SHREC'19 track: Feature Curve Extraction on Triangle Meshes

E Moscoso Thompson, G Arvanitis, K Moustakas, N Hoang-Xuan, E R
Nguyen, M Tran, Thibault Lejemble, Loic Barthe, Nicolas Mellado, C Romanengo, et al.

To cite this version:

E Moscoso Thompson, G Arvanitis, K Moustakas, N Hoang-Xuan, E R Nguyen, et al.. SHREC'19 track: Feature Curve Extraction on Triangle Meshes. 12th EG Workshop 3D Object Retrieval 2019, May 2019, Gênes, Italy. pp.1-8. hal-02126739

HAL Id: hal-02126739

https://hal.science/hal-02126739

Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SHREC'19 track: Feature Curve Extraction on Triangle Meshes

E. Moscoso Thompson ${ }^{\dagger 1}{ }^{(D)}$, G. Arvanitis ${ }^{2}$ © , K. Moustakas ${ }^{2}$ © , N. Hoang-Xuan ${ }^{4}$, E.R. Nguyen ${ }^{4}$, M. Tran ${ }^{4}$, T. Lejemble ${ }^{5}$, L. Barthe ${ }^{5}$, N. Mellado $^{5}{ }^{(\mathbb{D}}$, C. Romanengo ${ }^{1,3}$, S. Biasotti ${ }^{1{ }^{1}}$ (D) , and B. Falcidieno $^{1(D)}$.
${ }^{1}$ Istituto di Matematica Applicata e Tecnologie Informatiche 'E. Magenes' - CNR, Italy
${ }^{2}$ Dept. of Electrical and Computer Engineering University of Patras, Rio, Patras, Greece
${ }^{3}$ Dipartimento di Matematica, Università di Genova - UNIGE, Italy
${ }^{4}$ Faculty of Information Technology, University of Science, VNU-HCM
${ }^{5}$ IRIT, Université de Toulouse, CNRS, INPT, UPS, UT1C, UT2J, France

Abstract

This paper presents the results of the SHREC'19 track: Feature curve extraction on triangle meshes. Given a model, the challenge consists in automatically extracting a subset of the mesh vertices that jointly represent a feature curve. As an optional task, participants were requested to send also a similarity evaluation among the feature curves extracted. The various approaches presented by the participants are discussed, together with their results. The proposed methods highlight different points of view of the problem of feature curve extraction. It is interesting to see that it is possible to deal with this problem with good results, despite the different approaches. CCS Concepts \bullet Information systems \rightarrow Content analysis and feature selection; • Computing methodologies \rightarrow Shape analysis; Search methodologies;

1. Introduction

The challenge of this SHREC' 19 track is to extract feature curves from a set of models of different numbers of vertices and origins (scans or digital crafting). The models are represented by triangulations of various resolutions and vertex distributions. In the broad meaning of the word, a feature is an area of interest of the model. In the context of our track, a feature is intended as a bending of the surface that shapes a part of interest (e.g.: the eye of a statue is a feature, while the hand of a statue is not). A feature curve is a line that delineates a feature. In our contest we consider as a feature curve a set of vertices of the model that jointly define a contour, a valley or a ridge on the mesh. The mesh boundary (if it exists) is not considered a feature curve, as well as the noise artifacts (e.g., from scan inaccuracy and/or smoothing/resampling operations).

Feature curves drive the identification of features on a model and, in general, give local information about the surface. An efficient method for feature curves extraction, as intended in this track, needs to group sets of mesh vertices so that each set identifies a single feature curve.

The focus of this task is to find efficient methods for feature curve extraction that are able to highlight one or more subsets of vertices of the meshes in the track dataset. Moreover, as an op-

[^0]tional task, we asked the participants to submit a similarity evaluation among the feature curves extracted across all the models.

Therefore, the task proposed can be seen as a step towards the retrieval of features of interest on surfaces and, together with the previous SHREC tracks [BMea17], [MTW* 18] and [BMea18], it can help the automatic retrieval and recognition of style elements over art/cultural heritage data.

2. The dataset

The dataset consists of 15 surfaces characterized by at least one feature curve. Some of the models are obtained through scans, while others are made in silico. Some models are derived from the Visionair shape workbench (http: //visionair.ge.imati.cnr.it/) and the Turbosquid repository of 3D models (https://www.turbosquid.com/ Search/3D-Models). The original models of the ornaments from which we have derived the models from 4 to 10 are courtesy of the prof. Karina Rodriguez Echavarria. Both vertex distribution and density vary from mesh to mesh. Figure 1 shows an overview of the models, together with their number of vertices.

3. Groundtruth

The definition of a groundtruth for this task is a challenging job, since no formal definition of feature curve on surfaces exists.

Figure 1: Overview of the dataset. In the brackets of each model is the corresponding number of vertices.

Feature curves derive from the human perception and interpretation of a surface, both in terms of localization and width. Psychologists and computer vision scientists who studied how humans perceive a shape have identified curvature variations, in terms of changes from convex to concave regions, as a key element of the human perception [PT96].

Keeping in mind this observations, the groundtruth has been defined by people from the IMATI-CNR (Italy) staff, requested to highlight the vertices of each model if, in their opinion, they were part of feature curves. Then, a groundtruth based on these individual annotations has been created. An overview of the final groundtruth is shown in Figure 2.

