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Abstract
This paper presents the results of the SHREC’19 track: Feature curve extraction on triangle meshes. Given a model, the chal-
lenge consists in automatically extracting a subset of the mesh vertices that jointly represent a feature curve. As an optional task,
participants were requested to send also a similarity evaluation among the feature curves extracted. The various approaches
presented by the participants are discussed, together with their results. The proposed methods highlight different points of view
of the problem of feature curve extraction. It is interesting to see that it is possible to deal with this problem with good results,
despite the different approaches.

CCS Concepts
• Information systems → Content analysis and feature selection; • Computing methodologies → Shape analysis; Search
methodologies;

1. Introduction

The challenge of this SHREC’19 track is to extract feature curves
from a set of models of different numbers of vertices and origins
(scans or digital crafting). The models are represented by triangu-
lations of various resolutions and vertex distributions. In the broad
meaning of the word, a feature is an area of interest of the model.
In the context of our track, a feature is intended as a bending of
the surface that shapes a part of interest (e.g.: the eye of a statue
is a feature, while the hand of a statue is not). A feature curve is a
line that delineates a feature. In our contest we consider as a feature
curve a set of vertices of the model that jointly define a contour, a
valley or a ridge on the mesh. The mesh boundary (if it exists) is
not considered a feature curve, as well as the noise artifacts (e.g.,
from scan inaccuracy and/or smoothing/resampling operations).

Feature curves drive the identification of features on a model
and, in general, give local information about the surface. An effi-
cient method for feature curves extraction, as intended in this track,
needs to group sets of mesh vertices so that each set identifies a
single feature curve.

The focus of this task is to find efficient methods for feature
curve extraction that are able to highlight one or more subsets of
vertices of the meshes in the track dataset. Moreover, as an op-

† Track Organizer

tional task, we asked the participants to submit a similarity evalua-
tion among the feature curves extracted across all the models.

Therefore, the task proposed can be seen as a step towards the
retrieval of features of interest on surfaces and, together with the
previous SHREC tracks [BMea17], [MTW∗18] and [BMea18], it
can help the automatic retrieval and recognition of style elements
over art/cultural heritage data.

2. The dataset

The dataset consists of 15 surfaces characterized by at
least one feature curve. Some of the models are obtained
through scans, while others are made in silico. Some mod-
els are derived from the Visionair shape workbench (http:
//visionair.ge.imati.cnr.it/) and the Turbosquid
repository of 3D models (https://www.turbosquid.com/
Search/3D-Models). The original models of the ornaments
from which we have derived the models from 4 to 10 are courtesy
of the prof. Karina Rodriguez Echavarria. Both vertex distribution
and density vary from mesh to mesh. Figure 1 shows an overview
of the models, together with their number of vertices.

3. Groundtruth

The definition of a groundtruth for this task is a challenging job,
since no formal definition of feature curve on surfaces exists.

submitted to Eurographics Workshop on 3D Object Retrieval (2019)

https://orcid.org/0000-0003-1230-8291
https://orcid.org/0000-0001-8149-5188
https://orcid.org/0000-0001-7617-227X
https://orcid.org/0000-0003-2180-4318
https://orcid.org/0000-0002-9992-825X
https://orcid.org/0000-0002-9522-2874
http://visionair.ge.imati.cnr.it/
http://visionair.ge.imati.cnr.it/
https://www.turbosquid.com/Search/3D-Models
https://www.turbosquid.com/Search/3D-Models


2 E. Moscoso Thompson et. al. / SHREC’19 track: Feature Curve Extraction

M1 (50541) M2 (83556) M3 (92902)

M4 (25397) M5 (25411) M6 (33910)

M7 (18319) M8 (18659) M9 (25280)

M10 (214868) M11 (11144) M12 (11433)

M13 (7919) M14 (30174) M15 (5192)

Figure 1: Overview of the dataset. In the brackets of each model is
the corresponding number of vertices.

Feature curves derive from the human perception and interpre-
tation of a surface, both in terms of localization and width. Psy-
chologists and computer vision scientists who studied how humans
perceive a shape have identified curvature variations, in terms of
changes from convex to concave regions, as a key element of the
human perception [PT96].

Keeping in mind this observations, the groundtruth has been
defined by people from the IMATI-CNR (Italy) staff, requested
to highlight the vertices of each model if, in their opinion, they
were part of feature curves. Then, a groundtruth based on these
individual annotations has been created. An overview of the final
groundtruth is shown in Figure 2.

