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CELL MIGRATION IN COMPLEX ENVIRONMENTS: CHEMOTAXIS AND
TOPOGRAPHICAL OBSTACLES

ALESSANDRO CuccHI!, CHRISTELE ETCHEGARAY?, NICOLAS MEUNIER?, LAURENT
NAVORET* AND LAMIS SABBAGH?

Abstract. Cell migration is a complex phenomenon that plays an important role in many biological
processes. Our aim here is to build and study models of reduced complexity to describe some aspects
of cell motility in tissues. Precisely, we study the impact of some biochemical and mechanical cues
on the cell dynamics in a 2D framework. For that purpose, we model the cell as an active particle
with a velocity solution to a particular Stochastic Differential Equation that describes the intracellular
dynamics as well as the presence of some biochemical cues. In the 1D case, an asymptotic analysis
puts to light a transition between migration dominated by the cell’s internal activity and migration
dominated by an external signal. In a second step, we use the contact algorithm introduced in [16}[19]
to describe the cell dynamics in a crowded environment. In the 2D case, we study how a cell submitted
to a constant directional force that mimics the action of chemoattractant, behaves in the presence of
obstacles. We numerically observe the existence of a velocity value that the cell can not exceed even if
the directional force intensity increases. We find that this threshold value depends on the number of
obstacles. Our result confirms a result that was already observed in a discrete framework in [4].

INTRODUCTION

Cell migration plays a central role in a wide variety of biological phenomena. In the immune
system, leukocytes migrate into areas of injury where they mediate the immune response [7]. Migration
of fibroblasts and vascular endothelial cells is crucial for wound healing [20]. In metastasis state, tumor
cells migrate from the initial tumor mass into the circulatory system and then leave and migrate into
other sites [2,[14]. Finally, cell migration is significant in many technological applications, such as tissue
engineering, since it plays an important role in colonization of biomaterials scaffolding.

A striking feature of animal cells is their ability to polarize in response to environmental cues. This
asymmetry is fundamental to the structure and function of most cell types. Front-rear polarization,
characterized by the establishment of cell protrusive polarity and directed migration, is controlled by
intrinsic cell properties but also by extracellular cues such as biochemical and physical cues. We will
focus here on the impact of biochemical and mechanical cues for cell crawling on a substrate. To do so we
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enrich the stochastic model introduced in , which describes cell crawling on an homogeneous substrate
in the absence of any biochemical cues, to account for biochemical and mechanical cues. We first study
the 1D case in the presence of a constant gradient of attractive signal in the medium, and we show
that it captures different cell behaviours, namely a transition between migration dominated by the cell’s
internal activity and migration dominated by the external signal. More precisely, if the cell sensitivity
to the signal is weak then the cell does not always follow the signal and it can go in another direction.
On the contrary the cell follows the signal if its sensitivity to the signal is high. Then, we numerically
investigate the additional role of physical constraints composed by topographical obstacles. This is done
by considering the cell as a rigid disk in the spirit of and by using a specific numerical method,
introduced in , to solve the problem of the contact with obstacles. We observe the existence of
a velocity value that the cell can not exceed even if the directional force intensity increases. We find
that this threshold value depends on the number of obstacles. It is to be noticed that such a result was
already observed in for the case of a tracer particle that moves in a geometrically confined lattice
system populated by bath particles moving randomly. We believe that this study could help to better
understand some aspects of cell motility in tissues.

The plan of this paper is as follows: in Section[I]we describe the stochastic model we will use to describe
crawling over a flat substrate in the presence of a constant gradient of external signal. In Section [2] we
study the model in dimension one. Finally in Section [3] we enrich the model to account for obstacles.

1 A STOCHASTIC MODEL FOR CELL CRAWLING IN THE PRESENCE OF A CONSTANT
GRADIENT OF ATTRACTIVE SIGNAL

1.1 A discrete stochastic jump process for cell activity

In this section, we enrich the model introduced in that describes the cell crawling over a flat
surface in the absence of external cue. We extend the model to take into account the effect of a constant
gradient of attractive signal on the dynamics.

In the absence of external cue, cell crawling consists of four main stages (see Figure . At first, the
cell extends protrusions in its direction of motion that adhere to the substrate and de-adhere at the cell
rear. We distinguish two types of cell protrusion: lamellipodia that are wide and flat, and filopodia that
are finger-like extensions. Finally, contractile forces generate at the rear of the cell pull the whole cell
body forward.

