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Abstract

A fully polarizable implementation of the hybrid Quantum Mechanics/Molecular

Mechanics approach is presented, where the classical environment is described through

the AMOEBA polarizable force field. A variational formalism, offering a self-consistent
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relaxation of both the MM induced dipoles and the QM electronic density is used

for ground state energies and extended to electronic excitations in the framework of

Time-Dependent Density Functional Theory combined with a state specific response

of the classical part. An application to the calculation of the solvatochromism of the

pyridinium N-phenolate betaine dye used to define the solvent ET30 scale is presented.

The results show that the QM/AMOEBA model not only properly describes specific

and bulk effects in the ground state but it also correctly responds to the large change

in the solute electronic charge distribution upon excitation.

1 Introduction

The idea of studying an intrinsically quantum-mechanical (QM) process taking place in a

complex environment by partitioning the whole system into a (smaller) subsystem (S) and

the environment (E) has a long history in quantum chemistry. Within this framework, S is

identified as the minimal subunit where the process occurs, and is described using an accurate

albeit expensive level of theory, typically QM, whereas the environment is treated at a much

lower detail, but sufficient to properly describe its effects on the process under study. Two

alternative strategies are most commonly followed: one can either model the environment

as a polarizable continuum1,2 or employ an atomistic description of E, but introducing a

Molecular Mechanics (MM) force field (FF).3–7 The latter class of approaches is commonly

referred to as QM/MM, and is widely used, particularly when electronic processes in complex

environments are studied.

Since the first formulations, different QM/MM approaches have been proposed; in most

of them the effective Hamiltonian defining the electronic properties of the QM subsystem in

the presence of the MM system, is divided into a term describing the isolated S, and a term

taking into account its electrostatic interaction with the classical environment through point

charges centered on the MM atoms. This formulation, known as “electrostatic embedding”

is nowadays the most common QM/MM formulation: it in fact allows one to include the
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effects of the classical subsystem in the determination of the QM electronic density and all

its related properties. What, however, this approach still misses is the possibility for E to

polarize in response to the charge density (and its eventual changes) of the S subsystem. To

include such mutual polarization effect, an extension of the QM/MM formulation beyond the

electrostatic embedding is necessary and different alternative strategies have been proposed

so far.8–20 In this work, we will illustrate the theoretical development and the computa-

tional implementation of a novel polarizable QM/MM approach, based on the AMOEBA

polarizable FF,21–23 which we will refer to as QM/AMOEBA. Within this framework, the

environment polarization is achieved through the use of atomic point dipoles, which are in-

duced as a response to the electric field generated by the S system as well as the same MM

sites bearing distributed multipoles up to quadrupoles. An approach to couple AMOEBA

to a QM package has been recently proposed24 in the framework of a not self-consistent

procedure. In this contribution, for the first time in the context of AMOEBA, the global

relaxation of the mutual QM/MM polarization is achieved by solving the QM/AMOEBA

equations in a self-consistent manner, without approximations.

The implementation is further extended to describe electronically excited states. As a

matter of fact, non polarizable QM/MM formulations can be easily extended to excited

states as the ”new” operator has a one-electron nature. When a polarizable embedding like

AMOEBA is used instead, a difficulty appears when a linear response (LR) approach as that

commonly used in the Time-Dependent Density Functional Theory (TD-DFT) is used. In

the LR formulation, in fact, the whole spectrum of the excitations of interest is determined

in a single step calculation by solving for the poles of the proper response function. When

the same problem is formulated within a polarizable embedding, an additional contribution

has to be taken into account, namely the dynamic response of the E subsystem. In the

standard formulation of polarizable models (both in their continuum and MM formulations)

such a response is calculated through the transition densities corresponding to the different

excitations: the oscillating transition density of the S subsystem induces an oscillating polar-
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ization in the E subsystem which creates an in-phase response acting back to the transition

density.25,26 This LR formulation has been shown to properly describe the dynamic environ-

ment effect in excitations involving bright states characterized by a large transition dipole

moment.27 The same formulation, however, lacks the capability of describing the relaxation

of the environment in response to the changes in the QM density upon excitation: it is

therefore not suitable to model excitations involving large changes such as Charge-Transfer