For a given model M, the outcome of each method is expected to be a set of n_{M} separate lists $f p_{i}$ of vertices, resembling the set of n_{M} feature curves highlighted in the groundtruth. More formally, we expect a set of lists $P(M)=\left\{f p_{1}, f p_{2}, \ldots\right\}$ for each M in the dataset. The evaluations are done by comparing this set with the
set $G T(M)=\left\{f c_{1}, f c_{2}, \ldots, f c_{n_{M}}\right\}$ of feature curves defined in the groundtruth. We consider two classifications:

- [Overall Comparison](O-comp): all the feature curves found on each model are jointly evaluated with the described evaluation measures, matching them with the groundtruth data. More formally, we compare the sets $\cup_{i} f p_{i}$ and $\cup_{i} f c_{i}$.
- [Curve-by-curve Comparison](CbC-comp): let us consider a feature curve $f c_{j}$ of the model M and the set $P(M)$ of feature curves proposed by a participant. In the lists in $P(M)$, we selected the closest to $f c_{i}$ and compare these two curves. The closest curve is selected by the same people that defined the groundtruth by voting the curve in $P(M)$ which overlaps $f c_{i}$ the most.

The optional task was interpreted differently from the participants. Two of them submitted a similarity matrix. The first provides a similarity measure among the models in the dataset, based on the distance among the feature curves identified; the second assesses similarity scores among single feature curves across the models. While it is hard to compare the results using numeric evaluations, some comparative remarks are drawn and discussed (Section 6).

4. Participants

Six groups subscribed to this track and four sent their outcome. In the following we describe the methods submitted for evaluation.

4.1. Spectral based saliency estimation for the identification of features (SBSE) by G. Arvanitis and K. Moustakas

This method is separated into two basic steps. At the first step, authors estimate the saliency of each vertex using spectral analysis. The magnitude of the estimated saliency identifies if a vertex is a feature or not. Based on the geometry, it is possible to say that the feature vertices represent the edge of a feature curve (both crests and valleys) or corners. At the second step, the mean curvature of the extracted features is estimated and it is used to classify the different feature curves (if they exist). Additionally, the information related to the mean curvature and the saliency of each feature curve are used to find similarities with feature curves of other models. The execution time of the algorithm depends on: (i) the size of the mesh and (ii) the size of the patches, but generally, it is very fast.

Definition and computation of vertex saliency

For each of the n vertex v_{i}, a patch $\mathcal{P}_{i}=\left\{\mathbf{v}_{i}, \mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{k}}\right\}$ vertices is created, which consists in the k geometrical nearest vertices to the vertex \mathbf{v}_{i} based on their coordinates (typically $k=15$). These points are used to define a matrix $\mathbf{N}_{i} \in \mathbb{R}^{(k+1) \times 3}$ for each vertex:

$$
\mathbf{N}_{i}=\left[\mathbf{n}_{i}, \mathbf{n}_{i_{1}}, \ldots, \mathbf{n}_{i_{k}}\right]^{T}, \quad \forall i=1, \ldots, n
$$

where the normal \mathbf{n}_{i} of the vertex \mathbf{v}_{i} is defined as:

$$
\mathbf{n}_{i}=\frac{\sum_{j \in \mathcal{N}_{i}} \mathbf{n}_{c_{j}}}{\left|\mathcal{N}_{i}\right|}, \quad \forall i=1, \ldots, n
$$

where $\mathbf{n}_{c_{j}}$ is the normal of the j-th face of the mesh and \mathcal{N}_{i} is the first-ring area of the vertex i. For each vertex, the associated

Figure 2: The final groundtruth of the contest. Top: the feature curves on the models; Bottom: feature curves represented one by one. Details are best appreciated in the digital version of this paper.
covariance matrix $\mathbf{R}_{i}=\mathbf{N}_{i}^{T} \mathbf{N}_{i}$ is decomposed:

$$
\operatorname{eig}\left(\mathbf{R}_{i}\right)=\mathbf{U}_{i} \Lambda_{i} \quad \forall i=1, \ldots, n
$$

where $\mathbf{U}_{i} \in(R)^{3 \times 3}$ denotes the eigenvectors matrix and

$$
\Lambda_{i}=\operatorname{diag}\left(\lambda_{i 1}, \lambda_{i 2}, \lambda_{i 3}\right)
$$

The value s_{i} is the saliency of \mathbf{v}_{i} and it is defined as the value given by the inverse norm -2 of the corresponding eigenvalues:

$$
s_{i}=\frac{1}{\sqrt{\lambda_{i 1}^{2}+\lambda_{i 2}^{2}+\lambda_{i 3}^{2}}}, \quad i=1, \ldots, n .
$$

s_{i} is normalized to be in the $[0,1]$ range as follows:

$$
\bar{s}=\frac{s_{i}-\min \left(s_{i}\right)}{\max \left(s_{i}\right)-\min \left(s_{i}\right)}, \quad i=1, \ldots, n
$$

Authors assume that a small value of saliency means that the vertex lies in a flat area, while a big value indicates that the vertex belong to an edge or corner. This characterization depends by the number of dominant (or main) eigenvalues. For example, considering a cube, a vertex that "has" three, two or one dominant eigenvectors is, respectively, on a corner, on an edge or on a flat area.

A k-mean algorithm is used for separating the normalized values of the saliency into five different classes. The first two are considered as non-feature vertices, while the other are actual feature vertices.

Clustering of salient vertices

The feature curves are identified by grouping the feature vertices based on mean curvature m_{c} values. Since the initial number of the feature curves is unknown for each model, the optimal number of cluster is supposed to range from 1 to 5 and it is estimated using the Calinsky-Harabasz clustering evaluation criterion, followed by the k -means algorithm that performs the actual clustering.