For a given model M, the outcome of each method is expected
to be a set of nM separate lists f pi of vertices, resembling the set of
nM feature curves highlighted in the groundtruth. More formally,
we expect a set of lists P(M) = { f p1, f p2, ...} for each M in the
dataset. The evaluations are done by comparing this set with the

set GT (M) = { f c1, f c2, ..., f cnM} of feature curves defined in the
groundtruth. We consider two classifications:

• [Overall Comparison](O-comp): all the feature curves found on
each model are jointly evaluated with the described evaluation
measures, matching them with the groundtruth data. More for-
mally, we compare the sets ∪i f pi and ∪i f ci.
• [Curve-by-curve Comparison](CbC-comp): let us consider a

feature curve f c j of the model M and the set P(M) of feature
curves proposed by a participant. In the lists in P(M), we se-
lected the closest to f ci and compare these two curves. The
closest curve is selected by the same people that defined the
groundtruth by voting the curve in P(M) which overlaps f ci the
most.

The optional task was interpreted differently from the partici-
pants. Two of them submitted a similarity matrix. The first provides
a similarity measure among the models in the dataset, based on the
distance among the feature curves identified; the second assesses
similarity scores among single feature curves across the models.
While it is hard to compare the results using numeric evaluations,
some comparative remarks are drawn and discussed (Section 6).

4. Participants

Six groups subscribed to this track and four sent their outcome. In
the following we describe the methods submitted for evaluation.

4.1. Spectral based saliency estimation for the identification of
features (SBSE) by G. Arvanitis and K. Moustakas

This method is separated into two basic steps. At the first step, au-
thors estimate the saliency of each vertex using spectral analysis.
The magnitude of the estimated saliency identifies if a vertex is a
feature or not. Based on the geometry, it is possible to say that the
feature vertices represent the edge of a feature curve (both crests
and valleys) or corners. At the second step, the mean curvature of
the extracted features is estimated and it is used to classify the dif-
ferent feature curves (if they exist). Additionally, the information
related to the mean curvature and the saliency of each feature curve
are used to find similarities with feature curves of other models.
The execution time of the algorithm depends on: (i) the size of the
mesh and (ii) the size of the patches, but generally, it is very fast.

Definition and computation of vertex saliency

For each of the n vertex vi, a patch Pi = {vi,vi1 , . . . ,vik} vertices
is created, which consists in the k geometrical nearest vertices to
the vertex vi based on their coordinates (typically k = 15). These
points are used to define a matrix Ni ∈ R(k+1)×3 for each vertex:

Ni = [ni,ni1 , . . . ,nik ]
T , ∀i = 1, . . . ,n

where the normal ni of the vertex vi is defined as:

ni =

∑
j∈Ni

nc j

|Ni|
, ∀i = 1, . . . ,n,

where nc j is the normal of the j-th face of the mesh and Ni is
the first-ring area of the vertex i. For each vertex, the associated
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M1 M2 M3 M4 M5 M6

M7 M8 M9 M10 M11 M12

M13 M14 M15

Figure 2: The final groundtruth of the contest. Top: the feature curves on the models; Bottom: feature curves represented one by one. Details
are best appreciated in the digital version of this paper.
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covariance matrix Ri = NT
i Ni is decomposed:

eig(Ri) = UiΛi ∀i = 1, . . . ,n

where Ui ∈ (R)3×3 denotes the eigenvectors matrix and

Λi = diag(λi1,λi2,λi3)

The value si is the saliency of vi and it is defined as the value given
by the inverse norm−2 of the corresponding eigenvalues:

si =
1√

λ2
i1 +λ2

i2 +λ2
i3

, i = 1, . . . ,n.

si is normalized to be in the [0,1] range as follows:

s̄ =
si−min(si)

max(si)−min(si)
, i = 1, . . . ,n

Authors assume that a small value of saliency means that the vertex
lies in a flat area, while a big value indicates that the vertex belong
to an edge or corner. This characterization depends by the num-
ber of dominant (or main) eigenvalues. For example, considering a
cube, a vertex that "has" three, two or one dominant eigenvectors
is, respectively, on a corner, on an edge or on a flat area.

A k-mean algorithm is used for separating the normalized values
of the saliency into five different classes. The first two are con-
sidered as non-feature vertices, while the other are actual feature
vertices.

Clustering of salient vertices

The feature curves are identified by grouping the feature vertices
based on mean curvature mc values. Since the initial number of the
feature curves is unknown for each model, the optimal number of
cluster is supposed to range from 1 to 5 and it is estimated using
the Calinsky-Harabasz clustering evaluation criterion, followed by
the k-means algorithm that performs the actual clustering.

