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Abstract

We present and distribute a new numerical system using classical finite elements with mesh
adaptivity for computing two-dimensional liquid-solid phase-change systems involving nat-
ural convection. The programs are written as a toolbox for FreeFem-++ (www.freefem.org),
a free finite-element software available for all existing operating systems. The code im-
plements a single domain approach. The same set of equations is solved in both liquid
and solid phases: the incompressible Navier-Stokes equations with Boussinesq approx-
imation for thermal effects. This model describes naturally the evolution of the liquid
flow which is dominated by convection effects. To make it valid also in the solid phase, a
Carman-Kozeny-type penalty term is added to the momentum equations. The penalty
term brings progressively (through an artificial mushy region) the velocity to zero into the
solid. The energy equation is also modified to be valid in both phases using an enthalpy
(temperature-transform) model introducing a regularized latent-heat term. Model equa-
tions are discretized using Galerkin triangular finite elements. Piecewise quadratic (P2)
finite-elements are used for the velocity and piecewise linear (P1) for the pressure. For the
temperature both P2 or P1 discretizations are possible. The coupled system of equations is
integrated in time using a second-order Gear scheme. Non-linearities are treated implicitly
and the resulting discrete equations are solved using a Newton algorithm. An efficient
mesh adaptivity algorithm using metrics control is used to adapt the mesh every time
step. This allows us to accurately capture multiple solid-liquid interfaces present in the
domain, the boundary-layer structure at the walls and the unsteady convection cells in
the liquid. We present several validations of the toolbox, by simulating benchmark cases
of increasing difficulty: natural convection of air, natural convection of water, melting of
a phase-change material, a melting-solidification cycle, and, finally, a water freezing case.
Other similar cases could be easily simulated with this toolbox, since the code structure
is extremely versatile and the syntax very close to the mathematical formulation of the
model.
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Programm summary

Program Title: PCM-ToolBox

Catalogue identifier:

Program summary URL:

Program obtainable from:

Licensing provisions: Apache License, 2.0 (Apache-2.0)

No. of lines in distributed program, including test data, etc.: 3077

No. of bytes in distributed program, including test data, etc.: 2.5 Mo

Distribution format: .zip

Programming language: FreeFem++ (free software, www3.freefem.org)

Computer: PC, Mac, Super-computer.

Operating system: Windows, Mac OS, Linux.

Classification:

Nature of problem: The software computes 2D configurations of liquid-solid phase-
change problems with convection in the liquid phase. Natural convection, melting and
solidification processes are illustrated in the paper. The software can be easily modified
to take into account different related physical models.

Solution method: We use a single domain approach, solving the incompressible Navier-
Stokes equations with Boussinesq approximation in both liquid and solid phases. A
Carman-Kozeny-type penalty term is added to the momentum equations to bring the
velocity to zero into the solid phase. An enthalpy model is used in the energy equation
to take into account the phase change. Discontinuous variables (latent heat, material
properties) are regularized through an intermediate (mushy) region. Space discretization
is based on Galerkin triangular finite elements. Piecewise quadratic (P2) finite-elements
are used for the velocity and piecewise linear (P1) for the pressure. For the temperature
both P2 or P1 discretizations are possible. A second order Gear scheme is used for
the time integration of the coupled system of equations. Non-linear terms are treated
implicitly and the resulting discrete equations are solved using a Newton algorithm. A
mesh adaptivity algorithm is implemented to reduce the computational time and increase
the local space accuracy when (multiple) interfaces are present.

Running time:

From minutes for natural convection case to hours for melting or solidification (on a
personal laptop). The water freezing case may require several days of computational time.



1. Introduction

Solid-liquid phase-change problems are encountered in numerous practical applications,
ranging from metal casting and thermal energy storage (phase-change materials) to food
freezing and cryosurgery. Melting and solidification are also fundamental processes in
geophysical problems, such as Earth’s mantle formation, lava lakes or magma chambers.
In many of these problems, temperature gradients induce buoyancy forces in the liquid
(melted) phase generating a significant convective flow. Consequently, the appropriate
mathematical description of the liquid phase is the usual model for the natural convection
flow: the incompressible Navier-Stokes system of equations with Boussinesq approximation
for thermal (buoyancy) effects. In this model, the energy conservation equation is written
as a convection-diffusion equation for the temperature. In the solid phase, conduction
is the main phenomenon and the appropriate model is the classical heat equation. The
main modelling difficulty is to link these two models by taking into account the separation
of the two phases by a sharp interface, across which thermodynamic properties are
discontinuous. We offer below a short description of the two main approaches suggested
in the literature to deal with this problem. For a comprehensive review of models for
phase-change problems with convection, see Kowalewski and Gobin (2004). Note that
a different category of models was recently suggested in the literature, based on the
Lattice Boltzmann Method (Luo et al., 2015; Gong et al., 2015). Such methods based on
non-deterministic models are not discussed in this introduction.

A first modelling approach, usually referred to as the multi-domain (or deforming-grid)
method, is based on the classical Stefan two-phase model. Solid and liquid domains
are separated and the corresponding conservation equations are solved in each domain.
Boundary conditions at the interface between domains are obtained by imposing the
Stefan condition (balance of heat fluxes at the interface). The position of the solid-liquid
interface is tracked and moved explicitly using either front tracking or front fizing methods.
The former method uses deforming grids to reconstruct the interface, while the latter
is based on a time-depending coordinate transform, mapping the physical domain into
a fixed computational domain. For a detailed description of these methods, see e. g.
Sparrow et al. (1977); Unverdi and Tryggvason (1992); Gupta (2000); Tenchev et al.
(2005). The main drawback of deforming-grid methods is their algorithmic complexity,
which makes difficult to accurately capture solid-liquid interfaces of complicated shape or
structure (e. g. with mushy regions between solid and liquid phases). Configurations with
multiple interacting interfaces (see the solidification of a phase-change material presented
in this paper) are also difficult to simulate with these methods (see also Stella and Giangi
(2004)).

The second modelling approach avoids to impose explicitly the Stefan condition at
the solid-liquid interface and therefore uses a single-domain (or fixed-grid) model. The
same system of equations is solved in both liquid and solid phases. The energy balance at
the interface is implicitly taken into account by the model. Consequently, the position of
the interface is obtained a posteriori by post-processing the computed temperature field.
Phase-field methods (Fabbri and Voller, 1997) and enthalpy methods (Voller and Prakash,
1987; Cao et al., 1989) are the most commonly used single-domain models. In phase-field
methods, a supplementary partial differential equation for the evolution of the order
parameter (a continuous variable taking the value 0 in the solid and 1 in the liquid) has
to be solved, coupled with the conservation laws (Shyy et al., 1996). This new equation
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is model dependent and its numerical solution could lead to diffuse solid-liquid interfaces.
For recent contributions in this area, see Boettinger et al. (2002); Singer-Loginova and
Singer (2008); Favier et al. (2019). We focus below on enthalpy methods, which are the
most widely used single-domain models due to their algorithmic simplicity.

The main idea behind enthalpy models is to formulate the energy conservation law
in terms of enthalpy and temperature and include latent heat effects in the definition
of the enthalpy. The obtained equation applies to both liquid and solid phases and
implicitly takes into account the separation of the phases. Another advantage of enthalpy
methods, when compared to previously described models, is to remove the limitation
of the phase-change occurring at a fixed temperature. The presence of mushy regions
can be easily modelled with these methods. Two types of formulations of enthalpy
methods exist in the literature, depending on the main variable used to solve the energy
equation: enthalpy or temperature-based methods. In enthalpy-based formulations
the main variable is the enthalpy (Eyres et al., 1946; Rose, 1960; Bhattacharya et al.,
2014). Temperature is computed from the temperature-enthalpy coupling model. An
iterative loop is necessary to solve the energy equation, formulated with both enthalpy
and temperature variables. For a review of different iterative techniques to solve the
energy equation, see Voller (1996). A second variety of enthalpy-based formulations
consists in rewriting the energy equation with enthalpy terms only (Rady and Mohanty,
1996; Hannoun et al., 2003). In temperature-based formulations, the energy equation is
formulated in terms of temperature only. The latent heat is treated either by deriving
an apparent heat capacity coefficient to define the total enthalpy (Morgan et al., 1978;
Chiesa and Guthrie, 1974; Gau and Viskanta, 1984) or by introducing a source term
in the energy equation (Voller, 1996; Swaminathan and Voller, 1997). Advantages and
drawbacks of each approach are discussed in detail in Kénig-Haagen et al. (2017).

Single-domain methods are very appealing for numerical implementations. The same
system of equations is solved in the entire computational domain, making possible
algorithmic or computer-architecture optimisations. If enthalpy models offer an elegant
solution to deal with the same energy conservation equation in both phases, a last
modelling problem has to be solved. It concerns the extension of the Navier-Stokes-
Boussinesq equations from the liquid to the solid phase. Different techniques to bring
the velocity to zero in the solid region were suggested. The most straightforward is the
switch-off technique, which decouples solid and liquid computational points and overwrites
the value of the velocity by setting it to zero in the solid region. Different implementations
of this technique with finite-volume methods are presented in Ma and Zhang (2006); Wang
et al. (2010a). In variable viscosity techniques (Gartling, 1980; Voller et al., 1987; Cao and
Faghri, 1990), the fluid viscosity depends on the temperature and is artificially increased
to huge values in the solid regions through a regularisation or mushy zone. To avoid
blow-up or numerical inconsistencies, the large gradients of viscosity must be correctly
resolved in the mushy region. This is naturally achieved in finite-element methods with
dynamical mesh adaptivity (Danaila et al., 2014), while in finite-volume methods with
fixed grids, the time step has to be adapted to the space resolution (Ma and Zhang, 2006).
Versions of the variable viscosity approach suggested in Danaila et al. (2014) were further
studied by Aldbaissy et al. (2018); Woodfield et al. (2019) and implemented in a different
finite-element framework (FEniCS) by Zimmerman and Kowalski (2018).

