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SHREC'19 track: Feature Curve Extraction on Triangle Meshes
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This paper presents the results of the SHREC'19 track: Feature curve extraction on triangle meshes. Given a model, the challenge consists in automatically extracting a subset of the mesh vertices that jointly represent a feature curve. As an optional task, participants were requested to send also a similarity evaluation among the feature curves extracted. The various approaches presented by the participants are discussed, together with their results. The proposed methods highlight different points of view of the problem of feature curve extraction. It is interesting to see that it is possible to deal with this problem with good results, despite the different approaches.

Introduction

The challenge of this SHREC'19 track is to extract feature curves from a set of models of different numbers of vertices and origins (scans or digital crafting). The models are represented by triangulations of various resolutions and vertex distributions. In the broad meaning of the word, a feature is an area of interest of the model. In the context of our track, a feature is intended as a bending of the surface that shapes a part of interest (e.g.: the eye of a statue is a feature, while the hand of a statue is not). A feature curve is a line that delineates a feature. In our contest we consider as a feature curve a set of vertices of the model that jointly define a contour, a valley or a ridge on the mesh. The mesh boundary (if it exists) is not considered a feature curve, as well as the noise artifacts (e.g., from scan inaccuracy and/or smoothing/resampling operations).

Feature curves drive the identification of features on a model and, in general, give local information about the surface. An efficient method for feature curves extraction, as intended in this track, needs to group sets of mesh vertices so that each set identifies a single feature curve.

The focus of this task is to find efficient methods for feature curve extraction that are able to highlight one or more subsets of vertices of the meshes in the track dataset. Moreover, as an op- † Track Organizer tional task, we asked the participants to submit a similarity evaluation among the feature curves extracted across all the models. Therefore, the task proposed can be seen as a step towards the retrieval of features of interest on surfaces and, together with the previous SHREC tracks [BMea17], [MTW * 18] and [BMea18], it can help the automatic retrieval and recognition of style elements over art/cultural heritage data.

The dataset

The dataset consists of 15 surfaces characterized by at least one feature curve. Some of the models are obtained through scans, while others are made in silico. Some models are derived from the Visionair shape workbench (http: //visionair.ge.imati.cnr.it/) and the Turbosquid repository of 3D models (https://www.turbosquid.com/ Search/3D-Models). The original models of the ornaments from which we have derived the models from 4 to 10 are courtesy of the prof. Karina Rodriguez Echavarria. Both vertex distribution and density vary from mesh to mesh. Figure 1 shows an overview of the models, together with their number of vertices.

Groundtruth

The definition of a groundtruth for this task is a challenging job, since no formal definition of feature curve on surfaces exists. Feature curves derive from the human perception and interpretation of a surface, both in terms of localization and width. Psychologists and computer vision scientists who studied how humans perceive a shape have identified curvature variations, in terms of changes from convex to concave regions, as a key element of the human perception [PT96].

Keeping in mind this observations, the groundtruth has been defined by people from the IMATI-CNR (Italy) staff, requested to highlight the vertices of each model if, in their opinion, they were part of feature curves. Then, a groundtruth based on these individual annotations has been created. An overview of the final groundtruth is shown in Figure 2.

For a given model M, the outcome of each method is expected to be a set of n M separate lists f p i of vertices, resembling the set of n M feature curves highlighted in the groundtruth. More formally, we expect a set of lists P(M) = { f p 1 , f p 2 , ...} for each M in the dataset. The evaluations are done by comparing this set with the set GT (M) = { f c 1 , f c 2 , ..., f cn M } of feature curves defined in the groundtruth. We consider two classifications:

• [Overall Comparison](O-comp): all the feature curves found on each model are jointly evaluated with the described evaluation measures, matching them with the groundtruth data. More formally, we compare the sets ∪ i f p i and ∪ i f c i . • [Curve-by-curve Comparison](CbC-comp): let us consider a feature curve f c j of the model M and the set P(M) of feature curves proposed by a participant. In the lists in P(M), we selected the closest to f c i and compare these two curves. The closest curve is selected by the same people that defined the groundtruth by voting the curve in P(M) which overlaps f c i the most.

The optional task was interpreted differently from the participants. Two of them submitted a similarity matrix. The first provides a similarity measure among the models in the dataset, based on the distance among the feature curves identified; the second assesses similarity scores among single feature curves across the models. While it is hard to compare the results using numeric evaluations, some comparative remarks are drawn and discussed (Section 6).

