 

P12 4 1 38 30.8 599.32 

950 P13 4 1 38 30.8 630.32 

P14 4 1 38 30.8 661.32 

M5 

P15 4 1 38 30.8 759.57 

1200 P16 4 1 38 30.8 791.32 

P17 4 1 38 30.8 823.07 

M6 

P18 4 1 38 30.8 854.82 

1350 P19 4 1 38 30.8 886.57 

P20 4 1 38 30.8 918.32 

M7 

P21 4 1 38 30.8 950.07 

1400 P22 4 1 38 30.8 981.82 

P23 4 1 38 30.8 1013.57 

C5 

M8 
P24 4 2 38 30.8 1111.82 

1600 
P25 4 2 38 30.8 1142.82 

M9 
P26 4 2 38 30.8 1173.82 

1700 
P27 4 2 38 30.8 1204.82 

M10 
P28 4 2 38 30.8 1235.82 

1800 
P29 4 2 38 30.8 1266.82 

M11 
P30 4 2 38 30.8 1297.82 

1900 
P31 4 2 38 30.8 1328.82 

M12 
P32 4 2 38 30.8 1359.82 

2050 
P33 4 2 38 30.8 1390.82 

As it is shown in Fig. 5(b), all the leader agents negotiate with each other and 

share the agreed offer to their followers for implementation. As each product 

agent Pi has its own programmed intention, the decision process starts by sensing 

the cumulative sum of informational state of neighboring agents. Each product 

agent of the rush order computes its intention vi and broadcasts to defined service 

providing agents j∈Ni. 
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[ ], , ,m kii kir kir imkir k i rpa O M Rν ε= ∀ ∈ ∈ ∈ (11)  

The service providing (or responding) agents acknowledge the broadcasted 

intention and respond considering their current state. Subsequently, the product 

agents of the second manufacturing order (P7, P6, P5, P4,) are obligated to loop in 

Zone-B until the products of the rush order (P11, P10, P9, P8,) pass Φ5. This 

decision changing hypothesis is experimented using MatLab and/or Python 

simulation considering all the 11 cooperating product agents from both 

manufacturing orders, Sect. 5.3. 

5.3 Results and discussion 

To articulate the performance of the consensus based decision, myopic decision is 

taken as comparative algorithm. Agents in the platform were initially instantiated 

for this algorithm such that (a) resource agents are passive agents which only wait 

for instructions from product agents, (b) product agents calculate their production 

range at every move the shortest path to their final destination, and (c) product 

agents have no awareness on state of their neighbors. Three performance 

indicators namely informational state (xi), makespan (Cmax), and lateness (L) have 

been considered in expressing the performance and are discussed through 

convergence analysis (Sect. 5.3.1), production performance indicators (Sect. 

5.3.2), and sensitivity analysis (Sect. 5.3.3).  

5.3.1 Convergence analysis  

As it is stated earlier, the required consensus is mainly showed in zone-B 

(considering Φ5 & Φ6) of Fig. 5(a). Product agents of the rush order and that of the 

preceding manufacturing order have agreed to support a decision for the best 

interest of all members. They follow the update intention for the best of the whole 

sequencing and routing. As it is modeled in “Eq. 8”, consensus would be achieved 

if the variability of interest among all product agents approaches towards zero. 

Where in this case, xi represents {x8, x9, x10, x11} and xj represents {x4, x5, x6, x7}, 

0,
Such that

,

- jiif agreed

if not otherwise

x x →



  

While supporting this decision, the location of product agents, Fig. 5(a), is 

determined by the priority request. If the sum of the difference of state value of 

neighbor agents is greater than a threshold β=1, product agents of the proceeding 

manufacturing order will loop in zone-B otherwise not. As shown in Fig. 6, the 

simulation results have shown convergence (closeness to the invariant centroid 

state xi=1 or the black dotted line in the figure) in consensus based decision rather 

than its non-convergence in myopic decision algorithm, Fig. 7. The intention of 

product agents of the rush order was to lower their completion date at-least by 290 

seconds, Fig. 6. As a response to this intention, the preceding product agents have 

shared the state to show their agreement by increasing their completion date at 

least by 290 seconds. This continues until the rushed product agents completely 

pass Φ5 in Fig. 5(a) and this is confirmed when the difference of state value of 

conflicting product agents start to be below the threshold β=1, Algorithm 2. To 

examine this agreement level, it is taken for instance, the state of the two leader 
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agents x11 and x7 with their last time-evolved simulation results of 0.998035 (or 

the minimum value) and 0.938344 (or the maximum value) respectively. “Eq. 8”, 

gives |0.998035-0.938344| = 0.05969 which implies that the variability of interest 

among these product agents is close to zero; thus, convergence to the invariant 

centroid state xi = 1 is obtained. 

