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ABSTRACT Texture analysis is used in a very broad range of fields and applications, from texture
classification (e.g., for remote sensing) to segmentation (e.g., in biomedical imaging), passing through
image synthesis or pattern recognition (e.g., for image inpainting). For each of these image processing
procedures, first, it is necessary to extract—from raw images—meaningful features that describe the texture
properties. Various feature extraction methods have been proposed in the last decades. Each of them has
its advantages and limitations: performances of some of them are not modified by translation, rotation,
affine, and perspective transform; others have a low computational complexity; others, again, are easy to
implement; and so on. This paper provides a comprehensive survey of the texture feature extraction methods.
The latter are categorized into seven classes: statistical approaches, structural approaches, transform-based
approaches, model-based approaches, graph-based approaches, learning-based approaches, and entropy-
based approaches. For each method in these seven classes, we present the concept, the advantages, and
the drawbacks and give examples of application. This survey allows us to identify two classes of methods
that, particularly, deserve attention in the future, as their performances seem interesting, but their thorough
study is not performed yet.

INDEX TERMS Classification, feature extraction, image processing, image synthesis, segmentation, shape
from texture, texture.

I. INTRODUCTION
Texture is a key element of human visual perception and is
used in many computer vision systems. For the eyes, dis-
tinguishing different textures is an easy task. Nevertheless,
no precise definition of texture has been adopted yet. Some
authors proposed to define it as a measure of coarseness,
contrast, directionality, line-likeness, regularity, and rough-
ness [1]. The texture can also be seen as a similarity grouping
in an image [2] or as natural scenes containing semi-repetitive
arrangements of pixels [3]. In spite of the difficulty to give
a precise definition of this notion, the analysis of texture is
used in many applications: biomedical field (see [4]–[7]),
industrial automation (see [8]–[10]), document image anal-
ysis (see [11]–[13]), remote sensing (see [14]–[16]), face
recognition (see [17]) to cite only a few. These applica-
tions use texture parameters for classification, segmenta-
tion, or synthesis of images. For this purpose, the extraction
of features characterizing the texture is necessary. This can
only be performed by proposing mathematical definitions for
image textures [18].

A large number of texture feature extraction methods are
now proposed for engineers and researchers. Moreover, new

methods are still proposed, often based on the recent advances
of scientific areas.

This survey presents the main texture feature extraction
methods to help engineers, students, researchers in choosing
the best algorithms for their applications. We will focus here
on static texture analysis only (dynamic textures – temporal
textures – are not studied in this survey). Moreover, in this
work we do not intend to compare the methods presented
nor to give all their specific characteristics or application
domains. Our goal is more to try to be exhaustive on the
methods listed and to focus on their basic principles than
to give a full and in-depth development of each method.
Nevertheless, we give references where details can be found.

Texture feature extraction methods have already been the
focus of some survey papers in the last 25 years. Thus,
Materka and Strzelecki [19] proposed a review of texture
analysis methods but is was published more than 20 years
ago. Since then, many improvements in the methods have
been proposed. In 2002, Zhang and Tan [20] proposed a brief
review of texture analyses for which the performances are
not modified by translation, rotation, affine, and perspec-
tive transform. This review is therefore restricted to a small
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TABLE 1. Classes and corresponding methods presented in the survey.

number of methods and is now out of date. In 2004,
Castellano et al. [21] made a review of the principles of the
main texture analysis methods and their applications to the
medical field. However, this review is short as only the main
ideas are presented. Moreover, since 2004, many improve-
ments have been proposed in themethods. There are therefore
new trends and developments that are not presented in the
previous surveys.

In our work, the texture feature extraction methods
are divided into seven classes: statistical approaches,
structural approaches, transform-based approaches, model-
based approaches, graph-based approaches, learning-based
approaches, and entropy-based approaches. Different meth-
ods, see Table 1, are detailed in each class. Thus, for each
method, we first focus on the presentation of the concept,
then we expose advantages and drawbacks for each of them.
We finally cite examples of applications.

II. STATISTICAL APPROACHES
For statistical approaches, the statistical properties of the spa-
tial distribution of grey levels are used as texture descriptors.

A. GREY LEVEL CO-OCCURRENCE MATRIX OR SPATIAL
GREY LEVEL DEPENDENCE MATRIX
1) CONCEPT
The grey level co-occurrence matrix approach (GLCM),
also called spatial grey level dependence matrix (SGLDM)

approach, consists in considering second order statistics:
pairs of pixels in certain spatial relations to each other are
studied. For this purpose, co-occurrence matrices are used.
They relate the relative frequencies P(i, j|d, θ) that two pixels
at a constant vector distance (d, θ) from each other have
intensity (i, j): in the GLCM P(i, j|d, θ), the (i, j)th entry of
the matrix, represents the number of occurrences of a pixel
having the intensity value i that is separated from another
pixel with intensity value j at a distance d in the direction θ .
Two forms of co-occurrence matrix exist. In the first case,
the matrix is symmetric where pairs separated by d and −d
(for a direction θ ) are counted. In the second case, the matrix
is not symmetric and only pairs separated by a distance d are
counted. This leads to a square matrix that has a dimension
equal to the number of intensity levels in the image, for
each distance d and orientation θ . If pixel pairs in the image
are highly correlated, the entries in the GLCM are gathered
along the diagonal of the matrix. Note that the computa-
tion of the matrices (for each distance d and direction θ )
may be time consuming. This is why the distance and the
number of orientations are often limited to a small number
of sets. The computation time can be reduced by using a
reduced number of intensity levels (performed through the
quantization of the image). The classification of fine tex-
tures necessitates the use of small values for d whereas the
classification of coarse textures requires to use large values
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for d . Once the matrices computed, each one has to be con-
densed to a few numbers to classify texture. For this purpose,
Haralick and Shanmugam [22] proposed 14 measures. Later,
Conners and Harlow [23] mentioned that only 5 of these
14 measures are sufficient (in what follows, the image
has G discrete intensity levels):

1) energy: it provides information on image homogene-
ity; it has low values when the probabilities of the grey
level pairs are rather similar and high values otherwise.
It is computed as

∑G−1
i=0

∑G−1
j=0 P(i, j|d, θ)2.

2) entropy: it measures the disorder of the GLCM. It is
computed as

−

G−1∑
i=0

G−1∑
j=0

P(i, j|d, θ) log2(P(i, j|d, θ)). (1)

3) correlation: it measures the grey level linear depen-
dence between pixels (relative to each other) at the
specified positions; it has high values when the values
are uniformly distributed in the GLCM and low values
otherwise.

4) local homogeneity (also called inverse difference
moment): it is high when the same pairs of pixels are
found (e.g., in the case of a spatial periodicity). It is
computed as

∑G−1
i=0

∑G−1
j=0

P(i,j|d,θ)
1+(i−j)2

.
5) inertia (also called contrast): it quantifies local

variations present in the image. It is computed as∑G−1
i=0

∑G−1
j=0 (i− j)2 P(i, j|d, θ).

As mentioned above, the GLCM approach consists in con-
sidering second order statistics. The GLCM method studies
the grey level distribution of pairs of pixels. This is why it
is also known as the second-order histogram method. In the
sameway, higher-order statistics analyze the joint distribution
of more than two pixels. Thus, with the grey level run-
length matrix (GLRLM), the occurrence of runs of pixels is
studied (see below): the occurrence of a given grey value in
a given direction is analyzed. Then, higher-order statistical
features can be extracted from the GLRLM, as explained
below.

2) ADVANTAGES AND LIMITATIONS
One of the drawbacks of the GLCM approach is the high
dimensionality of the matrix and the high correlation of
the Haralick features. Maillard [24] compared the perfor-
mance of the semi-variogram, the Fourier spectra, and the
GLCMmethods in various classification contexts. The results
showed that the GLCM method shows better results for
simple situations where the textures are visually easily sep-
arable [24]. Furthermore, the GLCM algorithm is easy to
implement and has been shown to give very good results
in a large fields of applications (see [25]). However, due to
their large dimensionality, the GLCM’s are very sensitive to
the size of the texture samples that are processed. This is
why the number of grey levels is often reduced. Moreover,
it has been shown that, when processing document images,
the GLCM-based approach has good performance in terms

of processing time and complexity [11] but consumes a high
amount of memory. Furthermore, for historical document
images with a large amount of noise, the GLCM features
are not appropriate [11]. However, for historical document
images, containing graphics and single text font, the features
given by the GLCMmethod should be a good choice because
the method is fast and easy to use. Nevertheless, the method is
not adapted for separating different text fonts [11]. Finally, for
image classification purposes, selecting the distance d may
be crucial. The value of d must be large enough to include
the texture pattern but also small enough to keep the local
character of spatial dependence.

3) EXAMPLES OF APPLICATIONS
Recently, Seul and Okarma [26] proposed to use the
GLCMmethod as a texture classification approach for clean-
ing robots. Nouri et al. [27] used GLCM texture features as
indices for non-destructively assessing bread staling progress.
The method has also been used for the detection of channel
by seismic texture analysis [28]. In the biomedical field,
the technique has been used to distinguish benign and malig-
nant breast lesions [29]. Other biomedical applications can be
found in [21].

B. GREY LEVEL RUN-LENGTH MATRIX (PRIMITIVE
LENGTH TEXTURE FEATURES)
1) CONCEPT
With GLRLM, the principle relies on the fact that coarse
textures are characterized by many neighbouring pixels hav-
ing the same grey level. By opposition, fine textures are
characterized by a low number of neighbouring pixels having
the same grey level [30]. The so-called primitive (run) is a set
of maximum number of pixels having the same grey level,
in the same direction. Thus, a primitive is defined by its grey
level g, its length l, and its direction. For an image, an element
of the GLRLM e(g, l) is defined as the number of runs with
pixels of grey level g and run-length l. Thus, e.g., given the
vertical direction, GLRLM is computed by searching – for
each allowed grey level value – howmany times there are runs
of, e.g., 2 consecutive pixels having the same value. The same
is performed for 3 consecutive pixels, then for 4 consecutive
pixels, etc. Many different GLRLM can be computed for an
image, one for each chosen direction. Usually, 4 matrices
are computed: one for the horizontal direction, one for the
vertical direction, and two for the diagonal directions. Then,
a 2D run-length histogram (Hg,l) is computed for each direc-
tion. For this, one axis represents the run-length l and the
other corresponds to the grey level value g. For each his-
togramHg,l , a feature vector of GLRLM indices is computed.
Thus, by denoting P(g, l) the probability of a specific run-
length, several image texture features can be defined, among
which we can find (with Hg,l being normalized)

• Short primitive emphasis (short run emphasis): it
characterizes fine-grained textures. It is computed as∑nG−1

g=0
∑L

l=1
P(g,l)
l2

,

VOLUME 7, 2019 8977



A. Humeau-Heurtier: Texture Feature Extraction Methods: A Survey

• Long primitive emphasis (long run emphasis):
it characterizes coarse textures. It is computed as∑nG−1

g=0
∑L

l=1 P(g, l)× l
2,

• Primitive length uniformity: it is an indicator of few
run-length outliers dominating the histogram. It is com-
puted as

∑nG−1
g=0 [

∑L
l=1 P(g, l)]

2,
where nG is the number of grey level bins (number of bins
used for the quantization of the image) and L is the maximum
run-length.