(CT) like excitations. To overcome this shortcoming, various models have been introduced

to recover a state-specific (SS) description of the response both within a continuum28–30 or

an MM formulation.20 Here we adopt a perturbative correction which is exactly equivalent

to the so-called corrected Linear Response (cLR) scheme originally developed for polariz-

able continuum models.28 Within this framework, a relaxed density matrix is calculated for

the excited state of interest and the corresponding excitation energy is corrected for the

interaction with the proper induced dipole moments within the environment.

To show the potentialities of the method, we have selected a very well-known solva-

tochromic probe, namely the pyridinium N-phenolate betaine dye (or ’betaine-30’). Due to

its large negative solvatochromism combined with a high solubility in many different sol-

vents, it was proposed as a solvatochromic indicator for the determination of the solvent

polarity, through an empirical scale called ET(30).31,32 From a computational point of view

this molecule is really challenging for at least two reasons: (i) it is zwitterionic in its ground

state and (ii) the excitation is related to an intramolecular charge transfer (CT) between

the pyrimidine and phenolate moiety which acts to reduce the zwitterionic character. For

such a kind of excitation, the solvation model not only needs to be able to properly describe

both specific and bulk effects in the ground state but it also has to correctly respond to the

large change in the electronic charge distribution from the ground to the excited state. We

will show that both these two requirements are fully satisfied by our implementation of the

QM/AMOEBA.
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2 Theory and Implementation

2.1 The AMOEBA Force Field

One of the main characteristics of AMOEBA is the improved description of the electrostatics

through atomic multipoles, up to the quadrupoles, placed on each classical atom. Polariza-

tion effects are included by using an induced point-dipole model within the smeared Thole’s

damping interaction scheme.33 This is achieved by also providing the classical atoms with

atomic polarizabilities. In general, the polarizability αi is a symmetric matrix; in practice,

the scalar isotropic polarizabilities 〈αi〉 ≡ 1
3
tr(αi) are used instead.

In a purely classical framework, at each polarizable site i, the static multipolar distribu-

tion generates an electric field ~Ei that induces an electric point-dipole moment, ~µi. The set

{~µi}NPol
i=1 is the unknown of the polarization problem and the minimizer of the functional34

EPol = −
NPol∑
i=1

Eα
i µ

α
i +

1

2

NPol∑
i=1

(α−1i )αβµαi µ
β
i +

1

2

NPol∑
i=1

NPol∑
j 6=i

T αβ

ij µαi µ
β
j , (1)

where indexes α and β generally indicate cartesian components, for which the Einstein’s

summation convention is assumed; Ei and µi are the electric field and the induced dipole,

both at the atom site i. Note that we will generally assume that, while all the classical sites

are characterized by multipole moments, not all of them will be polarizable, i.e., associated

with a polarizability. The number of classical and polarizable sites are indicated as NMM

and NPol, respectively, with NMM ≥ NPol. Further details can be found in previous works on

the force field;23,34 here, we only recall the expression for the (damped) dipole interaction

tensor:

T αβ

ij = − δαβ
|~ri − ~rj|3

λ3(uij) + 3
|~ri − ~rj|α|~ri − ~rj|β

|~ri − ~rj|5
λ5(uij). (2)

Several damping schemes to avoid the well known polarization catastrophe can be found

in the literature.33,35–37 The scheme employed in AMOEBA makes use of an exponential
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damping: 
λ3(uij) = 1− e−au3ij

λ5(uij) = 1− (1 + e−au
3
ij)e−au

3
ij .

(3)

where uij = rij/(〈αi〉〈αj〉)
1
6 is the effective distance between two polarizable sites i and j.