Moreover, feature curve similarities between different models is assessed through the histograms of saliency and mean curvature. More specifically, for a given model the histograms of the \bar{s} value and the normalized mean curvature are computed (respectively $\dot{s} \in$ $\mathbb{R}^{10 \times 1}$ and $\dot{m} \in \mathbb{R}^{10 \times 1}$). Then they are horizontally stacked in the vector $q=[\dot{s}, \dot{m}]$. The correlation coefficient r of two models A and B defined by the vectors q_{A} and q_{B} is:

$$
r=\frac{\sum_{i=1}^{20}\left(q_{A_{i}}-\bar{q}_{A}\right)\left(q_{B_{i}}-\bar{q}_{b}\right)}{\sqrt{\left(\sum_{i=1}^{20}\left(q_{A_{i}}-\bar{q}_{A}\right)\right)\left(\sum_{i=1}^{20}\left(q_{B_{i}}-\bar{q}_{b}\right)\right)}}
$$

where \bar{q}_{*} represents the mean value. The lower r is, the higher is the similarity between A and B.

4.2. Point aggregation based on angle and curvature saliency (PCs) by Nhat Hoang-Xuan, E-Ro Nguyen, Minh-Triet Tran

These participants propose two methods, labelled PCs:A and PCs:C. Both have the same approach: defining a set of candidate vertices with a significant difference in a given property. Then candidate vertices that might be on a flat region and/or small fragments
are removed, to reduce noise in the output. With this approach, all the feature curves obtained on a single model are grouped, thus we consider these methods only in the overall comparison. The core difference between the two methods is how the candidate vertices are determined.

Angle-based vertex saliency (PCs:A)

The first method works in three steps. First, the angle θ_{i} between each pair of connected triangles (by one edge) is computed. Then, if $\theta_{i}>$ mean $_{i}\left(\theta_{i}\right)$ (with mean equal to the average value), the two extremes of the relative edge are considered as candidate vertices. α is set equal to 1.3 in most cases, aside from 1.6 for Model 2 and 2.6 for Model3. Second, if two candidate vertices share an edge larger than the double average length of the edges the two candidate vertices are removed. Finally, a graph with each pair of candidate vertices as nodes is created. All the connected components of this graph are computed and, if the number of vertices in a component is less than 1% of the number of vertices of the mesh, the vertices are removed.

Normal curvature-based vertex salicency (PCs:C)

The second method runs in three steps. First, the oriented normals per-triangle are computed and for each vertex the normal of a vertex is the average of the weighted sum of its incident faces, with weights being proportional to a face's area. For each edge in the mesh, if its extremes are p_{1}, p_{2} with normals n_{1}, n_{2}, an estimation of its curvature is given by:

$$
\text { curv }=\frac{\left(n_{2}-n_{1}\right)\left(p_{2}-p_{1}\right)}{\left|p_{2}-p_{1}\right|^{2}}
$$

Second, the average curvature of each vertex v_{i} is estimated as the geometric mean of the absolute values of all the edge curvatures of incident edges at the selected vertex. This evaluation is smoothed by averaging the value with those of its immediate neighbors. This is repeated multiple times. Vertices with large touching triangles indicate that the surrounding area is relatively flat and thus filtered away, checking if their adjacent vertices have length larger than some value proportional to the average of the edge length. Of the remaining vertices, those that have a curvature value larger than $a+k\left(\operatorname{mean}_{i}\left(\operatorname{curv}\left(v_{i}\right)\right)\right)$ are flagged as possible elements of some feature curves. This formulation derives from the following observation: if the curvature value is larger than the average, at some point then it is highly possible that it is part of some curve, but in a sample with mostly noisy texture, this limit needs to be relaxed. In this method, $a=0.025$ and $k=0.7$. Finally, to reduce noise, the components with less than 5 vertices are removed. Also, large components that have no nearby other flagged vertices are removed.

4.3. Point-based multi-scale curve voting (PMCV) by T. Lejemble, L. Barthe and N. Mellado

This method extracts feature lines from meshes using a voting system based on a set of 3D curves generated in the direction of minimal curvature in anisotropic regions.

Point cloud sampling and curve generation

Each mesh \mathcal{M} is converted to a dense point cloud with a uniform point cloud \mathcal{P} through a uniform sampling weighted by the face area. The authors of the methods observe that feature curves as intended in this track are characterized by a small curvature along the feature and a large curvature in orthogonal direction. The curvature is evaluated using a local surface estimation called APSS [GG07]. Curves are generated at five levels of scale, based on the size of the neighbor used to approximate the surface with APPS, namely $t_{i}=\frac{\bar{e}}{2}(2+i \bar{e}), i=0, \ldots, 4$ where \bar{e} is the median edge lengths in $\mathcal{M} . \mathcal{P}$ is sub-sampled in 5 sparse point clouds \mathcal{P}_{i} using a Poisson disk sampling, with radius $r_{i}=\frac{t_{i}}{10}$ plus an additional cloud \mathcal{P}_{l}, with $r_{l}=\frac{t_{0}}{2}$. For each t_{i}, curves are iteratively generated from each point in \mathcal{P}_{l} as follows:

$$
\mathbf{p}_{j+1}=\operatorname{proj}\left(\mathbf{p}_{j}+\triangle \mathbf{v}\left(\mathbf{p}_{j}\right)\right)
$$