1) Protrusion of the Leading Edge

Deadhesion at the Trailing Edge

actin Network __ oy

2) Adhesion at the Leading Edge 3) Movement of the Cell Body
cortex under tension direction of cell body movement

new actin
new adhesion

1 C

movement of unpolymerized actin
FIGURE 1. Scheme of cell crawling over a flat substrate H

We first recall the model introduced and studied in . The cell is considered as a point, and
the apparition/retraction of filopodial extensions are associated to forces acting on the cell dynamics (see
Figure . Let N; be the number of filopodia adhering on the substrate at time ¢, and denote by I_/; and
(F’z)lzl N, respectively the cell velocity and the filopodial forces exerted by the filopodia at time ¢. Each
filopodial force F; is assumed to be unitary and constant in time. Denoting by 6; = arg(ﬁi), 0; = arg(‘_/;)
and v, = ||V}||, the force and the velocity can be written in polar coordinates as F; = (cos6;, sin6;) and
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FIGURE 2. Scheme of a cell with the corresponding forces [17]

V, = (v, 6¢). The cell motion with velocity V, on the substrate leads to the appearance of a friction force

which writes f = —7‘7;, where the parameter v denotes the global friction substrate coefficient. Since
the crawling of a cell on an adhesive substrate occurs at very small scales, the inertia is negligible for
this system. Therefore by the force balance principle, the sum of the filopodial forces (131)1:1 ~, and
the friction f cancels leading to
Ny
AV, = Z(cos 0;,sin ;). (1)
i=1

Each filopodium is identified by the quantitative parameter 6 € [0,27) which indicates its orientation
and one can introduce the Dirac measure dy which characterizes each filopodium. In this framework, the
set of all filopodial forces are described by the finite point measure v; defined by

N
Vy = E 59i.
i=1

For any measurable function f on [0, 2), the measure v is such that (v, f) := SN f(6;) and N; = (14, 1)

i=1

corresponds to the filopodia population size. With this notation, Equation translates into
AV, = ((ve, cos), (v, sin)). (2)

The Equation represents the discrete model for computing the velocity V, which is entirely described
by the measure-valued jump process (v;);. The events that rule the protrusion activity are the following:

e Creation of filopodia: new filopodia form with rate c¢(6;V;), so that they form uniformly for
a null velocity, and preferentially in the direction of motion when the velocity increases. This
allows to model cell polarization. More precisely, the creation rate of filopodia is proportional to
the probability density of a circular normal distribution centered in the direction of motion.

e Individual death: each filopodium may disappear with rate d.

e Individual reproduction: each filopodium is able to induce the formation of a new protrusion
having the same orientation or a slightly modified orientation with reproduction rate r. In this
latter case, the orientation of the new filopodium is chosen following a probability distribution
g(+,0;) assumed centered in the ”parent’s” orientation ; with constant variance.

The environment affects the cell migration either mechanically (i.e. rigidity and adhesiveness of the
substrate, presence of obstacles,...) or chemically due to the presence of some molecular species which
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attract or repulse it. In both cases, the cell feels its outer environment by using molecular receptors
located at its membrane and at protrusion tips. We consider now the situation where a constant gradient
in attractive signal is present in the environment. We assume that the external signal causes the cell to
polarize towards its source by inducing a constant bias in the protrusions activity. We enrich the model
previously described by considering that the signal interferes with the creation of the protrusions and
by taking into account the direction of the signal. Let 6, be the angle pointing to the direction of the
constant gradient of signal. A simple choice is to assume that the creation rate is a convex interpolation
between the direction of cell motion #; and the direction of the signal 6,:

eﬁ(vt)cos(ﬁfﬁ) eB cos(0—6)

o(0;Vi,0y) = ¢ |(1 = h) 2nIo(K(vy)) h 2mlo(k2)

(3)

where v, = |Vi|, x(v;) = awv; with @ > 0 representing the cell capacity to polarize i.e. to create
protrusions in the direction of movement, the parameter 5 > 0 represents the cell sensitivity to the
signal, Iy denotes the 0-order modified Bessel function of first kind and h € [0, 1] is a real number. We
remark that for A = 0 we obtain the creation rate of the model of migration without signal introduced
in [10]. It can be shown that these rates define a well-posed Markovian Jump process with values in the
space of finite point measures on [0, 27) (see [9L[10L|13]).