Moreover, feature curve similarities between different models is
assessed through the histograms of saliency and mean curvature.
More specifically, for a given model the histograms of the s̄ value
and the normalized mean curvature are computed (respectively ṡ ∈
R10×1 and ṁ ∈ R10×1). Then they are horizontally stacked in the
vector q = [ṡ, ṁ]. The correlation coefficient r of two models A and
B defined by the vectors qA and qB is:

r =

20
∑

i=1
(qAi − q̄A)(qBi − q̄b)√

(
20
∑

i=1
(qAi − q̄A))(

20
∑

i=1
(qBi − q̄b))

where q̄∗ represents the mean value. The lower r is, the higher is
the similarity between A and B.

4.2. Point aggregation based on angle and curvature saliency
(PCs) by Nhat Hoang-Xuan, E-Ro Nguyen, Minh-Triet
Tran

These participants propose two methods, labelled PCs:A and
PCs:C. Both have the same approach: defining a set of candidate
vertices with a significant difference in a given property. Then can-
didate vertices that might be on a flat region and/or small fragments

are removed, to reduce noise in the output. With this approach, all
the feature curves obtained on a single model are grouped, thus we
consider these methods only in the overall comparison. The core
difference between the two methods is how the candidate vertices
are determined.

Angle-based vertex saliency (PCs:A)

The first method works in three steps. First, the angle θi between
each pair of connected triangles (by one edge) is computed. Then,
if θi > αmeani(θi) (with mean equal to the average value), the two
extremes of the relative edge are considered as candidate vertices.
α is set equal to 1.3 in most cases, aside from 1.6 for Model2 and
2.6 for Model3. Second, if two candidate vertices share an edge
larger than the double average length of the edges the two candidate
vertices are removed. Finally, a graph with each pair of candidate
vertices as nodes is created. All the connected components of this
graph are computed and, if the number of vertices in a component
is less than 1% of the number of vertices of the mesh, the vertices
are removed.

Normal curvature-based vertex salicency (PCs:C)

The second method runs in three steps. First, the oriented normals
per-triangle are computed and for each vertex the normal of a ver-
tex is the average of the weighted sum of its incident faces, with
weights being proportional to a face’s area. For each edge in the
mesh, if its extremes are p1, p2 with normals n1,n2, an estimation
of its curvature is given by:

curv =
(n2−n1)(p2− p1)

|p2− p1|2

Second, the average curvature of each vertex vi is estimated as the
geometric mean of the absolute values of all the edge curvatures of
incident edges at the selected vertex. This evaluation is smoothed
by averaging the value with those of its immediate neighbors. This
is repeated multiple times. Vertices with large touching triangles
indicate that the surrounding area is relatively flat and thus filtered
away, checking if their adjacent vertices have length larger than
some value proportional to the average of the edge length. Of the
remaining vertices, those that have a curvature value larger than
a+ k(meani(curv(vi))) are flagged as possible elements of some
feature curves. This formulation derives from the following obser-
vation: if the curvature value is larger than the average, at some
point then it is highly possible that it is part of some curve, but in
a sample with mostly noisy texture, this limit needs to be relaxed.
In this method, a = 0.025 and k = 0.7. Finally, to reduce noise, the
components with less than 5 vertices are removed. Also, large com-
ponents that have no nearby other flagged vertices are removed.

4.3. Point-based multi-scale curve voting (PMCV) by T.
Lejemble, L. Barthe and N. Mellado

This method extracts feature lines from meshes using a voting sys-
tem based on a set of 3D curves generated in the direction of mini-
mal curvature in anisotropic regions.
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Point cloud sampling and curve generation

Each meshM is converted to a dense point cloud with a uniform
point cloud P through a uniform sampling weighted by the face
area. The authors of the methods observe that feature curves as in-
tended in this track are characterized by a small curvature along the
feature and a large curvature in orthogonal direction. The curvature
is evaluated using a local surface estimation called APSS [GG07].
Curves are generated at five levels of scale, based on the size of
the neighbor used to approximate the surface with APPS, namely
ti = ē

2 (2+ iē), i = 0, . . . ,4 where ē is the median edge lengths in
M. P is sub-sampled in 5 sparse point clouds Pi using a Poisson
disk sampling, with radius ri =

ti
10 plus an additional cloudPl , with

rl =
t0
2 . For each ti, curves are iteratively generated from each point

in Pl as follows:

p j+1 = pro j(p j +4v(p j))

with 4 = t0
2 . v(pj) is the direction of minimal principal curvature

computed onPi. pro j projects a point on the APPS surface approx-
imation of Pi, ensuring that the curve remains close to the surface.
The iterations stop after reaching a maximum, set at 105, or if the
curve leaves the curved area, i.e. if ||κ1|−Ki|

Ki
> α, where κ1 is the

maximal curvature, Ki is set to the 90th centile of maximal curva-
ture absolute values calculated in Pl at scale ti and α is set to 0.5.
In order to filter noise or insignificant features, if the number of
iterations is lower than 50, the curve is discarded.