with $\triangle=\frac{t_{0}}{2} \cdot \mathbf{v}\left(\mathbf{p}_{\mathbf{j}}\right)$ is the direction of minimal principal curvature computed on \mathcal{P}_{i}. proj projects a point on the APPS surface approximation of \mathcal{P}_{i}, ensuring that the curve remains close to the surface. The iterations stop after reaching a maximum, set at 10^{5}, or if the curve leaves the curved area, i.e. if $\frac{\| \kappa_{1}\left|-K_{i}\right|}{K_{i}}>\alpha$, where κ_{1} is the maximal curvature, K_{i} is set to the $90^{\text {th }}$ centile of maximal curvature absolute values calculated in \mathcal{P}_{l} at scale t_{i} and α is set to 0.5 . In order to filter noise or insignificant features, if the number of iterations is lower than 50 , the curve is discarded.

Voting-based feature line extraction

The vertices of \mathcal{M} accumulate votes from the extracted neighbor curves. Each vertex of each curve accumulates a vote in its neighboring mesh vertices. The size of the spherical neighborhood is \bar{e}. A vote is a negative scalar coefficient for valley lines and positive for crest lines, with absolute values ranging from 0 to 1 according to the distance between the curve vertex and the mesh vertex. Sign is used to balance the sum of vertices close to both valley and crests. Finally, a region growing process delineates individual set of vertices based on these votes. A region grows from a vertex to its neighbor if the sum of the votes has the same sign and if its absolute value is greater than $\frac{1}{20} V_{\max }$, where $V_{\max }$ is the maximal absolute value of votes on the vertices of the mesh.

4.4. Feature curve characterization via mean curvature and algebraic curve recognition via Hough transforms (MHT) by C. Romanengo, S. Biasotti and B. Falcidieno

This feature curve recognition method derives from the technique described in [TBF18] and works in three steps.

Feature point characterization

Authors evaluate the mean curvature values in the mesh vertices to detect the feature points adopting the curvature estimation based on normal cycles [CSM03] implemented in the Toolbox graph [Pey]. The vertices at which the mean curvature is significant (e.g with high maximal and low minimal curvature values) are selected as feature points. This is automatically achieved by filtering the distribution of the mean curvature by means of two filtering thresholds m and M. Note that m and M are two input parameters. Their value
varies according to the precision threshold set for the property used to extract the feature points (e.g., in our case, two typical values of m and M are 15% and 85%, respectively).

Feature curve aggregation

Feature points are aggregated to determine the elements that potentially correspond to a curve. Once detected, the set of feature points is subdivided into smaller clusters (that is, groups of points sharing some similar properties) by using a clustering algorithm. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method [EKSX96], is adopted which groups together points that lie close by marking as outliers isolated points in lowdensity regions. The DBSCAN algorithm requires two parameters: a threshold used as the radius of the density region, and a positive integer that represents the minimum number of points required to form a dense region. As feature curves, the output of the DBSCAN algorithm is submitted. To estimate the density of the feature points and, therefore, the minimum number of points in a region, the K Nearest Neighbor (KNN) [FBF77] is used. In general, the K value of the KNN search is set to 15 for MHT1 and to 4 for MHT2.

Curve approximation using Hough transforms

Finally, the feature curves are fitted with template curves to recognize their type and quantify the parameters characterizing such a feature. This step is obtained following the procedure based on the Hough transform described in [TBF18]. In this contest, the following dictionary of curves is considered: circles, Lamet curve, citrus curve, geometric petal and Archimedean spiral, see [TBF18] for details. In general, combinations or additional families of curves are possible [Shi95]. The peculiarity of the Hough transform is to estimate in a family of curves, the parameters of the curve $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ that better fits a given set of points. The curves considered have at most one or two parameters. Depending on the curve, these parameters estimate its bounding box, diagonal, radius, etc.

The distance between the two curves \mathcal{C}_{1} and \mathcal{C}_{2} is defined as the norm L^{1} of the parameters corresponding to these curves, i.e., $d\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)=\left|\mathbf{a}_{\mathcal{C}_{1}}, \mathbf{a}_{\mathcal{C}_{2}}\right| 1$, where $\mathbf{a}_{\mathcal{C}_{1}}$ and $\mathbf{a}_{\mathcal{C}_{2}}$ are the parameters of the curves \mathcal{C}_{1} and \mathcal{C}_{2}, respectively. Note that such a notion of distance assumes the curve parameters are homogeneous in terms of the properties measured; this implies that the distance between two feature curves is computed only if they belong to the same family.

5. Evaluation Measures

Apart of the well-known Hausdorff distance between two sets of points, there is not a standard measure for the evaluation of this kind of tasks. Also, notice that despite being curves, our groundtruth is defined by sets of points that are not sorted, thus distances for ordered polylines like the Fréchet distance are not suitable [EGHP*02]. We used the the Direct Hausdorff distance [DD09], the Dice coefficient [TH15] and the Jaccard index [TH15]. More precisely:

- The Direct Hausdorff distance from the points $a \in A \subset \mathbb{R}^{3}$ to the points $b \in B \subset \mathbb{R}^{3}$ is defined as follows:

$$
d_{d H a u s}(A, B)=\max _{(a \in A)} \min _{(b \in B)} d(a, b),
$$

with d the euclidean distance. As a reference, the well known Hausdorff distance between A and B is

$$
\max \left\{d_{d H a u s}(A, B), d_{d H a u s}(B, A)\right\}
$$

In order to have coherent evaluation through different models, we make this measurement on resized models so that their loads are as close as possible.