In a more compact notation, E =
(
~ET
1 , ~E

T
2 · · · ~ET

NPol

)T
and µ =

(
~µT1 , ~µ

T
2 · · · ~µTNPol

)T
are

the collections of the electric field and induced point dipoles at each polarizable site, while

the symmetric, positive definite matrix T , the size of which is 3NPol × 3NPol and which is

usually called polarization or interaction matrix, is defined as in Equation (4), where (T )ij

is the 3× 3 matrix defined as in Eq. (2).

T =



α−11 T12 . . . T1NPol

T21 α−12 . . . T2NPol
...

...
. . .

...

TNPol1 TNPol2 . . . α−1NPol


(4)

Equation (1) can now be rewritten in matrix form as

EPol =
1

2
µ†Tµ− µ†E (5)

It is possible to find the polarization energy as the minimum of EPol with respect to the

induced point dipoles,34 which corresponds to the solution to the linear system

∂EPol

∂µ
= Tµ−E = 0. (6)

This is the general formulation of the polarization problem, and is clearly variational. In

the case of AMOEBA, however, the polarization energy is no longer a variational functional

of the induced dipoles. This is due to the fact that two sets of induced dipoles are generated

by two electric fields, differing for the scaling of the local interactions. Particularly, one set
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of dipoles, indicated as µd, is due to the so called “direct field” Ed, which is produced by

multipoles placed on all the other classical sites. The other set, indicated as µp, is induced

by a “polarization field” Ep, where the contribution of the 1–2, 1–3 and 1–4 neighbors is

scaled. A more detailed treatment on this point can be found in other works of some of

us.38 Here it suffices to say that the previous expression can be recast taking into account

the different fields and induced dipoles. We recall that

EPolA = −1

2
µ†dEp, (7)

is the proper expression for the AMOEBA polarization energy. Imposing the stationarity

conditions for both sets of dipoles


Tµd = Ed

Tµp = Ep,

(8)

where each set of induced dipoles is the variational minimizer of the corresponding energy

functional, it is possible to reformulate the AMOEBA polarization energy as the combination

of three variational expression, finally obtaining

EPolA (µd,µp) =
1

2
µ†dTµp −

1

2

(
µ†pEd + µ†dEp

)
(9)

2.2 An SCF-QM/AMOEBA formulation

The coupling of a classical description of the environment with SCF-based methods has

already been discussed, especially for polarizable continuum solvation models in a variational

scheme.39,40 Generalizing those formulations to the QM/AMOEBA approach, the global

variational energy functional can be written as the sum of three terms: (i) a purely QM

energy functional, i.e., the SCF energy functional EQM, (ii) a purely MM term given by the

sum of the bonding, dispersion/repulsion, electrostatic and polarization terms according to
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their definition within the AMOEBA FF; and (iii) a coupling term; namely we have

E(P ,µ) = EQM(P ) + EMM(µ) + ECoup(P ,µ) = EQM(P ) + EEnv(P ,µ), (10)

where in the RHS of the equation we added together the coupling and MM energy functionals

in EEnv. Notice how the variational strategy, by introducing the global energy functional in

Eq. (10), automatically takes into account the mutual polarization effects between the QM

density and the induced dipoles.39,41

The variational environment term, EEnv, can be written as the sum of a constant MM

contribution EFF+E (0) which does not depend on either the electronic density or the induced

dipoles, a polarization energy, and a QM/MM coupling part. For the following manipula-

tions, it is convenient to write separately the interaction of the QM density with the static

multipoles as EQM/MM(P), and to add the interaction between the induced dipoles and the

QM density to the polarization energy, from now on named ẼPol(P,µ); the resulting expres-

sions of the various terms are:

EEnv(P ,µ) = EFF + E (0) + ẼPol(P,µ) + EQM/MM(P ) (11)

ẼPol(P ,µ) =
1

2
µ†dTµp −

1

2

(
µ†pEd + µ†dEp

)
− 1

2

(
µp + µd

)†
EQM(P) (12)

EQM/MM(P ) = q†V QM(P )− µ†sEQM(P )−Θ†∇EQM(P ). (13)

where qi, ~µs,i and Θi are the fixed charges, dipoles and quadrupoles, respectively.