1.2 A continuous stochastic model for cell crawling in the presence of a gradient of
chemoattractants

As it was done in the absence of external signal [8,(10], by using a rescaling procedure, by accelerating
the dynamics and by considering infinitesimal filopodial forces, it is possible to derive a continuous migral
model from the discrete one. In particualar, it is possible to obtain the following Stochastic Differential
Equation for the cell velocity I_/'t:

v, = %((1 — h) tanh(avy) &, + htanh(8)éy,) — AV; | dt+ % dwy,, (4)

for0 <t <T withT < +0c0. In Elquation A > 0 is related to the lifetime of filopodia, o > 0 quantifies
the intensity of the noise, €y, = V;/v; denotes the direction of the cell motion, égg denotes the direction
of the constant gradient of signal, and (Wt)tzo represents a given 2d standard Brownian motion. This
equation has to be supplemented by a random initial velocity \7{3. We remark that when A = 0 we get

v, = Stanh(avt)é’gt V| dt+ %de/t. (5)

Equation (5)) was introduced in 9] as the continuous model to describe the cell crawling in the absence of
signal. The first term in the right-hand side represents the capacity of the cell to polarize and to generate
driving forces in the direction of motion. The second term accounts for a death term that originates
in the discrete model from either protrusions retraction or the formation of protrusions in a direction
antagonist to motion. Finally, the last term represents the stochastic fluctuations of the cell dynamics.
When o = 0, the model describes the dynamics of a passive particle moving by a damped Brownian
motion. Whereas if o > 0, the model takes into account the additional term related to the intracellular
dynamics, namely the dynamics of the actin cytoskeleton and the capacity to polarize.

The aim of the next section is to study the different behaviors arising from the competition of the two
phenomena, polarization vs external signal, when varying both parameters a and f.
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2 A 1D CONTINUOUS STOCHASTIC MODEL FOR CELL CRAWLING IN THE PRESENCE
OF A GRADIENT OF CHEMOATTRACTANTS

In this section we study equation in dimension one. To do so we follow the lines of [10] in which
equation was studied in dimension one. The direction of the signal €, becomes +1 if the signal is
located on the positive side of the real line and —1 if it is located on the negative side. More precisely,
we reach the following equation

av;, = 5(1 — h)tanh(aV;) £ h% tanh(B) — AV; | dt + %th, (6)

for 0 < ¢t <T. In this framework, the cell velocity V; is a stochastic process taking values in R and W;
is the standard 1D-Brownian motion. In the first part of this section, we follow the lines of [10] and we
recall how one can find the stationary distribution of V; solving @ In the second part we present the
results of some numerical simulations.

Let ps(V,t) be the probability distribution of V;. By Ito’s formula, the density ps(V,t) solves the
following Fokker-Planck partial differential equation

2
By ps(V,t) = =0y [F*(V)ps(V, )] + ;'72 02ps(V,1),

where .
fi V)=—
(V) 5

The stationary distribution ps(V') then satisfies the following equation

(1 — h) tanh(aV) £ h% tanh(8) — AV.

2

—ov [FE(V)ps(V)] + 2% 02ps(V) =0,

Integrating twice with respect to V, we get the explicit formulation for p,(V):

ps(V) =N e W ), (7)
where A is a normalization constant and
WE(V) = 2 (1 h)=" In(cosh(aV)) + h< tanh(B)V — 212 (8)
T o2 200y vy 2 '

In order to study the different behaviours of the stationary velocity by varying the parameters o and 3,
one can look for the values of V that minimize the function W*. Indeed by equation , the minima
points of W+ are also the maxima points of the stationary distribution ps, and thus they represent the
velocities which have the greatest probability to occur. In the following we consider the case for which
the signal is on the negative side of the real line, and thus we analyze the function W~.

Figureshows the graph of the function W~ for = 0.1 with o = 0.1 (Figure and o = 10 (Figure
. One can notice that for a = 0.1 the function W~ has only one global minimum realized by V~0.
Instead, for a = 10 there exist two minima points V; < 0 < V5 for which W~ has a global minimum in
V1 and a local minimum in V,. Therefore by considering 5 = 0.1, for o« = 0.1 the most probable velocity
is V' ~ 0 and the cell moves as a Brownian motion, whereas for a = 10 there are two most probable
velocities V7 < 0 and V2 > 0 but for which W~ (V7)) < W~ (V4) and the cell moves with more probability
towards the signal.

Figure [4| shows the case for 8 = 1 with o = 0.1 ( Figure [fa)) and o = 10 (Figure [4b). One can notice
that the function W~ has one global minimum for both o = 0.1 and « = 10 realized respectively by
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FI1GURE 3. Graph of the potential W~ defined by forh=05 =1, y=c=0=1,
p=0.1,a=0.1(3a) and a = 10 .
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(A) a=0.1 (B) a=10

FIGURE 4. Graph of the potential W~ defined by (§) for h =05, A =1,y =c=0 = 1,
B=1,a=0.1 ({4a) and a = 10 .

V3 < 0 and V4 < 0 for which V5 < V4. This means that if 5 = 1 the cell moves towards the signal for both
the values a = 0.1 and o = 10. In Figurewe show the graph of W~ with the same value g = 1 but for
« = 100. One can notice that in this case W~ has a global minimum for V5 < 0 and a local minimum
for Vs > 0 such that W~ (V5) << W~ (V). Even if « is much more larger then the cases presented in
Figure [4] the signal is strong enough to be picked up by the cell which then moves towards the signal.