- The Dice coefficient between two sets (let them be S and R) is defined as

$$
\operatorname{dice}(S, R)=\frac{2|S \cap R|}{|S|+|R|},
$$

where $|\cdot|$ denotes the number of elements. It ranges from 0 (no match), to 1 (perfect match).

- The Jaccard index is defined as:

$$
\operatorname{jaccard}(S, R)=\frac{\operatorname{dice}(S, R)}{2-\operatorname{dice}(S, R)}
$$

that varies from 0 to 1 , the higher the better.
The Direct Hausdorff distance score is used to evaluate how well the overall shape of the curves extracted by the participants fit the groundtruth and vice-versa. The other two measures are used to evaluate the precision of the methods. While a score of 1 is not mandatory for a method to be considered good, the higher the value is, the better the extracted curve fits its groundtruth counterpart. After running our measures, we saw that the Jaccard index and the Dice coefficient scores on the participants' results are different in terms of scale but equivalent in terms of classification of the method performances. Thus, we decided to report only the Dice coefficient, for brevity.

6. Results and discussions

A total of six runs was submitted for evaluation. The authors of the SBSE and MHT* methods sent results for both the mandatory and the optional task. The authors of the PMCV and PCs methods submitted only the mandatory task. Moreover, the PCs results report an unique feature curve per model so they are considered in the overall comparison only.
The results for both classifications (curve-by-curve and overall) are reported in Table 1 and Table 2.

The participants face this track with different approaches that often have been tailored for more general projects. Depending on the design choices, the results vary in precision, sensitiveness and overall quality. Our quantitative evaluations provide an interpretation of these methods for this specific contest and are not meant to evaluate the absolute quality of the methods. Indeed, none method stands out in general; depending on the different application/needs, the methods present their own peculiarities and answer the challenge more or less properly. If interested in the strongest features (in terms of bending) of a model, SBSE provides a quick overall preview of the related feature curves, quite robust to noise. As shown in Figure 3(a), SBSE is able to extract the jointed feature curves even in presence of acquisition noise, with good precision. PMCV has impressive precision in its extraction process. Such a precision could be ideal to identify different features that share a jointed feature curve. Figure 3(b) shows how this method is able

O-comp $-d_{d H \text { aus }}$ from GT to Parts						
Model	SBSE	PCs:A	PCs:C	PMCV	MHT1	MHT2
M1	0.068	0.054	0.105	0.675	1.570	1.570
M2	0.054	0.060	0.032	0.079	0.071	0.060
M3	0.074	0.006	0.005	0.001	0.048	0.048
M4	3.047	3.694	2.771	0.162	3.555	3.555
M5	0.887	1.019	2.100	0.921	1.019	1.019
M6	1.229	0.033	1.049	2.246	0.650	0.089
M7	0.018	0.010	0.028	0.016	0.012	0.012
M8	0.062	0.006	0.027	0.037	0.011	0.011
M9	1.622	0.165	1.699	1.716	0.081	0.081
M10	2.427	0.003	0.582	2.348	4.585	4.585
M11	0.091	0.009	0.035	0.013	0.045	0.045
M12	0.062	0.036	0.064	0.011	0.040	0.010
M13	0.035	0.057	0.023	0.070	0.013	0.013
M14	0.024	0.004	0.027	0.004	0.010	0.010
M15	0.004	0.009	0.077	0.145	0.030	0.030
O-comp - $d_{\text {dHaus }}$ from Parts to GT						
Model	SBSE	PCs:A	PCs:C	PMCV	MHT1	MHT2
M1	0.225	5.924	0.225	0.311	0.280	0.280
M2	1.407	0.128	1.643	0.012	0.041	0.020
M3	0.388	0.001	0.184	0.278	0.061	0.061
M4	1.055	0.969	1.055	0.258	0.209	0.209
M5	0.166	0.037	0.029	0.029	0.250	0.250
M6	1.399	1.101	1.101	0.680	1.101	1.276
M7	0.017	0.043	0.031	0.026	0.078	0.078
M8	0.019	0.039	0.028	0.016	0.044	0.044
M9	4.288	0.260	0.496	0.215	1.442	1.442
M10	0.229	0.723	0.422	0.411	0.022	0.022
M11	0.013	0.043	0.015	0.039	0.015	0.015
M12	0.009	0.030	0.012	0.220	0.036	0.038
M13	0.068	0.060	0.091	0.054	0.067	0.067
M14	0.007	0.019	0.013	0.008	0.008	0.008
M15	0.090	0.090	0.051	0.022	0.009	0.009
O-comp - Dice coefficient						
Model	SBSE	PCs:A	PCs:C	PMCV	MHT1	MHT2
M1	0.345	0.352	0.354	0.479	0.452	0.452
M2	0.421	0.494	0.475	0.482	0.210	0.213
M3	0.411	0.492	0.508	0.383	0.292	0.292
M4	0.342	0.496	0.513	0.392	0.449	0.449
M5	0.427	0.586	0.582	0.563	0.555	0.555
M6	0.279	0.446	0.467	0.525	0.445	0.451
M7	0.306	0.426	0.508	0.550	0.501	0.501
M8	0.316	0.412	0.498	0.543	0.518	0.518
M9	0.221	0.533	0.502	0.447	0.474	0.474
M10	0.425	0.466	0.498	0.516	0.402	0.402
M11	0.389	0.579	0.554	0.562	0.562	0.562
M12	0.548	0.711	0.727	0.666	0.667	0.637
M13	0.298	0.553	0.537	0.405	0.976	0.976
M14	0.304	0.565	0.517	0.512	0.882	0.882
M15	0.584	0.659	0.631	0.536	0.917	0.917