2) ADVANTAGES AND LIMITATIONS
Several studies compared the GLRLM features with other
traditional texture features [23], [31]. These studies have
shown that the run-length features are the least efficient
texture features compared with other methods. This is why
Tang [32] designed several new run-length matrices using a
multilevel dominant eigenvector estimation algorithm. More-
over, Venkateswarlu et al. [33] proposed the run-length
matrix on fuzzy local binary pattern.

3) EXAMPLES OF APPLICATIONS
Biomedical applications of the GLRLMmethod can be found
in [21]. Recently, Vamvakas et al. [34] used GLRLM for
the differentiation of glioblastoma multiform from solitary
metastasis. In other fields of applications, GLRLM has been
used for the automated recognition of drill core textures [10]
and to classify different varieties of maize seeds [35].

C. AUTOCORRELATION-BASED APPROACHES
1) CONCEPT
In this approach, the dot product of the image with shifted
copies of this image is computed. This gives features that
are used to obtain information on periodic and similar pat-
terns [36]. Thus, if the sub-patterns (primitives) inside the
image are large, the autocorrelation function decreases slowly
with increasing distance. On the other hand, if the primitives
are small, the autocorrelation will decrease rapidly [18]. If the
primitives are periodic, the autocorrelation function decreases
and increases periodically with distance. Therefore, coarse-
ness can be detected with autocorrelation. The directionality
of the sub-pattern can also be determined with the shift orien-
tations. Thus, for the horizontal and vertical axes and for an
image I , the autocorrelation function is computed as

RI ,α,β (x, y) =
∑
α∈�

∑
β∈�

I (x, y)I (x + α, y+ β), (2)

where α and β correspond, respectively, to the pixels in the
horizontal and vertical axes on the plane � with which the
image is translated. From these results, a polar diagram –
the so-called rose of directions – can be obtained [18]. It is
computed for each orientation through the summation of the
different values of the autocorrelation function

RI ,x,y(θi) =
∑
Li

RI ,α,β (x, y), (3)

where θi ∈ [0, π] is the orientation of the set of possible
orientations Li which is represented by a straight line passing
through (x, y) and the angle θi. The rose of directions gives
information on the significant orientations and periodicities
of the texture.

2) ADVANTAGES AND LIMITATIONS
It has been reported that autocorrelation is not a good mea-
sure of coarseness [37]. Moreover, it seems that – in natural
textures – the method is not a very good discriminator of
isotropy.

3) EXAMPLES OF APPLICATIONS
Unser and Coulon [38] used correlation and grey level differ-
ence measure in an automatic visual inspection system of tex-
ture. Moreover, the method has been used to extract features
for synthetic aperture sonar image seabed segmentation [39].

D. HISTOGRAM OF GRADIENT MAGNITUDES
1) CONCEPT
In 2015, Sharma and Ghosh [40] proposed a new rotation
invariant local texture descriptor, the so-called histogram of
gradient magnitudes. In the latter method, a histogram of
magnitudes of the gradients is computed and the orientation
of the local gradients of pixel intensities is ignored [40]. The
gradient of magnitude gives the strength of the edge through
the amount of the difference between pixels in the neigh-
borhood: it gives an information on how quickly the image
is changing. The histogram over the gradient-magnitudes of
pixels is computed and does not take into account the gradient
orientation. This is why the method is rotation-invariant. The
full algorithm of the method is given in [40]. Moreover, using
a different approach but still with histogram of gradients,
Li et al. [41] proposed in 2016 the histogram of oriented gra-
dient based gist (HOG-gist) for building recognition. This lat-
ter method individually computes the normalized histograms
of multi-orientation gradients for the same image with four
different scales. These normalized histograms of oriented
gradients are orientation gist feature vectors of an image.

2) ADVANTAGES AND LIMITATIONS
The two main advantages of the histogram of gradient mag-
nitudes are its rotation invariance and its low computational
complexity: the computation time linearly varies with the
number of pixels in the image under study [40]. Moreover,
themethod has shown to outperform other texture descriptors,
as LBP and rotation invariant LBP, in texture classification
and image segmentation [40].

3) EXAMPLES OF APPLICATIONS
Sharma and Ghosh [40] used the histogram of gradient mag-
nitudes on several datasets (Outex texture database, Mirflickr
25000 image-collection, and a satellite-imagery dataset).
Their results show that the histogram of gradient magnitudes
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gives very good performances compared to other existing
methods.

E. LOCAL MAPPED PATTERNS-BASED APPROACHES
1) CONCEPT
Local mapped pattern-based methods are an evolution of the
local fuzzy pattern method [42]. In the latter, the grey level
values of a neighborhood is interpreted as a fuzzy set and
each grey level of a pixel as a fuzzy number [42]. Moreover,
a membership degree of the central pixel in a neighborhood
is given by a membership function (fuzzy membership func-
tion). For local mapped pattern, any mapping function can
be used. Thus, in the local mapped pattern descriptor, each
pattern is defined by a neighborhood p = W ×W that can be
mapped to a histogram bin hb as:

hb = round
(∑v−1

i=1 fgiM (i)∑v−1
i=1 M (i)

(B− 1)
)
, i = 1, . . . , (v− 1),

(4)

where fg is the mapping function,M (i) is a weighting matrix
containing predefined values for each pixel position in the
neighborhood, and B is the number of bins in the his-
togram. Several approaches based on local mapped patterns
have been proposed as feature descriptor [43]–[45]. The
local mapped pattern approach has also been extended for
circular neighborhoods: the method, called sampled local
mapped pattern [46], considers the neighborhood of a center
pixel as a set of values within a circular symmetry radius.
In 2016, Vieira et al. [46] proposed a new texture descriptor
for classification of rotated textures, the so-called sampled
local mapped pattern magnitude, based on the local mapped
patterns approach. This method combines the sampled local
mapped pattern descriptor and a histogram with magnitude
information. It therefore considers the magnitude between
neighboring pixels and extract rotation invariant features.
Very recently, the completed local mapped pattern descriptor
has been proposed as an improvement of the sampled local
mapped pattern magnitude descriptor [47].

2) ADVANTAGES AND LIMITATIONS
The sampled local mapped pattern magnitude descriptor
and the completed local mapped pattern descriptor have the
advantage of being robust to image rotation variation.

3) EXAMPLES OF APPLICATIONS
The sampled local mapped pattern magnitude method has
successfully been used for human epithelial type 2 cell
classification [48].

F. LOCAL ENERGY PATTERN
1) CONCEPT
In 2013, Zhang et al. [49] proposed a statistical histogram-
based representation, the local energy pattern, for texture
classification. The procedure leads to a local descriptor which

models texture image as histogram over statistical local fea-
ture vectors. The algorithm relies on three steps: first, normal-
ized local-oriented energies are used to generate local feature
vectors. For this purpose, the input image I is convolved
with the oriented Gaussian-like second derivative filters. This
leads to image Iθp where θp (p = 0 . . .P − 1) are the orien-
tations and P is the number of oriented filters. Then, for an
image the oriented energy is defined as eθp = I2θp . Afterwards,
the energies are locally summed over a Gaussian weighted
regionwith the corresponding pixel at the center. This leads to
the local oriented energy computed as Eθp = Gw ? eθp , where
Gw is the Gaussian window used for smoothing. The local
feature vector V is defined as V = {Eθ0 ,Eθ1 , . . . ,EθP−1}.
The local feature is then normalized as described in [49].
In the second step, each local feature vector is quantized and
transformed to a number by N-nary coding. Finally, the fre-
quency histogram is a global representation of the texture.

2) ADVANTAGES AND LIMITATIONS
The local feature vectors that are generated in the local energy
pattern approach are relatively invariant to the imaging condi-
tions [49].Moreover, the N-nary coding reduces the quantiza-
tion loss and thus preserves more local structure information.

3) EXAMPLES OF APPLICATIONS
The local energy pattern approach has been used in material
categorization [49].

G. VARIOGRAM
1) CONCEPT
For the grey levels I (x, y) positioned at row x and column y in
an image having N pairs of pixel values [I (x, y) and I (x ′, y′)]
separated by a distance h, the variogram is computed as [50]

2γ (h) =
∫
x

∫
y
[I (x, y)− I (x ′, y′)]2dydx, (5)

where h is the Euclidean distance between the pixel value
at row x and column y and the pixel value at row x ′ and
column y′. In practice the above-mentioned equation is
approximated by

2γ (h) =
1
N

N∑
i=1

[I (x, y)− I (x ′, y′)]2. (6)

In practice, the semi-variogram is computed instead of the
variogram

γ (h) =
1
2N

N∑
i=1

[I (x, y)− I (x ′, y′)]2. (7)

Spatial directions can be chosen in the computation. For
instance, the E-W direction gives

γ (h) =
1
2N

N∑
i=1

[I (x, y)− I (x + h, y)]2. (8)

VOLUME 7, 2019 8979



A. Humeau-Heurtier: Texture Feature Extraction Methods: A Survey

The semi-variogram is computed by starting at h = 1
(a one-pixel offset), then incrementing by one through a
maximumvalue for h. For the plot, the variogram corresponds
to the plot of γ (h) as a function of distance h. From this plot,
three quantities are often computed [51]
• the y-intercept, also called nugget. This quantity reflects
the variability at distances smaller than the sample
spacing,

• the limiting value of the variogram over large scales, also
called sill. This quantity corresponds to the maximum
variance reached by the variogram,

• the distance at which the limiting value is obtained, also
called range. It corresponds to the distance at which the
sill is reached.

2) ADVANTAGES AND LIMITATIONS
The variogram approach is computationally simple and easy
to interpret as a graph. However, the estimator given in
Eq. 8 is not robust with respect to outliers or severe skew-
ness [52]. This drawback led to the development of robust
semi-variograms [53].

3) EXAMPLES OF APPLICATIONS
St-Onge and Cavayas [54] proposed the variogram to esti-
mate forest stand structure. Atkinson [55] used the variogram
in the field of airborne multispectral scanner imagery. The
variogram has also been used in the biomedical field [56] and
in urban area extraction [57].

H. TAMURA FEATURES
1) CONCEPT
In what follows an image of width W and height H will
be noted as I and the pixel at location x and y as I (x, y).
Tamura et al. [1] proposed texture features that correspond
to human visual perception. They proposed six basic texture
descriptors (see below) where the three first outperform oth-
ers for global descriptions of textures for image segmentation
and classification:

1) Coarseness corresponds to the scale and repetition
rates of texture. As Tamura et al. [1] mentioned, for
patterns with different structures, the bigger its element
size, the coarser it is. Coarseness can be computed as

Coarseness(I ) =
1

W × H

W−1∑
x=0

H−1∑
y=0

Sbest (x, y), (9)

where Sbest (x, y) = 2k . k is the value that maxi-
mizes max1≤k≤L(Ek,h(x, y),Ek,ν(x, y)) in the horizon-
tal or vertical direction, k ∈ [1,L] where 2L ≤
min(W ,H ). Ek,h(x, y) and Ek,ν(x, y) are computed
from Ak (x, y) which is the average at each pixel I (x, y)
of the neighborhood of size 2k × 2k :

Ak (x, y) =
x+2k−1−1∑
i=x−2k−1

y+2k−1−1∑
j=y−2k−1

I (i, j)
22k

. (10)

From Ak (x, y), Ek,h(x, y) and Ek,ν(x, y) are computed
as

Ek,h(x, y) = |Ak (x + 2k−1, y)− Ak (x − 2k−1, y)|

(11)

and

Ek,ν(x, y) = |Ak (x, y+ 2k−1)− Ak (x, y− 2k−1, y)|.