On the contrary, as it is presented in Fig. 7, each product agent decides to 

choose a destination with the shortest completion time scheduled centrally. 

Product agents of the preceding manufacturing order become myopic as they use 

change the production intention for only own goal routing. This indicates that 

these product agents were not interested to consider the designed state so as to 

satisfy the rush order and hence a conflict results. As a result, these agents have 

higher probability to loop in zone-B as many as ηki without value addition. To 

examine this myopic decision, consider again the simulated state value of the 

leader agent of the rush order and that of the proceeding manufacturing order 

which are recorded as 0.301589 and 1.547314 respectively. “Eq. 8” once more 

gives a value of |0.301589-1.547314| = 1.24573 which implies that the variability 

of interest among these two agents is large enough or non-convergent. This has 

happened because the former agent has tried to shift-down its completion date but 

that of the later agent to keep its original completion date and hence initial state. 

 
Fig. 6 Time based evolution of state for consensus based decision 

 
Fig. 7 Time based evolution of state for myopic decision algorithm 
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Fig. 8 State disagreement (|xi, xj|) level for the two decision algorithms 

From these two calculated state values, it can be concluded that the 

disagreement level among product agents for the rush order offer in myopic 

decision is 95.21% higher than that of the consensus based decision, Fig. 8. Even 

though there is strong rush order priority by product agents of M3, product agents 

of M2 did not show to satisfy this offer. 

5.3.2 Production performance indicators 

Lateness and makespan are taken as key production performance indicators. The 

simulation results considering the product lateness is presented in Fig. 9 where the 

negative values indicate product earliness and positive values for tardiness. In 

myopic decision algorithm, there is no clear behavioral pattern to show either the 

continuous tardiness or earliness of products in the execution process; the 

instability shown by the dotted red line in Fig. 9. As soon as the rush priority is 

sent by the leader agent of M3, all the product agents of the proceeding 

manufacturing order have shown strong interest to be processed as early as 

possible ignoring the state of the rush order. For example, P7 of M2 has showed, 

on average, 290.65 seconds earliness in this decision not to satisfy the rush 

priority by P11 of M3. And P11 in-turn becomes, on average, 99.89 seconds (≅5ηki) 

tardy from its priority intention.  

 
Fig. 9 Batch lateness for both decision algorithms 
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On the contrary, in consensus based decision, the pattern shows gradual and stable 

increament to satisfy the rush order; the dotted blue line in Fig. 9. Taking same 

example as the myopic decision, the leader agent of M2 has reduced its earliness to 

69.42 seconds and the tardiness of that of M3 to 18.44 seconds (≅1ηki). This 

indicates that, as a result of implementing consensus based decision, tardiness of 

manufacturing orders has lowered by 81.53% than using the myopic decision. 

The simulation result has also showed the effect of product’s disagreement 

level on makespan. Even though the makespan in both decision algorithms has 

scored a value higher than the centrally planned schedule, the consensus based 

decision has comparatively improved the deliverability. As shown in Appendix 1, 

the mean completion date in consensus based decision is recorded as 1437.09 

seconds or 12.55% lower than that of the myopic decision. This deviation has 

come from the myopic behavior of preceding product agents to response and set 

near optimal resequencing. Meanwhile, product agents in myopic decision 

algorithm might temporarily think that this behavior would lead them to quickly 

arrive to the next resource.  But as the rush order is proposed by centrally agents, 

these product agents will be obligated to queue or buffer in front of the resource; 

higher buffer size. It is all this waiting time that led the deliverability of orders 

more delayed in myopic decision algorithm than in the consensus based decision 

algorithm. 