2.1 Numerical simulations

In this section we perform some numerical simulations of equation @ We consider h = 0.5, A = 1,
v = ¢ = 0 = 1 and the signal located in the negative side. We set 7' = 1000 and let dt = 0.01 be the
time-step in the time interval [0,1000], and let I = T'/dt = 10000 be the number of time iterations in
[0,1000]. For n =0,...,] —1let V™ = V(¢") be the velocity at time t" := n x dt. We consider the initial
condition V¥ = 0 and we compute the velocity V™! by using Euler-Maruyama Method as follows:

yrtl —yn 4 2i tanh(aV™) + 2i tanh(8) — V™| dt + ZdW,. 9)
vy 2 v
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F1GURE 5. Graph of the potential W~ defined by h=05,A=1vy=c=0=1,
B =1 and a = 100.

Figures and [6D] show respectively the velocity histogram and the cell trajectory for 8 = 0.1 and
a = 0.1. We notice that the most probable velocity is around zero and that the cell moves as a Brownian
particle. This is in agreement with the graph of W~ presented in Figure

Figures [6c| and [6d] show respectively the velocity histogram and the cell trajectory for f = 0.1 and
a = 10. We notice that there exist two most probable velocities, one strictly positive and the other
strictly negative. We observe then that the cell moves with non-zero mean velocity by showing more
persistence in the trajectory with respect to the Figure [6b]

Figures [7a] and [7D] show respectively the velocity histogram and the cell trajectory for f = 1 and
a = 0.1. The velocity histogram has a single peak shifted towards the direction of the signal and the cell
trajectory show a strong persistence in the direction of the signal. This is in agreement with the graph
of W~ presented in Figure

Figures and show respectively the velocity histogram and the cell trajectory for § = 1 and
a = 10. We observe that the velocity histogram does not have a unimodal shape but its larger peak is
in the direction of motion. In addition, the cell trajectory has the same qualitative behavior of the one
presented in Figure [7Th]

Therefore, it seems that the cell may not follow the signal and go into the wrong direction if 5 is small
and « is big, whereas when g is big the cell follows the signal if « is small and it may escape if « is big.

3 THE EFFECT OF TOPOGRAPHICAL OBSTACLES ON THE CELL DYNAMICS

In this section, we study numerically the behavior of an active particle, with the previously described
dynamics, in an environment containing obstacles and chemoattractants. In our framework, we consider
one single moving particle in an environment containing a uniform distribution of fixed circular obstacles,
where a constant gradient in signal induces a directional bias in its displacement.

We consider N uniformly distributed circular obstacles, each of center ¢; € R? and radius ro > 0. We
also assume the cell to be a disk of center X = X; € R? and radius r > 0. Let T' < +oco and t € [0,7]. As
in the previous section, we denote by V, € R? the particle velocity at time ¢. In the absence of obstacles,
the velocity V, is solution of Equation . To deal with the presence of obstacles, that equation is
complemented with a non-overlapping constraint. In particular, we use the method introduced in [16}/19]
which was developed for the case of a set of N moving particles. In the following, we give the main ideas
of this framework and its numerical treatment. Finally, we show some numerical simulations.
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FIGURE 6. Histogram for the velocity V solution of Equation @ 6c‘ and cell tra-
jectory (6Bl6d) for h =05, A=1,y=c=0=1,3=0.1, a = 0.1 (6al6b) and a = 10
(Gefod)-

3.1 Contact algorithm to deal with the obstacles

In this section we recall the contact algorithm presented in , that is meant to deal with the non-
overlapping constraint. In the following we indicate by V = V; = V, the particle velocity and we use
the notations of . In particular, V is called spontaneous velocity, since it is the natural velocity
which describes the particle’s free motion. Now, when the particle "meets” an obstacle, its velocity does
need to be modified by the contact algorithm in order to avoid the overlapping situation. This defines
a (unique) new velocity V which will be called actual velocity. This method is based on a projection of
the spontaneous velocities onto a set of admissible velocities.

Let q = (X,q1,...,qn) € R2N+D be the vector of positions and for i = 1,...,N let D;(q) :=
ll¢i — X || —ro —r be the signed distance between the obstacle ¢ and the particle. We require q to belong
to the set of feasible configuration ) defined by

Q={qeR*"Y Di(q)>0 Vi=1,..,N}.