(12)

2) Contrast takes into account the distribution polar-
ization of black and white pixels and describes the
dynamic range of grey levels. It is computed as

Contrast(I ) =
σ

4
√
α4
, (13)

where σ is the standard deviation and α4 =
µ4
σ 4
. µ4

corresponds to the fourth moment about the mean.
3) Directionality measures the total degree of direction-

ality. It is computed from an histogram of local edge
probabilities against their directional angle. With the
quantification of the sharpness of the histogram peaks,
we measure the texture directionality by summing
the second moments around each peak.

4) Line-likeness is concerned only with the shape of a
texture element. It is defined as an average coincidence
of the edge directions in the grey levels.

5) Regularity is a property for variations of a placement
rule. When there is no variation in the placement rule
in the texture, it is observed as regular. By opposition,
when a texture presents large variations in the place-
ment rule, it is observed as irregular.

6) Roughness is related to the standard deviation of the
normalized grey levels.

A Tamura image is an image computed from the value of
the three features ‘‘coarseness-contrast-directionality’’ (CND)
at each pixel. This image can be seen as done for a joint
RGB distribution.

2) ADVANTAGES AND LIMITATIONS
In the context of texture features extraction, Tamura proper-
ties are very meaningful. Tamura features are derived from
a psychophysical context. Therefore, they are visually mean-
ingful to humans. This is the great advantage of the Tamura
features. Howarth and Ruger [58] performed an evaluation of
texture features between the GLCM, the Tamura features, and
the Gabor filters. In the same way, Zhao et al. [59] showed
that – when the criterion of Human Vision System is used
for the performance – Tamura texture model performance
for the description of coarseness is better than grey level co-
occurrence texture coarseness and fractal dimension textural
coarseness.

3) EXAMPLES OF APPLICATIONS
The Tamura features have been used to analyze historical
document images [11], [60], [61]. They also have been
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used to facilitate the similarity measurement and improve
the retrieval accuracy in the biomedical field [62]. More-
over, Tamura features have also been used for analyzing and
describing textures in linguistic terms [63]. In the latter work,
three steps were proposed: texture analysis (to extract Tamura
features), fuzzy clustering, and texture description.

I. LOCAL BINARY PATTERN AND VARIANTS
1) CONCEPT
Local binary pattern (LBP) was first suggested by
Ojala et al. [64] in 1996. LBP associates the analysis of
local structures (as in structural methods) and the analysis
of occurrences (as in statistical methods). The LBP method
represents each image pixel qc with a binary pattern. The
latter is based on the difference between the grey level value
of the pixel qc and its circular neighborhood with specified
radius R centered at qc. Thus, the LBP codes are computed as

LBPP,R(qc) =
P−1∑
p=0

s(x)2p, (14)

where x = qp − qc is the difference between the inten-
sity levels of the neighboring pixels (qp) and the central
pixel (qc) within the circular neighborhood of radius R and
P neighboring pixels. In addition, s(x) is

s(x) =

{
1 x ≥ 0
0 otherwise.

In practice, the neighboring pixels is on a circle. Therefore,
we use interpolation for neighbors that are not exactly in the
center of pixels. The binary number is formed by arrang-
ing each bit in a clockwise or anti-clockwise sequence and
assigned to the center pixel. As each digit of a LBP code
is 0 or 1, the codes are ranging from 0 to 2P−1. Due to the sign
function s(), the LBP code is invariant against any monotonic
transformation of image brightness. The histogram of these
different labels can then be used as a texture descriptor. Thus,
a texture image can be characterized by the distribution of
LBP patterns, representing an image by a LBP histogram
vector h

h =
W∑
i=1

H∑
j=1

δ(LBPP,R(i, j)− k), (15)

where 0 ≤ k < d = 2P is the number of LBP patterns,
δ is the Heaviside function, and W and H are the dimen-
sions of the image. In 2011, Fernandez et al. proposed a
variant of LBP: the binary gradient contours (BGC) that
are a family of descriptors relying on pairwise comparison
of adjacent pixels where the latter belong to one or more
closed paths traced along the periphery of the 3 × 3 neigh-
bourhood [65]. An improved version of BGC has also been
proposed [66]. In 2013, Wang et al. [67] proposed the local
neighboring intensity relationship pattern (LNIRP) descriptor
to extract texture feature. The LNIRP descriptor relies on the
neighboring intensity relationship (NIR) operator and applies

the same binary encoding strategy as LBP. The LNIRP
descriptor is complementary to the LBP descriptor. In 2015,
the phase congruency-based binary pattern (PCBP) has been
proposed by Cai et al. [68] as a texture descriptor for clas-
sification of breast ultrasound images. PCBP is an integra-
tion of the phase congruency approach and the LBP-based
method. In 2016, Nguyen et al. [69] extended the binary
patterns from the pixel level to the local distribution level.
In 2016 also, Qi et al. [70] proposed the local orientation
adaptive descriptor (LOAD) to capture regional texture in an
image. For this, point description is defined on an adaptive
coordinate system (ACS). A binary sequence descriptor is
used to obtain relationships between a point and its neighbors.
A multi-scale description is also proposed to capture multi-
scale texture information [70]. In 2017, based upon LBP,
Zhang et al. [71] proposed the completed discriminative
local features (CDLF) that improves the LBP features in two
main points: (i) in the pattern encoding stage, a transfor-
mation matrix using labeled data is learnt; (ii) in the his-
togram accumulation step, an adaptive weight strategy is used
to consider the contributions of pixels in different regions.
Other improvements have also been proposed very recently
(see [72]–[77]).

2) ADVANTAGES AND LIMITATIONS
The advantage of LBP-like approaches is that they combine
structural and statistical methods leading to an increase in
performance for texture analysis. Moreover, the implemen-
tation of the method is easy and the computational cost is
low. Furthermore, it is invariant to monotonic illumination
changes. Nevertheless, the original method has some draw-
backs: it is sensitive to image rotation; it produces rather
long histograms leading to decreased distinctiveness and also
the need to large storage; the textural information extracted
is limited if the spatial support (e.g., 3 × 3 neighbourhood)
is small; it loses local textural information (e.g., contrast)
because it considers only the signs of differences of neigh-
bouring pixels; and it is highly sensitive to noise and blurring.
This is why several variants of the original LBP method
have been proposed, as reviewed in [78]. Thus, in 2000,
a rotation invariant version has been proposed [79]. It con-
sists in grouping rotated versions of the same binary code.
However, this version still has some drawbacks and this
is why other extensions of the LBP descriptors have been
proposed then, as described in [80]. Other rotation invariant
versions have also been proposed [81]–[84]. Furthermore,
other variants have been developed to improve the discrim-
inative power of the method [85]–[87], including multiscale
approaches [88], [89].

The sensitivity to noise has also been the subject of several
works such as [17] and [90] where, among others, the local
ternary patterns (LTP) is proposed to overcome the high
sensitivity to noise in near-uniform regions that is present
in LBP, and to introduce a higher level of granularity. A local
combination adaptive ternary pattern (LCATP) descriptor has
also recently been proposed to encode both colour and local
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information [91]. A variant of LBP to obtain texture descrip-
tors insensitive to blur is also available [92].

Liu et al. [78] proposed six classes of a taxonomy for
the LBP variants to classify them according to their roles in
feature extraction [78]:

1) Traditional LBP
2) Neighborhood topology and sampling
3) Thresholding and quantization
4) Encoding and regrouping
5) Combining complementary features
6) Methods inspired by LBP.

The reader is invited to refer to this paper and [93] to obtain
more details on existing LBP variants.

3) EXAMPLES OF APPLICATIONS
Heikkila et al. [94] used an LBP-based method for interest
region description. LBP-based features have also been used
for medical image analysis [93]. Ahonen et al. [95] and
Huang et al. [96] used LBP-based features in face recognition
problems whereas Satpathy et al. [97] used them in object
recognition tasks.

J. SHAPE INDEX HISTOGRAMS
1) CONCEPT
The shape index histograms method proposed by
Larsen et al. [98] in 2014 consists of a texture descriptor
based on second-order image structure captured by the shape
index. The shape index is an image geometry measure that
captures second-order image structure in a continuous inter-
val, as described in detail in [99]. From this, the distribution
of curvatures in a histogram can be summarized. A rotation-
invariant spatial pooling scheme for the shape index his-
tograms has also been proposed [98].

2) ADVANTAGES AND LIMITATIONS
The second-order structure captured by the shape index is
well suited for blob-like structures. Moreover, the parameters
(shape scale and pooling scale) of shape index histograms are
intuitive. Nevertheless, the number of bins is determined in an
ad hoc-manner [98].

3) EXAMPLES OF APPLICATIONS
The method has been used for an automatic classification
of indirect immunofluorescence images of HEp-2 cells into
different staining pattern classes [98].

K. WEBER LOCAL DESCRIPTOR
1) CONCEPT
The Weber local descriptor (WLD) is based on the Weber’s
law (a psychological law) [100]. This descriptor is made of
two components. Thus, for each pixel of the image under
study, two components of the WLD feature are computed:
differential excitation and gradient orientation. The differen-
tial excitation component is a function of the ratio between
the relative intensity differences of a current pixel against its

neighbors and the intensity of the current pixel. The orien-
tation component is the gradient orientation of the current
pixel [100]. Therefore, the descriptor depends on both the
local intensity variation and the magnitude of the center
pixel’s intensity. With the combination of the WLD feature
per pixel, a histogram of the input image is obtained. Texture
classification with the WLD is performed using the 2DWLD
histogram. In 2018, Dong et al. [101] used the Weber’s law
methods and proposed a multi-scale counting and difference
representation (CDR). Thus, the single scale CDR feature
is composed of two components: the local counting vec-
tor (LCV) and the differential excitation vector (DEV). The
LCV captures local texture structures using the local counting
projection. The DEV is constructed to represent the differ-
ence information of textures based on the outputs of Weber’s
law. The multiscale CDR improves the discrimination of the
extracted single-scale CDR [101].

2) ADVANTAGES AND LIMITATIONS
The advantage of the WLD is that it is based on the Weber’s
law that is a law developed according to the perception of
human beings.

3) EXAMPLES OF APPLICATIONS
Ullah et al. [102] proposed an approach based on WLD for
gender recognition from face images.

L. DETERMINISTIC WALK
1) CONCEPT
In 2010, Backes et al. [103] proposed a texture feature extrac-
tion method based on the analysis of the transient time and
cycle period joint probability distribution calculated by the
deterministic tourist walk: the method uses a ‘‘tourist’’ to
explore the input image on a given scale considering a deter-
ministic rule. Thus, for an image two pixels are considered
as neighbors if the geometrical distance (Euclidian distance)
between them is smaller than 2. For two pixels considered
as geometric neighbors, the module of the difference of their
intensities is the real distance between these two pixels.
Therefore, a traveler walking through neighboring pixels can
onlywalk to the following rule: move to the nearest or furthest
neighbor if it has not been visited in the last µ previous
steps [103]. The tourist trajectory depends on the walking rule
and the image context. Each walk is composed of two parts:
(i) the transient for which the agent walks freely to exploit
texture characteristics; (ii) the attractor which is a sequence of
pixels which repeats along the walk and fromwhich the agent
cannot escape. The tourist’s movements are performed based
on a neighborhood table that represents the tourist graph.
A histogram is used to extract information from the joint
probability distribution of transient times and attractor peri-
ods from which it is possible to quantify and compare tex-
tures [103]. As suggested by the authors, a relation exists
between the histogram and texture behavior [103]. Thus, for
textures with well defined and constant patterns, there are
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many near attractors. Therefore, the histogram contains a
higher peak in the beginning of the curves. It then decreases
rapidly (there are few long walks). By opposition, for tex-
tures with sparse and not constant patterns, the histogram
is more uniform [103]. In 2010 also, Backes et al. [104]
proposed another approach to compute the direction during
the deterministic tourist walk to explore an image. In 2013,
the deterministic partially self-avoiding walk (tourist walk)
has been associated with fractal dimension theory [105].