The electronic terms of EQM/MM in Eq. (13) can be expressed as functions of the one-

8



particle electron density matrix elements:



V QM(~ri;P ) =

Nb∑
µν

PµνVµν(~ri) = −
Nb∑
µν

Pµν

∫
R3

χµ(~r)χν(~r)

|~r − ~ri|
d3r

~EQM(~ri;P ) =

Nb∑
µν

PµνEµν(~ri) =

Nb∑
µν

Pµν

∫
R3

χµ(~r)χν(~r)(~r − ~ri)
|~r − ~ri|3

d3r

~∇ ~EQM(~ri;P ) =

Nb∑
µν

PµνGµν(~ri) =

Nb∑
µν

Pµν

∫
R3

χµ(~r)χν(~r)J ~E(~ri) d3r.

(14)

where the electron density P has been expanded in a basis of atomic orbitals and J is

the Jacobian of the electric field with elements (J ~E)αβ(~r) = ∂Eα(~r)
∂rβ

, being α and β generic

Cartesian components. The corresponding terms induced by the nuclear distribution are

trivial and are not reported.

Imposing the stationarity conditions for the global functional in Eq. ((10)), taking into

account the constraints on the electronic density matrices, gives the coupled QM/AMOEBA

equations.

The QM/AMOEBA Fock matrix F̃ is obtained by differentiating Eq. 10 with respect to

the density matrix:

F̃ =
∂E(P , L,µ)

∂P
=
∂E0(P )

∂P
+
∂EEnv(P , µ)

∂P
= F (0) + F Env. (15)

where the term F (0) of (15) corresponds to the Fock matrix of the pure QM electronic

problem, while F Env is the contribution to F̃ from the classical environment. The elements

of the latter can be written as

FEnv
µν = q†Vµν − µ†sEµν −Θ†Gµν −

1

2
(µp + µd)†Eµν (16)

where the matrices Vµν , Eµν and Gµν are those appearing in Eq. (14). Note that the Eµν

elements involved in the second term on the RHS of Eq. (16) are formally identical to

those appearing in the first one, but are computed over a different set of atomic sites (the
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polarizable ones only).

The linear equations for the dipoles are obtained by setting the derivatives of Eq. (10)

with respect to both sets of dipoles to zero:

Tµp = Ep +EQM(P )

Tµd = Ed +EQM(P ). (17)

Notice that the Fock matrix depends on the induced dipoles and that the RHSs of the

dipole equations depend on the density matrix: the two sets of equations are therefore

coupled, accounting correctly for the mutual polarization of the QM and classical charge

densities. The coupled equations need to be solved iteratively, which is not a problem in

practice as the SCF equations are already solved with an iterative algorithm. We note that

the matrix T depends only on geometrical parameters, and can be computed and inverted

at the first SCF cycle, thus reducing the computational requirements at the following steps.

Alternatively, this problem can be also efficiently solved with an iterative procedure (see

Section 2.4 for more details).

2.3 Extension to electronic excitations

The discussion so far has involved the energies and properties of the electronic ground state.

To extend the treatment to excited states, we follow a linear response theory for SCF meth-

ods. A complete derivation of the polarizable QM/MM LR response equations can be found

elsewhere,14,41 here it suffices to say that the electronic transition energies ωK and densities

XK ,YK are found by solving the modified Casida’s equations42

Ã B̃

B̃ Ã


XK

YK

 = ωK

1 0

0 −1


XK

YK

 . (18)
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The matrices Ã and B̃ are defined as

Ãai,bj = δabδij(εa − εi) + (ai|bj)− cx(ab|ij) + clf
xc
ai,bj + CPol

ai,bj (19)

B̃ai,bj = (ai|bj)− cx(aj|ib) + CPol
ai,bj,

where ε are the orbital energies, (pq|rs) are two-electron integrals in Mulliken notation and

we assume that the orbitals are real and the coefficients cx and cl define whether we are

considering the Hartree–Fock theory (cx = 1, cl = 0), pure DFT (cx = 0, cl = 1) or hybrid