5.3.3 Sensitivity analysis 

Sensitivity analysis was also used as a performance indicator so as to evaluate the 

designed state. From statistical concept, sensitivity analysis is a technique used to 

determine how independent variable values can impact a particular dependent 

variable under a given set of assumptions.  Fig. 10 shows this analysis considering 

makespan & state disagreement level as dependent variables and due date as 

explanatory variable. As it is shown in the figure, the values of makespan & state 

disagreement level are revealed in the z-axis. Three main colors namely dark blue 

(lower part of z-axis), light blue, and yellow (upper part of z-axis) are used to 

indicate the values. In the consensus based decision, the deliverability of the 

rushed manufacturing order has reduced (shown by the white downward arrow in 

Fig. 10(a)) by c3. However, the deliverability of the preceding manufacturing 

order has increased (shown by the white horizontal arrow in Fig. 10(a)) by c2. 

Even though the completion date of the leader product agent of M2 has increased, 

the makespan of the system has significantly reduced, Appendix 1. Such 

fulfilment to margin changes at minimized cost has come from the interest of all 

product agents to reduce their variability until their common goal is achieved. 

Consequently, the completion date of M3 has been scored to be lower than 650 

seconds; the lower part of z-axis in Fig. 10(a) or option 2 in the figure. If the 

product agents of both manufacturing orders were deciding myopic, the 

completion date of M3 is expected to be higher than 650 seconds. No change from 

position 1 to position 2, in Fig. 10(a), as products of M2 did not show interest to 

increase their completion date from the initial plan. However, products of M3 are 

interested to complete their completion date as per the new plan which in turn 

leads to conflict among the products. 
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The state disagreement level at steady state is also shown in the z-axis of Fig. 

10(b). When the margin of M2 and M3 are large enough (see the right upper part of 

Fig. 10(b) or the darkest blue one), there is no variability of interest between 

product agents and hence “Eq. 8” is satisfied. However, when the margin of either 

M2 or M3 becomes lower (see the lowest left par of Fig. 10(b)), product agents 

strive only to choose a destination with shortest completion date scheduled 

initially. At this time, they have to continuously compute their state and compare 

with their neighbor agents to minimize the disagreement level and hence to satisfy 

the rush order priority. 

 
       (a) Due date versus makespan                

 
(b) Due date versus disagreement level 

Fig. 10 Sensitivity analysis between performance indicators  

 

 



23 

6. Conclusion and Future works 
This paper was aimed to investigate the application of Consensus algorithm for 

Multi-agent based Manufacturing system (CoMM). An industrial control problem 

was taken from wood industry and transposed to TRACILOGIS platform. This 

platform based simulation experiment has been conducted in order to validate the 

applicability. Convergence state, product lateness, and makespan are used as key 

performance indicators to compare results of this algorithm with results of a 

myopic decision algorithm. Accordingly, the consensus based decision approach 

has shown clear behavioral pattern (or stability) to satisfy an unexpected event 

called rush order. This has been achieved by making product agents to 

continuously cooperate using Leader-Follower communication approach to 

minimize non-value adding activities created after the rush order. For instance, the 

results obtained from convergence state presents that product agent’s  

disagreement level for the rush order offer in myopic decision algorithm becomes 

extensively higher than that of the consensus based decision. Consequently, this 

disagreement level has made product agents of all manufacturing orders to exit 

from the routing sheet tardy.  

We are aware that this paper has been concentrated in solving problems based 

on an academic experimental platform. The applicability of the experimental tests 

must be implemented in real manufacturing flow shop in order to see its 

effectiveness and to help detect some other problems (in particular, network time 

constraints). Meanwhile, additional experimental tests must be conducted 

considering (a) saturated routing sheet or complex communication constraints in 

order to see the flexibility of the algorithm and (b) large scale of product and 

resource entities in order to further investigate the adaptability of these entities in 

more complex environment. However, based on this encouraging result, many 

works are already engaged in our laboratory to define an optimal number of 

communicating agents, to define other states in regard of the expected partner 

company’s objectives etc.  

Acknowledgments 
The authors gratefully acknowledge the financial support of the CPER 2015-

2020 Projet Cyber-Entreprises du programme Sciences du numérique, through 

regional (Région Lorraine, Grand EST), national (DRRT, CNRS, INRIA) and 

European (FEDER) funds used to extend The TRACILOGIS Platform. 