Voting-based feature line extraction

The vertices of M accumulate votes from the extracted neighbor
curves. Each vertex of each curve accumulates a vote in its neigh-
boring mesh vertices. The size of the spherical neighborhood is ē.
A vote is a negative scalar coefficient for valley lines and positive
for crest lines, with absolute values ranging from 0 to 1 accord-
ing to the distance between the curve vertex and the mesh vertex.
Sign is used to balance the sum of vertices close to both valley and
crests. Finally, a region growing process delineates individual set of
vertices based on these votes. A region grows from a vertex to its
neighbor if the sum of the votes has the same sign and if its absolute
value is greater than 1

20Vmax, where Vmax is the maximal absolute
value of votes on the vertices of the mesh.

4.4. Feature curve characterization via mean curvature and
algebraic curve recognition via Hough transforms (MHT)
by C. Romanengo, S. Biasotti and B. Falcidieno

This feature curve recognition method derives from the technique
described in [TBF18] and works in three steps.

Feature point characterization

Authors evaluate the mean curvature values in the mesh vertices to
detect the feature points adopting the curvature estimation based on
normal cycles [CSM03] implemented in the Toolbox graph [Pey].
The vertices at which the mean curvature is significant (e.g with
high maximal and low minimal curvature values) are selected as
feature points. This is automatically achieved by filtering the distri-
bution of the mean curvature by means of two filtering thresholds
m and M. Note that m and M are two input parameters. Their value

varies according to the precision threshold set for the property used
to extract the feature points (e.g., in our case, two typical values of
m and M are 15% and 85%, respectively).

Feature curve aggregation

Feature points are aggregated to determine the elements that po-
tentially correspond to a curve. Once detected, the set of feature
points is subdivided into smaller clusters (that is, groups of points
sharing some similar properties) by using a clustering algorithm.
The Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) method [EKSX96], is adopted which groups together
points that lie close by marking as outliers isolated points in low-
density regions. The DBSCAN algorithm requires two parameters:
a threshold used as the radius of the density region, and a positive
integer that represents the minimum number of points required to
form a dense region. As feature curves, the output of the DBSCAN
algorithm is submitted. To estimate the density of the feature points
and, therefore, the minimum number of points in a region, the K-
Nearest Neighbor (KNN) [FBF77] is used. In general, the K value
of the KNN search is set to 15 for MHT1 and to 4 for MHT2.

Curve approximation using Hough transforms

Finally, the feature curves are fitted with template curves to recog-
nize their type and quantify the parameters characterizing such a
feature. This step is obtained following the procedure based on the
Hough transform described in [TBF18]. In this contest, the follow-
ing dictionary of curves is considered: circles, Lamet curve, citrus
curve, geometric petal and Archimedean spiral, see [TBF18] for
details. In general, combinations or additional families of curves
are possible [Shi95]. The peculiarity of the Hough transform is
to estimate in a family of curves, the parameters of the curve
a = (a1, . . . ,an) that better fits a given set of points. The curves
considered have at most one or two parameters. Depending on the
curve, these parameters estimate its bounding box, diagonal, radius,
etc.

The distance between the two curves C1 and C2 is defined as
the norm L1 of the parameters corresponding to these curves, i.e.,
d(C1,C2) = |aC1 ,aC2 |1, where aC1 and aC2 are the parameters of
the curves C1 and C2, respectively. Note that such a notion of dis-
tance assumes the curve parameters are homogeneous in terms of
the properties measured; this implies that the distance between two
feature curves is computed only if they belong to the same family.

5. Evaluation Measures

Apart of the well-known Hausdorff distance between two sets of
points, there is not a standard measure for the evaluation of this kind
of tasks. Also, notice that despite being curves, our groundtruth
is defined by sets of points that are not sorted, thus distances
for ordered polylines like the Fréchet distance are not suitable
[EGHP∗02]. We used the the Direct Hausdorff distance [DD09],
the Dice coefficient [TH15] and the Jaccard index [TH15]. More
precisely:

• The Direct Hausdorff distance from the points a ∈ A⊂R3 to the
points b ∈ B⊂ R3 is defined as follows:

ddHaus(A,B) = max(a∈A)min(b∈B)d(a,b),
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with d the euclidean distance. As a reference, the well known
Hausdorff distance between A and B is

max{ddHaus(A,B),ddHaus(B,A)}

In order to have coherent evaluation through different models,
we make this measurement on resized models so that their loads
are as close as possible.
• The Dice coefficient between two sets (let them be S and R) is

defined as

dice(S,R) =
2|S∩R|
|S|+ |R| ,

where | · | denotes the number of elements. It ranges from 0 (no
match), to 1 (perfect match).
• The Jaccard index is defined as:

jaccard(S,R) =
dice(S,R)

2−dice(S,R)
,

that varies from 0 to 1, the higher the better.