DFT. The elements of matrix CPol are due to the environment polarization:

CPol
ai,bj = −

NPol∑
P

(∫
R3

φa(~r)
(~r − ~rp)
|~r − ~rp|3

φi(~r)d~r

)
· ~µTP (φb, φj). (20)

The matrix CPol depends on the dipoles µT induced by the transition density PT
K = XK+YK ,

which are obtained by solving, for each couple of transition vectors XK ,YK , the response

linear equations

TµT = E(PT
K), (21)

where

~EP (PT
K) =

∑
ai

PT
K,ai

∫
R3

φa(~r)
(~r − ~rp)
|~r − ~rp|3

φi(~r)d~r. (22)

Notice that in the right hand side of eq. 21 only the electric field due to the transition

density appears: as the classical multipoles do not contribute to the transition dipoles, the p

and d response dipoles introduced in section 2.1 are identical. Again, the modified Casida’s

equations depend (linearly) on the transition induced dipoles, which in turn depend (linearly)

on the transition vectors X,Y: although the coupling is linear, it is still convenient to solve

the couple equations iteratively, by solving the transition dipoles equations at each step of

the iterative procedure used to solve Casida’s equations.

The great advantage of the LR scheme is that it allows one to obtain a whole spectrum of

transition energies at once. If the system is isolated, it provides the same results than state
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specific (SS) approaches, where instead the wavefunction of each excited state is explicitly

computed. By contrast, the introduction in the Hamiltonian of a non-linear term due to

the presence of a polarizable environment results in a formal difference between the two

approaches.25,43 For this reason, a correction to the LR scheme (called corrected Linear

Response, c-LR) has been proposed.28 The difference between the two approaches (LR and

c-LR) can be depicted by a two-step process for excitation in solution: first the molecule in

its ground state, in equilibrium with the solvent, is excited to the state K in the presence of a

solvent response frozen to the one of the solute ground state. The description for this step of

the process is the same in both the approaches. In the second step, the fast electronic degrees

of freedom of the solvent equilibrate with the electron density of the solute excited state,

and in this part of the process the LR framework lacks in taking explicitly into account the

energy variation accompanying this relaxation, whereas it accounts for a correction which,

being originated by the dynamic solute- solvent interactions, can be classified as a part of

dispersion. The working equation, namely

ωc−LRK = ω0
K −

1

2

Npol∑
P

~µP (~rP ;P∆
K) ~E(~rP ,P

∆
K) (23)

corresponds to the expression of the c-LR transition energy for the K-th excited state. In

this formulation ω0
K represents the response of the system in a solvent frozen in its initial

configuration (corresponding to the system in its ground-state), and it is the solution of a

non-Hermitian eigensystem as in Eq. (18), where the CPol
ai,bj = 0 but the orbitals and their cor-

responding energies, employed to build the A and B matrices have been obtained by solving

the SCF equation for the solvated system. The P∆
K is the so called relaxed-density matrix,

computed through the so-called Z-vector approach44 as

P∆
K = PT

K + ZK (24)

where PT
K is the unrelaxed density matrix with elements given in terms of the transition

12



vectors |XK ,YK〉, and the Z-vector contribution ZK accounts for orbital relaxation effects.

2.4 Implementation

The hybrid QM/AMOEBA method has been implemented in a development version of the

Gaussian software.45 In the present implementation, the program computes all the terms

that depend on the QM density, including the sets of induced dipoles. The EFF +E (0) energy

terms depend neither on the QM density nor on the induced dipoles and, in a static picture,

are constant.

In order to compute the induced dipoles, both an inversion approach and an iterative

one have been implemented. In the former case the polarization matrix (Eq. 4) is computed

and inverted only once during the first step of the SCF, then stored and multiplied for the

appropriate field to obtain the solutions to the polarization problem. At each SCF cycle only

two matrix-vector products (one per set of dipoles) need to be performed, concentrating the

computational effort almost entirely in the first SCF step.