Participants

Six groups subscribed to this track and four sent their outcome. In the following we describe the methods submitted for evaluation.

Spectral based saliency estimation for the identification of features (SBSE) by G. Arvanitis and K. Moustakas

This method is separated into two basic steps. At the first step, authors estimate the saliency of each vertex using spectral analysis. The magnitude of the estimated saliency identifies if a vertex is a feature or not. Based on the geometry, it is possible to say that the feature vertices represent the edge of a feature curve (both crests and valleys) or corners. At the second step, the mean curvature of the extracted features is estimated and it is used to classify the different feature curves (if they exist). Additionally, the information related to the mean curvature and the saliency of each feature curve are used to find similarities with feature curves of other models. The execution time of the algorithm depends on: (i) the size of the mesh and (ii) the size of the patches, but generally, it is very fast.

Definition and computation of vertex saliency

For each of the n vertex v i , a patch P i = {v i , v i1 , . . . , v i k } vertices is created, which consists in the k geometrical nearest vertices to the vertex v i based on their coordinates (typically k = 15). These points are used to define a matrix N i ∈ R (k+1)×3 for each vertex:

N i = [n i , n i1 , . . . , n i k ] T , ∀i = 1, . . . , n
where the normal n i of the vertex v i is defined as:

n i = ∑ j∈Ni nc j |N i | , ∀i = 1, . . . , n,
where nc j is the normal of the j-th face of the mesh and N i is the first-ring area of the vertex i. For each vertex, the associated submitted to Eurographics Workshop on 3D Object Retrieval (2019) 
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covariance matrix R i = N T i N i is decomposed: eig(R i ) = U i Λ i ∀i = 1, . . . , n
where U i ∈ (R) 3×3 denotes the eigenvectors matrix and

Λ i = diag(λ i1 , λ i2 , λ i3 )
The value s i is the saliency of v i and it is defined as the value given by the inverse norm -2 of the corresponding eigenvalues:

s i = 1 λ 2 i1 + λ 2 i2 + λ 2 i3 , i = 1, . . . , n.
s i is normalized to be in the [0, 1] range as follows:

s = s i -min(s i ) max(s i ) -min(s i ) , i = 1, . . . , n
Authors assume that a small value of saliency means that the vertex lies in a flat area, while a big value indicates that the vertex belong to an edge or corner. This characterization depends by the number of dominant (or main) eigenvalues. For example, considering a cube, a vertex that "has" three, two or one dominant eigenvectors is, respectively, on a corner, on an edge or on a flat area.

A k-mean algorithm is used for separating the normalized values of the saliency into five different classes. The first two are considered as non-feature vertices, while the other are actual feature vertices.

Clustering of salient vertices

The feature curves are identified by grouping the feature vertices based on mean curvature mc values. Since the initial number of the feature curves is unknown for each model, the optimal number of cluster is supposed to range from 1 to 5 and it is estimated using the Calinsky-Harabasz clustering evaluation criterion, followed by the k-means algorithm that performs the actual clustering.

Moreover, feature curve similarities between different models is assessed through the histograms of saliency and mean curvature. More specifically, for a given model the histograms of the s value and the normalized mean curvature are computed (respectively ṡ ∈ R 10×1 and ṁ ∈ R 10×1 ). Then they are horizontally stacked in the vector q = [ ṡ, ṁ]. The correlation coefficient r of two models A and B defined by the vectors q A and q B is:

r = 20 ∑ i=1 (q Ai -qA )(q Bi -qb ) ( 20 ∑ i=1 (q Ai -qA ))( 20 ∑ i=1 (q Bi -qb ))
where q * represents the mean value. The lower r is, the higher is the similarity between A and B.

Point aggregation based on angle and curvature saliency (PCs) by Nhat Hoang-Xuan, E-Ro Nguyen, Minh-Triet Tran

These participants propose two methods, labelled PCs:A and PCs:C. Both have the same approach: defining a set of candidate vertices with a significant difference in a given property. Then candidate vertices that might be on a flat region and/or small fragments are removed, to reduce noise in the output. With this approach, all the feature curves obtained on a single model are grouped, thus we consider these methods only in the overall comparison. The core difference between the two methods is how the candidate vertices are determined.