Table 1: The evaluation measures of the O-comp classification. The $d_{d H \text { aus }}$ distance measure is computed from groundtruth (GT) to the feature curve proposed by the participants (Parts) and vice-versa. The lower its score is (0 at best), the better. For the Dice coefficient, the higher the score is (1 at best), the bettee. Refer to Figure 2 to see which model is evaluated in each cell. Bests results are highlighted with bold font.
to separate the L-shaped bumps of the mesh with different feature curves. It usually detects more feature curves than those selected in the groundtruth. The main reason is that this method extracts the set of valley and crest lines in the mathematical sense, while the groundtruth focuses on a user-specified subset. It may also happen that the 3D curves generation stops at non anisotropic areas such as corners. In that case, a feature line is separated in several curves. The feature lines provided by the PMCV are generally thicker than those in the groundtruth. If required, thinner set of lines can be obtained by reducing the distance used for the curve voting, although representative features could be discarded in this way. About the

CbC-comp - $d_{\text {dHaus }}$ from GT to Parts					CbC-comp $-d_{d H a u s}$ from Parts to GT					CbC-comp - Dice coefficient				
FC id.	SBSE	PMCV	MHT1	MHT2	FC id.	SBSE	PMCV	MHT1	MHT2	Mod	SBSE	PMCV	MHT1	MHT2
1_1	0.604	0.014	0.013	0.013	1_1	0.035	0.006	0.006	0.006	1_1	0.121	0.650	0.636	0.636
1_2	0.601	0.036	0.034	0.034	1_2	0.016	0.006	0.006	0.006	1_2	0.145	0.450	0.413	0.413
1_3	0.575	0.084	0.039	0.039	1_3	0.052	0.021	0.110	0.110	1_3	0.244	0.435	0.503	0.503
1_4	n.c.	0.041	0.064	0.064	1_4	n.c.	0.021	0.020	0.020	1_4	n.c.	0.499	0.445	0.445
1_5	0.555	0.056	0.035	0.035	1_5	0.031	0.006	0.006	0.006	1_5	0.180	0.434	0.578	0.578
1_6	0.527	0.128	0.050	0.050	1_6	0.057	0.113	0.118	0.118	1_6	0.214	0.458	0.481	0.481
1_7	0.541	0.027	0.028	0.028	1_7	0.083	0.020	0.062	0.062	1_7	0.041	0.382	0.338	0.338
1_8	n.c.	<0.001	n.c.	n.c.	1_8	n.c.	0.049	n.c.	n.c.	1_8	n.c.	0.447	n.c.	n.c.
1_10	0.547	0.035	0.024	0.024	1_10	0.028	0.082	0.081	0.081	1_10	0.126	0.354	0.334	0.334
2_1	0.673	0.005	0.674	0.016	2_1	0.011	0.171	0.012	0.012	2_1	0.094	0.296	0.025	0.048
2_2	0.467	0.005	0.468	0.013	2_2	0.006	0.081	0.004	0.003	2_2	0.194	0.542	0.147	0.449
2_3	0.461	0.013	0.461	0.015	2_3	0.006	0.004	0.007	0.014	2_3	0.164	0.633	0.119	0.332
2_4	0.681	0.003	0.681	0.019	2_4	0.005	0.118	0.004	0.004	2_4	0.265	0.457	0.176	0.461
2_5	0.686	0.002	0.688	0.019	2_5	0.018	0.155	0.018	0.017	2_5	0.060	0.102	0.033	0.082
2_6	0.473	0.002	0.475	0.018	2_6	0.010	0.127	0.017	0.016	2_6	0.077	0.537	0.009	0.029
2_7	0.461	0.004	0.462	0.017	2 _7	0.015	0.166	0.015	0.017	2_7	0.041	0.076	0.016	0.035
2_8	0.475	0.005	0.476	0.022	2_8	0.013	0.146	0.017	0.018	2_8	0.062	0.337	0.018	0.044
2_9	0.453	0.002	0.454	0.017	2_9	0.016	0.169	0.017	0.016	2_9	0.029	0.339	0.015	0.019
2_10	0.674	0.002	0.674	0.018	2_10	0.015	0.185	0.020	0.018	2_10	0.104	0.032	0.022	0.038
2_11	0.686	<0.001	0.686	0.022	2_11	0.011	0.146	0.017	0.017	2_11	0.078	0.248	0.037	0.044
2_12	0.683	0.003	0.685	0.016	2_12	0.004	0.131	0.005	0.005	2_12	0.174	0.474	0.107	0.282
3_1	n.c.	0.092	n.c.	n.c.	3_1	n.c.	0.172	n.c.	n.c.	3_1	n.c.	0.443	n.c.	n.c.
3_2	0.414	0.007	0.062	0.062	3_2	0.035	0.097	0.016	0.016	3_2	0.586	0.487	0.497	0.497
4_1	0.048	0.005	0.036	0.036	4_1	0.023	0.313	0.035	0.035	4_1	0.300	0.126	0.426	0.426
4_2	0.124	0.027	n.c.	n.c.	4_2	0.092	0.005	n.c.	n.c.	4 -2	0.159	0.590	n.c.	n.c.
5_1	0.021	<0.001	0.102	0.102	5_1	0.887	0.470	1.086	1.086	5_1	0.381	0.304	0.414	0.414