2) ADVANTAGES AND LIMITATIONS
The method proposed by Backes et al. has the advantage of
exploring the image on all scales simultaneously.

3) EXAMPLES OF APPLICATIONS
The deterministic tourist walk-based approach has been used
to build a system for the identification of wear particles [106].
Wear particles give information on the wear processes taking
place between mechanical components.

III. STRUCTURAL APPROACHES
A. CONCEPT
Structural approaches decompose textures into elements,
the primitives or texels. The primitives and their spatial
arrangements are used to characterize textures. Thus, for the
structural approaches, texture is considered as the replica-
tion – in a more or less regular manner – of a basic textural
element or primitive. The structural approaches aim at deter-
mining the textural primitive and at defining the placement
rules.

The difference between structural approaches is the choice
of primitives. Texture primitives are often considered as
regions with uniform grey levels [107], pixels [108], grey
level peaks [109], line segments [110], average edge sepa-
ration in different orientations [111], repetition of edges in
different orientations [112], etc. Indeed, periodic structures
can also be seen as a regular arrangement of lines, or line seg-
ments, of different orientations. In 2005, Lazebnik et al. [113]
proposed a method that uses a set of affine Harris and
Laplacian regions as texture elements. The latter are char-
acterized by spin image and the rotation-invariant fea-
ture transform (RIFT) descriptors. Different methods have
been proposed to identify the texture primitives: boundaries
detection such as Laplacian of Gaussian (LoG) or differ-
ence of Gaussian (DoG) filters [114]–[116], mathematical
morphology [117]–[120].

The placement rule step consists in inferring placement
rules that define the spatial relationships between the primi-
tives. Measures and statistics of homogeneous primitives can
also be computed: intensity, orientation, elongation, and com-
pactness [121]–[125]. Matsuyama et al. [126] evaluated the
energy distribution in the Fourier power spectrum to extract
the two spatial vectors representing the placement rule. Some
used the diagonality of the co-occurrence matrix to extract
periodicity vectors [127]. Other approaches have also been

proposed, see [128], [129]. Eichmann and Kasparis [130]
based their work on the fact that regular textures are an
arrangement primarily of line structures appearing periodi-
cally in the texture. This is why they proposed a structural
line detection approach. For this purpose, the line detection
was performed using the Hough technique. Texture features
proposed were computed from the Hough domain: principal
directions of lines in the texture, periodicity and line separa-
tion in each direction, among others.

For structural approaches, two ways of analysis are possi-
ble: the bottom-up analysis procedure in which texture primi-
tives are determined and, afterwards, the spatial arrangement
of the extracted elements is chosen, and the top-down meth-
ods in which the spatial structure of texture is first computed
and, then, the element extraction is performed. The combina-
tion of the two approaches can also be used [131].

B. ADVANTAGES AND LIMITATIONS
The structural approaches are usually used for regular
textures because structural approaches are based on regu-
larity. A primitive is periodically repeated in the texture
with some placement rules. These approaches are there-
fore not appropriated for textures with a high degree of
randomness. The advantage of the structural approaches is
that they give a good symbolic description of the image.
Moreover, the feature extraction algorithm proposed by
Eichmann and Kasparis [130] has the advantage of being
independent of geometrical transformations such as transla-
tion, rotation, and scaling. However, the structural approaches
are better for synthesis than for analysis purposes.

C. EXAMPLES OF APPLICATIONS
A structural approach has been used to quantitatively charac-
terize nuclear chromatin texture in light microscope images
of Pap smears [132]. For this purpose, the chromatin was
segmented into blob-like primitives and their properties and
arrangement were then characterized [132].

IV. TRANSFORM-BASED APPROACHES
Transform methods represent an image in a space (such as
the frequency or the scale space) whose coordinate system
has an interpretation closely related to the characteristics of a
texture.

A. FILTER BANKS: LAW’S TEXTURE FEATURES,
A TEXTURE ENERGY APPROACH
1) CONCEPT
This feature extraction method involves the application of
simple filters to digital images. It is based on two steps. First,
several 1D arrays (see below) convolved together in a combi-
natorial way are used to generate twenty-five 3× 3 or 5× 5
masks [133]. The latter are then convolved with a texture
field to stress its microstructure. This leads to an image from
which the energy (and other statistics) of the microstructure is
measured. Second, macrostatistic features are obtained over
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large windows. The five 1D arrays (size of 5) identified by
Laws are:
• Level L5 = [1 4 6 4 1]
• Edge E5 = [-1 -2 0 2 1]
• Spot S5 = [-1 0 2 0 -1]
• Wave W5 = [-1 2 0 -2 1]
• Ripple R5 = [1 -4 6 -4 1].
For oriented textures, steerable filters have also been pro-

posed [134]. They correspond to a set of orientation-selective
filters, computed from a linear combination of basis filters.
Unser and Eden [135] also proposed an equivalent filter
bank from a nonlinear transformation and an iterative Gaus-
sian smoothing algorithm. The local statistics (texture energy
measures) are computed at the output of this equivalent filter
bank. In 2008, Mellor et al. [136] proposed a method based
on invariant combinations of linear filters. This method is
composed of two steps: the first step consists in computing
two descriptors at each point in the image. Thus, the Hessian
matrix is constructed by the polar-separable filters and then
the eigenvectors (principal directions) and eigenvalues (prin-
cipal curvatures) of the matrix are computed. These eigenvec-
tors and eigenvalues are rectified to the local phases and local
energies. These descriptors are locally invariant to contrast
changes, intensity shifts, rotations, and scaling. They are also
robust to skew. Then, the texture is represented with first-
order statistics of these descriptors.

2) ADVANTAGES AND LIMITATIONS
Law’s measures have the drawback of not being rota-
tionally invariant. However, the method proposed by
Mellor et al. [136] leads to a texture description invariant to
local changes in orientation, contrast, and scale.

3) EXAMPLES OF APPLICATIONS
Law’s features have been used to describe texture of soil
images [137]. They also have been used in the biomedical
field [138]–[140]. The filter-based approach has also been
used in a framework to identify fibrotic regions, in ultrasound
images, with minimal user interaction [141].

B. FOURIER TRANSFORM-BASED APPROACHES
1) CONCEPT
In the Fourier transform-based approaches, a 2D discrete
Fourier transform (called F in what follows) is used to
decompose the image I of size H × W under study into its
frequency components (sum of orthogonal basis functions)

F (u, v) =
W∑
n=1

H∑
m=1

I (n,m) exp(−j2π (
un
W
+
vm
H

)), (16)

where u and v are, respectively, the horizontal and vertical
frequencies. The real and imaginary parts can be extracted,
as well as the magnitude and phase. For feature extraction,
the principle is that spatial edges exhibit a low frequency in
one direction, whereas in the orthogonal direction there are
multiple frequencies. In the Fourier domain, this is shown

by straight lines. For the zero frequencies (u = v = 0),
the Fourier transform computes themean of the image (colour
measure information rather than texture information). Usu-
ally, the result of the Fourier transform is plotted as an ampli-
tude spectrum corresponding to the modulus of the complex
values. The farest we are from the center of the spectrum,
the highest the frequency observed. Thus, a smooth texture
will show high values around the center (low frequencies)
whereas a rough texture will show values that are spread over
the spectrum (high frequencies). The idea for the texture fea-
ture extraction is therefore to consider the Fourier transform
as a way to represent the image as a weighted combination
of vertical and horizontal sinusoids, each one having its own
frequency (u, v): a sum of sinusoidal plane waves of vary-
ing frequencies is used to approximate the image. In 2013,
Maani et al. proposed an approach that first considers a neigh-
boring function defined on a circle of radius R at each pixel
of the input image. Then, the magnitude of the 1D Fourier
transform coefficients of this neighboring function is defined
as local frequency components. Afterwards, the 2D Fourier
transform is applied on the local frequency components and
bandpass filters are applied on the result. This leads to local
frequency descriptors that are noise robust rotation invariant
texture features [142]. In 2015, Zhang et al. [143] used the
combination of wedge filters in the frequency domain and
gradient orientation for texture representation. More pre-
cisely, Zhang et al. [143] proposed the computation of the
2D joint distribution of two descriptors; the first descriptor is
based on frequency decomposition by using scale invariant
wedge filters; the second descriptor is based on the gradient
orientation.

2) ADVANTAGES AND LIMITATIONS
The Fourier spectrum may be used when one wants transla-
tion invariance. However, one of the drawbacks of the Fourier
transform is that it cannot describe local variations of textures.
Moreover, the Fourier transform contains information local-
ized in the frequency domain, not in the space. Analyzing
the spectrum does not allow to conclude directly on the
spatial localization of the texture whose frequency response
is observed in the spectrum. This is why other methods
as Gabor decomposition-based approaches or wavelet-based
approaches are proposed.

3) EXAMPLES OF APPLICATIONS
The Fourier transform has been used in fingerprint identifica-
tion [144]. Moreover, Ojansivu and Heikkila [92] proposed
a new descriptor for texture classification that is robust to
image blurring. Their texture analysis method operates on the
Fourier phase [92].

C. GABOR DECOMPOSITION-BASED APPROACHES
1) CONCEPT
To extract the Gabor features, the multi-channel Gabor fil-
tering technique is used [145]. A Gabor filter is a Gaussian
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kernel function modulated by a sinusoidal plane wave. It can
be seen as a bandpass filter with tunable central frequency,
orientation, and bandwidth. A 2D Gabor filter can be com-
puted as

Gσ,f0,φ(x, y) = exp
(
−

1
2

[x ′2
σ 2
x
+
y′2

σ 2
y

])
cos(2π f0x ′ + φ),

(17)

where σx and σy are the scales of the Gaussian envelop
(standard deviations) in the x and y directions, respectively.
f0 and φ are respectively the frequency and phase of the sine
wave. x ′ and y′ are

x ′ = x cos(θ )+ y sin(θ ), (18)

y′ = −x sin(θ )+ y cos(θ ). (19)

Daugman modeled the visual information processing from
the 2D multi-channel Gabor functions [146]. The approach
enables filtering in the frequency and spatial domains.
The general principle of the Gabor decomposition-based
approaches relies on the decomposition of the original image
into several filtered images, each one having a limited spectral
information. Thus, the multichannel filtering of the original
image is performed through a bank of filters at different
scales and orientations. Filtering an image I (x, y) with Gabor
filters results in its Gabor wavelet transform [147]. TheGabor
features are then extracted from the magnitudes of the Gabor-
filtered images. They represent the statistical distribution of
the Gabor magnitude response. The directions 0, π/4, π/2,
and 3π/4 and the spatial frequencies 2

√
2, 4
√
2, 8
√
2, 16
√
2,

32
√
2, and 64

√
2 are widely used.