By contrast, in the iterative approach, the polarization equations are solved iteratively at

each SCF step or at each step of the iterative solution of Casida’s equations, using as a guess

the induced dipoles of a previous step, when available. Two algorithms have been imple-

mented: Jacobi Iterations coupled with direct inversion in the iterative subspace (JI/DIIS)

and the Preconditioned Conjugate Gradient (PCG).34,46 Both are available for the ground

and LR excited state problems.

The advantage of the inversion approach is that the most expensive part of the procedure,

i.e., the matrix inversion, needs only be performed once. However, the computational cost of

such an operation grows with the cube of the number of polarizable sites: for large systems,

iterative alternatives become mandatory. Furthermore, iterative methods can be easily com-

bined with fast summation techniques, such as the Fast Multipole Method,46,47 in order to

achieve linear scaling in computational cost for the solution of the polarization equations.

We here present the relative time requirements for the computation of the induced dipoles
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in the whole SCF procedure, using the inversion and iterative algorithms. The calculations

have been performed on the test system whose results will be discussed in Section 3. The

dimension of the polarization problem has been artificially varied, by considering various

polarization cutoffs, i.e., by including a different number of induced dipoles. The dimension

of the QM system, as well as that of the non-polarizable classical environment, have been

kept fixed. Figure 1 reports the dependence of the relative times on the number of induced

dipoles.
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Figure 1: Relative times needed to solve for the induced dipoles, using different methods.
Green line: inversion; Red line: Jacobi Iterations; Blue line: Preconditioned Conjugate
Gradient. The times are cumulative and refer to the sum of all SCF cycles until convergence
is reached. The number of SCF cycles considered is the average one across the various
structures considered. The values have been normalized for comparison with respect to the
time required to solve the smallest polarisation problem (7 Å polarization radius, 765 induced
dipoles) with the inversion procedure.

From the plots reported in the figure, it is clear that the iterative procedures are more

convenient than the inversion one. This becomes more evident as the size of the problem

increases, since both JI and PCG algorithms scale quadratically with the number of induced

dipoles, while the inversion algorithm, LU decomposition, is characterized by a cubic scaling.

In particular, when the polarization radius is increased from 7 to 20 Å (number of dipoles

increasing by ∼ 10× from 765 to 7338), the inversion algorithm increases by ∼ 300×. For

both JI and PCG algorithms, the relative increase is ∼ 60×.

14



Furthermore when the number of polarizable dipoles is small (polarization radius 7 Å,

765 dipoles), even if the JI/PCG methods are faster than the inversion one, the choice of

the solution scheme does not really matter since the relative time to solve for the induced

dipoles with respect to the total time is, for each of the three cases, less than the 0.1%. This

is no longer true in the most expensive case (polarization radius 20 Å, 7338 dipoles), where

almost 16, 5% of the time for the calculation is spent in computing the induced dipoles with

the inversion method (the iterative solutions take less than 1% of the total time).

3 A test case: the solvatochromism of betaine-30

In this section we present an application of the QM/AMOEBA implementation to the sim-

ulation of the excitation energies of a well-known solvatochromic probe, the pyridinium

N-phenolate betaine dye, from now on indicated as ”betaine-30” (see Figure 2). The solvent

we selected for this test case is water, since it constitutes one of the most interesting cases

due to its high polarity combined with an hydrogen-bonding character. In particular, we

will try to dissect these two components of the solvent effect by comparing QM/AMOEBA

with a continuum description using the Polarizable Continuum Model (PCM) within its

Integral Equation Formalism (IEF).48 We recall that this model describes the environment

as a structureless continuum, characterized by its macroscopic dielectric function. A cavity

containing the solute is built around it, and the solvent polarization as a response to the

solute charge density is represented by an induced surface charge distribution on the cavity.

In order to obtain a realistic sampling of the solute–solvent interaction, a well-established

procedure has been applied, which makes use of snapshots extracted from a classical molecu-

lar dynamics (MD) simulation with the AMBER General Force Field for organic molecules.