A third technique used to ensure a zero velocity field in the solid phase is the so-called
enthalpy-porosity model (Brent et al., 1988). A penalisation source term is introduced in

4



the momentum equation to allow the switch from the full Navier-Stokes equations in the
liquid phase to a Darcy equation for porous media. The mushy region is thus regarded as a
very dense porous medium that sharply brings the velocity to zero in the solid region. The
expression of the penalisation source term generally follows the Carman-Kozeny model
for the permeability of a porous medium (Hannoun et al., 2003, 2005; Belhamadia et al.,
2012), but other mathematically equivalent expressions were suggested (Angot et al., 1999;
Favier et al., 2019). Different formulations and implementations of the enthalpy-porosity
model are presented in Kowalewski and Rebow (1999); Giangi et al. (2000); Stella and
Giangi (2004).

Concerning the space discretization of these models, finite difference (FD) or finite
volume (FV) methods are generally used in the literature. When single-mesh models are
used, the general strategy to capture the solid-liquid interface is to dramatically increase
the mesh resolution in the whole domain. This results is a considerable increase of the
computational time, even for two dimensional cases. Finite element (FE) methods offer
the possibility to dynamically refine the mesh only in the regions of the domain where
sharp phenomena take place (e. g. solid-liquid interface, recirculation zones). Different
FE approaches were suggested, from enthalpy-type methods (e. g. Elliott (1987)) to
front-tracking methods (e. g. Li (1983)). Recently, adaptive FE methods were proposed
for classical two-phase Stefan problem (Belhamadia et al., 2004) and phase-change systems
with convection (Belhamadia et al., 2012; Danaila et al., 2014).

However, to the best of our knowledge, no adaptive finite-element programs exist
in the CPC Program Library for phase-change problems. The purpose of this paper
is therefore to distribute a finite-element toolbox to solve two-dimensional solid-liquid
phase-change problems.

The present toolbox is based on a single-domain enthalpy-porosity model for solid-
liquid phase change problems with convection. For the energy conservation equation,
a temperature-based formulation takes into account the latent heat by introducing a
discontinuous source term. For the mass and momentum conservation equations, we
solve in the entire domain the incompressible Navier-Stokes equations with Boussinesq
approximation for buoyancy effects. To bring the velocity to zero in the solid phase, we
introduce in the momentum equation a penalty term following the Carman-Kozeny model.
The coupled system of momentum and energy equations is integrated in time using a
second-order Gear scheme. All the terms are treated implicitly and the resulting discretized
equations are solved using a Newton method (Danaila et al., 2014). The advantage of
this formulation is to permit a straightforward implementation of different types of non-
linearities. For the space discretization we use Taylor-Hood triangular finite elements, 1. e.
P5 for the velocity and temperature and Py for the pressure. Temperature is discretized
using Py or Py finite elements. Discontinuous variables (latent heat, thermal diffusivity,
etc) at the solid-liquid interface are regularized through an intermediate artificial mushy
region. Single domain methods require a refined mesh near the interface, where large
enthalpy gradients have to be correctly resolved. An optimized dynamical mesh adaptivity
algorithm allows us to adapt the mesh every time step and thus accurately capture the
evolution of the interface. Mesh adaptivity feature of the toolbox offers the possibility to
deal with complicated phase-change cases, involving multiple solid-liquid interfaces. There
are two main novelties in the present numerical approach, when compared to Danaila
et al. (2014): (i) we use the Carman-Kozeny model to bring the velocity to zero inside
the solid phase, instead of a viscosity penalty method (imposing a large value of the
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viscosity in the solid); (7) we increase the time accuracy of the algorithm by replacing the
first-order Euler scheme with the second-order Gear (BDF2) scheme (see also Belhamadia
et al. (2012)).

The programs were built and organized as a toolbox for FreeFem++ (Hecht, 2012;
Hecht et al., 2007), which is a free software (under LGPL license). FreeFem-++ loffers
a large variety of triangular finite elements (linear and quadratic Lagrangian elements,
discontinuous Py, Raviart-Thomas elements, etc.) to solve partial differential equations. It
is an integrated product with its own high level programming language and a syntax close
to mathematical formulations, making the implementation of numerical algorithms very
easy. Among the features making FreeFem++ an easy-to-use and highly adaptive software
we recall the advanced automatic mesh generator, mesh adaptation, problem description
by its variational formulation, automatic interpolation of data, colour display on line,
postscript printouts, etc. The FreeFem-++ programming framework offers the advantage
to hide all technical issues related to the implementation of the finite element method.
It becomes then easy to use the present toolbox to code new numerical algorithms for
similar problems with phase-change.

The paper is organized as follows. Section 2 introduces the governing equations and
the regularization technique used in the enthaphy-porosity model. Section 3 presents
the Newton algorithm for the Navier-Stokes-Boussinesq system of equations. The mesh
adaptivity technique is also discussed in this section. A description of the programs is
given in Section 4. The accuracy of the numerical method is tested in Section 5 using
manufactured solutions. Finally, Section 6 is devoted to extensive numerical validations
of the method. The robustness of the algorithm is demonstrated by comparing our results
with well defined classical benchmarks. The capabilities of the toolbox to deal with
complex geometries is also illustrated. The main features of the software and possible
extensions are summarised in Section 7.

2. Enthalpy-porosity model

We consider a solid-liquid system placed in a two-dimensional domain 2. In the
following, subscripts s and [ will refer to the solid and the liquid phases, respectively. We
present in this section the single-domain model, using the same system of equations in
both liquid and solid phases.

2.1. Energy equation

The phase change process is modelled using an enthalpy method with a temperature-
based formulation (Voller et al., 1987; Cao et al., 1989; Cao and Faghri, 1990). We start
with the classical energy equation:

9(ph)
ot

+V - (phU) =V - (kVT) = 0, (1)

where, ,, is the physical time, h the enthalpy, p the density, U the velocity vector, T the
temperature and k£ the thermal conductivity. The total enthalpy h is transformed as the

!FreeFem-++ for different OS can be downloaded from http://www3.freefem.org/.
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sum of the sensible heat and the latent heat:
h = hgen + higr = (T + s(T)), (2)

with ¢ the local specific heat. The function s is introduced to model the jump of the
enthalpy during the solid-liquid transition. For pure materials, s is theoretically a
Heaviside step function depending on the temperature: it takes the zero value in the
solid region and a large value in the liquid, equal to hg/c;, with hg the latent heat of
fusion. If the phase-change is assumed to occur within a mushy zone defined by a small
temperature interval T' € [Ty — T, Ty + T, around the temperature of fusion T, a model
for s(T) is necessary. Linear (Voller et al., 1987; Wang et al., 2010a) or more smooth
functions (Danaila et al., 2014) can be used to regularize s(T") and thus model the jump
of material properties from solid to liquid. In this paper we use a regularization of all
step-functions (latent heat source, specific heat, thermal diffusivity or conductivity) by
a continuous and differentiable hyperbolic-tangent function suggested by Danaila et al.
(2014). We assume moreover that the undercooling phenomenon is negligible during the
solidification stage (see also Wang et al. (2010b); Kowalewski and Gobin (2004)).

Equation (1) can be further simplified under the following assumptions: (i) the density
difference between solid and liquid phases is negligible, i. e. p; = ps = p is constant; (ii)
the mushy region is narrow and the velocity inside this zone is zero. Consequently, the
final temperature transforming model is obtained by combining (2) and (1) and neglecting
the convection term V - (csU)?:

9 (cT)
ot

LV (TU) -V - (’;VT> + aa(tcs) = 0. (3)

2.2. Navier-Stokes equations with Boussinesq approximation

The natural convection in the liquid part of the system is modelled using the incom-
pressible Navier-Stokes equations, with Boussinesq approximation for buoyancy effects.
To make this model valid in the entire domain, the momentum equation is modified as
following:

ou + (U -V)U + 1vp Mgy fs(Me, = A(T)U, (4)
Oty p P
where p denotes the pressure, p; the dynamic viscosity of the liquid (assumed to be
constant) and fp(T) the Boussinesq force. The Carman-Kozeny penalty term A(T)u
is artificially introduced in (4) to extend this equation into the solid phase, where the
velocity, pressure, viscosity and Boussinesq force are meaningless. Consequently, A(T) is
modelled to vanish in the liquid, where the Navier-Stokes-Boussinesq momentum equation
is recovered. A large value of A(T) is imposed in the solid, reducing the momentum
equation (4) to A(T)u = 0, equivalent to u = 0. Exact expressions for fz and A will be
given in the next section.