2) ADVANTAGES AND LIMITATIONS
Because of its localization both in the spatial and frequency
domain, a Gabor filter bank is able to perform a robust mul-
tiresolution decomposition. The multiresolutional aspect of
the approach, as for the wavelet transform, allows the extrac-
tion of frequency and orientation information. Small scales
extract high frequency content and large scales extract low-
frequency content. However, Gabor filters have the drawback
of being non-orthogonal which leads to redundant features at
different scales [148]. Gabor filters provide means for better
spatial localization than the Fourier transform.However, most
of the time there is no single filter resolution at which one can
localize a spatial structure in natural textures [19]. In 2013,
Riaz et al. [149] proposed texture features using Gabor fil-
ters which are invariant to scale and rotation changes in the
image.

3) EXAMPLES OF APPLICATIONS
Gabor decomposition-based approaches have been used in
the biomedical field [150]. They also have been used for
unsupervised texture segmentation in a deterministic anneal-
ing framework [151].

D. WAVELET-BASED APPROACHES
1) CONCEPT
Gabor filters and wavelet transforms analyze the content of
texture both in frequency and spatial domains. A 2D wavelet
transform allows the localization in the scale domain
(i.e. frequency) from dilations, but also in the spatial domain
via translations of a mother wavelet: a wavelet transform
approximates the image by dilated and translated local
wavelets. 1D (child) wavelets are computed by dilation
(by a power of two) and translation of a mother wavelet ψ :

ψj,k (t) =
1
√
2j
ψ

(
t − k2j

2j

)
, (20)

where j and k are, respectively, the scale and shift param-
eters. A discrete wavelet transform consists in applying a
series of scaled filters: high-pass and low-pass decomposi-
tions followed by down-sampling. The coefficients obtained
contain vertical (rows low-pass and columns high-pass), hor-
izontal (rows high-pass and columns low-pass), and diag-
onal (high-pass on both rows and columns) details. Thus,
the HH sub-image corresponds to the diagonal details (high
frequencies in the two directions, the corners), HL gives hor-
izontal high frequencies (vertical edges), LH represents the
vertical high frequencies (horizontal edges), and the image
LL gives the lowest frequencies. At the next scale, the image
LL undergoes the decomposition using the same filters.
At each stage of the analysis, 4 sub-images are produced
whose size is reduced twice compared to the previous scale.
Thus, the 2D j-level wavelet transform decomposes an input
image I (x, y) into 4 sub-bands and produces 3 j + 1 sub-
images. The sub-images obtained are then used to extract
scale dependent texture features such as energy, entropy,
variance, refined histogram, etc (see [152] for examples of
wavelet-based signatures). In 2017, based on the wavelet
transform, Dong et al. [153] proposed a multiscale rotation-
invariant representation of textures by using multiscale sam-
pling. In 2018, Yang et al. [154] proposed the association of
the dual-tree complex wavelet transform and LBP for rota-
tion, illumination, and scale invariant texture classification.

2) ADVANTAGES AND LIMITATIONS
The wavelet transform has the advantage of minimizing the
Heisenberg uncertainty, capturing localised frequency and
spatial information. However, the wavelet transform directly
uses wavelet basis, which is considered as a type of fixed
dictionary: they are therefore dataset independent. By oppo-
sition, vocabulary learning methods (see below) are dataset
dependent. Dictionary learning uses all the samples to train
the dictionary. The features are then extracted based on the
dictionary. The wavelet transform therefore achieves lower
flexibility than dictionary learning. Nevertheless, the wavelet
transform has the advantage of needing less complex com-
putation. Compared with the Gabor transform, the wavelet
transform has the advantage of providing variation of the
spatial resolution. This allows to represent textures at dif-
ferent scales. Moreover, the choice of the wavelet function
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can be an advantage for specific applications. However,
the wavelet transform is not translation-invariant [19] nor
rotation-invariant [155]. However, several papers proposed
attempts towards rotation invariant texture analysis using
wavelet transform (see [156] and a short survey mentioned
in [156]).

3) EXAMPLES OF APPLICATIONS
Wavelet features have been used to analyze historical docu-
ment images [11]. They also have been used in the biomed-
ical field: Jafari-Khouzani et al. [157] used wavelet-based
texture features to differentiate healthy from pathological
hippocampal tissue. The results could help physicians in the
determination of candidates for epilepsy surgery. Wavelet
features have also been used in a vegetation and land cover
classification based on a Quickbird image of subantarctic
Macquarie Island [158]. Fukuda and Hirosawa [159] used
the wavelet features in the classification of multifrequency
polarimetric SAR images. The wavelet features have also
been used in the automatic vine detection from airborne
infrared color image [160].

E. SHEARLET-BASED APPROACHES
1) CONCEPT
In 2013, He et al. [161] proposed a rotation invariant texture
descriptor based on the shearlet transform. The procedure
proposed by the authors relies on four steps: (i) the input
image is first decomposed by the shearlet transform; (ii) the
local shearlet-based energy features are computed; (iii) the
latter features are quantized and encoded to be rotation invari-
ant; (iv) from all the decomposition levels, the energy his-
tograms are concatenated into one histogram and used to
describe texture images. Later, in 2015, Dong et al. [162] pro-
posed another method based on shearlet for texture retrieval.
In the latter work, shearlet subband dependences are modeled
with linear regression. Then, energy features from shearlet
subbands are extracted and their dependences are modeled
using linear regression. The regression residuals are finally
used to compute the distance from a test texture to a texture
class [162].

2) ADVANTAGES AND LIMITATIONS
The shearlet-based method proposed by He et al. [161] has
the advantage of being robust with respect to noise and rota-
tion invariant.

3) EXAMPLES OF APPLICATIONS
The shearlet-based method has recently been used for face
recognition [163].

F. CONTOURLET-BASED APPROACHES
1) CONCEPT
In 2015, Zhang et al. [164] proposed a contourlet-based
texture feature extraction method for shear-wave elas-
tography. Thus, the contourlet transform was applied to

decompose shear-wave elastography images. The framework
of the authors then performs a subband reconstruction, initial
feature derivation and feature averaging to obtain the final
features [164].

2) ADVANTAGES AND LIMITATIONS
The contourlet-based texture feature yields good quantifi-
cation of the elastic properties of breast tumors and thus
increases diagnostic performance [164].

3) EXAMPLES OF APPLICATIONS
The contourlet-based texture features were used in shear-
wave elastography for breast tumor classification [164].

G. LOCALLY ENCODED TRANSFORM FEATURE
HISTOGRAM (LETRIST)
1) CONCEPT
In 2018, Song et al. [165] proposed the Locally Encoded
TRansform feature hISTogram (LETRIST) for texture feature
extraction. The procedure is based on the following steps:
(i) the extremum responses of the first and second directional
Gaussian derivative filters at multiple scales are computed;
(ii) a set of transform features is constructed by perform-
ing linear and non-linear operators on previous responses.
This allows to capture discriminative texture information;
(iii) these transform features are quantized into discrete tex-
ture codes via simple binary or multi-level thresholding;
(iv) these texture codes are encoded across scales to build
feature histograms, which are further concatenated to form
the image descriptor, i.e., LETRIST.

2) ADVANTAGES AND LIMITATIONS
LETRIST is training-free and efficient to implement. It is also
robust for texture description, robust toGaussian noise, robust
to rotation, illumination, scale and viewpoint changes [165].

3) EXAMPLES OF APPLICATIONS
LETRIST has been used in problems as face
recognition [166].

V. MODEL-BASED APPROACHES
Model-based approaches aim at representing texture using
mathematical models (such as fractal or stochastic).

A. COMPLEX NETWORK-BASED APPROACH
1) CONCEPT
A complex network is represented by a matrix (the adja-
cency matrix, W ) [167]. The latter has a dimension of
N × N when the complex network has N nodes (or ver-
tex). The weight of the connection from each note j to
each node i is represented by W (i, j). When no connection
exists between two nodes, a null value is assigned. Another
matrix, binary this one, is also computed (WT ). It contains
only the most significant connections: only elements of the
matrix W that are greater than or equal to a threshold T are
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kept [167]. From this, in 2008 – for texture characterization –
Chalumeau et al. [167] suggested to represent the image
pixels as nodes and similarities between such pixels were
mapped as links between the network nodes. More precisely,
weights of edges are defined with the grey level of pixels and
the connection between nodes i and j defined by [167]

W (i, j) =
255− |I (i)− I (j)|

255
, (21)

where I (i) represents the grey level of node i ∈ [0, 255].
We thus have W (i, j) ∈ [0, 1] where 0 corresponds to no
connection and 1 corresponds to the maximum connection
between two nodes.

Later, Backes et al. [168] used this approach and focused
on pattern recognition of texture. Thus, the complex network-
based approach uses the complex network theory to analyze
texture [168]: degree measurements are used to compose a set
of texture descriptors. More precisely, a graph G = (V ,E)
(V is the set ot vertices and E the set of edges) is built by
considering each pixel I (x, y) of the image I as a vertice
vx,y ∈ V of the graph G. A non-directed edge e ∈ E is
used to connect the vertices associated to two pixels I (x, y)
and I (x ′, y′), where e = (vx,y, vx ′,y′ ), when the Euclidean
distance between them is no longer than a value r . Then,
for each non-directed edge e, a weight w(e) is associated.
This weight is defined by the square of the Euclidian dis-
tance between the two connected vertices and the difference
of pixel intensity (between I (x, y) and I (x ′, y′)), normalized
according to the square of the radius r [168]. The histogram
degree can then be computed to determine features. For this,
the degree (or connectivity) of a node represents the number
of edges connected to this node. By computing the degree
for each network vertice v ∈ V , the histogram degree is
determined. Local and global characteristics of the network
can be determined from features computed from the degree
histogram. To extract additional information about the struc-
ture and dynamic of a complex network, a transformation to
the original network is applied: a threshold t to the original
set of edges E is applied, thus selecting a subset Et , Et ∈ E ,
where each edge of e ∈ Et has weightw(e) equal to or smaller
than t . Thus, by applying a set of thresholds T , t ∈ T , to the
original networkG, the behavior of its histogram features can
be obtained (computation of the mean, energy, entropy and
contrast).

In 2015, Scabini et al. [169] also proposed to analyze tex-
ture with complex network theory. For this, they constructed a
vocabulary of visual wordswith bag-of-visual-wordsmethod.
The vocabulary was built by extracting, from the networks,
the degree and strength of each vertex. The feature vector was
composed by the visual word occurrence.

More recently, another approach has been proposed
because some informative properties such as spatial informa-
tion are not analyzed in texture analysis based on a complex
network mode [170]. In the latter work, a local spatial pattern
mapping (LSPM) method was presented for manipulating
the spatial information in an image texture with multi-radial

distance analysis to capture the texture pattern. The LSPM
methodwas thus proposed to describe the spatial arrangement
of neighbors in a network. More precisely, it was proposed to
describe the uniformity of texture primitives when the binary
pattern of a binary row record contains at most two bit-wise
transitions between 0 and 1 in the same way as uniformity
in LBP theory [170]. In practice, LSPM is implemented by
using a look-up table.

2) ADVANTAGES AND LIMITATIONS
It has been shown that the computational complexity of
the original network-based approach can be considered
as O(N 2) [168]. Backes et al. [168] have shown that the
complex network-based approach presents a higher suc-
cess rate of classification for several databases when com-
pared with traditional texture analysis methods (first order
method, Fourier, Gabor, GLCM, discrete cosine transform,
wavelets,. . . ). Moreover, the method is relatively invariant
to rotation [168]: the network model is derived from the
Euclidean distance between pixels. In discrete space, as the
Euclidian distance is not constant at all rotation angles,
a small error is added [168]. One of the drawbacks of the
complex network-based approach is that, to compute the
features, the texture has first to be modeled by a complex
network using radius r . Then, a set of thresholds T has to
be applied to this network to compute different samples of
the network during its life [168]. Therefore, several parameter
values have to be set, which may be a tricky task. Moreover,
the presence of noise affects the way the edges are built in the
network.