Angle-based vertex saliency (PCs:A)

The first method works in three steps. First, the angle θ i between each pair of connected triangles (by one edge) is computed. Then, if θ i > αmean i (θ i ) (with mean equal to the average value), the two extremes of the relative edge are considered as candidate vertices.

α is set equal to 1.3 in most cases, aside from 1.6 for Model2 and 2.6 for Model3. Second, if two candidate vertices share an edge larger than the double average length of the edges the two candidate vertices are removed. Finally, a graph with each pair of candidate vertices as nodes is created. All the connected components of this graph are computed and, if the number of vertices in a component is less than 1% of the number of vertices of the mesh, the vertices are removed.

Normal curvature-based vertex salicency (PCs:C)

The second method runs in three steps. First, the oriented normals per-triangle are computed and for each vertex the normal of a vertex is the average of the weighted sum of its incident faces, with weights being proportional to a face's area. For each edge in the mesh, if its extremes are p 1 , p 2 with normals n 1 , n 2 , an estimation of its curvature is given by:

curv = (n 2 -n 1 )(p 2 -p 1 ) |p 2 -p 1 | 2
Second, the average curvature of each vertex v i is estimated as the geometric mean of the absolute values of all the edge curvatures of incident edges at the selected vertex. This evaluation is smoothed by averaging the value with those of its immediate neighbors. This is repeated multiple times. Vertices with large touching triangles indicate that the surrounding area is relatively flat and thus filtered away, checking if their adjacent vertices have length larger than some value proportional to the average of the edge length. Of the remaining vertices, those that have a curvature value larger than a + k(mean i (curv(v i ))) are flagged as possible elements of some feature curves. This formulation derives from the following observation: if the curvature value is larger than the average, at some point then it is highly possible that it is part of some curve, but in a sample with mostly noisy texture, this limit needs to be relaxed. In this method, a = 0.025 and k = 0.7. Finally, to reduce noise, the components with less than 5 vertices are removed. Also, large components that have no nearby other flagged vertices are removed.

Point-based multi-scale curve voting (PMCV) by T. Lejemble, L. Barthe and N. Mellado

This method extracts feature lines from meshes using a voting system based on a set of 3D curves generated in the direction of minimal curvature in anisotropic regions.
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Point cloud sampling and curve generation

Each mesh M is converted to a dense point cloud with a uniform point cloud P through a uniform sampling weighted by the face area. The authors of the methods observe that feature curves as intended in this track are characterized by a small curvature along the feature and a large curvature in orthogonal direction. The curvature is evaluated using a local surface estimation called APSS [GG07].

Curves are generated at five levels of scale, based on the size of the neighbor used to approximate the surface with APPS, namely t i = ē 2 (2 + i ē), i = 0, . . . , 4 where ē is the median edge lengths in M. P is sub-sampled in 5 sparse point clouds P i using a Poisson disk sampling, with radius r i = ti 10 plus an additional cloud P l , with r l = t0 2 . For each t i , curves are iteratively generated from each point in P l as follows:

p j+1 = pro j(p j + v(p j )) with = t0
2 . v(p j ) is the direction of minimal principal curvature computed on P i . pro j projects a point on the APPS surface approximation of P i , ensuring that the curve remains close to the surface. The iterations stop after reaching a maximum, set at 10 5 , or if the curve leaves the curved area, i.e. if

||κ1|-Ki| Ki

> α, where κ 1 is the maximal curvature, K i is set to the 90 th centile of maximal curvature absolute values calculated in P l at scale t i and α is set to 0.5. In order to filter noise or insignificant features, if the number of iterations is lower than 50, the curve is discarded.

Voting-based feature line extraction

The vertices of M accumulate votes from the extracted neighbor curves. Each vertex of each curve accumulates a vote in its neighboring mesh vertices. The size of the spherical neighborhood is ē.

A vote is a negative scalar coefficient for valley lines and positive for crest lines, with absolute values ranging from 0 to 1 according to the distance between the curve vertex and the mesh vertex.

Sign is used to balance the sum of vertices close to both valley and crests. Finally, a region growing process delineates individual set of vertices based on these votes. A region grows from a vertex to its neighbor if the sum of the votes has the same sign and if its absolute value is greater than 1 20 Vmax, where Vmax is the maximal absolute value of votes on the vertices of the mesh. This feature curve recognition method derives from the technique described in [START_REF] Biasotti | Recognition of feature curves on 3D shapes using an algebraic approach to hough transforms[END_REF] and works in three steps.