6_1	n.c.	0.005	n.c.	0.561	6_1	n.c.	0.079	n.c.	0.008	6_1	n.c.	0.663	n.c.	0.046
6_2	0.053	0.006	1.021	1.021	6	0.060	0.279	1.213	1.213	6_2	0.318	0.357	0.516	0.516
7_1	0.012	0.007	0.010	0.010	7_1	0.070	0.220	0.048	0.048	7_1	0.333	0.479	0.528	0.528
8_1	0.012	0.007	0.017	0.017	8_1	0.064	0.314	0.046	0.046	8_1	0.313	0.454	0.533	0.533
9_1	2.459	0.005	0.016	0.016	9_1	1.638	0.228	0.071	0.071	9_1	0.218	0.270	0.390	0.390
10_1	5.031	0.001	0.019	0.019	10_1	0.108	0.150	0.049	0.049	10_1	0.331	0.394	0.311	0.311
10_2	3.192	0.285	n.c.	n.c.	10_2	2.427	13.239	n.c.	n.c.	10_2	0.131	0.433	n.c.	n.c.
11_1	0.102	0.035	0.033	0.033	11_1	0.007	<0.001	0.005	0.005	11_1	0.497	0.627	0.680	0.680
11.2	0.028	0.062	0.048	0.048	11_2	0.018	0.008	0.011	0.011	11_2	0.367	0.393	0.404	0.404
11_3	n.c.	0.011	0.011	0.011	11_3	n.c.	0.013	0.015	0.136	11_3	n.c.	0.546	0.553	0.553
11_4	0.171	0.039	0.014	0.014	11_4	0.091	0.009	0.062	0.062	11_4	0.043	0.511	0.489	0.489
11_5	n.c.	0.005	0.005	0.005	11_5	n.c.	0.028	0.006	0.006	11_5	n.c.	0.778	0.705	0.705
12_1	0.137	0.083	0.065	0.143	12_1	0.064	0.005	0.040	0.006	12_1	0.190	0.588	0.535	0.230
12_2	n.c.	0.006	0.005	0.155	12_2	n.c.	0.008	0.069	0.008	12_2	n.c.	0.817	0.713	0.131
12_3	n.c.	0.023	0.004	0.078	12_3	n.c.	0.011	0.019	0.016	12_3	n.c.	0.137	0.286	0.237
12_4	0.027	0.051	0.029	0.029	12_4	0.006	0.005	0.007	0.007	12_4	0.553	0.572	0.514	0.514
12_5	0.082	0.026	0.031	0.097	12_5	0.005	<0.001	0.004	0.006	12_5	0.557	0.766	0.774	0.450
13_1	<0.001	0.022	0.067	0.067	13_1	0.035	0.076	0.013	0.013	13_1	0.574	0.567	0.976	0.976
14_1	0.716	0.006	<0.001	<0.001	14_1	0.002	<0.001	0.003	0.003	14_1	0.227	0.559	0.979	0.979
14_2	0.464	0.006	0.011	0.011	14_2	< 0.001	< 0.001	0.004	0.004	14_2	0.224	0.529	0.987	0.987
14_3	0.464	0.007	<0.001	<0.001	14_3	0.003	<0.001	0.003	0.003	14_3	0.219	0.509	0.978	0.978
14_4	0.470	0.007	0.006	0.006	14_4	0.004	<0.001	0.004	0.004	14_4	0.002	0.450	0.942	0.942
14_5	0.672	0.008	0.006	0.006	14_5	0.023	0.003	0.004	0.004	14_5	0.001	0.489	0.795	0.795
14_6	0.654	0.007	0.015	0.015	14_6	0.007	0.004	0.004	0.004	14_6	0.027	0.657	0.646	0.646
14.7	0.655	0.007	0.008	0.008	14_7	0.011	<0.001	0.010	0.010	14_7	0.178	0.655	0.739	0.739
14_8	0.667	0.006	0.008	0.008	14_8	0.024	<0.001	0.069	0.069	14_8	0.153	0.576	0.667	0.667
14-9	0.721	0.007	0.012	0.012	14_9	0.004	<0.001	0.002	0.002	14_9	0.002	0.478	0.897	0.897
14_10	0.703	0.007	<0.001	<0.001	14_10	0.004	< 0.001	0.006	0.006	14_10	0.227	0.516	0.919	0.919
14_11	0.708	0.007	0.003	0.003	14_11	0.004	<0.001	0.004	0.004	14_11	0.004	0.465	0.952	0.952
14_12	0.500	0.007	0.012	0.012	14_12	0.004	0.003	0.002	0.002	14_12	<0.001	0.446	0.956	0.956
14_13	0.494	0.007	0.011	0.011	14_13	0.004	<0.001	0.004	0.004	14_13	0.226	0.510	0.954	0.954
14_14	0.513	0.007	<0.001	<0.001	14_14	0.003	<0.001	0.004	0.004	14_14	0.225	0.465	0.983	0.983
14_15	0.519	0.007	0.004	0.004	14_15	0.004	0.003	0.002	0.002	14_15	< 0.001	0.464	0.980	0.980
14_16	0.470	0.006	0.009	0.009	14_16	0.004	0.004	0.004	0.004	14_16	0.002	0.466	0.907	0.907
15_1	0.260	n.c.	0.009	0.009	15_1	0.010	n.c.	0.030	0.030	15_1	0.512	n.c.	0.913	0.913
15_2	0.151	0.022	0.007	0.007	15_2	0.010	<0.001	0.013	0.013	15_2	0.732	0.662	0.921	0.921

Table 2: The evaluation measures of the CbC-comp classification. The $d_{d H a u s}$ distance measure is computed from groundtruth (GT) to the feature curve proposed by the participants (Parts) and vice-versa. The lower its score is (0 at best), the better. For the Dice coefficient, the higher the score is (1 at best), the bettee. Refer to Figure 2 to see which model is evaluated in each cell. Model 1_9 and is not reported since no one was able to detect it. Bests results are highlighted with bold font.