3) EXAMPLES OF APPLICATIONS
Xu et al. [171] used a complex networks-based texture extrac-
tion and classification method to describe the froth image
texture and also to classify the different production states.

B. MOSAIC MODELS
1) CONCEPT
Mosaic models correspond to a class of generative models
where random pattern generation processes are used in the
plane to provide image structure [172]. Mosaic models there-
fore describe images by specifying geometrical processes that
may have generated the visual pattern under study. Then,
geometric properties of components in mosaics can be inves-
tigated. In mosaic models, two classes can be derived: cell
structure and coverage models.

a: CELL STRUCTURE MODELS
For this class, a random geometric process is first used to
tessellate the plane into ‘‘cells’’ and colors or grey levels are
then assigned randomly to the cells. The set of colors may
correspond to a set of values of any property, not necessarily
grey level. Different types of tessellations lead to different
types of mosaics. The possible tessellations include Poisson
line model, Delaunay model, and occupancy model.
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b: COVERAGE (OR ‘‘BOMBING’’) MODELS
In this case, figures are randomly dropped on the plane,
and colors are then assigned randomly to the figures. There-
fore, from a random arrangement of a set of geomet-
ric figures (‘‘bombs’’) in the plane, a coverage mosaic is
obtained [172], [173].

2) ADVANTAGES AND LIMITATIONS
The large number of possible models enables a means of
controlling or matching many texture features.

3) EXAMPLES OF APPLICATIONS
Ahuja and Rosenfeld [174] proposed to fit the mosaic image
models to real images to obtain insights into the structure of
the data.

C. RANDOM FIELD MODELS
1) AUTOREGRESSIVE MODELS
a: CONCEPT
The autoregressive (AR) models rely on the assumption
that a local interaction exists between image pixels. Thus,
we assume that pixel intensity is a weighted sum of neigh-
boring pixel intensities as (assuming Is is the intensity of the
pixel at site s in an image)

Is =
∑
r∈Ns

θr Is+r + es, (22)

where es is an independent and identically distributed noise
with standard deviation σ ,Ns is a neighborhood of s, and θ is a
vector of model parameters. Over non-causal spatial interac-
tion models, causal AR models are more simple and efficient
for the parameter estimation. In AR models, the parameters
(the standard deviation σ of the driving noise es and the
model parameter vector θ ) have to be determined for a given
image region and these parameters are then used for texture
discrimination. For the parameter determination, the sum of
the squared error∑

s

e2s =
∑
s

(Is − θ̂ws)2, (23)

has to be minimized and then the parameters can be estimated
with

θ̂ = (
∑
s

wswsT )−1(
∑
s

wsIs), (24)

and

σ 2
=

∑
s(Is − θ̂ws)

2

N 2 , (25)

where ws = col[Ii, i ∈ Ns].
Kashyap and Khotanzad [175] also developed a circular

symmetric autoregressive model for invariant texture analy-
sis. The latter model is based on circular neighborhoods.

b: ADVANTAGES AND LIMITATIONS
Compared to non-causal spatial interaction models, causal
AR models have an advantage of simplicity and efficiency
in parameter estimation.

c: EXAMPLES OF APPLICATIONS
AR model-based features have been used in many applica-
tions, see, e.g. [176]–[179].

2) MOVING AVERAGE MODELS
a: CONCEPT
For the 2D moving average model, an image is considered as
a circular convolution of a stationary input process and a point
spread function. The latter is assumed as a linear geometric
transform of an isotropic function [180]. The input process is
either a white Gaussian process (for stochastic textures) or a
summation of white Gaussian process and a deterministic
trend function (for structured textures). The parameters of
the 2D moving average model (estimated by a maximum
likelihood method in the frequency domain) are able to dis-
criminate different kinds of textures. Spatial autoregressive
and moving average (ARMA) models have also been used to
represent texture images [181].

b: ADVANTAGES AND LIMITATIONS
The 2Dmoving average model is flexible and is able to model
isotropic and anisotropic textures [180].

c: EXAMPLES OF APPLICATIONS
Chanyagorn et al. [182] used the moving average models
for texture segmentation. Moreover, Eom [180] proposed
the segmentation of monochrome and color textures using a
moving average modeling approach. Andrews and Eom [183]
used moving average models to synthesize color textures
where the estimation of model parameters were done by the
maximum-likelihood method.

3) MARKOV RANDOM FIELD MODELS OF TEXTURE
a: CONCEPT
Markov models rely on the Markov property which assumes
that – in a system – the future state depends only on the cur-
rent stage. Thus, in the field of texture analysis and synthesis,
a Markov random field (MRF) assumes that the intensity of
a pixel (whatever the pixel) depends only on the intensity of
the previous pixel in a chain and on a transition probability
matrix [184]. A MRF is therefore a graphical model. The
parameters of the model are chosen to best fit the image.
For this purpose, an optimization method is used. The latter
minimizes an energy function. Then, the model parameters
are used as texture features.

b: ADVANTAGES AND LIMITATIONS
Cohen et al. [185] used Gaussian MRF to model tex-
ture. They used the maximum likelihood to estimate coef-
ficients and rotation angles. The drawback here is that
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the likelihood function is highly nonlinear and local max-
ima may exist. Moreover, the algorithm is computationally
intensive because it uses an iterative method. This is why
Chen and Kundu [186], [187] used multichannel subband
decomposition and hidden Markov model to obtain rota-
tion invariant texture features. However, in the work of
Zhang and Tan [20], feature vectors computed from the
original texture and those computed from the rotated ver-
sion are different. Therefore, Wu and Wei [188] proposed
another method. However, other improvements can still be
performed, as mentioned in, e.g., [20].

c: EXAMPLES OF APPLICATIONS
The texture features obtainedwith aMRF approach have been
used for glaucoma detection [189]. They also have proven to
give interesting results for hyper-spectral image analysis for
plant classification [190] and for image classification [191].

4) GENERALIZED LONG CORRELATION MODEL
a: CONCEPT
Long correlation models are a general class of random field
models. Bennett and Khotanzad have suggested that the long
correlation models can be considered as a generalization of
the simultaneous autoregressive and Markov random field
models [192]. With long-correlation models it is possible
to model correlations that extend over large image regions
with few model parameters. Indeed, one of the drawbacks
of simultaneous autoregressive models and Markov random
field models is that they are not able to model correctly
low frequency power in an image because the autocorrela-
tion function decays rapidly beyond the span of the defined
neighbor set. Therefore, they are not able to model correla-
tions with large spatial extent. Long correlation models have
an autocorrelation function that decays more slowly. More
details on the theory can be found in [192]. Long-correlation
models have also been generalized to represent isotropic and
elliptical long-correlation characteristics as well as short-
correlation characteristics [193]. A ‘‘narrow band’’ long cor-
relation model has also been proposed as an extension of the
isotropic long-correlation model, to generate random images
with periodicity [194]. A general method for estimating the
parameters of a generalized long correlation model, without
restrictions on its form, is developed in [192].

b: ADVANTAGES AND LIMITATIONS
The advantage of the generalized long correlation models
is that they are able to characterize textured images having
correlations which extend over substantial distances with
small-order models [192].

c: EXAMPLES OF APPLICATIONS
Kashyap and Eom [195] used the long correlation texture
model with a small number of parameters to characterize tex-
ture. Moreover, Kashyap and Lapsa [196] generated natural
textures such as images by the long correlation model.

D. FRACTAL-BASED MEASURES OF TEXTURE
1) CONCEPT
One of the parameters defining complex or chaotic systems
is the self-similarity or fractal behavior. Fractal ‘‘objects’’
are self-similar under magnifications: they have identical
statistics of characteristics of shape at different scales of
examination. In this case, the frequency spectrum shows an
inverse power-law (1/f n-like) scaling pattern, and thus a lin-
ear log power spectrum. Some natural textures have a linear
log power spectrum and it has been shown that the human
visual system is well suited to characterize such textures. This
is why the fractal dimension can be well suited to characterize
such textures. The fractal geometry relies on self-similarity
across scales (repeated patterns at multiple scales) and is
measured with the fractal dimension D. The latter has been
found to correspond to the human judgment of roughness of
a texture [197]. It is computed as

D =
log(N )
log(1/r)

, (26)

whereN is the number of repeated patterns down-sampled by
a ratio r . The fractal dimension can be determined by several
methods such as box-counting method [198] or fractional
Brownian motion with spectral analysis [197].

In 2011, the fast fractal stack has also been proposed as
a feature extraction method [199]. It consists in computing
fractal measurements from a set of binary images computed
from the grey scale image under study with the binary stack
decomposition algorithm [199].

In 2012, Costa et al. [200] proposed the segmentation-
based fractal texture analysis that consists, first, in decom-
posing the image under study into a set of binary images.
This is performed by the two-threshold binary decomposition
algorithm proposed by Costa et al. [200]. For each binary
image, the fractal dimensions of the regions’ borders are
then calculated. Moreover, the regions’ mean grey level and
size are also determined. From this, the segmentation-based
fractal texture analysis feature vector is constructed as the
resulting binary images’ size, mean grey level, and bound-
aries’ fractal dimension. The fractal measurements allow to
describe the boundary complexity of objects and structures
segmented in the image under study.

2) ADVANTAGES AND LIMITATIONS
The segmentation-based fractal texture analysis has the
advantage of having a low computation time compared to
other texture feature extraction methods. However, some
authors have shown that the fractal dimension does not allow
to distinguish all textures [198], [201]: texture having dif-
ferent appearances can have the same fractal dimension.
This is why other measures have been proposed such as
lacunarity [198], [202]–[205]. Lacunarity is related to the
distribution of gap sizes: low lacunarity geometric objects are
homogeneous as all gap sizes are the same. By opposition,
high lacunarity objects are heterogeneous.
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3) EXAMPLES OF APPLICATIONS
The fractal-based measures of texture have been used in
a computer-aided diagnosis system for mass detection and
classification in breast ultrasound images based on the fuzzy
support vector machines [206]. They also have been used for
classification of breast tumors as benign or malignant [207]

E. GRAVITATIONAL MODELS
1) CONCEPT
In 2012, some authors proposed a texture analysis approach
based on the gravitational model. Thus, the input image is
transformed in a dynamic system in the gravitational collapse
process to obtain different states and each one represents
a texture pattern [208]. Thus, the model proposes a grad-
ual ‘‘gravitational collapse process’’, i.e. all the particles –
that are pixels here – are attracted to the center of the
image. This generates different texture patterns as the process
occurs. The Bouligand-Minkowski fractal dimension method
is used to quantify each state in order to obtain a feature
vector [208]. In 2013, an extension to color images has been
published, using the Bouligand-Minkowski and the lacunarity
methods [209].

2) ADVANTAGES AND LIMITATIONS
The method based on the gravitational model has the draw-
back of having a higher computational cost than methods as
Gabor filters or co-occurrence matrices.

3) EXAMPLES OF APPLICATIONS
The gravitational model has been used for plant classifica-
tion using adaxial epidermis texture [210] and for plant leaf
identification [211].