Finally, the conservation of mass in the liquid phase is expressed by the continuity
equation:

V.U =0. (5)

2In the liquid phase, V - (csU) = hg;V - U = 0; in the solid phase, s = 0; in the mushy region, U = 0.
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2.3. Final system of equations for the single-domain approach

The present numerical code solves a dimensionless form of the previous equations.
After choosing a reference length H (usually the height of the cavity when a rectangular
domain is considered) and a reference state (p, Vies, Trer), we can define the following
scaling for the space, velocity, temperature and time variables:

= — = 0
TTHEH YTV 5T H

X U TﬁT/]”e Vr‘e
= Lop= ey, (6)

Ty is the reference temperature and in most cases Ty..y = Ty (the temperature of fusion),
unless otherwise specified. Consequently, the non-dimensional temperature of fusion is
set to 8y = 0. Temperature difference 07" defines a temperature scale, that will be set
differently for melting and solidification cases.

The dimensionless system of equations to be solved in both liquid and solid regions
can be finally written as:

V-u = 0, (7

% + (u-V)u+Vp— éVQu—fB(O) e, —A(0)u = 0, (8)
2(CH) K 0(CS)

5 +V-(C9u)—V'<RePTV9)+ 5 = 0 9)

The linearised Boussinesq buoyancy force (fp), the Reynolds (Re) and Prandtl (Pr)
numbers are defined as:

fa_, pe PVt ViefH 1 (10)

9) =
fB( ) PrRe2 ) 10 v, Oq’

with v the kinematic viscosity and o = k/(pc) the thermal diffusivity. In the expression

of fp, the Rayleigh number of the flow is defined as:
_ gpH 36T

Vg

Ra (11)
with S the thermal expansion coefficient and g the gravitational acceleration.

If previous non-dimensional numbers are pertinent only in the liquid phase, the
non-dimensional conductivity and specific heat are defined in both phases

_k‘_ 1, 020f, ¢ 1, 020f,
K@) =2 = {ks/kl, 6<6, CO=2= {cs/cl, 6 <0, (12)

The non-dimensional function S = s/s; in the energy equation (9) takes a similar non-
dimensional form:

hsl/cl 1
= 0>
S@oy=>={ "o " Ste’ 7D

0, 9<9f,

(13)

with Ste the Stefan number.



Discontinuous step-functions defined in (12) and (13) are replaced by continuous and
differentiable hyperbolic-tangent functions, generically defined for all § by the formula
(Danaila et al., 2014):

F(B:a0.60 R = fi+ =11 {1+tanh < ("SR“’))}, (14)

2 s

where fi, fs are the imposed values in the liquid and solid phases, as; a smoothing
parameter, 65 the central value (around which we regularize) and R, the smoothing
radius. For example, we use for the non-dimensional source term in (9) the following
regularisation over the artificial mushy region 6 € [—¢,]:

1 1 0, —0

where 6, is the central value around which we regularize (typically 6, = 8y =0) and R,
the smoothing radius (typically Rs = ¢).

Finally, the penalty term A(f)u in momentum equation (8) follows from the Carman-
Kozeny model (Voller et al., 1987; Belhamadia et al., 2012; Kheirabadi and Groulx,
2015):

CCK(l - Lf(e))Q
Al) = —————, 16
) Li(0)2+0b (16)
where L;(#) is the local liquid fraction, which is 1 in the fluid region and 0 in the solid.
Ly is regularized inside the artificial mushy-region using a hyperbolic-tangent similar to
(15). The Carman-Kozeny constant Ccy is set to a large value (as discussed below) and
the constant b = 107° is introduced to avoid divisions by zero.

3. Numerical method

To solve the system of equations (7)-(9) we use a finite-element method that was
implemented using the open-source software FreeFem++ (Hecht et al., 2007; Hecht, 2012).
Among the numerous numerical tools offered by FreeFem++ , the use of the powerful mesh
adaptivity function proved mandatory in this study to obtain accurate results within
reasonable computational time. The numerical code was optimized to afford the mesh
refinement every time step: the mesh density was increased around the artificial mushy
region, offering an optimal resolution of the large gradients of all regularized functions
(S,K,Ly), while the mesh was de-refined (larger triangles) in the solid part, where a
coarser mesh could be used. A simulation using a globally refined mesh would require a
prohibitive computational time for an equivalent accuracy of the melting front resolution.
Similar algorithms based on FreeFem++ were successfully used for solving different systems
of equations with locally sharp variation of the solution, such as Gross-Pitaevskii equation
(Danaila and Hecht, 2010; Vergez et al., 2016) or Laplace equations with nonlinear source
terms (Zhang and Danaila, 2013).

The space discretization is based on Taylor-Hood finite elements, approximating the
velocity with Po Lagrange finite elements (piecewise quadratic), and the pressure with
P; finite elements (piecewise linear). The temperature and the enthalpy are discretized
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using either P; or P finite elements. For the time integration, we use a second-order
Gear (BDF2) scheme (see also Belhamadia et al. (2012)):

@ N 3¢n+1 _ 4¢n + ¢n—1
dt — 26t ’

(17)

computing the solution ¢"*! at time t,,; = (n + 1)t by using two previous states
(¢™, " 1). We use this scheme to advance in time both velocity (¢ = u) and temperature
fields (¢ = 0). The other terms in equations (7)-(9) are treated implicitly (7. e. taken at
time t,,41). The resulting non-linear equations are solved using a Newton algorithm.

3.1. Finite element algorithm

Finite-element methods for solving Navier-Stokes type systems of equations are gener-
ally based on a separate discretization of the temporal derivative (using finite difference,
splitting or characteristics methods) and the generalization of the Stokes problem for the
resulting system (Temam, 1983; Girault and Raviart, 1986; Quarteroni and Valli, 1994).
To simplify the presentation, we consider in the following that C' =1 and K = 1. For
phase-change materials like paraffins this is a physically valid assumption. Nevertheless,
we keep in the equations below the variable K, since for the water freezing case it is
necessary to take into account the dependence K (6). The derivation of supplementary
terms associated to K(0) is straightforward.

We use the second-order finite-difference scheme (17) and obtain the following implicit
semi-discretization in time of the single-domain model (7)-(9):

V-out 4qpttt = 0, (18)
Ut vt v - L
—A(@" Hu"t — fp(0"t e, =
n n—1
21;7 a u25t ’ (19)
;% + V- (ur ) — <}§Prv9”+1> -
n n n—1 n—1
N +§(9)_9 ;;(9 ) 20

This system of non-linear equations is solved at time ¢,+1 = (n+ 1)dt, using two previous
states: t,, and t,_1. We denote by fg(f) the Boussinesq force that can be non-linear in
the general case (e. g. natural convection or freezing of water). The penalty parameter
takes very low values (y = 10~7) to ensure a pressure field with zero average and, at the
algebraic level, fulfil the diagonal of the pressure term.

The space discretization of variables over the domain 2 C R? uses a finite-element
method based on a weak formulation of the system (18)-(20). We consider homogeneous
Dirichlet boundary conditions for the velocity, 7. e. u = 0 on 02, and set the classical
Hilbert spaces for the velocity and pressure:

V=VxV,V=H), 1gz{qeL2(Q)‘/Qq:O} (21)



Following the generalization of the Stokes problem (Temam, 1983; Girault and Raviart,
1986; Quarteroni and Valli, 1994), the variational formulation of the system (18)-(20) can
be written as: find (u"*1,p" T #7H1) € V x Q x V, such that:

b (un“,q) - v(p"+1 q)=0, Vgeq@ (22)

%51 (u"'H, 'v) +c (u"'H; u” ) + R—a (u"+1 'u)
—(A@" ) ut ) + b (v, p" ) = (fB(0"T) ey, v)
_ 2 n _ i n—1
—5t(u , V) 25t(u ,v)7 VveV
3 n+1 n+1 n+1 . n+1 K n+1
57 (0" + 50", 0) + (uth VO 6) + Tepr V0T Ve

= 20"+ 5(07).0) -

5 (0" '+ 500" 1), 8), VoeV,

26t

where (u,v) = [, u-v denotes the scalar product in L*(£2) or (LQ(Q))2; the bilinear forms

a,b and trilinear form c are defined as (Girault and Raviart, 1986; Quarteroni and Valli,
1994):

a:VxV =R, a(u,v) /Vu V'v—Z/au] 0jvi,
Q

1,j=1

b:VxQ—R, b(u,q):—/v-uq:—Z/aiui-q,
c: VXV XV =R, c(w; z,v) /[wV U—E:/w](?zZ
Q

i,j=1

The system of non-linear equations (22) is solved using a Newton method. To advance
the solution from time ¢,, to t,11, we start from an initial guess wg = (u™,p",6™) (which
is the solution at ¢, ), and construct the Newton sequence wy = (uk, pg, 0x) by solving for
each inner iteration k:

b(uk+t1,q) —¥(pre+1,9) = 0, (23)
(wk41,v) + ¢ (U1 uk,v)  + (U Ukt1,v)

3
25

1 dA
(e, 0) = (S0 00 O wi,v) = (AR wer1,0) b (0,pis)

dfB 1 Ll
(do (0%) 9“18"’) - 5t(2“ 2 ’”)

e (ps w, v) — (Z?(Gk)ekuk,v> _ ((dfs(ek)ek—fs(ek)) ey,v),(24)

3 as
(9k+1 0 (9k)9k+17¢) + (ur - VOri1,0) + (uk+1 -V, 9)

26t
K n n
+ (uk, - VO, ¢) + ?(; (fl‘g(a )0k — S(6), ¢) - 2& (0" P+ 500", 9) . (25)
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Note that the last term of Eq. (24) cancels in the case of a linear Boussinesq force fp (see
Eq. (10)); this is not the case when non-linear variations of the density of the liquid are
considered (convection or solidification of water). Note also that the previous system of
equations (23)-(25) depends only on ™, ™!, §™ and "' and is independent of p", the
pressure being in this approach a Lagrange multiplier for the divergence free constraint.