The Direct Hausdorff distance score is used to evaluate how well
the overall shape of the curves extracted by the participants fit the
groundtruth and vice-versa. The other two measures are used to
evaluate the precision of the methods. While a score of 1 is not
mandatory for a method to be considered good, the higher the value
is, the better the extracted curve fits its groundtruth counterpart.
After running our measures, we saw that the Jaccard index and the
Dice coefficient scores on the participants’ results are different in
terms of scale but equivalent in terms of classification of the method
performances. Thus, we decided to report only the Dice coefficient,
for brevity.

6. Results and discussions

A total of six runs was submitted for evaluation. The authors of the
SBSE and MHT* methods sent results for both the mandatory and
the optional task. The authors of the PMCV and PCs methods sub-
mitted only the mandatory task. Moreover, the PCs results report
an unique feature curve per model so they are considered in the
overall comparison only.

The results for both classifications (curve-by-curve and overall)
are reported in Table 1 and Table 2.

The participants face this track with different approaches that
often have been tailored for more general projects. Depending on
the design choices, the results vary in precision, sensitiveness and
overall quality. Our quantitative evaluations provide an interpreta-
tion of these methods for this specific contest and are not meant to
evaluate the absolute quality of the methods. Indeed, none method
stands out in general; depending on the different application/needs,
the methods present their own peculiarities and answer the chal-
lenge more or less properly. If interested in the strongest features
(in terms of bending) of a model, SBSE provides a quick over-
all preview of the related feature curves, quite robust to noise. As
shown in Figure 3(a), SBSE is able to extract the jointed feature
curves even in presence of acquisition noise, with good precision.
PMCV has impressive precision in its extraction process. Such a
precision could be ideal to identify different features that share a
jointed feature curve. Figure 3(b) shows how this method is able

O-comp - ddHaus from GT to Parts
Model SBSE PCs:A PCs:C PMCV MHT1 MHT2

M1 0.068 0.054 0.105 0.675 1.570 1.570
M2 0.054 0.060 0.032 0.079 0.071 0.060
M3 0.074 0.006 0.005 0.001 0.048 0.048
M4 3.047 3.694 2.771 0.162 3.555 3.555
M5 0.887 1.019 2.100 0.921 1.019 1.019
M6 1.229 0.033 1.049 2.246 0.650 0.089
M7 0.018 0.010 0.028 0.016 0.012 0.012
M8 0.062 0.006 0.027 0.037 0.011 0.011
M9 1.622 0.165 1.699 1.716 0.081 0.081
M10 2.427 0.003 0.582 2.348 4.585 4.585
M11 0.091 0.009 0.035 0.013 0.045 0.045
M12 0.062 0.036 0.064 0.011 0.040 0.010
M13 0.035 0.057 0.023 0.070 0.013 0.013
M14 0.024 0.004 0.027 0.004 0.010 0.010
M15 0.004 0.009 0.077 0.145 0.030 0.030

O-comp - ddHaus from Parts to GT
Model SBSE PCs:A PCs:C PMCV MHT1 MHT2

M1 0.225 5.924 0.225 0.311 0.280 0.280
M2 1.407 0.128 1.643 0.012 0.041 0.020
M3 0.388 0.001 0.184 0.278 0.061 0.061
M4 1.055 0.969 1.055 0.258 0.209 0.209
M5 0.166 0.037 0.029 0.029 0.250 0.250
M6 1.399 1.101 1.101 0.680 1.101 1.276
M7 0.017 0.043 0.031 0.026 0.078 0.078
M8 0.019 0.039 0.028 0.016 0.044 0.044
M9 4.288 0.260 0.496 0.215 1.442 1.442
M10 0.229 0.723 0.422 0.411 0.022 0.022
M11 0.013 0.043 0.015 0.039 0.015 0.015
M12 0.009 0.030 0.012 0.220 0.036 0.038
M13 0.068 0.060 0.091 0.054 0.067 0.067
M14 0.007 0.019 0.013 0.008 0.008 0.008
M15 0.090 0.090 0.051 0.022 0.009 0.009