An optimized geometry of the dye was solvated with a cubic box containing 11380 water

molecules, described at TIP3P level,49 with dimensions 74 × 72 × 78 Å. The system was

heated from 0 to 300 K for 100 ps with a 2 fs time step, employing the SHAKE algorithm50
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Figure 2: The betaine dye studied.

as in all the following steps. The Berendsen thermostat51 was used to control the temper-

atue. A 200 ps equilibration in the NVT ensemble was then performed. Before the actual

production, the system was further equilibrated in the NPT ensamble at 1 atm for 5 ns.

Here, the Monte Carlo barostat implemented in Amber1452 was employed. In the 30-ns

long MD simulation, the betaine-30 was kept frozen in its ground state equilibrium geome-

try (computed at QM/PCM level). A set of 100 uncorrelated snapshots was extracted, on

which the QM/AMOEBA calculations were performed. Since the effect of polarization is

short-ranged, and the computational cost increases markedly with the number of induced

dipoles, only the classical atoms within a certain radius (the polarization radius, Rpol) were

allowed to polarize. The optimal value of the radius was chosen after performing a conver-

gence test, where the first three excited states of the solvated betaine dye were computed at

increasing values of Rpol. The results, reported in Figure 3, show that convergence can be

observed starting from 10–12 Å. A safe value Rpol = 15 Å was chosen and employed in all

the calculations presented.
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Figure 3: Lowest three excitation energies of betaine-30 as functions of the polarization
radius, Rpol, with the total radius for the inclusion of classical environment fixed at 25 Å.
Blue, red and yellow curves refer to the first, second and third excited states, respectively,
calculated on one snapshot at TDDFT level, within the linear response approach. A value of
Rpol = 0 indicates that all the solvent molecules are non polarizable, and are only described
in terms of fixed multipoles.

All calculations (geometry optimizations and excitation energies) have been performed

at the (TD)DFT level of theory using the CAM-B3LYP exchange-correlation functional53

together with the 6-31+G(d,p) gaussian basis set. We particularly focused on the properties

of the lowest (bright) excitation, on which the ET(30) scale is based. The excitation shows

a strong charge-transfer character, and for this reason the corrected linear response (c-LR)

approach28 is expected to give a more accurate picture than the standard LR.

The results obtained with the three different QM/AMOEBA responses described in sec-

tion 2.3 (namely ω0, LR and c-LR) are summarized in Figure 4.
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Figure 4: Distributions of the lowest (bright) excitation of betaine-30 calculated with the
three different QM/AMOEBA responses (LR: blue line, ω0: yellow line, c-LR: red line). The
curves are gaussian fits of the histograms.

From the comparison, it is evident that including the effects of the relaxation of the

solvent response through a c-LR formulation a significant redshift (of about 0.2 eV) is found

with respect to the frozen solvent approximation (ω0). As expected due to the CT character

of the excitation, the LR formulation does not change the ω0 value as it cannot account for

the effects of the rearrangement of electron density undergone by the dye upon excitation.

The comparison with experimental data is, however, the most interesting test. In order

to be able to provide an analysis which is not biased by systematic errors in the excitation

energies due to the QM level of theory, we compare the computed and experimental gas-to-

water solvatochromic shifts instead than the absolute excitation energies. To better elucidate

the various effects that determine the observed solvatochromic shift, i.e., short-range and

specific interactions and the bulk effects, it is useful to compare with two different solvation

models. The first, QM/PCM, employs a purely continuum description of the solvent whereas

the second, QM(ME)/PCM, includes a “minimal environment” in the QM system, i.e., the

two water molecules hydrogen-bonded to the oxygen of the dye, while the rest of the solvent

is still treated at PCM level. The latter model should better describe the combination

of short-range specific and bulk interaction with respect to the QM/PCM analog. In the

QM(ME)/PCM calculation the configuration of the QM water molecules has been optimized
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at CAM-B3LYP/6-31+G(d,p). All calculations refer to c-LR responses.