The Newton loop (following k) has to be iterated until convergence for each time step
ot following the algorithm:

Navier-Stokes time loop following n
set wo = (u™,p",0™)
Newton iterations following k
solve (23) to get wy4+1
stop when ||wp41 — wi|| < &n
actualize (w1 pntl 07 +1) = wp g

The FreeFem++ syntax to implement the Newton algorithm is very close to the mathe-
matical formulation given above. After defining a vectorial finite-element space fespace
Wh(Th, [P2,P2,P1,P1]);, associated to the mesh Th, we define the velocity, pressure and
temperature variables in a compact manner by Wh [ul,u2,p,T];. Corresponding test
functions are defined similarly. It is then very easy to define a problem formulation in
FreeFem-++ and include all the terms of the algorithm (23)-(25). This makes the lecture of
the programs very intuitive by comparing each term to its mathematical expression. New
terms could be added to the variational formulation expressed in the problem structure,
without affecting other parts of the program. Consequently, the implementation of new
models or numerical methods for this problem is greatly facilitated by this modular
structure of programs.

3.2. Mesh adaptivity

We use the standard mesh adaptivity function (adaptmesh) offered by FreeFem-++
(Hecht, 2012). The key idea implemented in this function (see also Borouchaki et al.
(1996); Castro-Diaz et al. (2000); Hecht and Mohammadi (1997); George and Borouchaki
(1998); Frey and George (1999); Mohammadi and Pironneau (2000)) is to modify the
scalar product used in the automatic mesh generator to evaluate distance and volume.
Equilateral elements are thus constructed, accordingly to the new metric. The scalar
product is based on the evaluation of the Hessian H of the variables of the problem. For
example, for a P discretization of a variable x, the interpolation error is bounded by:

E=|x—Tpxlo <csup sup |[H(z)|(y— z,y— 2), (27)
TeTh x,y,2€T

where II;x is the P; interpolate of x, |H(z)| is the Hessian of x at point = after being
made positive definite. Using the Delaunay algorithm (e.g. George and Borouchaki
(1998)) to generate a trianguler mesh with edges close to the unit length in the metric
M= % will result in a equally distributed interpolation error £ over the edges a; of

the mesh. More precisely, we get

1
EaiTMai <1. (28)
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The previous approach could be generalized for a vector variable x = [x1, x2]. After
computing the metrics M; and Ms for each variable, we define a metric intersection
M = M N Mas, such that the unit ball of M is included in the intersection of the two
unit balls of metrics My and M; (for details, see the procedure defined in Frey and
George (1999)).

The adaptmesh function offers the possibility to take into account several metrics
computed from different variables monitoring the evolution of the phase-change system.
For natural convection system, the mesh will be adapted using the values of the two
velocity components and the temperature. For phase-change systems, to accurately
track the solid-liquid interface we add the variation of the enthalphy source term in the
adaptivity criterion. For water systems (convection or freezing), we also add an extra
function tracking the anomalous change of density around 4°C. To reduce the impact of
the interpolation on the global accuracy for time-depending problems, we consider, for
each variable used for adaptivity, the metrics computed at actual (¢,41) and previous
(t,) time instants (see also Belhamadia et al. (2004)). The anisotropy of the mesh is
a parameter of the algorithm and it was set to values close to 1. This is an inevitable
limitation since we also impose the minimum edge-length of triangles to avoid too large
meshes. The capabilities of the mesh adaptivity algorithm are illustrated in §6.

4. Description of the programs

In this section, we first describe the architecture of the programs and the organisation
of provided files. Then we focus on the list of input parameters and the structure of
output files.

PCM Tool
Box

Common Test
Macros Cases
Cycle
Natural PCM Melting Water
- Macro o Convection Melting Solidification Freezing
= Macro_problem
= Macro_system

Figure 1: Folder tree structure of the PCM-Toolbox to solve solid-liquid phase-change problems.

4.1. Program architecture

Figure 1 gives a schematic overview of the content of the toolbox. All files are provided
in a directory called PCM-Toolbox. Many detailed comments are included in the programs,
with direct link to the mathematical expressions used in the paper. The used FreeFem
syntax was intentionally kept at a low level of technicality and supplemented with detailed
comments when specific more technical syntax was used.
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This directory is organized as follows:

1. The directory Common-Macros contains five files:
e Macro_operator.idp includes macros and functions defining mathematical operators,
e Macro_problem.idp: macros defining the variational formulation of the problem,
e Macro_restart.idp: macros used to start a new simulation from a saved field,
e Macro_output.idp: macros used to save the solution with different formats,
e Macro_system.idp: macros identifying the OS and defining specific OS-commands.

2. The directory Test-Cases contains four subdirectories, each of them defining one
of the following applications:
e natural convection of air or water in a differentially heated square cavity,
e melting of a PCM stored in containers of different shapes,
e melting followed by solidification of a rectangular PCM,
o freezing of pure water in a square cavity.
Each subdirectory contains three files: NEWTON_$case.edp is the main FreeFem-++
script file, param_phys.inc defines the physical parameters and param_num.inc the
numerical parameters. For example, to run the natural convection case of air in
a square cavity, the user can use the following command in a terminal window:
FreeFem++ NEWTON_stat_natconv.edp.
The folder structure of each test case is illustrated in Figure 2. The obtained
solutions are saved in the folder OUTPUT/Data. Depending on the output format
selected by the user, data files are generated in specific folders for being visualized
with: Tecplot, Paraview, Gnuplot or Medit. We also provide in the folder Figures
ready-made layouts for these visualisation softwares. The user can thus obtain the
figures from this paper using newly generated data. More details about the output
structure are given below.

Tecplot
—— Gnuplot
Data —
——  Medit
— OUTPUT
RUN L RST
PARAM
Case
Folder INIT
— Figures

Figure 2: Structure of each Test-case folder.
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4.2. Input parameters

Physical parameters and parameters related to the run are separated into two files.
(1) The file param_phys.inc contains the physical descriptions of the problem:

o typeT: is the finite-element type for the temperature, with possible values P2 or
P1,

e Torder: is the accuracy order of the time integration scheme, with possible values
1 (Euler scheme) or 2 (Gear scheme),

o scalAdim: defines the characteristic scales of the problem, see (6). Possible values
1, 2 or 3 correspond to the following choice of the characteristic scales (Danaila

et al., 2014):
H2
SRR IR e A 2
1
@ V=5 =t =1lPr— Re=1/Pr 0)
3 _u [Ra ® _,a [Pr Ra
: — _ — [ = —_— 1
(3> Vref v\ pr = tref tref Ra — Re Pr’ (3 )

* X, Xr, ¥i, ¥r: are the values defining the dimensions of the cavity [z, z,] X [y, ¥r],
o Pr, Ra, Ste: are the Prandtl, Rayleigh and Stefan numbers, see (11) and (10),
o Thoty Teota: are dimensionless temperatures according to (6),

e bcuy, becuy, bcT: are macros defining the velocity (u) and the temperature (T)
boundary conditions.

e epsi: is the half width ¢ of the mushy region. Default value = 0.01,
e dt: is the dimensionless time step,
e t,,42: is the dimensionless final time,

¢ Parameters for regularization functions:
The parameters of the hyperbolic-tangent function (14) used to regularize discon-
tinuous functions are set by default as follows:

f, fi as 0, Ry Coc b

Enthalpy 0 1/Ste 1 0.01 0.01 - -
Carman - Kozeny 0 1 1 001 001 105 1077

Conductivity (water) 1 2.26/0.578 1 6y 0.015 - -

e rho(T) and Drho(T): (water cases only) define the density and its derivative
as functions of the temperature, following the model (Gebhart and Mollendorf, 1977):
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p(T) = pm(l — wlT - Tmlq)7
pm [kg/m®] W [°C7Y] q T [°C]

999.972 9.2793-1075 1.894816  4.0293

f5(T), dfp(T): define the buoyancy force and its derivative.

(2) The file param_num.inc contains the parameters controlling the run.
Restart parameters:

Nsave: the solution is saved every Nsave time steps in the Data folder (see Figure
2). The temperature and the velocity fields are saved in Tecplot and Medit folders,
while the liquid fraction, the Nusselt number, and the accumulated heat input are
saved in the Gnuplot folder.

Nrestart: restart files (mesh and solution) are saved every Nrestart time steps.
Solutions at current and previous iterations, the CPU time, the accumulated heat
input g, and the time step dt are saved in the folder RST.