References 
[1] El Haouzi H, Pétin JF, Thomas A (2009) Design and validation of a product-

driven control system based on a six sigma methodology and discrete event 

simulation. Prod. Plan. Control. 20(6):510–524 

[2] Rey GZ, Bonte T, Prabhu V, Trentesaux D (2014) Reducing myopic behavior 

in FMS control: A semi-heterarchical simulation–optimization approach. 

Simul. Model. Pract. Theory. 46:53–75 

[3] Trentesaux D (2009) Distributed control of production systems. Eng. Appl. 

Artif. Intell. 22(7):971–978 



24  

[4] Jimenez JF, Bekrar A, Zambrano-Rey G, Trentesaux D, Leitão P (2017) 

Pollux: a dynamic hybrid control architecture for flexible job shop systems. 

Int. J. Prod. Res. 55(15):4229–4247 

[5] Ehteshami B, Petrakian RG, Shabe PM (1992) Trade-offs in cycle time 

management: hot lots. IEEE Trans. Semicond. Manuf. 5(2):101–106 

[6] Wang WP, Chen Z (2008) A neuro-fuzzy based forecasting approach for rush 

order control applications. Expert Syst. Appl. 35(1–2):223–234 

[7] Trzyna D, Kuyumcu A, Lödding H (2012) Throughput time characteristics of 

rush Orders and their impact on Standard Orders. Procedia CIRP. 

https://doi.org/10.1016/j.procir.2012.07.054 

[8] Leitão P (2009) Agent-based distributed manufacturing control: A state-of-

the-art survey. Eng. Appl. Artif. Intell. 22(7):979–991 

[9] Isern D, Sánchez D, Moreno A (2011) Organizational structures supported by 

agent-oriented methodologies. J. Syst. Softw. 84(2):169–184 

[10] Xiong W, Fu D (2018) A new immune multi-agent system for the flexible job 

shop scheduling problem. J. Intell. Manuf. 29(4):857–873 

[11] Caridi M, Cavalieri S (2004) Multi-agent systems in production planning and 

control: an overview. Prod. Plan. Control. 15(2):106–118 

[12] Wooldridge M (2009) An Introduction to MultiAgent Systems. John Wiley & 

Sons, Liverpool 

[13] Rey GZ, Pach C, Aissani N, Bekrar A, Berger T, Trentesaux D (2013) The 

control of myopic behavior in semi-heterarchical production systems: A 

holonic framework. Eng. Appl. Artif. Intell. 26(2):800–817 

[14] Tonino H, Bos A, de Weerdt M, Witteveen C (2002) Plan coordination by 

revision in collective agent based systems. Artif. Intell. 142(2):121–145 

[15] Nagarajan M, Sošić G (2008) Game-theoretic analysis of cooperation among 

supply chain agents: Review and extensions. Eur. J. Oper. Res. 187(3):719–

745 

[16] Rosenschein JS, Zlotkin G (1994) Rules of Encounter: Designing 

Conventions for Automated Negotiation among Computers. Massachusetts, 

USA 

[17] Kraus S (1997) Negotiation and cooperation in multi-agent environments. 

Artificial Intelligence. 94(1-2):79-97 

[18] Jennings NR, Faratin P, Lomuscio AR, Parsons S, Wooldridge MJ, Sierra C 

(2001) Automated negotiation: prospects, methods and challenges. Group 

Decis. Negot. 10(2):199–215 

[19] Rahwan I, Ramchurn SD, Jennings NR, Mcburney P, Parsons S, Sonenberg L 

(2003) Argumentation-based negotiation. Knowl. Eng. Rev. 18(4):343–375 

[20] Pannequin R, Thomas A (2012) Another interpretation of stigmergy for 

product-driven systems architecture. J. Intell. Manuf. 23(6):2587–2599 

[21] Valckenaers P, Van Brussel H (2016) Design for the Unexpected: From 

Holonic Manufacturing Systems towards a Humane Mechatronics Society. 

Oxford, UK 

[22] Leitão P, Barbosa J, Trentesaux D (2012) Bio-inspired multi-agent systems 

for reconfigurable manufacturing systems. Eng. Appl. Artif. Intell. 