Table 1: Gas-to-water solvatochromic shift (in eV) for the lowest (bright) excitation of
betaine-30, computed with different solvation models. The QM/AMOEBA value is obtained
from the average over 200 snapshots extracted from the MD. The confidence interval is
indicated. All calculations were performed at TDCAM-B3LYP/6-31+G(d,p) level.

QM/PCM 0.79
QM(ME)/PCM 1.17
QM/AMOEBA 1.58 ± 0.02

Exp54 1.56

As expected, the QM/PCM model markedly underestimates the solvatochromic shift with

respect to the two other models (and to experiments). This clearly shows that including an

atomistic description of the most strongly interacting water molecules is fundamental to

account for the differential solvation effects in the ground and the excited states of the

betaine-30. However, it is worth noting that the inclusion of the two hydrogen bonded

water molecules in the QM region in combination with a continuum description (through

the QM(ME)/PCM model) still fails to recover a large portion of the observed solvatochromic

effects (namely 0.4 eV are still missing to reproduce the experiments). The inclusion of a

larger number of explicit solvent molecules with AMOEBA instead leads to a solvatochromic

shift which is almost exactly equivalent to the experiments. Such an excellent agreement

might be fortuitous due to the many approximations introduced in the comparison, such

as the use of a calculated vertical excitation and an experimental band maximum, and

the extrapolated value used for the experimental gas-phase value. However, the additional

+0.4 eV shift obtained going from the QM(ME)/PCM to the QM/AMOEBA model clearly

suggests that the strong hydrogen-bonding effect is not the only source of differences with

respect to a purely bulk description. Looking more deeply into the results, it is interesting

to point out that the difference between QM/AMOEBA and QM(ME)/PCM solvatochromic

shifts is already present at ω0 level, which means that the addition of the c-LR response is

almost equally described by the two models. We can thus speculate that the zwitterionic

nature of betaine-30 ground state has a large, specific, long range effect in orienting the
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water molecules and this leads to a final solvation effect that cannot be accurately described

with a pure continuum or a partial atomistic/continuum approach.

4 Conclusions

We presented here the theoretical development and the computational implementation of

a polarizable embedding QM/MM within the AMOEBA framework. The implementation

accounts for a fully relaxed evaluation of the QM/MM energy both for ground and excited

states, in the framework of a DFT/TD-DFT theory. In particular for the excited state, a

state-specific (SS) formulation of the response of the classical part of the system has been

used following the c-LR approach originally developed within continuum models.28 The test

case of betaine-30 is presented and discussed in comparison with purely continuum and mixed

atomistic/continuum models: the obtained results in the simulation of the large gas-to-water

solvatochromism of this dye, show that the QM/AMOEBA approach can describe with equal

accuracy the effect of water on the zwitterionic ground state and the modification induced

by the excitation.

This work represents the first step of a series of new developments towards a high-

performance, parallel implementation of polarizable QM/MM molecular dynamics, which

stems from the recent developments in the implementation of AMOEBA for classical MD

simulations in the newly developed Tinker-HP34,55–57 code and with the implementation of a

versatile and transparent Tinker HP/Gaussian interface for energy, gradients and properties.

The implementation of analytical gradients for the QM/AMOEBA model and the develop-

ment of the Gaussian/AMOEBA interface will allow us to exploit not only parallelism, but

also linear scaling techniques46 in order to further reduce the overall computational cost

due to the polarizable embedding. The addition of a further layer to the model, namely,

of a polarizable continuum solvation model, will finally allow to deal with long range, bulk

effects while, at the same time, reducing the portion of environment to be treated explic-
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itly. An innovative, parallel, linear-scaling implementation of the Conductor-like Screening

Model38,58,59 has already been coupled to AMOEBA for classical MD simulations38 and to

the MMpol dipole-based polarizable force field for QM/MM calculations:46 the combina-

tion of all the aforementioned developments will result in a powerful and efficient tool to

investigate dynamic properties and reactivity in complex environments.
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