Ncondt: allows the user to stop the run and save the solution properly. The file
OUTPUT/zz.condt is read every Ncondt time steps: if the user replaces the value
”0” in this file by ”1” the run is stopped. This is a simple solution for a clean stop
of the job by the user. Default value = 20.

Nremesh: the mesh is adapted every Nremesh iterations. If this parameter is set
to ”1” the mesh is adapted every time step.

IFrestart: is a boolean controlling the set up of the initial field.

IFrestart = 0, the initial condition is built in the code for each test case. For the
PCM melting cases, the PCM is initially motionless at isothermal temperature. To
set-up a smooth initial field, a few time steps (with very small §¢) are computed by
increasing progressively the boundary temperature at the hot wall and the Rayleigh
number (by continuation). Outputs are saved in OUTPUT/Data-RST-0.

IF'restart > 0, (positive integer values) the solution field previously computed at
iteration IF'restart is loaded from the folder OUTPUT/Data-RST-filenameRST/RST,
with filenameRST a variable selecting the restart folder.

IFrestart < 0, (negative integer values), the same principle for loading a solution
is used, but from the folder INIT (see Figure 2). The solution fields stored in this
folder could come from different previous calculations (e. g. a steady state solution
or, for the water, the natural convection field before freezing).

Newton parameters:

epsconv: is the value of the stopping criterion for steady cases,
gamma: is the penalty parameter in (18). Default value = 1077,
tolNewton: is the Newton tolerance £y (see (26)). Default value = 1075,

newtonMax: limits the maximum number of iterations in the Newton algorithm
(26). Default value = 50,
16



Mesh parameters:
e nbseg: is the number of segments for the discretisation along the x and y directions,
e errh: is the interpolation error level. Default value = 0.02,
e hmin, hmax: are the minimum and maximum edge size, respectively,

e adaptratio: is the ratio for a prescribed smoothing of the metric. For a value less
than 1.1 no smoothing is done. Default value = 1.5,

e nbvx: is the maximum number of vertices allowed in the mesh generator. Default value
= 50000.

Output parameters:
e dircase: is the name of the output folder,
o fcase: is the prefix-name for ouput files.

e Tecplot, Medit, Gnu: correspond to the name of the visualisation software to be
used; the format of the outputs written in OUTPUT/Data (see Figure 2) is accordingly
set. The files from the Tecplot folder can be easily read also with Paraview.

4.8. Outputs

When a computation starts, the QUTPUT directory is created (see Figure 2)). It contains
two folders storing the output data and the echo of the run parameters. The folder Data
contains four subdirectories with different output format files of the computed solution.
File names are created using the prefix defined by the parameter fcase, the current
iteration and the current dimensionless time ¢. Solution files can be visualized using
either Tecplot or any other CFD Visualization tools (Paraview, Visit, etc.). Moreover,
.gmsh (mesh) and .rst (fields) files are generated in the folder RST to enable restarts of
the computation. Note that the folder FFglut contains FreeFem++ scripts that re-read
and visualize the RST-files to facilitate the selection of a restart field. An .echo file with
a summary of the main parameters, informations on the run and the names of the output
files is saved in the folder RUNPARAM. This directory additionally contains a copy of the
.inc parameter files, allowing an easy identification of each case and preparing an eventual
rerun of the same case.

5. Numerical tests of the accuracy of the numerical method

We start by presenting tests of the accuracy of our numerical method. We used
the technique of manufactured solutions (e. g. Roache (1998)) which has the advantage
of providing an exact solution to a modified problem, related to the initial one. The
general idea is to modify the original system of equations by introducing an extra source
term, such that the new system admits an exact solution given by a convenient analytic
expression. Even though in most cases exact solutions constructed in this way are not
physically realistic, this approach allows one to rigorously verify computations.

We tested the space and time accuracy using manufactured solutions for the system
of equations (7)-(9) for a stationary case (Burggraf flow) and a time-dependent one
17



(Nourgaliev et al., 2016). For both cases, we computed the global error ¢ for different
norms in space:

€= || — onl, (32)
with ®. the exact solution and ¢; the numerical solution. Computations were performed
for the convection of air (C = K = 1, A(§) = S(0) = 0), with a Rayleigh number
Ra = 10* and a Prandtl number Pr = 0.71.

5.1. Space accuracy: Burggraf stationary flow with thermal effects

The Burggraf manufactured solution is a time-independent recirculating flow inside a
square cavity [0, 1] x [0,1]. It is similar to the well-known entrained cavity flow, with the
difference that the velocity singularity at the top corners of the cavity is avoided. We
added to the classical Burggraf flow (Shih et al., 1989; Laizet and Lamballais, 2009) a
manufactured solution for the temperature, with constant temperature imposed at the
top and the bottom walls. Vertical walls are assumed to be adiabatic. The exact solution
of the new flow with thermal effects is:

ui(z,y) = og'(@)h'(y), (33)
uz(z,y) = —og’(x)h(y),

g (3) " / o’ 1(0\2 " 1(2\2
pey) = o (R W) + 9" @H ) + 50 (@) (h(y)h"(y) = K ()?).
T(z,y) = Te+(Th —To)y+ a(z)b(y),

with ¢ > 0 a scaling parameter and functions
5 a8
= —— =4+ = 34
g@) = T-T 4T (34)
h(y) = ‘- 27
a(z) = cos(nx),
b(xz) = y(l-y).
Note that the velocity at the top border of the cavity is:
u1(0,1) = 20 (z* — 22 + 2?), u(w,1) =0, (35)

which ensures the continuity of the velocity at the corners (w(0,1) = u(1,1) = 0), since
non-slip walls are imposed for the other borders: u(z,0) = w(0,y) = u(1,y) = 0.

The forcing terms that have to be added to the momentum and energy (temperature)
equation are derived by injecting the exact solution (33) into the system (7)-(9):

fu, = 0, (36)
fur = PN W) (¢ @) — g (@)D (@)
+ 2 (d9@h) + 20" @H" () + 9@ ()
0'2 a
b g @ (MO ) - K@) ~ e T(ey),
fr = iz, y)d (@)by) + ua(z,y) (Th — T + a(2)b' (y))
— (@ @bly) + al@) (1)
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We used the Taylor-Hood finite element (Po for the velocity and Py for the pressure) and
tested P; or P, finite elements for the temperature. Figures 3a and 3b illustrate the
streamlines and the temperature field, respectively. Figure 3 plots the discretization error
¢ as a function of the grid size h = dx = dy for the temperature. Both L? and L> norms
are displayed. The expected second order accuracy in L2-norm is obtained with P; finite
elements (Figure 3c), while an order exceeding three is observed when P finite elements

are used (Figure 3d).
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Figure 3: Burggraf stationary flow with thermal effects used to test the space accuracy of the numerical
scheme. Streamlines (a) and temperature contours (b) of the flow field. Global error ¢ (cf. Eq. (32)) for
the temperature: (c) P1 and (d) P2 finite elements.
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5.2. Time accuracy: manufactured unsteady solution

To test the time accuracy of the Gear (BDF2) scheme, we used the manufactured
time-dependent solution suggested in Nourgaliev et al. (2016):

( t) = (6Uy + a, sin(t
us(z,y,t) = — (8Ug + au, sin(t
(z,y,1) = (
(z,y,1) = (

uy (z, v, )) cos(x + y1t) sin(y + yat), (37)
) sin(z + 1t) cos(y + y2t),

T + (0T + ay sin(t)) ( )
P + (6P + ay sin(t)) ( )

T(z,y, cos(z + y1t) sin(y + yat),

p(z, vy, sin(x + y1t) cos(y + yat),

The values of the constants are reported in Table 1. The corresponding forcing source
Y1 Y2 ]5 T 5P0 5T0 5U0 (7% Qg (e 77
01 01 0 10 01 10 1.0 005 04 0.1

Table 1: Parameter for the time-dependent manufactured solution (37).

terms are:

fur =y cos(t) cos(a)sin(b) — U. 1 sin(a) sin(b) + U, y2 cos(a) cos(b) (38)
—U.uy(z,y,t) sin(a) sin(b) + U ua(z, y,t) cos(a)cos(b) + P. cos(a) cos(b)

12 (z,y,t)
u x, b) b
Re 1\Z, Yy

fus = —ay cos(t) sin(a) cos(b) — U.v1 cos(a) cos(b) + U, v2 sin(a) sin(b)
—U.uyi(z,y,t) cos(a) cos(b) + Ue ua(z,y,t) sin(a)sin(b) — P, sin(a) sin(b)
2 Ra
+§ UQ(IL', Y, t) - W T(LC, Y, t)?
fr = a4 cos(t) cos(a)sin(b) — T.v1 sin(a) sin(b) + T, 2 cos(a) cos(b)

—T.ui(z,y,t) sin(a) sin(b) + Te uz(z, y,t) cos(a) cos(b) + ]%27[; T, cos(a)sin(b),

where a = (x+71t), b = (y+2t) and U, = (6Up + oy sin(t)), Te = (0Tp + oy, sin(t)), P. =
(0Py + ay, sin(t)).