O-comp - Dice coefficient
Model SBSE PCs:A PCs:C PMCV MHT1 MHT2

M1 0.345 0.352 0.354 0.479 0.452 0.452
M2 0.421 0.494 0.475 0.482 0.210 0.213
M3 0.411 0.492 0.508 0.383 0.292 0.292
M4 0.342 0.496 0.513 0.392 0.449 0.449
M5 0.427 0.586 0.582 0.563 0.555 0.555
M6 0.279 0.446 0.467 0.525 0.445 0.451
M7 0.306 0.426 0.508 0.550 0.501 0.501
M8 0.316 0.412 0.498 0.543 0.518 0.518
M9 0.221 0.533 0.502 0.447 0.474 0.474
M10 0.425 0.466 0.498 0.516 0.402 0.402
M11 0.389 0.579 0.554 0.562 0.562 0.562
M12 0.548 0.711 0.727 0.666 0.667 0.637
M13 0.298 0.553 0.537 0.405 0.976 0.976
M14 0.304 0.565 0.517 0.512 0.882 0.882
M15 0.584 0.659 0.631 0.536 0.917 0.917

Table 1: The evaluation measures of the O-comp classification. The
ddHaus distance measure is computed from groundtruth (GT) to the
feature curve proposed by the participants (Parts) and vice-versa.
The lower its score is (0 at best), the better. For the Dice coefficient,
the higher the score is (1 at best), the bettee. Refer to Figure 2 to see
which model is evaluated in each cell. Bests results are highlighted
with bold font.

to separate the L-shaped bumps of the mesh with different feature
curves. It usually detects more feature curves than those selected in
the groundtruth. The main reason is that this method extracts the
set of valley and crest lines in the mathematical sense, while the
groundtruth focuses on a user-specified subset. It may also happen
that the 3D curves generation stops at non anisotropic areas such
as corners. In that case, a feature line is separated in several curves.
The feature lines provided by the PMCV are generally thicker than
those in the groundtruth. If required, thinner set of lines can be ob-
tained by reducing the distance used for the curve voting, although
representative features could be discarded in this way. About the
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CbC-comp - ddHaus from GT to Parts
FC id. SBSE PMCV MHT1 MHT2

1_1 0.604 0.014 0.013 0.013
1_2 0.601 0.036 0.034 0.034
1_3 0.575 0.084 0.039 0.039
1_4 n.c. 0.041 0.064 0.064
1_5 0.555 0.056 0.035 0.035
1_6 0.527 0.128 0.050 0.050
1_7 0.541 0.027 0.028 0.028
1_8 n.c. < 0.001 n.c. n.c.

1_10 0.547 0.035 0.024 0.024
2_1 0.673 0.005 0.674 0.016
2_2 0.467 0.005 0.468 0.013
2_3 0.461 0.013 0.461 0.015
2_4 0.681 0.003 0.681 0.019
2_5 0.686 0.002 0.688 0.019
2_6 0.473 0.002 0.475 0.018
2_7 0.461 0.004 0.462 0.017
2_8 0.475 0.005 0.476 0.022
2_9 0.453 0.002 0.454 0.017

2_10 0.674 0.002 0.674 0.018
2_11 0.686 < 0.001 0.686 0.022
2_12 0.683 0.003 0.685 0.016
3_1 n.c. 0.092 n.c. n.c.
3_2 0.414 0.007 0.062 0.062
4_1 0.048 0.005 0.036 0.036
4_2 0.124 0.027 n.c. n.c.
5_1 0.021 < 0.001 0.102 0.102
6_1 n.c. 0.005 n.c. 0.561
6_2 0.053 0.006 1.021 1.021
7_1 0.012 0.007 0.010 0.010
8_1 0.012 0.007 0.017 0.017
9_1 2.459 0.005 0.016 0.016

10_1 5.031 0.001 0.019 0.019
10_2 3.192 0.285 n.c. n.c.
11_1 0.102 0.035 0.033 0.033
11_2 0.028 0.062 0.048 0.048
11_3 n.c. 0.011 0.011 0.011
11_4 0.171 0.039 0.014 0.014
11_5 n.c. 0.005 0.005 0.005
12_1 0.137 0.083 0.065 0.143
12_2 n.c. 0.006 0.005 0.155
12_3 n.c. 0.023 0.004 0.078
12_4 0.027 0.051 0.029 0.029
12_5 0.082 0.026 0.031 0.097
13_1 < 0.001 0.022 0.067 0.067
14_1 0.716 0.006 < 0.001 < 0.001
14_2 0.464 0.006 0.011 0.011
14_3 0.464 0.007 < 0.001 < 0.001
14_4 0.470 0.007 0.006 0.006
14_5 0.672 0.008 0.006 0.006
14_6 0.654 0.007 0.015 0.015
14_7 0.655 0.007 0.008 0.008
14_8 0.667 0.006 0.008 0.008
14_9 0.721 0.007 0.012 0.012
14_10 0.703 0.007 < 0.001 < 0.001
14_11 0.708 0.007 0.003 0.003
14_12 0.500 0.007 0.012 0.012
14_13 0.494 0.007 0.011 0.011
14_14 0.513 0.007 < 0.001 < 0.001
14_15 0.519 0.007 0.004 0.004
14_16 0.470 0.006 0.009 0.009
15_1 0.260 n.c. 0.009 0.009
15_2 0.151 0.022 0.007 0.007