The contact between the particle and an obstacle occurs when D;(q) = 0 for some ¢ = 1,..., N. In that
case the velocity V needs to be modified in order to satisfy the non-overlapping constraint. One can
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jectory (7bl[7d) for h =05, A\ =1,y =c=0=1, 3=0.1, a = 0.1 (7all7b) and o = 10

D,

introduce the set Cq defined by

Cq={veER?:if Di(q) =0, then Gi(q)-v >0, foralli=1,.., N},
X —q 2
Gi(q) =ei(q) = 75— € R~

The quantity G;(q) indicates the normalized vector starting from ¢; and pointing to X. If we denote by
s the straight line passing through X and orthogonal to G;(q), the condition G;(q) - v > 0 imposes that
the particle’s velocity v must belong to the semi-space identified by the line s which does not contain
the vector G;(q). Thus, the condition G;(q) - v > 0 gives the admissible velocities v for which the non-
overlapping constraint is verified. The actual velocity V € Cq is defined as the admissible velocity which is
the closest to V in the least square sense. Let P: R? — C4 be the projection operator of the spontaneous
velocity space onto the admissible velocity space. Then V is solution of the following problem

Vi =Pe,(Vi), forallte (0,T]. (10)



10 ESAIM: PROCEEDINGS AND SURVEYS

For the mathematical properties of the contact algorithm expressed by Equation , we refer to |164/19].
In the following, we recall the numeral method for solving Equation introduced in [16].

3.2 Numerical scheme introduced in [16]

In this section, we recall the numerical scheme introduced in [16] to simulate the dynamics of a particle
in interaction with topographical obstacles. In particular, in [16] it is shown that the approximation of
V is also the solution of a minimization problem reformulated in a saddle-point form, whose resolution
can be done by the Uzawa algorithm (see also [1§]).

For fixed T < +00, we consider [0,7] as the time interval. Let I € N* and § := T//I. We denote by
{t" := nd} for n = 1,..., I the time discretization. Let V™ := Vi» and V" := Vin. The quantity V" is
then obtained by the following rule

{v" =Pez, (V7), )

Cl={veR? Di(q)+6Gi(q)-v>0foralli=1,.., N}

The definition of Cg is based on a first order approximation, in terms of velocity, of the non-overlapping
constraint expressed in Cq. Let U := V", U := V", and Cq := CS. Let the functional J defined

by J(v) := ||v — Ul||?. The actual velocity U is solution of the following minimization problem under
constraints
U ey,
J(U) = min J(v). (12)
v€Cq

Let B : R2 — RY be the operator defined by
Bv := (Byv, ..., Byv) where Bjv:= —§G;(q) - v.
The set of constraints Cq rewrites as follows

Cq={v€R?: Bv < D}, where D = D(q)

I
—~
S
=
ie]
5
=
S
Il
I

,,,,,

Let C be the cone }Rf and let £ :R? x C' — R be the Lagrangian associated to defined by
L(v,p) =J(v) +p- (Bv— D).

Consider the following saddle-point problem

(13)

U, e R? x C,
LU, p) < LUN) < L(v,\) Yve R VueC.

One can remark that for the problem 7 the couple solution (U, A) is such that U realizes the minimum
of £ among the velocities v € R? and ) realizes the maximum of £ among the lagrangian multipliers
€ C. On can have the following properties.

Proposition 3.1 ( [16]). If the couple (U, ) is solution of , then U is solution of .
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Proposition 3.2 ( [16]). The couple (U, N) is solution of if and only if the couple (U, \) is solution
of defined by

U+BA=U,
BU < D, (14)
A+ (BU — D) =0.

The interest is then to solve numerically. To this aim, a possible choice is to use the Uzawa
algorithm which generates two sequences (vg, ux) according to the following rule

p> 07 Mo € Ca
v =U — B'pp1, (15)
e = Iy (pe—1 + p[Buy — D)),

where 11 is the euclidean projection onto the cone C' and p is a fixed parameters. The algorithm can be
shown to converge as soon as 0 < p < 2/||B||? see e.g. |[6]. Under this hypothesis, one can get that py
converges to some A and vy, converges to U such that the couple (U, ) is solution of .

3.3 Numerical simulations

We present in this section some numerical simulations. We describe the geometry we use and a method
for building the uniform distribution of obstacles and then we show some numerical results. We use in
particular the following numerical method. We set 7' = 50 and let dt = 0.05 be the time-step in the time
interval [0, 50], and let I = T'/d¢t = 2000 be the number of time iterations in [0,50]. For n =0,...,] — 1
let V™ € R? be the spontaneous velocity and V" € R? be the actual velocity at time t" = n x dt. We
then write V" = (u”,v") and V" = (2", w") and we consider random initial conditions V° and V°. We
first compute the velocity V"1 by using the Euler-Maruyama Method for the Equation :

wn =24 2 (1= ) tanh(al[V"]) e, + htanh(8) 5, — Az"| dt + Zdw,
g Y

)