Guided by the results obtained in §5.1 for the space accuracy, we fixed the grid size
to h = dx = 0.01 to ensure small spatial discretization errors. For diminishing values of
the time step ¢, the solution was evolved in time up to the time instant ¢,,,, = 7 at
which the error (32) was computed. The time convergence is displayed in Figure 4 for
the temperature variable. The expected second order convergence in time is obtained for
both Py (Figure 4a) and Py (Figure 4b) discretizations of the temperature.
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Figure 4: Time accuracy of the numerical scheme tested using the time-dependent manufactured solution
of Nourgaliev et al. (2016). Evolution of the global error € given in (32) for the temperature at tymaz = 7.
Discretizations using: (a) P; and (b) P2 finite elements.

6. Numerical simulations of natural convection and phase-change problems

In this section we test the robustness of the distributed toolbox. We consider well
defined benchmarks used validate numerical codes for natural convection and phase-change
problems. The difficulty of the computed cases is increased progressively by considering
the following physical systems: (i) natural convection of air (§6.1), (ii) melting of a phase-
change material (§6.2), (iii) alternate melting and solidification of phase-change system
(§6.3) and (iv) the convection and the freezing of pure water (§6.4). This approach allows
to test the programs by adding progressively non-linearities in the Newton algorithm.
For each test case, we compare our results with experimental and previously published
numerical data.

6.1. Natural convection of air

We start by testing the Newton algorithm (23)-(25) for the case of natural convection,
i.e. C =K =1, A(f) = S(§) = 0. We consider the classical problem of the thermally
driven square cavity [0, 1] x [0, 1], filled with air. The Boussinesq term fz(6) is then linear
and takes the form (10). Top and bottom walls are adiabatic, while the temperature is
fixed on the left (cold) wall and the right (hot) wall. Natural convection flows are computed
for three values of the Rayleigh number: Ra = 10%,10°,10°. The Prandtl number is
set to Pr = 0.71. It was shown in Le Queré (1991) that the flow in this configuration
becomes unsteady for Ra = 108-°. Therefore, steady states could be computed for the
chosen values of the Rayleigh number.

We provide programs for both steady (time-independent) and time-dependent cases.
The steady case is performed using a continuation following the Rayleigh number: a
smaller value for Ra is set initially and is then smoothly increased until reaching the
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wanted value. The time-dependent case is computed until a steady state with a single
convection cell is reached. To make the simulation more complicated, we present two
configurations: i) the classical differentially heated square cavity and i) a differentially
heated cavity with an inner heated obstacle.

6.1.1. Classical differentially heated square cavity

The temperature is imposed at the left (cold) wall as 8. = —0.5 and at the right (hot)
wall as 6, = 0.5. Top and bottom walls are adiabatic. The initial condition models a
cavity filled with motionless air (u = 0), with a linear distribution of the temperature.
Both steady and time-dependent codes converge to the same flow state with a single
convection cell. For this final state, horizontal u(y) and vertical v(z) velocity profiles
were extracted at mid-domain (y = 0.5 and = = 0.5, respectively) and plotted in Figure 5.
Our results are in very good agreement with reference numerical results obtained by Le
Queré (1991) with a spectral code.

(b)
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Figure 5: Natural convection of air in a differentially heated cavity for values of Ra ranging from 10 to
108. (a) Vertical velocity profile v(z) along the horizontal symmetry line (y = 0.5). (b) Longitudinal
velocity profile u(y) along the vertical symmetry line (z = 0.5). Results obtained using the present
Newton method (symbols), with a mesh resolution nbseg = 80. Comparison with the spectral simulations
by Le Queré (1991) (solid lines).

Table 2 offers a quantitative assessment of the accuracy of the present Newton method.
The values of u,,q; and its location Y are compared to reference values from Le Queré
(1991). The Newton method gives results identical to reference values, with a difference
less than 0.01%.
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Run Umaz b x=0.5 (error) | Y (error)
Reference values spectral 0.0648344 0.850

Newton (Steady) nbseg = 80 | 0.0648297 (0.007 %) 0.850394( 0.05 %)
Newton (Unsteady) | nbseg =80 | 0.0648296 (0.007 %) 0.850532 ( 0.06 %)

Table 2: Natural convection of air in a differentially heated cavity. Maximum value umqz of the horizontal
velocity profile at mid-domain (z = 0.5) and location Y of this maximum. Comparison to reference values
by Le Queré (1991).

6.1.2. Differentially heated cavity with an inner heated obstacle

We consider the same differentially heated cavity as previously and add a centred square
obstacle. The boundaries of the inner square are non-slip isothermal walls, maintained
at a dimensionless hot temperature @), = 0.8. The solution computed for Ra = 10% and
Pr =0.71 is compared with the results obtained by Moglan (2013), who used a 6th order
finite-difference method with an immersed boundary method to model the obstacle. The
temperature distribution in the cavity is shown in Figure 6a. The vertical velocity profile
v(z) along the horizontal symmetry line (y = 0.5) is displayed in Figure 6b and shows a
very good agreement with the numerical results reported by Moglan (2013).

Sim of Moglan
| ——8—- Our simulation

Figure 6: Natural convection of air in a differentially heated cavity with an inner heated square for
Ra = 10°. Temperature field (a) and vertical velocity profile along the horizontal symmetry line (b).
Results obtained using the present Newton method (red solid line), with mesh resolution nbseg = 80.
Comparison with the results obtained using a 6th order finite-difference method by Moglan (2013).
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6.2. Melting of a phase-change material (PCM)

We continue our validation tests by considering the full system (23)-(25) for the case
of the melting of a phase-change material. Two new non-linearities are now present in
the system: the Carman-Kozeny penalty term A() and the enthalpy source term S(6).
The function S is regularized using (15). We also consider that the material properties in
the liquid and solid are the same, i.e. C'= K = 1. This is a frequent assumption (Wang
et al., 2010a; Ma and Zhang, 2006). Five cases were computed (the exact values of the
defining parameters are summarized in Table 3):

o PCM-Case #1 simulates the experimental study of Okada (1984). It consists of a
differentially heated square cavity, filled with octadecane paraffin.

o PCM-Case #2 is extracted from the collective publication by Bertrand et al. (1999),
in which the results of different numerical approaches were compared for the
simulation of the melting of a PCM.

e« PCM-Case #3 simulates the melting of a cylindrical PCM with heated inner tubes,
as in Luo et al. (2015).

e PCM-Case #4 simulates the melting of Gallium in a rectangular cavity heated by
the side-wall, as in Hannoun et al. (2003).

o PCM-Case #5 reproduces the simulation of Nourgaliev et al. (2016) using highly
distorted meshes to simulate a natural convection flow with solid crush formation.

case #1  case #2 case #3 case #4 case #5

Ra 3.27-10° 108 5-10* 7-10° 10°
Pr 56.2 50 0.2 0.0216 0.1
Ste 0.045 0.1 0.02 0.046 4.854
ot 0.1 1073 1073 10-° 1073
CPU time 2876.39  40522.7 2060.42 14621.2 6657.58

Number of triangles 2,900 7,000 3,076 4,820 2,769

Table 3: Parameters for the cases simulating the melting of a phase-change material.

To guide the user of the toolbox, we also provide in Table 3 the values of the CPU time
necessary to run each case (with default parameters) on a personal computer and the
typical number of triangles of the generated adaptive mesh.

6.2.1. PCM-Case #1: Melting of an octadecane PCM in a square cavity
Okada (1984) studied experimentally the melting of an octadecane PCM in a square
cavity of height H = 1.5 cm. His results were often used to validate numerical methods
(Okada, 1984; Wang et al., 2010a; Ma and Zhang, 2006; Danaila et al., 2014). The material
is initially solid (g = —0.01) and melts progressively starting from the left boundary,
maintained at a hot temperature 6, = 1. The right boundary is also isothermal, with
24



cold temperature 8, = —0.01. Horizontal boundaries are adiabatic. The other parameters
of this case are reported in Table 3.

The computation starts from a refined mesh near the hot boundary. Mesh adaptivity
is applied at each time step using metrics computed from three variables: the two fluid
velocities and the enthalpy source term S. To reduce the impact of the interpolation
on the global accuracy, we use two successive fields (S™) and (S™*!) in the adaptivity
procedure. This allows us to refine the mesh in the fluid part of the domain and inside the
artificial mushy. Figure 7a gives an illustration of the adapted mesh at dimensionless time
t = 78.7. In Figure 7b we compare the position of the solid-liquid interface at ¢t = 39.9 and
t = 78.7 with the experimental data of Okada (1984) and previously published numerical
results (Wang et al., 2010a; Danaila et al., 2014). The obtained shape and position of the
liquid-solid interface is closer to experimental results than numerical results reported in
Wang et al. (2010a). This is a direct consequence of the mesh adaptivity capabilities of
our method.
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Figure 7: PCM-Case #1. Melting of the PCM. (a) Adapted finite-element mesh at time instant ¢t = 78.7.
(b) Position of the solid-liquid interface. Comparison with experimental data of Okada (1984) and
numerical results of Danaila et al. (2014) and Wang et al. (2010a) for two time instants (¢ = 39.9 and
78.7).