Feature point characterization

Authors evaluate the mean curvature values in the mesh vertices to detect the feature points adopting the curvature estimation based on normal cycles [START_REF] Cohen-Steiner D | Restricted Delaunay triangulations and normal cycle[END_REF] implemented in the Toolbox graph [Pey].

The vertices at which the mean curvature is significant (e.g with high maximal and low minimal curvature values) are selected as feature points. This is automatically achieved by filtering the distribution of the mean curvature by means of two filtering thresholds m and M. Note that m and M are two input parameters. Their value varies according to the precision threshold set for the property used to extract the feature points (e.g., in our case, two typical values of m and M are 15% and 85%, respectively).

Feature curve aggregation

Feature points are aggregated to determine the elements that potentially correspond to a curve. Once detected, the set of feature points is subdivided into smaller clusters (that is, groups of points sharing some similar properties) by using a clustering algorithm. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method [EKSX96], is adopted which groups together points that lie close by marking as outliers isolated points in lowdensity regions. The DBSCAN algorithm requires two parameters: a threshold used as the radius of the density region, and a positive integer that represents the minimum number of points required to form a dense region. As feature curves, the output of the DBSCAN algorithm is submitted. To estimate the density of the feature points and, therefore, the minimum number of points in a region, the K-Nearest Neighbor (KNN) [FBF77] is used. In general, the K value of the KNN search is set to 15 for MHT1 and to 4 for MHT2.

Curve approximation using Hough transforms

Finally, the feature curves are fitted with template curves to recognize their type and quantify the parameters characterizing such a feature. This step is obtained following the procedure based on the Hough transform described in [START_REF] Biasotti | Recognition of feature curves on 3D shapes using an algebraic approach to hough transforms[END_REF]. In this contest, the following dictionary of curves is considered: circles, Lamet curve, citrus curve, geometric petal and Archimedean spiral, see [START_REF] Biasotti | Recognition of feature curves on 3D shapes using an algebraic approach to hough transforms[END_REF] for details. In general, combinations or additional families of curves are possible [Shi95]. The peculiarity of the Hough transform is to estimate in a family of curves, the parameters of the curve a = (a 1 , . . . , an) that better fits a given set of points. The curves considered have at most one or two parameters. Depending on the curve, these parameters estimate its bounding box, diagonal, radius, etc.

The distance between the two curves C 1 and C 2 is defined as the norm L 1 of the parameters corresponding to these curves, i.e., d(C 1 , C 2 ) = |a C1 , a C2 | 1 , where a C1 and a C2 are the parameters of the curves C 1 and C 2 , respectively. Note that such a notion of distance assumes the curve parameters are homogeneous in terms of the properties measured; this implies that the distance between two feature curves is computed only if they belong to the same family.

Evaluation Measures

Apart of the well-known Hausdorff distance between two sets of points, there is not a standard measure for the evaluation of this kind of tasks. Also, notice that despite being curves, our groundtruth is defined by sets of points that are not sorted, thus distances for ordered polylines like the Fréchet distance are not suitable [EGHP * In order to have coherent evaluation through different models, we make this measurement on resized models so that their loads are as close as possible. • The Dice coefficient between two sets (let them be S and R) is defined as

dice(S, R) = 2|S ∩ R| |S| + |R| ,
where | • | denotes the number of elements. It ranges from 0 (no match), to 1 (perfect match). • The Jaccard index is defined as:

jaccard(S, R) = dice(S, R) 2 -dice(S, R) ,
that varies from 0 to 1, the higher the better.

The Direct Hausdorff distance score is used to evaluate how well the overall shape of the curves extracted by the participants fit the groundtruth and vice-versa. The other two measures are used to evaluate the precision of the methods. While a score of 1 is not mandatory for a method to be considered good, the higher the value is, the better the extracted curve fits its groundtruth counterpart. After running our measures, we saw that the Jaccard index and the Dice coefficient scores on the participants' results are different in terms of scale but equivalent in terms of classification of the method performances. Thus, we decided to report only the Dice coefficient, for brevity.

Results and discussions

A total of six runs was submitted for evaluation. The authors of the SBSE and MHT* methods sent results for both the mandatory and the optional task. The authors of the PMCV and PCs methods submitted only the mandatory task. Moreover, the PCs results report an unique feature curve per model so they are considered in the overall comparison only.