CbC-comp - ddHaus from Parts to GT
FC id. SBSE PMCV MHT1 MHT2

1_1 0.035 0.006 0.006 0.006
1_2 0.016 0.006 0.006 0.006
1_3 0.052 0.021 0.110 0.110
1_4 n.c. 0.021 0.020 0.020
1_5 0.031 0.006 0.006 0.006
1_6 0.057 0.113 0.118 0.118
1_7 0.083 0.020 0.062 0.062
1_8 n.c. 0.049 n.c. n.c.

1_10 0.028 0.082 0.081 0.081
2_1 0.011 0.171 0.012 0.012
2_2 0.006 0.081 0.004 0.003
2_3 0.006 0.004 0.007 0.014
2_4 0.005 0.118 0.004 0.004
2_5 0.018 0.155 0.018 0.017
2_6 0.010 0.127 0.017 0.016
2_7 0.015 0.166 0.015 0.017
2_8 0.013 0.146 0.017 0.018
2_9 0.016 0.169 0.017 0.016

2_10 0.015 0.185 0.020 0.018
2_11 0.011 0.146 0.017 0.017
2_12 0.004 0.131 0.005 0.005
3_1 n.c. 0.172 n.c. n.c.
3_2 0.035 0.097 0.016 0.016
4_1 0.023 0.313 0.035 0.035
4_2 0.092 0.005 n.c. n.c.
5_1 0.887 0.470 1.086 1.086
6_1 n.c. 0.079 n.c. 0.008
6_2 0.060 0.279 1.213 1.213
7_1 0.070 0.220 0.048 0.048
8_1 0.064 0.314 0.046 0.046
9_1 1.638 0.228 0.071 0.071

10_1 0.108 0.150 0.049 0.049
10_2 2.427 13.239 n.c. n.c.
11_1 0.007 < 0.001 0.005 0.005
11_2 0.018 0.008 0.011 0.011
11_3 n.c. 0.013 0.015 0.136
11_4 0.091 0.009 0.062 0.062
11_5 n.c. 0.028 0.006 0.006
12_1 0.064 0.005 0.040 0.006
12_2 n.c. 0.008 0.069 0.008
12_3 n.c. 0.011 0.019 0.016
12_4 0.006 0.005 0.007 0.007
12_5 0.005 < 0.001 0.004 0.006
13_1 0.035 0.076 0.013 0.013
14_1 0.002 < 0.001 0.003 0.003
14_2 < 0.001 < 0.001 0.004 0.004
14_3 0.003 < 0.001 0.003 0.003
14_4 0.004 < 0.001 0.004 0.004
14_5 0.023 0.003 0.004 0.004
14_6 0.007 0.004 0.004 0.004
14_7 0.011 < 0.001 0.010 0.010
14_8 0.024 < 0.001 0.069 0.069
14_9 0.004 < 0.001 0.002 0.002
14_10 0.004 < 0.001 0.006 0.006
14_11 0.004 < 0.001 0.004 0.004
14_12 0.004 0.003 0.002 0.002
14_13 0.004 < 0.001 0.004 0.004
14_14 0.003 < 0.001 0.004 0.004
14_15 0.004 0.003 0.002 0.002
14_16 0.004 0.004 0.004 0.004
15_1 0.010 n.c. 0.030 0.030
15_2 0.010 < 0.001 0.013 0.013