This comparison also allowed us to finely tune the value of the constants used in the
model (16). Even though it is generally assumed that a large value for Ccx must be set,
the exact value of this constant could influence the accuracy of the results (Kheirabadi and
Groulx, 2015; Mathura and Krishna, 2017). This choice of the value of this constant is a
still open problem. Very good agreement with the experimental result of Okada (1984) is
obtained for Coy varying in the range [10%,10%]. Imposing a too large value (Ccx = 1010)
results in artificially slowing the propagation of the melting front. Consequently, we set
for all subsequent simulations Cgx = 106.
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6.2.2. PCM-Case #2: Melting of an octadecane PCM with high Rayleigh number

This case considers the same problem of the melting of a PCM, but with a very high
value of the Rayleigh number Ra = 10® (see Table 3). This case is very challenging since
the natural convection becomes important in the fluid flow, and enhances considerably
the heat transfer.

Bertrand et al. (1999) compiled results provided by five different authors (Lacroix,
Le Quéré, Gobin-Vieira, Delannoy and Binnet-Lacroix). These results will be hereafter
referred to as (say) 'Lacroix, from Bertrand et al. (1999)’. They have attempted a first
comparison by taking several numerical methods to compute the basic configuration
presented in this section. Two investigators among the five failed to predict the process
and showed unrealistic behaviours in Figures 8a and 8b: Lacroix and Delannoy seem to
be insufficiently converged as shown by Figure 8a, and Binet-Lacroix overestimates the
average Nusselt number by more than 30% (Figure 8b). Hence, this collection of results
allows us to validate our numerical method and check if realistic results are obtained for
complex physical configurations. For comparison purpose, we extract from simulations
the position of the melting front and the Nusselt number Nu at the left wall (x = 0) for
each of the five methods presented by Bertrand et al. (1999). The Nusselt number Nu is

defined as follows:
N / oy (39)
= — .
0 ax 2=0 Y

Our simulation
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Figure 8: PCM-Case #2. Melting of the PCM with high Rayleigh number (Ra = 10%). Comparison
with five sets of results presented in Bertrand et al. (1999). (a) Location of the solid-liquid interface at
dimensionless time instants ¢ = 1, 3 and 5. (b) Temporal evolution of the Nusselt number.

The position of the melting front for three time instants, ¢ = 1, 3 and 5 is reported in
Figure 8a. Our results are for each case in fairly good agreement with those of Gobin
and Le Quéré. Details of their numerical method are presented in Gobin and Le Quéré
(2000). Gobin uses a front-tracking method using a coordinate transformation with a
finite volume method in a 62 x 42 grid and Le Quéré solves a single domain method
using a second-order scheme with a finite volume method and a 192 x 192 grid. The time
evolution of the Nusselt number is presented in Figure 8b. A very good agreement is
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obtained with the results of Gobin and Le Quéré. A relative difference, less than 2%, is
observed for the Nusselt number.

The high Rayleigh number Ra = 108 is a very demanding numerical test. The high
velocity, inducing a very narrow thermal boundary layer, can lead to unrealistic results
if under-resolved. This explains why some numerical methods failed in Bertrand et al.
(1999). The interest of the mesh adaptation is clearly demonstrated for this case, since
we initially used a coarse 40 x 40 grid.

6.2.3. PCM-Case #3: Melting of cylindrical PCM with inner heated tubes

Previous cases #1 and #2 considered phase change problems evolving in a simple
geometry, a square cavity. A more complex geometry, suggested by Luo et al. (2015),
is simulated in this section. It consists of a cylindrical PCM of radius R = 1 with tube
inclusions of different arrangements. The interest in studying this case is not solely the
challenge of the complex configuration, but also the possibility to compare our results
with those of Luo et al. (2015), obtained using a completely different model based on the
Lattice Boltzmann Method. This configuration is also interesting from a practical point
of view. Agyenim et al. (2010) pointed out that more than 70% of the PCM containers
used for heat storage are using shell-tube systems.

We simulate three configurations with one, four and nine heated tubes. The size of the
tubes is adjusted to have the same contact area for all configurations. The radius R; of
the inner tube is R; = R/4 for the case with one tube, R; = R/8 for the four heated tubes
case and R; = R/12 for the case with nine tubes. A Dirichlet boundary condition (6 = 6y,)
is applied to the boundary of inner tubes. A Neumann boundary condition (96/9n = 0)
is used for the outer boundary. For the velocity, all boundaries are considered as non-slip
walls (u = 0). Only half of the domain is simulated since all configurations are symmetric
with respect to the vertical axis (see Figure 9). The mesh is refined initially around the
inner tubes, and is dynamically adapted at each time step around the melting front and
the thermal boundary layer area. The same metrics presented in Section 6.2.1 are used
for the mesh adaptivity.

Figure 9 shows the temperature field and the position of the solid-liquid interface
(black line) for the three configurations for time instants corresponding to the same liquid
fraction Ly = 80%. The distribution of the inner tubes in the liquid phase influences
directly the fluid motion and the shape of melting front. The more the number of inner
tubes, the stronger the natural convection is in the melted PCM. The shape of the
solid-liquid interface displays complex patterns, depending on the space arrangement
of the inner tubes. The mesh is nicely adapted following the evolution of the melting
interface, even after its separation in several distinct fronts touching the outer boundary
(see Figures 9b, c).

To estimate the efficiency of each configuration, we plot in Figure 10 the time evolution
of the liquid fraction L. By including more heated tubes the heat transfer is enhanced,
inducing a faster melting time. The nine-tube configurations melts 5 times faster than
the reference configuration with one tube. Note also from Figure 10 a good agreement
between our results and those reported by Luo et al. (2015) for the evolution of the liquid
fraction.
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Figure 9: PCM-Case #3. Temperature fields for the melting of a cylindrical PCM with inner heated
tubes. Time instants corresponding to the same liquid fraction L; = 80%. Configurations with (a) one
tube (¢t = 2.5), (b) four tunes (¢t = 0.99) and (c) nine tubes (¢t = 0.4). Melting fronts are localized with
black lines (only half of the domain is simulated).
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Figure 10: PCM-Case #3. Time evolution of the liquid fraction for configurations with one, four, and
nine heated tubes. Comparison with numerical results of Luo et al. (2015).

6.2.4. PCM-Case #4: Melting of Gallium in a rectangular cavity

The melting of the Gallium in a rectangular cavity was a controversial case since
Dantzig (1989) raised the question whether the convection in the fluid is mono-cellular
or multi-cellular. Experimental results exhibited indeed a mono-cellular structure, while
many researchers claimed that this observation was incorrect. Prior to Dantzig (1989),
both experimental and numerical studies reported a single convection cell in the fluid phase.
Later, simulations provided solutions with multi-cellular flow. Hannoun et al. (2003)
concluded that the mono-cellular observation was caused by a problem of convergence of
the numerical solution, due to coarse grids or inconsistencies in the mathematical model.
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Therefore, this test case simulating the melting of the Gallium is a relevant exercise
to test the accuracy of our method. The parameters of this case are reported in Table 3.
To capture the very small convection cells during the first step of the melting, Hannoun
et al. (2003) used a 800 x 1,120 fixed grid in a rectangular domain of dimensions 6.35 cm
x 8.89 cm. With our adaptive method, a maximum of 4820 triangles are necessary to
reproduce the numerical result of Hannoun et al. (2003). The grid size is thus reduced
with our method by a factor of 100.

Figure 11: PCM-Case #4. Melting of Gallium: temperature field, streamlines, and melting front for
dimensionless time instants (panels a to d): 0.0015, 0.006, 0.01, and 0.019. For a better view of the
convection cells, a ratio 2:1 was used for the axis dimensions.

The time evolution of the flow is presented in the Figure 11. Temperature filed,
streamlines and position of the melting front are plotted for several time instants: ¢t =
0.0015, 0.006, 0.01, and 0.019. These values were chosen to visualise the merging of
convection cells in the fluid flow and correspond to physical times 20s, 85s, 1555, 280s in
Hannoun et al. (2003). The number of rolls was considered as a validation criterion by
several authors (Hannoun et al., 2003; Cerimele et al., 2002; Giangi and Stella, 2000).
Three cells are observed at ¢ = 0.006 (Figure 11). The number of cells decreases later
through a process of roll merging, as it was also reported by Hannoun et al. (2003). Our
numerical results are in good agreement with the observations of Hannoun et al. (2003),
Cerimele et al. (2002) and Giangi and Stella (2000).
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6.2.5. PCM-Case #5: Solid crust formation in a highly distorted mesh

Nourgaliev et al. (2016) used a discontinuous Galerkin finite element method to
simulate the solid crust formation inside a highly distorted domain (Figure 12). The fluid
is initially motionless with an initial dimensionless temperature 8y = 2. The temperature
of fusion is set to 6y = 1.4, according to Nourgaliev et al. (2016) parameters (see Table 3 for
the values of all parameters). The left side boundary is maintained at a cold temperature
0. = 1.39 in the initial stage. The right wall is isothermal, with hot temperature 6;, = 2.
A nearly steady-state natural circulation is induced in the early time evolution of the flow.
Then, the cold temperature at the left wall is decreased to 6. = 1, below the temperature
of solidification. At this point, the formation of a solid crust layer starts at the left
boundary. Figure 12 shows the temperature field and the streamlines for the time instant
t = 30. Our results are in a very good agreement with those of Nourgaliev et al. (2016).

(a) (b)

' 512x256

Figure 12: PCM-Case #5. Solid crust formation in a distorted mesh. Temperature field and streamlines
at dimensionless time ¢ = 30: our simulation (a) and Nourgaliev et al. (2016) (b).