The results for both classifications (curve-by-curve and overall) are reported in Table 1 andTable 2. The participants face this track with different approaches that often have been tailored for more general projects. Depending on the design choices, the results vary in precision, sensitiveness and overall quality. Our quantitative evaluations provide an interpretation of these methods for this specific contest and are not meant to evaluate the absolute quality of the methods. Indeed, none method stands out in general; depending on the different application/needs, the methods present their own peculiarities and answer the challenge more or less properly. If interested in the strongest features (in terms of bending) of a model, SBSE provides a quick overall preview of the related feature curves, quite robust to noise. As shown in Figure 3(a), SBSE is able to extract the jointed feature curves even in presence of acquisition noise, with good precision. PMCV has impressive precision in its extraction process. Such a precision could be ideal to identify different features that share a jointed feature curve. Figure 3 The lower its score is (0 at best), the better. For the Dice coefficient, the higher the score is (1 at best), the bettee. Refer to Figure 2 to see which model is evaluated in each cell. Bests results are highlighted with bold font.

to separate the L-shaped bumps of the mesh with different feature curves. It usually detects more feature curves than those selected in the groundtruth. The main reason is that this method extracts the set of valley and crest lines in the mathematical sense, while the groundtruth focuses on a user-specified subset. It may also happen that the 3D curves generation stops at non anisotropic areas such as corners. In that case, a feature line is separated in several curves. The feature lines provided by the PMCV are generally thicker than those in the groundtruth. If required, thinner set of lines can be obtained by reducing the distance used for the curve voting, although representative features could be discarded in this way. About the The evaluation measures of the CbC-comp classification. The d dHaus distance measure is computed from groundtruth (GT) to the feature curve proposed by the participants (Parts) and vice-versa. The lower its score is (0 at best), the better. For the Dice coefficient, the higher the score is (1 at best), the bettee. Refer to Figure 2 to see which model is evaluated in each cell. Model 1_9 and is not reported since no one was able to detect it. Bests results are highlighted with bold font.

PCs runs, while they do not separate the feature vertices in different feature curves, they almost always provide a super-set of the vertices of the groundtruth jointed feature curves. Also, as shown in Figure 3(c,d), the methods are very precise in case of very sharp features, as those in Models 5 and 9. A good balance between precision and vertex clustering is obtained by MHT, which recognizes most of the expected feature curves, balancing the number of ver-tices recognized and the curve fragmentation (with respect to our groundtruth). An example of this is shown in Figure 3(e,f).

For the optional task, SBSE provides a global distance between two models based on histogram-based feature vectors. For example, M4 and M10 are considered similar based on this evaluation, as well as M11 and M12, M7 and M8, M6 and M9. Another way to approach the problem of similarity is that of MHT, which provides submitted to Eurographics Workshop on 3D Object Retrieval (2019) a similarity measure among the single feature curves, even those in the same model. In other words, it performs a local similarity evaluation of the models. The similarity evaluation is doable with curves that are obtained using the same family of curves. For instance, the eyes in Model 11 and 12 are mutually considered similar, as well as each pair of rings on Model 14. An example of curves sorted by similarity in a single family is shown in Figure 4.

As a final remark, the participants show different views for the problem of feature curve extraction: the main contrast between the feature curves proposed by the participants and those in the groundtruth is due to its definition, being it influenced by the human perception. Despite this, the proposed methods highlight that such a problem could be automatized in future with more efforts in this research path. 
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 1 Figure 1: Overview of the dataset. In the brackets of each model is the corresponding number of vertices.

Figure 2 :

 2 Figure 2: The final groundtruth of the contest. Top: the feature curves on the models; Bottom: feature curves represented one by one. Details are best appreciated in the digital version of this paper.
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 4 Feature curve characterization via mean curvature and algebraic curve recognition via Hough transforms (MHT) by C. Romanengo, S. Biasotti and B. Falcidieno

  02]. We used the the Direct Hausdorff distance [DD09], the Dice coefficient [TH15] and the Jaccard index [TH15]. More precisely: • The Direct Hausdorff distance from the points a ∈ A ⊂ R 3 to the points b ∈ B ⊂ R 3 is defined as follows: d dHaus (A, B) = max (a∈A) min (b∈B) d(a, b), submitted to Eurographics Workshop on 3D Object Retrieval (2019) with d the euclidean distance. As a reference, the well known Hausdorff distance between A and B is max{d dHaus (A, B), d dHaus (B, A)}

Figure 3 :

 3 Figure 3: An example of the the results from SBSE (a), PMCV (b), PCs:A (c), PCs:C (d), MHT1 (e) and MHT2 (f).

Figure 4 :

 4 Figure 4: Based on MHT similarity evaluation, the most similar feature curves to the feature curve extracted on Model 6 (red). From the second images, from left to right, the extracted feature curves on other models (reported in the brackets) from closest to farthest, are shown.