F. WOLD DECOMPOSITION
1) CONCEPT
The Wold decomposition measures randomness, directional-
ity, and periodicity [212]. Thus, in the Wold decomposition,
the texture of the image is decomposed into three mutually
orthogonal components, assuming that texture images are
homogeneous random fields. Thus, a texture image I (m, n)
is decomposed as [213]

I (m, n) = w(m, n)+ p(m, n)+ g(m, n), (27)

where w(m, n) is the purely indeterministic component,
p(m, n) is the half-plane deterministic component, and
g(m, n) is the generalized evanescent component. By choos-
ing the parameters of the 3 components, we can obtain the
modeling of a large number of textures, going from periodical
macrotextures to random microtextures. The decomposition
of the spatial field can also be performed by decomposing
their spectral density function [213], [214].

2) ADVANTAGES AND LIMITATIONS
The key problem of this method is the estimation of the
coefficients and the choice of the correct model. Let’s note

that some authors proposed a method using the Wold model
for invariant texture analysis [215].

3) EXAMPLES OF APPLICATIONS
The Wold decomposition has been used for indexing
and retrieving multimedia data through texture segmenta-
tion [216]. It also has been of interest for unsupervised texture
segmentation [217] and in edge detection for remote sensing
image [218].

VI. GRAPH-BASED APPROACHES
The methods of this class are those where the extraction of
the texture features relies on graphs obtained from the input
image [219].

A. LOCAL GRAPH STRUCTURES
1) CONCEPT
The features of local graph structures are computed from the
texture in a local graph neighborhood [220]. The image is
represented by a graph of points. More precisely, local graph
structures work with the 6 neighbors of a pixel. The target
pixel I (x, y) is chosen as a threshold. The neighbors pixels
of I (x, y) are ‘‘visited’’ by moving anti-clockwise at the left
region of I (x, y). If the neighbor pixel has a higher (or same)
grey value than (as) I (x, y), then a binary value 1 is assigned
on the edge connecting the two vertices, else a binary value 0
is assigned. When the left region is finished, then the same
process is applied in a horizontal way (clockwise) to the
right region of the graph [220]. Then, the decimal value is
computed from the generated string. In 2016, the extended
local graph structure has been proposed [221]. The latter
takes into account both the vertical graph and the horizontal
graph in order to capture wider spatial information. Thus, two
descriptors are obtained. A histogram is computed for ech
descriptor independently. Then, the two histograms features
are concatenated to form a global descriptor [221].

2) ADVANTAGES AND LIMITATIONS
Local graph structures contain information on the distribution
of local micropatterns (edges, spots, flat areas). Moreover,
local graph structures are rather insensitive to illumination
intensities, and invariant to shifting and scaling [220]. The
computation time is also fast.

3) EXAMPLES OF APPLICATIONS
The local graph structure has been used for face recognition
tasks [220], [222]. Another graph-based approach has been
used for clothing classification [223].

B. GRAPH OF TOURIST WALK APPROACH
1) CONCEPT
In 2011, authors suggested to generate graphs out of the
trajectories produced by the tourist walks described in
Section II-L [224]. Thus, instead of focusing on attractor
and transient length histograms, the generated trajectories
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are used to build a graph. The motion from one pixel to
another is interpreted as a connection between these two
pixels. Therefore, a graph is built from the trajectories. This
graph describes the tourist transitivity. The statistical position
and dispersion calculated from the graphs were proposed as
texture descriptors [224]. In 2012, Goncalves et al. [225] sug-
gested to use graph theory to model the connections among
neighbor pixels: this led to a new approach that uses graph
modeling with posterior use of the deterministic tourist walk.

2) ADVANTAGES AND LIMITATIONS
From experimental results on plant leaves image database
involving textures that have similar appearance,
Gonçalves et al. [225] have shown that their method is robust
in terms of micro-texture recognition and that it gives good
results using rotated and noised images.

3) EXAMPLES OF APPLICATIONS
Based on the work from Backes et al. [224], Li et al. [226]
proposed to extract froth image texture features.

C. SHORTEST PATHS IN GRAPHS
1) CONCEPT
In 2013, another method based on graph theory has been pro-
posed to analyze texture [227]. In this approach, the texture
is explored as it if were a landscape: the texture is described
by statistical moments computed from shortest paths in the
landscape between pairs of points. For this purpose, the pixels
of the input image are converted into vertices of an undirected
weighted graph whose weights are defined by the image
grey levels. Then, the shortest paths between different square
regions of the graph/image are computed using the Dijkstra’s
algorithm. This approach is performed for different scales
and orientations of the image [227]. An extension for color
images has also been proposed [228].

2) ADVANTAGES AND LIMITATIONS
The shortest paths are computed between different square
regions, starting with large square and diminishing its size
in a multiscale approach. Therefore, both micro and macro
texture information can be retrieved.

3) EXAMPLES OF APPLICATIONS
The shortest paths in graph approach has been used inmedical
image analysis [229].

VII. LEARNING-BASED APPROACHES
In the last few years, new texture feature extraction methods
have been proposed based on learning-based approaches.
We propose to gather these methods in a new class that
can be divided into three subsections: the vocabulary learn-
ing methods, the extreme learning machine-based methods,
and the deep learning methods. These two latter families
(the extreme learning machine-based methods and the deep
learning methods) are very recent and have brought a new

start in the texture feature extraction studies due to their high
capacities in a large number of applications. This new class
of approaches (learning-based approaches) surely deserves
attention in the future.

A. VOCABULARY LEARNING METHODS
1) CONCEPT
In image analysis, vocabulary learning methods – also called
visual dictionary methods – imply the learning of a visual
dictionary. In vocabulary learning, the patterns are learnt from
a training set by clustering (using, e.g., K-means or Gaus-
sian mixture models) local descriptors into clusters in the
feature space. The cluster centers constitute the words in a
visual dictionary. Words are therefore visual patterns: the
dictionary is composed of representative patterns. A repeated
pattern or texton is described by descriptors that are clus-
tered in the same visual word, in the feature space. Dictio-
nary learning generally involves the detection of key-points,
the extraction of local descriptors, clustering to learn the
dictionary (e.g., K-means), and pooling into a global image
descriptor (e.g., occurrence count histogram) [230]. Thus,
the descriptors of training images are aggregated together to
form, by clustering, the texton dictionary (the codebook). The
feature encoding step may use vector of locally aggregated
descriptors (VLAD) [232], [233], Fisher vector and improved
Fisher vector [234]–[236].

In 2005, Varma and Zisserman [237] proposed a statistical
learning approach (VZ-MR8) : textures were modelled by the
joint distribution of filter responses. The distribution was rep-
resented by the histogram of the frequency of filter response
cluster centres (textons). VZ-MR8 uses the MR8 filter bank.
The latter consists of 36 directional filters, a Gaussian filter
and a Laplacian of Gaussian filter to retrieve the features.
Textons and texture models were learnt from training images.
Later, the same authors proposed another texton dictionary-
based algorithm (VZ-Joint): instead of applying filter banks,
Varma and Zisserman [238] proposed an alternative
image patch representation based on the joint distribu-
tion of pixel intensities in a neighborhood. In 2010,
Crosier and Griffin [239] proposed a statistical texture repre-
sentation that models images as histograms over a dictionary
of features. The latter is based on basic image features (BIFs)
and does not rely on a dictionary based on clustering.
Crosier and Griffin [239] show that the features are invari-
ant to rotation and reflection. They also have proposed
a framework that is invariant to changes in scale [239].
In 2013, Zhang et al. [240] proposed two local descriptors
that both have the property of continuous rotation invariance.
These local descriptors are based on Gaussian derivatives
filters. The first descriptor uses the maximum of the filter
responses named continuous maximum responses (CMR),
while the second descriptor rectifies the responses of Gaus-
sian derivatives filters to determine the principal curvatures of
the image surface [240]. In 2016, Mehta and Egiazarian [241]
proposed the dense micro-block difference (DMD) that
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densely captures the granularities at multiple scales and
orientations. DMD is fast to compute, low in dimensionality
and easy to implement. In 2018, Dong et al. [242] extended
this approach and proposed the multiscale symmetric DMD.

2) ADVANTAGES AND LIMITATIONS
As mentioned above, vocabulary learning methods are
dataset-dependent. Dictionary learning achieves therefore
higher flexibility than the wavelet transform. However, dic-
tionary learning requires more complex computation.

3) EXAMPLES OF APPLICATIONS
In 2001, Leung and Malik [231] built a small, finite vocabu-
lary of micro-structures. The latter were called 3D textons.
The textons in the vocabulary encode the appearances of
local geometric and photometric features. Then, the surface
of material is represented as a spatial arrangement of symbols
from this vocabulary [231]. More precisely, they used images
from a set of training materials to learn a vocabulary which
can characterize all natural materials.

In 2014, Cimpoi et al. [233] proposed a vocabulary
of 47 terms as texture descriptors and introduced a describ-
able texture dataset containing 5640 texture images jointly
annotated with these 47 attributes. Their results show that
this annotated dataset provides a good basis for learning to
recognize describable texture attributes in images [233].

B. EXTREME LEARNING MACHINE-BASED METHODS
1) CONCEPT
Texture signature has also been extracted with extreme learn-
ing machine (ELM) [243]. An ELM is a single-hidden layer
feedforward neural network with a very fast learning algo-
rithm. Thus, Junior and Backes [243] proposed to first divide
the input image into K × K joint windows (K is odd). The
central pixel of each window is considered as a label and its
neighboring pixels as input vector in the ELM. The set of
output weights is used as a feature vector.

2) ADVANTAGES AND LIMITATIONS
ELM has a fast computation speed and good generalization
performance.

3) EXAMPLES OF APPLICATIONS
The method has shown good results in texture
classification [243].

C. DEEP LEARNING METHODS
1) CONCEPT
Deep learning – and in particular convolutional neural net-
works (CNNs) – have recently significantly been used in
the field of computer vision. These networks are biolog-
ically inspired and trained with powerful algorithms. The
CNN model is a supervised learning method that has
recently been successfully used in a large number
of applications because of its excellent capability of

feature representation. CNNs consist of multiple locally
connected layers (the most important are convolutional
layers). Convolutional layers convolve kernels with a
small span over the entire area of the input image [244].
Andrearczyk [230] and Andrearczyk and Whelan [245],
[246] proposed to explore the use of CNNs in texture anal-
ysis (among others). For this purpose, the CNN architec-
ture uses an orderless pooling of intermediate layers to
exclude the overall shape analysis [230]. Lin and Maji [247]
recently performed a study of CNN-based texture represen-
tations. They reported that the studied models are a good
approach for texture synthesis and manipulation of content
of images using texture attributes [247]. In the same way,
Li and Huang [155] proposed deep decomposition of circu-
larly symmetric Gabor wavelet (DD-CSGW) for rotation-
invariant texture image classification. The energies of
DD-CSGW and the parameters of copula model based on
DD-CSGW were used as the features of texture [155].
In 2016, Cimpoi et al. [248] have shown that deep learning
can be used in many domains of texture analysis.

2) ADVANTAGES AND LIMITATIONS
Due to hierarchical architecture, deep learning models
have the capacity of learning high-level features from raw
data automatically. However, CNN performance depends
on the amount of the training sample marked. More-
over, the approach is computationally expensive. In 2016,
Liu et al. [90] evaluated several deep texture descriptors
and compared them to several variants of LBP descriptors.
Their results showed that the deep convolutional descriptors
obtain the best results. However, they have a much higher
computational complexity than LBP variants [90].