ot =W + % {(1 — h)tanh(a||[V"|]) ej + htanh(j3) egg — )\w"} dt + %de{,

where €p, = (ef ,ep ) is the direction of the motion at time t", &, = (e"gg,egg) is the direction of
the constant gradient of the signal and dW,, = (dW7?,dWY) indicates the 2D-Brownian motion at time
t". Successively, we compute the velocity V"*! by using the Uzawa algorithm described in (15). In
particular, at step k + 1 of the Uzawa algorithm we compute

n+1 __ 1
Zii = ut = (g - er) dt,

n+l _  n+l
wyly =0T = (g - e2) di,

per = L (e = pl (257 @1 +wifjes) dt — G)

with initial condition o = 0 and p > 0, where e1,e; € RY indicate respectively the normalized distance
between the center of the particle and the centers of the obstacles along the z-axis and the y-axis and
the vector G € RY indicates the signed distance between the particle and the obstacles.

In the following, we simulate different cases. First, we investigate the effect of obstacles on the dynamics
of a Brownian particle that may be damped by a friction term. Then, we additionally consider a constant
directional force and its effect on the dynamics. Finally, we consider the full dynamics as described in
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Equation @, that accounts for cell dynamics. In particular, it provides some intrinsic persistence in
the displacement, and we investigate its interaction with both the obstacles and the constant force. We
remark that the constant force can describe the presence of a constant gradient in chemical signal in the
environment of the particle.

3.3.1 Geometry and obstacles distribution

We start by describing the geometry of the domain and the obstacles distribution. We consider a
domain Q = [0, L] x [0, H], for some L, H > 0 and an uniform obstacles distribution which depends on
the dimensions of 2. Let ro and r be the obstacles radius and the cell radius respectively, and let N
be the total number of obstacles in 2. N is computed by the following rule. Let € > 0 be a geometry
parameter to assure the particle to pass between two obstacles and let d = 2rp + 2r + 2¢ be the minimal
distance between two obstacles to ensure the passage of the particle. Let Ny and Ny be the number of
obstacles along the horizontal and vertical directions respectively, defined by

L H
N1 = |:E:| and N2 = |:E:| s

where [ - | indicates the integer part function. The total number of obstacles in the domain §? is then
N = N1 X N2.

We decide to fix the parameter ¢ = 0.01 and to consider r = mro for some m > 0. In Figure [§] we show
two examples of the geometry for a particular choice of the parameters.

In the following, we consider the domain = [0,2] x [0, 2] for which we impose periodic boundary
conditions on the particle’s displacement. We consider different numbers of obstacles N by varying the
obstacles radius ro.

1.75—...... 17100 000000000000

150‘.".’ 150100000000000000

0000000000000 0
125".‘.. 1590000000000000
Loo. ° Lo/00000000000000

0000000000000 0
075.‘..“ 075 /00000000000000
000000000000 00

> 00000 O® 5 b

000000000000 0O0

025.‘..’. 02°500000000000000
XXX XXXxxxx

0.00 T T T 0.00 T T T

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

(A) N =36 (B) N =900

FIGURE 8. Domain Q = [0,2] x [0,2]. Obstacles in blue, cell initial position in green.
For case (a): ¢ =0.01, 7o = 0.1, r = ro/2 = 0.05. For case (b): ¢ = 0.01, ro = 0.04,
r=ro/2=0.02.
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3.83.2  Effect of obstacles on the dynamics of a Brownian particle

In this section, we consider the case of a particle moving according to a damped Brownian motion. In
particular, we set « = 0,5 = 0,0 = 1 and we investigate the particle’s dynamics for different values of
A > 0 and different numbers of obstacles.

In Figure |§|, we show the one and two dimensional velocity histograms for N = 36 obstacles (Figures
, and for N = 900 obstacles in (Figures . We first notice that the one dimensional velocity
histograms are symmetric. This is due to the fact that there is not any bias in the particle’s dynamics,
and the obstacles are uniformly distributed in the domain. By analysing the two dimensional velocity
histograms, we notice that the presence of obstacles does have an effect on the direction of the velocity.
For N = 36, they show different shapes depending on the value of lambda. For A = 0, the histogram has a
squared shape, while it becomes more circular for larger values of A. This shows that when the dynamics
is weakly damped, the obstacles act on the directionality of the particle by preventing displacements in
other directions than along the x and y axis. For N = 900, the 2D histograms have the same squared
shape, but as A increases, this shape becomes more smooth. In particular, we see that as the number of
obstacles increases, the squared shape of the velocity histogram becomes more squared.

In Figure we show two trajectories for N = 900 obstacles with A = 0 (Figure and A = 3
(Figure . We notice that for A = 0 we observe directional displacement in the particle’s trajectory,
which covers all the domain. For A = 3, we observe a more compact trajectory, which mainly covers the
upper-right part of the domain. This shows how the persistence induced by the obstacles is stronger for
A =0 than for A = 3.