CbC-comp - Dice coefficient
Mod SBSE PMCV MHT1 MHT2
1_1 0.121 0.650 0.636 0.636
1_2 0.145 0.450 0.413 0.413
1_3 0.244 0.435 0.503 0.503
1_4 n.c. 0.499 0.445 0.445
1_5 0.180 0.434 0.578 0.578
1_6 0.214 0.458 0.481 0.481
1_7 0.041 0.382 0.338 0.338
1_8 n.c. 0.447 n.c. n.c.
1_10 0.126 0.354 0.334 0.334
2_1 0.094 0.296 0.025 0.048
2_2 0.194 0.542 0.147 0.449
2_3 0.164 0.633 0.119 0.332
2_4 0.265 0.457 0.176 0.461
2_5 0.060 0.102 0.033 0.082
2_6 0.077 0.537 0.009 0.029
2_7 0.041 0.076 0.016 0.035
2_8 0.062 0.337 0.018 0.044
2_9 0.029 0.339 0.015 0.019
2_10 0.104 0.032 0.022 0.038
2_11 0.078 0.248 0.037 0.044
2_12 0.174 0.474 0.107 0.282
3_1 n.c. 0.443 n.c. n.c.
3_2 0.586 0.487 0.497 0.497
4_1 0.300 0.126 0.426 0.426
4_2 0.159 0.590 n.c. n.c.
5_1 0.381 0.304 0.414 0.414
6_1 n.c. 0.663 n.c. 0.046
6_2 0.318 0.357 0.516 0.516
7_1 0.333 0.479 0.528 0.528
8_1 0.313 0.454 0.533 0.533
9_1 0.218 0.270 0.390 0.390
10_1 0.331 0.394 0.311 0.311
10_2 0.131 0.433 n.c. n.c.
11_1 0.497 0.627 0.680 0.680
11_2 0.367 0.393 0.404 0.404
11_3 n.c. 0.546 0.553 0.553
11_4 0.043 0.511 0.489 0.489
11_5 n.c. 0.778 0.705 0.705
12_1 0.190 0.588 0.535 0.230
12_2 n.c. 0.817 0.713 0.131
12_3 n.c. 0.137 0.286 0.237
12_4 0.553 0.572 0.514 0.514
12_5 0.557 0.766 0.774 0.450
13_1 0.574 0.567 0.976 0.976
14_1 0.227 0.559 0.979 0.979
14_2 0.224 0.529 0.987 0.987
14_3 0.219 0.509 0.978 0.978
14_4 0.002 0.450 0.942 0.942
14_5 0.001 0.489 0.795 0.795
14_6 0.027 0.657 0.646 0.646
14_7 0.178 0.655 0.739 0.739
14_8 0.153 0.576 0.667 0.667
14_9 0.002 0.478 0.897 0.897
14_10 0.227 0.516 0.919 0.919
14_11 0.004 0.465 0.952 0.952
14_12 < 0.001 0.446 0.956 0.956
14_13 0.226 0.510 0.954 0.954
14_14 0.225 0.465 0.983 0.983
14_15 < 0.001 0.464 0.980 0.980
14_16 0.002 0.466 0.907 0.907
15_1 0.512 n.c. 0.913 0.913
15_2 0.732 0.662 0.921 0.921

Table 2: The evaluation measures of the CbC-comp classification. The ddHaus distance measure is computed from groundtruth (GT) to the
feature curve proposed by the participants (Parts) and vice-versa. The lower its score is (0 at best), the better. For the Dice coefficient, the
higher the score is (1 at best), the bettee. Refer to Figure 2 to see which model is evaluated in each cell. Model 1_9 and is not reported since
no one was able to detect it. Bests results are highlighted with bold font.

PCs runs, while they do not separate the feature vertices in differ-
ent feature curves, they almost always provide a super-set of the
vertices of the groundtruth jointed feature curves. Also, as shown
in Figure 3(c,d), the methods are very precise in case of very sharp
features, as those in Models 5 and 9. A good balance between pre-
cision and vertex clustering is obtained by MHT, which recognizes
most of the expected feature curves, balancing the number of ver-

tices recognized and the curve fragmentation (with respect to our
groundtruth). An example of this is shown in Figure 3(e,f).

For the optional task, SBSE provides a global distance between
two models based on histogram-based feature vectors. For exam-
ple, M4 and M10 are considered similar based on this evaluation,
as well as M11 and M12, M7 and M8, M6 and M9. Another way to
approach the problem of similarity is that of MHT, which provides
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a similarity measure among the single feature curves, even those in
the same model. In other words, it performs a local similarity evalu-
ation of the models. The similarity evaluation is doable with curves
that are obtained using the same family of curves. For instance, the
eyes in Model 11 and 12 are mutually considered similar, as well
as each pair of rings on Model 14. An example of curves sorted by
similarity in a single family is shown in Figure 4.

As a final remark, the participants show different views for the
problem of feature curve extraction: the main contrast between
the feature curves proposed by the participants and those in the
groundtruth is due to its definition, being it influenced by the hu-
man perception. Despite this, the proposed methods highlight that
such a problem could be automatized in future with more efforts in
this research path.

(a) (b)

(c) (d)

(e) (f)

Figure 3: An example of the the results from SBSE (a), PMCV (b),
PCs:A (c), PCs:C (d), MHT1 (e) and MHT2 (f).
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