6.3. Melting-solidification cycle of a PCM

We address in this section the challenging problem of simulating a complete melting-
solidification cycle of a PCM. The simulation starts from the final state obtained in
§6.2.1. At t =78.7, the PCM is partially melted, with the liquid fraction Ly = 0.5 (see
Figure 13a). The temperature of the left boundary is then dropped to a cold temperature
0. = —0.01 < 0y, identical to that of the right wall. The solidification starts and the
solid phase propagates into the cavity from both left and right sides. Panels (a) to (e)
in Figure 13 depict the time evolution of the solidification process. The solid phase is
represented in blue and corresponds to the region of temperature 8 < y = 0, while the
solid-liquid interfaces (¢. e. contour lines of § = 0) are represented by bold solid lines.
The solidification is completely achieved at t = 4600. Note that the mesh adaptivity of
our toolbox is able to accurately track the two solidification fronts. The adapted mesh
shown in Figure 13f illustrates that a finer mesh is well generated along the interface
(6 = 0), while a coarser mesh is obtained in the regions of low gradients.
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A comprehensive physical description of this case is given in our recent paper Rako-
tondrandisa et al. (2019). The case of the solidification process starting after a complete
melting of the PCM is also presented in this paper. We can conclude from this section
that the Newton method is able to deal with either melting or solidification process. The
simulations are in good agreement with existing experimental and numerical results for
the melting and show consistent behaviour for the solidification.
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Figure 13: Solidification of the PCM after a partial melting. Temperature contour-lines in the fluid
phase. The solid part is represented in blue and corresponds to the region of temperature § < 6y = 0.
Time instants (panels a to e): t = 78.92, ¢t = 1072, t = 2702, ¢t = 3902 and ¢ = 4501. The adapted mesh

corresponding to panel (b) is shown in panel (f).
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6.4. Natural convection of water and water freezing

We consider in this section the natural convection and the solidification of water. With
these cases, we test the ability of our numerical system to deal with additional non-linear
terms. Since pure water exhibits non-linear density variation for T' < 10.2°C, with a
maximum at T,, = 4.0293 °C, the Boussinesq force becomes non-linear. We used the
following density-temperature relationship suggested by Gebhart and Mollendorf (1977):

p(T) = Pm (1 7w|T*Tm|q)7 (40)

with p, = 999.972 [kg/m3], w = 9.2793 - 1076 [(°C) 9], and q = 1.894816.
Hence, the bouyancy term fg = g(prer — p)/pres in (7) is not any more linear and
becomes after scaling:
Ra 1 p0;) = p(6)

~ PrRe® BoT p(0y)

where 8 = (1/pm) (dp/dT) is the thermal expansion coefficient taking the value g =
6.91-107° [(K)~!] (Scanlon and Stickland, 2004).

We simulate a differentially heated square cavity filled with liquid pure distilled water.
This problem was investigated experimentally and numerically by Giangi et al. (2000);
Kowalewski and Rebow (1999); Michalek and Kowalewski (2003). The non-dimensional
parameters describing the problem are (see Michalek and Kowalewski (2003) for physical
details): Ra = 2.518084 - 105, Pr = 6.99 and Ste = 6.99.

f8(0)

(41)

6.4.1. Natural convection of water

The initial temperature is linearly distributed in the square cavity, with a hot temper-
ature Tj, = 10°C at the left wall and a cold temperature 7, = Ty = 0°C at the right wall.
The temperature field and the streamlines of the steady state are presented in Figure 14a.
The isoline 8 = 6,,,, corresponding to the line of maximum density is represented by a
dashed line. Due to the anomalous thermal variation of water density, two recirculating
zones are formed in the flow: a lower (abnormal) recirculation in the vicinity of the
cold wall where 6 < 6,,, and an upper (normal) one where the density decreases with
temperature (6 > 0,,).

A more precise comparison with previously published results is shown in Figure 14b.
The obtained temperature profile f(z) along the horizontal symmetry line of the cavity
(y = 0.5) is in good agreement with the numerical results of Michalek and Kowalewski
(2003). Their results were obtained with finite-volumes and finite-differences codes
(FLUENT and FRECONV3V). Differences are visible in the vicinity of the maximum
density line, region where our mesh is well refined to capture the separation line between
the two recirculation zones. It should be noted that the FLUENT simulations in Michalek
and Kowalewski (2003) are performed with a fixed uniform grid with 380 x 380 nodes,
while our adapted grid has only 1,807 vertices (3,430 triangles).
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————— Numerical result of MK
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Figure 14: Natural convection of water in a differentially heated cavity. Non-dimensional temperature 6
at steady state. (a) Two-dimensional temperature field and streamlines showing the two recirculating
zones. (b) Temperature profile along the horizontal symmetry line. Comparison with the numerical
results of Michalek and Kowalewski (2003).

6.4.2. Water freezing

We finally consider the difficult case of water freezing in a square cavity. The initial
state for this computation is the convection steady pattern in the cavity presented in
Figure 14. The freezing starts by dropping smoothly the temperature of the cold right
wall from T, = 0°C to T. = —10°C.

Figure 15(a) superimposes the experimental image from Kowalewski and Rebow (1999)
with our numerical results for the same physical time ¢, = 2340[s]. The flow pattern
in the liquid phase, shown in Figure 15(b) also corresponds very well qualitatively to
the experimental image. Since a good agreement with the experiment was sought, the
simulation was performed with very small time steps (6t = 10~% ~ 0.15[s]), but still
reasonable grids (less that 3000 nodes) due to the efficiency of the adaptivity algorithm.

The two recirculating zones being separated by the line T' = T;, we used the mesh
adaptivity capability of the method to refine the grid along this line. The metrics used
for adaptivity were computed from the two components of the velocity and a P; function
¢(T) "tracking” the value T,,, defined by the general regularization expression:

O(T) = % {1 + tanh (%R;T> } : (42)

with R4 = 0.02. To reduce the impact of the interpolation on the global accuracy (see also
Belhamadia et al. (2004)), we used both ¢(T™) and ¢(T™*!) in the adaptivity procedure.
The final mesh is displayed in Figure 15¢, clearly showing that the mesh is refined along
the lines T' = T,,, and T = 0°C. This allows to accurately capture the structure and the
extent of the two recirculating zones, features that are difficult to obtain with fixed meshes
(discrepancies in numerical results are described in Giangi et al. (2000); Kowalewski and
Rebow (1999); Michalek and Kowalewski (2003)). As a consequence, the temperature
contours lines in Figure 15d are smooth and clearly define the two interfaces in the system:
the liquid-solid interface (6 = 0) and the density inversion interface (6 = 0.4) separating
the two recirculating liquid regions.
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Figure 15: Freezing of pure water. Configuration at (physical time) t, = 2340[s]: (a) experimental image
from Kowalewski and Rebow (1999); the thick red line represents the solid-liquid interface computed with
the present method (b) computed streamlines showing the two recirculating zones in the fluid phase (c)
finite-element mesh refined along the solid-liquid interface ("= 0°C) and also along the line of maximum
water density (T' = 4°C) (d) temperature iso-lines.

7. Summary and conclusions

We provide with this paper an adaptive finite-element toolbox for solving two-
dimensional phase-change problems with convection. The programs were written using
FreeFem++ , a free software offering a programming syntax close to the mathematical
formulation. A single domain numerical approach was first derived. The details of the
finite-element formulation were then presented. The key ingredients of the implemented
method are: (i) a second order accuracy in space and time; (ii) the use of an adaptive
finite element method with a well chosen regularization of the functions representing the
variation of thermodynamic properties at the solid-liquid interface, and (iii) a fully implicit
discretization with a Newton algorithm for solving the non-linear system of equations.
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Four test cases were presented, by adding progressively non-linearities in the system

of equations:

(i) natural convection of air in a differentially heated cavity,

(ii) melting of a PCM,

(ii¢) melting-solidification cycle of a PCM,

(iv) natural convection and freezing of water.

The computations for case (i#) were rendered more challenging by considering complex
geometries (highly distorted mesh, cylindrical PCM with inner heated tubes) and com-
putationally demanding cases (high Rayleigh numbers). The efficiency of the adaptivity
method by metric control was investigated by tracking simultaneously several interfaces
(two melting fronts during the solidification cycle and density inversion interface for water
flows).

For each test case, we provided a separate folder containing all the necessary files
(parameters, restart files) necessary to run them directly. We described in the text body
of the paper the expected results and their validation. A very good agreement with
experimental data or numerical results was obtained for all considered test cases, proving
the capability of our method to tackle a large range of problems. Ready-made scripts and
layouts are provided with the toolbox to allow the user to generate the figures presented
in this paper with newly generated data after running the programs. Validation data sets
from experiments or previous publications are included in these layouts.

Since FreeFem++ is a free software, the method could be easily implemented and
tested by anyone interested in simulating phase-change problems. All technical issues
related to the implementation of the finite element method are hidden, allowing to focus
on numerical algorithms and their performance. This offers the possibility to address
other computational challenges related to different physical or mathematical models in
this field.

The extension of the method for 2D and 3D cases, using domain decomposition
methods adapted to parallel computing will be reported in a forthcoming contribution.
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