3.8.8  Effect of a constant force on the dynamics of a Brownian particle

In this section, we study the effect of a constant directional force on a Brownian particle. In particular,
we set &« = 0, A =1, 0 = 0.2 and then we consider a normalized force F' = (2 x 2/5,1.5 x 2/5). The
parameter 3 describes the intensity of the effect of the force F' on the particle’s dynamics. We investigate
the interplay between the force and the obstacles by varying 8 and the number of obstacles V.

Figure[11]shows the mean velocity modulus as a function of different values of 3, for different numbers
of obstacles. Since Equation involves only tanh(3), we take 8 € [0, 10], as larger values do not change
the dynamics. The mean velocity was obtained by simulating the model among M = 100 simulations.
Figure shows that the mean velocity modulus curve has a non-strictly-monotone behaviour with
respect to 3, for any number of obstacles. This is explained by the presence of the obstacles. For small
values of 3, the curve is monotonic-increasing when [ increases. But when g is large enough, the curve
reaches an horizontal asymptote. This is due to the fact that when the force intensity is strong enough,
the particle gets stuck between the obstacles. We notice also that the mean velocity modulus decreases
as the number of obstacles N increases. This shows how obstacles make the environment congested and
prevent the particle’s motion.

In Figure [I2] we show the one and two dimensional velocity histograms for N = 900 obstacles with
8=05 (Figure, B=2 (Figure and § =6 (Figure. We first notice that the one dimensional
histograms for x-component and y-component of the velocity show an asymmetry towards positive values,
which is due to the bias induced by the force F. Since the x-component of the force is greater than its
y-component, the asymmetry is stronger in the x-component of the velocity than in its y-component.
For 8 = 0.5, the asymmetry is very weak and it becomes stronger as  increases. By analysing the two
dimensional velocity histograms, we notice that the presence of the force makes the velocity distribution
more concentrated toward the half-upper-right side of the domain. For 5 = 0.5, this effect is weak but
remarkable. As [ increases the effect becomes stronger and more remarkable. Figure shows two
particle’s trajectories for N = 900 obstacles, for 3 = 0.5 (Figure and § = 6 (Figure . We first
notice that for both the cases, the particle’s trajectory covers all the domain. For g = 6, the trajectory
direction points toward the upper-right side of the domain, while for § = 0.5 the trajectory direction
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FIGURE 9. One and two dimensional velocity histograms for N = 36 obstacles (9a}9c)
and for N = 900 obstacles (9dH9f)). Parameters: a« =0, 8 =0, 0 =1, A = 0 (9a)) and

,)\zland,)\:3 and.

changes more frequently. This is due due to the fact that as [ increases, the intensity of the effect of the
force on the particle’s dynamics becomes stronger.

3.8.4  Dynamics of an active particle with cellular dynamics

In this section, we study the effect of a constant directional force on an active particle for which the
velocity is solution of equation (ED and mimics the dynamics of a cell. In particular, we set A = 1,
o = 0.2 and we take the same force F' as previously, namely F' = (2 x 2/5,1.5 x 2/5). We perform
similar numerical experiments as the ones done in the previous section, but now we consider o > 0. The
parameter « appears in the dynamics in through the term tanh(aw), where v indicates the norm
of the velocity. To investigate the competition between the two parameters o and 3, we focus on large
values of . In particular, in the following we consider o = 30 and we let vary § € [0, 10].

Figure [14] shows the mean velocity modulus as a function of different values of § and for different
numbers of obstacles, by setting a = 30. In comparison with Figure [[I} we notice that the qualitative



ESAIM: PROCEEDINGS AND SURVEYS 15

2.00

1.75 A
1.50 4 :
1.25 1
> 1.00

0.75 1

F1GURE 10. Particle’s trajectories for N = 900 obstacles. Paramters: a = 0, 8 = 0,

o=1,A=0 (10a) and A = 3 (10bj.
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FIGURE 11. Mean velocity modulus among M = 100 simulations. We set « = 0, A = 1,
o = 0.2 and we simulated for 20 values of 8 € [0,10]. Numbers of obstacles considered:
36,196,900, 1600, 2704, 3844.

behaviour of the mean velocity modulus does not change. We remark only that in Figure [14] the mean
velocity modulus assumes smaller values with respect to the results presents in Figure