3) EXAMPLES OF APPLICATIONS
Recently, Han et al. [249] used a deep learning model to
extract multiple haptic features and to recognize objects from
multi-modal haptic images. Deep-learning has also been used
for ground texture classification [250]. Andrearczyk [230]
used the CNN approach for the recognition of malignant
lymphomas and the classification of mouse liver tissue based
on age, gender, and diet.

VIII. ENTROPY-BASED APPROACHES
Entropy-based measures have been proposed since
the 1990’s, and especially since the 2000’s, to process
time series (unidimensional data). These measures have
proven to give very interesting results in domains as the
biomedical field, the financial time series, and the engi-
neering aspects. Many papers have been published on the
use of these entropy measures [251]. However, before 2011
(and even before 2016) they were restricted to the process-
ing of time series. No extension to images had been sug-
gested. Very recently, new texture feature extraction methods
have been proposed based on the bi-dimensional approaches
of 1D entropy measures. Moreover, multiscale approaches of
these measures are now available. These new texture feature
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extraction methods are simple to implement, based on strong
theoretical aspects because they are extensions of already
well-known 1D measures, and give very interesting results.
This new class, the entropy-based approaches, gathers the
texture feature extraction methods where an entropy mea-
sure is directly computed on the image. They are therefore
directly related to the irregularity / complexity of the image.
Methods where entropy is computed to quantify the disorder
of a matrix obtained from a processing step applied to the
image (as in, e.g., GLCM) do not belong to this entropy-
based class: in methods as GLCM the entropy measure does
not represent the irregularity of the image but the disorder of
the intermediate matrix.

The entropy-based approaches surely deserve attention in
the future and need to be developed based on their perfor-
mances for time series.

A. TWO-DIMENSIONAL SAMPLE ENTROPY
1) CONCEPT
In 2011, Yeh et al. [252] and later in 2016 Silva et al. [253]
proposed the bi-dimensional sample entropy (SampEn2D) as
a measure of irregularity in pixel patterns. Thus, it has been
shown that SampEn2D can be applied as a texture feature
quantifier [253]. The algorithm to compute SampEn2D is
composed of the following steps for an image I with width
W and height H [253]
1) Let xm(i, j) be the m-length square window with origin

at I (i, j). Let Nm be the total number of square windows
within I that are generated for m and m + 1 size:
Nm = (W −m)× (H −m). For a similarity threshold r ,
compute Um(r) as

Um(r) =
1
Nm

i=H−m,j=W−m∑
i=1,j=1

Um
ij (r), (28)

where Um
ij (r) =

1
Nm−1
× number of xm(a, b) such that

d[xm(i, j), xm(a, b)] ≤ r and where a and b range
from 1 to H − m and from 1 to W − m, respectively.
The origin points (i, j) and (a, b) must be different to
exclude self-matches. The distance d is computed as

d[xm(i, j), xm(a, b)]

= max
0≤k≤m−1,0≤l≤m−1

(|u(i+ k, j+ l)−u(a+k, b+l)|).

(29)

2) Compute Vm(r) as

Vm(r) =
1
Nm

i=H−m,j=W−m∑
i=1,j=1

Vm
ij (r), (30)

where Vm
ij (r) =

1
Nm−1
× number of xm+1(a, b) such that

d[xm+1(i, j), xm+1(a, b)] ≤ r and where a and b range
from 1 to H − m and from 1 to W − m, respectively.
As above, the origin points (i, j) and (a, b) must be
different to exclude self-matches.

3) Compute the bi-dimensional sample entropy as

SampEn2D(m, r,N ) = − ln
(
Vm(r)
Um(r)

)
. (31)

2) ADVANTAGES AND LIMITATIONS
For the computation of SampEn2D, two parameters have to
be set: m and r . Their choice is not an easy task. The greater
the m value, the greater the chance of no pattern matches.
The latter case leads to an undefined value for SampEn2D.
Moreover, for low image sizes, SampEn2D can give unde-
fined values or unreliable results. Furthermore, SampEn2D
has the drawback of being very slow in terms of computa-
tion time. However, SampEn2D has the advantage of being
a completely automated method. Moreover, it is rotation-
invariant [253].

3) EXAMPLES OF APPLICATIONS
SampEn2D has been applied to histological images [253]. The
results have shown that SampEn2D is able to discriminate rat
sural nerve images by age groups [253].

B. TWO-DIMENSIONAL DISTRIBUTION ENTROPY
1) CONCEPT
In order to overcome the drawbacks of SampEn2D (unde-
fined values or unreliable values for small-sized textures,
long computation time), Azami et al. [254] recently proposed
the bi-dimensional distribution entropy (DistEn2D). Its algo-
rithm for an image I with width W and height H is the
following [254]

1) Normalize I between 0 and 1. Create all two-
dimensional matrices (template matrices) Xmkl , (k =
1, 2, . . . ,H−(mh−1) and l = 1, 2, . . . ,W−(mw−1))
with sizemh×mw as described in [254]. The embedding
dimension vector is denoted m = [mh,mw].

2) Compute the distance matrixD = {dkl}
l=1,...,W−(mw−1)
k=1,...,H−(mh−1)

as the greatest element of the absolute difference of Xmkl
and Xmab where a goes from 1 to H − (mh − 1) and b
goes from 1 toW − (mw − 1). Elements (a, b) = (k, l)
are not taken into account.

3) Estimate the empirical probability density function
of D with the histogram approach using M bins.
Denote pt (t = 1, . . . ,M ) the probability of each
bin.

4) Compute DistEn2D as

DistEn2D(U ,m,M ) = −
M∑
t=1

pt × log2(pt ). (32)

2) ADVANTAGES AND LIMITATIONS
It has been shown that DistEn2D is not very sensitive to
its parameter values [254] and gives values even for low
image sizes, by opposition to SampEn2D [254]. Moreover,
DistEn2D is more rapid than SampEn2D [254]. DistEn2D is
also rotation-invariant [253], [254].
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3) EXAMPLES OF APPLICATIONS
DistEn2D is able to detect different amounts of noise, and
distinguish periodic from synthetized textures [254].

C. TWO-DIMENSIONAL MULTISCALE ENTROPY
1) CONCEPT
The bi-dimensional multiscale entropy (MSE2D) is an exten-
sion, over spatial scales τ , of SampEn2D [252], [255]. For an
image I with widthW and height H , MSE2D consists of two
steps [255]

1) Construct the coarse-grained images {I (τ )} as

I (τ )ij =
1
τ 2

k=iτ
l=jτ∑

k=(i−1)τ+1
l=(j−1)τ+1

Ikl, (33)

where 1 ≤ i ≤ bH
τ
c and 1 ≤ j ≤ bW

τ
c.

2) Compute SampEn2D of each coarse-grained image.
A variant of MSE2D (ModMSE2D) has also been pro-

posed [255]. ModMSE2D is SampEn2D(I (τ ),m, r) where
I (τ ) is, in this case, computed as

I (τ )ij =
1
τ 2

k=i+τ−1
l=j+τ−1∑
k=i
l=j

Ikl . (34)

It has recently been revealed that the profile of MSE2D is
sensitive to the amplitude and phase of the discrete Fourier
transform [256].

2) ADVANTAGES AND LIMITATIONS
MSE2D has the advantage, over SampEn2D and DistEn2D,
of giving information over spatial scales. Moreover, the com-
putation time of MSE2D is faster than the one of ModMSE2D,
while ModMSE2D is more robust to small image sizes [255]:
MSE2D can generate undefined entropy values due to the
absence of template matches. This is even more obvious with
scales: the larger the scale value, the higher the probability of
obtaining an undefined entropy value.

3) EXAMPLES OF APPLICATIONS
ModMSE2D and MSE2D have been applied to synthetic
and real data and have proven to be suitable and power-
ful tools for image classification according to texture pat-
terns [255]. MSE2D has also been used in the biomedical
field [252], [256].

IX. DATABASES FOR EXPERIMENTS
To test and compare the above-mentioned algorithms of tex-
ture feature extraction, a large number of texture datasets
have been developed. Hossain and Serikawa [257] as well
as Bianconi and Fernandez [258] proposed comprehensive
surveys of these databases. In the latter papers, the datasets
are categorized into four areas:

1) texture databases in medical images, including
among others a MRI brain database, a digital

database for screening mammography, a computed-
tomography emphysema database, the Epistroma
database, the IICBU biological image repository,
the mammographic patches, the MESSIDOR database,

2) natural texture image databases, including the Bro-
datz texture database, the vision texture database (Vis-
Tex), the USC-SIPI texture mosaic, the texture library,
the Mayang’s texture database, the Salzburg texture
image database (STex), the USPTex dataset,

3) texture of materials databases, including the Meas-
tex database, the PhoTex database, the PhoTex
3D database, theAmsterdam library of textures (ALOT)
database, the university of Maryland (UMD) dataset,
the OUTex database, the Columbia-Utrecht reflectance
and texture (CUReT) database, the textile database,
the UIUC database, the CMU near-regular texture
database, the Rutgers skin texture database, the
KTH-TIPS database, the KTH-TIPS2 material
database, the PerTex database, the building texture
database, the grain mixtures dataset, the Kylberg tex-
ture dataset, the BTF database Bonn, the drexel texture
database, the forest species database, the JerryWu pho-
tometric image database, the Kylberg sintorn rotation
dataset, theMondialMarmi database, the parquet image
database, the VxC TSG image database for surface
grading,

4) the dynamic texture databases dedicated to dynamic
texture datasets where the temporal textures are vari-
able and changing with time.

The readers are encouraged to read these two sur-
veys [257], [258] to obtain more information on existing
databases.

X. CLOSING REMARKS
A. SUMMARY
We have reviewed different texture feature extraction
methods and classified them into seven different classes:
statistical approaches, structural approaches, transform-
based approaches, model-based approaches, graph-based
approaches, learning-based approaches, and entropy-based
approaches. For each method, the concept, an emphasis on
the advantages and drawbacks, and examples of applications
have been given. Among the seven classes, four classes (sta-
tistical approaches, structural approaches, transform-based
approaches, and model-based approaches) are now well-
known. The corresponding methods are therefore largely
used: GLCM or LBP and variants, to cite only a few.
However, in these four classes, some methods become
‘‘out-of-date’’ because more recent algorithms lead to better
performances. Even if it is difficult to advise on the use of a
method for a particular case, we have seen that some methods
lead to interesting results for only some particular cases
(for instance, structural approaches may be appropriated for
regular textures only). Moreover, if the application requires
invariant features to rotation/translation/scaling, the number
of possible methods decreases.
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In this survey, methods that have been proposed for very
specific cases have not been mentioned. Thus, for very high
resolution remote sensing images, Demir and Bruzzone [259]
proposed histogram-based attribute profiles that allow the
modeling of texture information from attribute profiles. The
latter paper also contains a literature survey of the methods
that model spatial information in the context of very high
resolution remote sensing image classification. We invite the
readers to refer to this paper and others as [260] for the
specific case of such data.

B. FUTURE DIRECTIONS
The two most recent classes are undoubtedly the learning-
based approaches and the entropy-based approaches. Meth-
ods based on deep learning are recent and their use is growing
due to their high performances. For sure, they are not yet
exploited to their full potential and deserve attention for
the future. Moreover, the entropy-based measures for tex-
ture analysis are also very recent ones. Their performances
seem promising but need to be studied deeply. Their great
advantage is that the corresponding methods for the uni-
dimensional case are now well-known in the information-
theory field and have proven to give very interesting results
in a large field of applications. For these two recent classes,
one of the challenges will be to reduce the computation time
so that the applications can come from large domains.
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