Table 1 :

 1 (b) shows how this method is able The evaluation measures of the O-comp classification. The d dHaus distance measure is computed from groundtruth (GT) to the feature curve proposed by the participants (Parts) and vice-versa.

			O-comp -d dHaus from GT to Parts		
	Model	SBSE	PCs:A	PCs:C	PMCV	MHT1	MHT2
	M1	0.068	0.054	0.105	0.675	1.570	1.570
	M2	0.054	0.060	0.032	0.079	0.071	0.060
	M3	0.074	0.006	0.005	0.001	0.048	0.048
	M4	3.047	3.694	2.771	0.162	3.555	3.555
	M5	0.887	1.019	2.100	0.921	1.019	1.019
	M6	1.229	0.033	1.049	2.246	0.650	0.089
	M7	0.018	0.010	0.028	0.016	0.012	0.012
	M8	0.062	0.006	0.027	0.037	0.011	0.011
	M9	1.622	0.165	1.699	1.716	0.081	0.081
	M10	2.427	0.003	0.582	2.348	4.585	4.585
	M11	0.091	0.009	0.035	0.013	0.045	0.045
	M12	0.062	0.036	0.064	0.011	0.040	0.010
	M13	0.035	0.057	0.023	0.070	0.013	0.013
	M14	0.024	0.004	0.027	0.004	0.010	0.010
	M15	0.004	0.009	0.077	0.145	0.030	0.030
			O-comp -d dHaus from Parts to GT		
	Model	SBSE	PCs:A	PCs:C	PMCV	MHT1	MHT2
	M1	0.225	5.924	0.225	0.311	0.280	0.280
	M2	1.407	0.128	1.643	0.012	0.041	0.020
	M3	0.388	0.001	0.184	0.278	0.061	0.061
	M4	1.055	0.969	1.055	0.258	0.209	0.209
	M5	0.166	0.037	0.029	0.029	0.250	0.250
	M6	1.399	1.101	1.101	0.680	1.101	1.276
	M7	0.017	0.043	0.031	0.026	0.078	0.078
	M8	0.019	0.039	0.028	0.016	0.044	0.044
	M9	4.288	0.260	0.496	0.215	1.442	1.442
	M10	0.229	0.723	0.422	0.411	0.022	0.022
	M11	0.013	0.043	0.015	0.039	0.015	0.015
	M12	0.009	0.030	0.012	0.220	0.036	0.038
	M13	0.068	0.060	0.091	0.054	0.067	0.067
	M14	0.007	0.019	0.013	0.008	0.008	0.008
	M15	0.090	0.090	0.051	0.022	0.009	0.009
			O-comp -Dice coefficient		
	Model	SBSE	PCs:A	PCs:C	PMCV	MHT1	MHT2
	M1	0.345	0.352	0.354	0.479	0.452	0.452
	M2	0.421	0.494	0.475	0.482	0.210	0.213
	M3	0.411	0.492	0.508	0.383	0.292	0.292
	M4	0.342	0.496	0.513	0.392	0.449	0.449
	M5	0.427	0.586	0.582	0.563	0.555	0.555
	M6	0.279	0.446	0.467	0.525	0.445	0.451
	M7	0.306	0.426	0.508	0.550	0.501	0.501
	M8	0.316	0.412	0.498	0.543	0.518	0.518
	M9	0.221	0.533	0.502	0.447	0.474	0.474
	M10	0.425	0.466	0.498	0.516	0.402	0.402
	M11	0.389	0.579	0.554	0.562	0.562	0.562
	M12	0.548	0.711	0.727	0.666	0.667	0.637
	M13	0.298	0.553	0.537	0.405	0.976	0.976
	M14	0.304	0.565	0.517	0.512	0.882	0.882
	M15	0.584	0.659	0.631	0.536	0.917	0.917

Table 2 :
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