In Figure we show the one and two dimensional velocity histograms for N = 900 obstacles with
B = 0.5 (Figure[[5a)), 8 = 2 (Figure[I5h) and 8 = 6 (Figure[I5d). We first notice that the one dimensional
histograms for z-component and y-component of the velocity show a shift towards positive values, which
is due to the bias induced by the force F. In comparison with the histograms in Figure[I2] this asymmetry
is less strong for both the xz-component and the y-component. This is due to the fact that the internal
dynamics intensity may play against the effect of the force. By analysing the two dimensional velocity
histograms, we notice that in comparison with Figure [I2] the velocity distribution is less squared and
more concentrated in other other parts of the domain with respect to the half-upper-right side. For
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FIGURE 12. One and two dimensional velocity histograms for N = 900 obstacles. Pa-

rameters:azO,Azl,azO.Q,B:O.S,B:Q,ﬂ:ﬁ.
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FIGURE 13. Particle’s trajectories for N = 900 obstacles. Parameters: a = 0, A = 1,

0 =02, =0.5(13a)) and g =6 (13D).

B = 0.5, this behaviour is more remarkable. As ( increases, the velocity distribution becomes more
concentrated towards parts of the domain different from the half-upper-right side. This is due to the fact
that the force intensity is less efficient on the particle’s dynamics because now the particle feels also its
own internal dynamics. Figure [16| shows two particle’s trajectories for N = 900 obstacles, for 5 = 0.5
(Figure[L6a) and 3 = 6 (Figure[16b]). We notice that for 3 = 0.5, the particle’s trajectories mainly covers
the upper part of the domain. For 8 = 6, we can recognize some persistence directions in agreement
with the direction of the force, but they are also very perturbed. Indeed, since a > 0 and big enough,
the particle’s dynamics feels the competition between the force intensity and its own internal dynamics.
For this reason, the particle may cover different directions with respect to that induced by the constant
force. This is in agreement with the velocity histogram in Figure .
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FIGURE 14. Mean velocity modulus among M = 100 simulations. We set a = 30, A =1,
o = 0.2 and we simulated for 20 values of § € [0,10]. Numbers of obstacles considered:
36,196, 900, 1600, 2704, 3844.
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FIGURE 15. One and two dimensional velocity histograms for N = 900 obstacles. Pa-

rameters: a =30, A =1, 0 =0.2, 3= 0.5 (15a)), 5 =2 (15b)), B =6 (15c).

CONCLUSION

In the present proceeding, we studied the effects of some particular biochemical and mechanical cues on
cell migration. In the first part, we introduced a two dimensional continuous stochastic model to describe
the effects of biochemical cues on cell migration. This continuous model relies on biological assumptions.
More precisely we considered the dynamics of a cell in the presence of a constant gradient of attractive
signal. With this model we wanted to study the competition between the internal cell’s dynamics and the
intensity of the signal. In the one dimensional case, we obtained an explicit formulation of the stationary
velocity distribution. We noticed that when the signal intensity is weak, the cell moves according to its
internal dynamics. If instead the signal intensity is strong enough, the cell follows the signal.

In the second part, we numerically investigated the combined effects of obstacles and of a constant
directional force on the cell’s dynamics for a cell described as an active particle. We first considered
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FIGURE 16. Particle’s trajectories for N = 900 obstacles. Parameters: a = 30, A = 1,

o =02, 8=0.5 (16a) and 8 = 6 (T6D).

a damped Brownian particle in a crowded environment and without external signal. For this case, by
analysing the two dimensional velocity histograms, we noticed that the presence of obstacles has an effect
on the directionality of the particle, which becomes stronger as the number of obstacles increases and
as the damped effect decreases. Then, we studied the additional effect of a constant directional force.
We noticed that the mean velocity modulus increases as the force intensity increases until it reaches a
limit value. Moreover, we saw that the mean velocity modulus decreases as the number of obstacles
increases, but this does not change its qualitative behaviour. We analysed also the two dimensional
velocity histograms. We first noticed that the one dimensional histograms show an asymmetry towards
positive values which becomes more evident as the force intensity increases. Furthermore, the two
dimensional velocity distribution seems to be more concentrated in the direction of the external constant
force. This behaviour becomes more remarkable as the force intensity increases. Finally, we considered
an active particle whose dynamics is also characterized by an internal dynamics in a crowded environment
and with an external signal. We noticed that the mean velocity modulus does not change qualitatively
with respect to the previous case. As for the two dimensional histograms, we noticed that the velocity
distribution is not only concentrated in the direction of the external constant force, but also in other
regions of the domain. This different behaviour is due to the presence of the internal dynamics. We can
thus observe that the presence of the obstacles has an effect on the directional behaviour of the particle’s
dynamics. Indeed, the presence of the obstacles enforces the particle to move towards particular regions
of the domain. The presence of an external constant force enforces the particle to move in the direction
of the force. Furthermore, the internal dynamics enforces the persistence induced by the presence of the
obstacles as well as the by external constant force.
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