25(5):934–944 



25 

[23] Pach C, Berger T, Bonte T, Trentesaux D (2014) ORCA-FMS: a dynamic 

architecture for the optimized and reactive control of flexible manufacturing 

scheduling. Comput. Ind. 65(4):706–720 

[24] Mezgebe TT, El Haouzi HB, Demesure D, Thomas A (2018) A Negotiation-

based control approach for disturbed industrial context. IFAC-Pap. 

51(11):1255–1260 

[25] Olfati-Saber R, Murray RM (2004) Consensus problems in networks of 

agents with switching topology and time-delays. IEEE Trans. Autom. 

Control. 49(9):1520–1533 

[26] Cao Y, Yu W, Ren W, Chen G (2013) An overview of recent progress in the 

study of distributed multi-agent coordination. IEEE Trans. Ind. Inform. 

9(1):427–438 

[27] Dimarogonas DV, Kyriakopoulos KJ (2007) On the rendezvous problem for 

multiple nonholonomic agents. IEEE Trans. Autom. Control. 52(5):916–922 

[28] Sinha A, Ghose D (2006) Generalization of linear cyclic pursuit with 

application to rendezvous of multiple autonomous agents. IEEE Trans. 

Autom. Control. 51(11):1819–1824 

[29] Lee D, Spong MW (2007) Stable flocking of multiple inertial agents on 

balanced graphs. IEEE Trans. Autom. Control. 52(8):1469–1475 

[30] Olfati-Saber R (2006) Flocking for multi-agent dynamic systems: Algorithms 

and theory. IEEE Trans. Autom. Control. 51(3):401–420 

[31] Moore KL, Lucarelli D (2007) Decentralized adaptive scheduling using 

consensus variables. Int. J. Robust Nonlinear Control:IFAC‐Affiliated J. 

17(10‐11):921–940 

[32] Ogren P, Fiorelli E, Leonard NE (2004) Cooperative control of mobile sensor 

networks: Adaptive gradient climbing in a distributed environment. IEEE 

Trans. Autom. Control. 49(8):1292–1302 

[33] Su H, Wang X, Lin Z (2009) Synchronization of coupled harmonic 

oscillators in a dynamic proximity network. Automatica. 45(10):2286–2291 

[34] Ren W, Beard RW (2008) Distributed Consensus in Multi-vehicle 

Cooperative Control: Theory and Applications. Verlag, London 

[35] Wang X, Shao J (2015) Consensus for Discrete-Time Multi-agent Systems. 

Discrete Dyn. Nat. Soc. http://dx.doi.org/10.1155/2015/380184 

[36] Cardin O, Trentesaux D, Thomas A, Castagna P, Berger T, El-Haouzi HB 

(2017) Coupling predictive scheduling and reactive control in manufacturing 

hybrid control architectures: state of the art and future challenges. J. Intell. 

Manuf. 28(7):1503–1517 

[37] Espejo R, Reyes A (2011) Organizational Systems: Managing Complexity 

with the Viable System Model. Heidelberg Dordrecht, London New York 

 

 

 

 



26  

Appendix 1 Mean completion date of each manufacturing order (in seconds) for 

each decision algorithm 

Centrally predictive 

schedule 
Consensus based decision Myopic decision  

Batch  

sequence 

Completion 

date 

Batch  

sequence   

Completion 

date  

Batch  

sequence  

Completion 

date  

(M1) 174.75 (M1) 174.73 (M1) 174.79 

(M2) 409.25 (M3) 409.25 (M2) 409.44 

(M3) 554.32 (M2) 572.76 (M3) 654.95 

(M4) 661.32 (M4) 683.32 (M4) 781.37 

(M5) 823.07 (M5) 850.45 (M5) 972.49 

(M6) 918.32 (M6) 948.87 (M6) 1085.03 

(M7) 1013.57 (M7) 1047.29 (M7) 1197.57 

(M8) 1142.82 (M8) 1180.84 (M8) 1350.28 

(M9) 1204.82 (M9) 1244.90 (M9) 1423.54 

(M10) 1266.82 (M10) 1308.96 (M10) 1496.80 

(M11) 1328.82 (M11) 1373.02 (M11) 1570.05 

(M12) 1390.82 (M12) 1437.09 (M12) 1643.31 

Makespan 1390.82 1437.09 1643.31 

 

 