PCs runs, while they do not separate the feature vertices in different feature curves, they almost always provide a super-set of the vertices of the groundtruth jointed feature curves. Also, as shown in Figure 3(c,d), the methods are very precise in case of very sharp features, as those in Models 5 and 9. A good balance between precision and vertex clustering is obtained by MHT, which recognizes most of the expected feature curves, balancing the number of ver-
tices recognized and the curve fragmentation (with respect to our groundtruth). An example of this is shown in Figure 3(e,f).

For the optional task, SBSE provides a global distance between two models based on histogram-based feature vectors. For example, M4 and M10 are considered similar based on this evaluation, as well as M11 and M12, M7 and M8, M6 and M9. Another way to approach the problem of similarity is that of MHT, which provides
a similarity measure among the single feature curves, even those in the same model. In other words, it performs a local similarity evaluation of the models. The similarity evaluation is doable with curves that are obtained using the same family of curves. For instance, the eyes in Model 11 and 12 are mutually considered similar, as well as each pair of rings on Model 14. An example of curves sorted by similarity in a single family is shown in Figure 4.

As a final remark, the participants show different views for the problem of feature curve extraction: the main contrast between the feature curves proposed by the participants and those in the groundtruth is due to its definition, being it influenced by the human perception. Despite this, the proposed methods highlight that such a problem could be automatized in future with more efforts in this research path.

Figure 3: An example of the the results from $\operatorname{SBSE}(a), P M C V(b)$, PCs:A (c), PCs:C (d), MHT1 (e) and MHT2 (f).

7. Acknowledgment

This study was partially supported by the CNR-IMATI projects DIT.AD004.028.001 and DIT.AD021.080.001.

References

[BMea17] Biasotti S., Moscoso Thompson E., et al.: Retrieval of Surfaces with Similar Relief Patterns. In Eurographics Workshop on 3D Object Retrieval (2017), Pratikakis I., Dupont F., Ovsjanikov M., (Eds.), The Eurographics Association. 1
[BMea18] Biasotti S., Moscoso Thompson E., et al: SHREC'18 track: Recognition of geometric patterns over 3D models. In Eurographics Workshop on 3D Object Retrieval (2018), The Eurographics Association. 1

Figure 4: Based on MHT similarity evaluation, the most similar feature curves to the feature curve extracted on Model 6 (red). From the second images, from left to right, the extracted feature curves on other models (reported in the brackets) from closest to farthest, are shown.
[CSM03] Cohen-Steiner D., Morvan J.-M.: Restricted Delaunay triangulations and normal cycle. In Proc. of the $9^{\text {th }}$ Ann. Symp. on Computational Geometry (New York, NY, USA, 2003), SCG '03, ACM, pp. 312-321. 5
[DD09] DEZA M. M., DEzA E.: Encyclopedia of Distances. Springer Berlin Heidelberg, 2009. 5
[EGHP*02] Efrat, Guibas, Har-Peled S., Mitchell, Murali: New similarity measures between polylines with applications to morphing and polygon sweeping. Discrete \& Computational Geometry 28, 4 (Nov 2002), 535-569. 5
[EKSX96] Ester M., Kriegel H. P., Sander J., Xu X.: A densitybased algorithm for discovering clusters in large spatial databases with noise. In $2^{\text {nd }}$ Int. Conf. Knowledge Discovery and Data Mining (1996), AAAI Press, pp. 226-231. 5
[FBF77] Friedman J. H., Bentley J. L., Finkel R. A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3, 3 (Sept. 1977), 209-226. 5
[GG07] Guennebaud G., Gross M.: Algebraic point set surfaces. ACM Trans. Graph. 26 (07 2007), 23. 5
[MTW* 18] Moscoso Thompson E., Tortorici C., Werghi N., Berretti S., Velasco-Forero S., Biasotti S.: Retrieval of Gray Patterns Depicted on 3D Models. In Eurographics Workshop on 3D Object Retrieval (2018), Telea A., Theoharis T., Veltkamp R., (Eds.), The Eurographics Association. 1
[Pey] Peyre G.: Toolbox graph - A toolbox to process graph and triangulated meshes. http://www.ceremade.dauphine.fr/~peyre/matlab/graph/content.html. 5
[PT96] Phillips F., Todd J. T.: Perception of local three-dimensional shape. Journal of experimental psychology. Human perception and performance 224 (1996), 930-44. 2
[Shi95] Shikin E. V.: Handbook and atlas of curves. CRC, 1995. 5
[TBF18] Torrente M.-L., Biasotti S., Falcidieno B.: Recognition of feature curves on 3D shapes using an algebraic approach to hough transforms. Pattern Recognition 73 (2018), 111 - 130. 5
[TH15] Taha A. A., Hanbury A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. In BMC Medical Imaging (2015). 5

[^0]: \dagger Track Organizer

