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Introduction

The Fourier series is named in honour of Jean-Baptiste Joseph Fourier (1768-1830) who introduced it for the purpose of solving the heat equation in a metal plate, publishing his initial results in [START_REF] Fourier | Mémoire sur la propagation de la chaleur dans les corps solides[END_REF], and pursuing his study in [START_REF] Fourier | Théorie analytique de la chaleur[END_REF]. The question whether the Fourier series of a periodic function converges to a given function is well researched and an extensive literature exists on this subject. We mention here for example [START_REF] Grafakos | Classical Fourier Analysis[END_REF][START_REF] Folland | Fourier analysis and its applications[END_REF][START_REF] Lesfari | Distributions, Analyse de Fourier et transformation de Laplace[END_REF]. Indeed, mathematicians studied pointwise, absolute, uniform, quadratic convergences... It is well known that many problems for partial differential equations are reduced to a power series expansion of the desired solution in terms of special functions or orthogonal polynomials. In particular, by using the properties of Jacobi polynomials ( [START_REF] Szego | Orthogonal polynomials[END_REF]), the Fourier-Jacobi series has been studied extensively by many authors and several results concerning the approximation of functions by partial sums of these series are proved (see e.g. [START_REF] Bavinck | Approximation processes for Fourier-Jacobi expansions[END_REF][START_REF] Kavernadze | Uniform convergence of Fourier-Jacobi series[END_REF][START_REF] Li | Summability of the product Jacobi series[END_REF][START_REF] Hhaskar | Wiener type theorems for Jacobi series with nonnegative coefficients[END_REF][START_REF] Xu | Mean convergence of generalized Jacobi series and interpolating polynomials, I[END_REF][START_REF] Xu | Mean convergence of generalized Jacobi series and interpolating polynomials, II[END_REF][START_REF] Castell | Cesàro means of Jacobi expansions on the parabolic biangle[END_REF]). In this paper, we also discuss this subject. More precisely, we are interested in Jacobi-Dunkl expansions. In [START_REF] Chouchene | Harmonic analysis associated with the Jacobi-Dunkl operator on -π 2 , π 2[END_REF], the author defined the Jacobi-Dunkl coefficients associated with Jacobi-Dunkl polynomials given by

ψ (α,β) n (θ) :=    R (α,β) |n| (cos(2θ)) + iλ (α,β) n 4(α + 1) sin(2θ)R (α+1,β+1) |n|-1 (cos(2θ)) if n ∈ Z \ {0}, 1 if n = 0, (1) 
where R (α,β) m (x), m ∈ N, is the normalized Jacobi polynomial of degree m such that R (α,β) m (1) = 1, and λ (α,β) n is given by

λ (α,β) n := 2 sgn(n) |n|(|n| + ρ), n ∈ Z, with α ≥ β ≥ - 1 2 ; α = - 1 2
, and ρ := α + β + 1 > 0.

In the second section, we will give some preliminaries concerning these polynomials.

Then, we will see more properties of the Jacobi-Dunkl coefficients in the third section.

In section 4, we state a theorem about Jacobi-Dunkl convergence in quadratic mean.

Finally, we will focus on pointwise convergence. We establish a Dirichlet type theorem which generalizes the classical one, see [START_REF] Kahane | Séries de Fourier et Ondelettes[END_REF]. The proof is based on the asymptotic behaviour of Jacobi and Jacobi-Dunkl polynomials studied in [START_REF] Chouchene | Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials[END_REF] and [START_REF] Chouchene | Recurrence and Christoffel-Darboux formulas for the Jacobi-Dunkl polynomials and applications[END_REF].

Preliminaries

In this section, we will recall some properties of Jacobi and Jacobi-Dunkl polynomials. We denote by

(a) n := a(a + 1)...(a + n -1) if n ∈ N \ {0}, 1 if n = 0.
(a) n is called the Pochhammer symbol.

2 F 1 (a, b; c; z) is the Gauss hypergeometric function, given by

∀ a, b ∈ C, ∀c ∈ C \ Z -, ∀z ∈ C; |z| < 1, 2 F 1 (a, b; c; z) := +∞ n=0 (a) n (b) n n!(c) n z n .
The Jacobi polynomials ϕ (α,β)

m (θ), m ∈ N, θ ∈ - π 2 , π 2 
, are defined by

ϕ (α,β) m (θ) := R (α,β) m (cos(2θ)) = 2 F 1 (-m, m + ρ; α + 1; (sin θ) 2 ).
The Jacobi operator ∆ α,β defined on C 2 0, π 2 is given by

∆ α,β := d 2 dθ 2 + A α,β A α,β d dθ ,
where

A α,β (θ) := 2 2ρ (sin |θ|) 2α+1 (cos θ) 2β+1 if θ ∈ - π 2 , π 2 \ {0}, 0 if θ = 0. For all m ∈ N, ϕ (α,β) m is the unique even C ∞ -solution on - π 2 , π 2 of the differential equation    ∆ α,β u = -λ 2 m u, u(0) = 1, u (0) = 0.
The Jacobi-Dunkl operator ∧ α,β is defined by

∧ α,β f (θ) := d dθ f (θ) + A α,β (θ) A α,β (θ) f (θ) -f (-θ) 2 , f ∈ C 1 - π 2 , π 2 , with A α,β (θ) A α,β (θ) = (2α + 1) cot θ -(2β + 1) tan θ , θ ∈ - π 2 , π 2 \ {0}.
According to [START_REF] Chouchene | Harmonic analysis associated with the Jacobi-Dunkl operator on -π 2 , π 2[END_REF], the differential-difference equation

∧ α,β u(θ) = iλ (α,β) n u(θ); n ∈ Z, u(0) = 1, admits a unique C ∞ -solution on - π 2 , π 2 
given by [START_REF] Bavinck | Approximation processes for Fourier-Jacobi expansions[END_REF], which is related to the Jacobi polynomial and to its derivative by

ψ (α,β) n (θ) :=    ϕ (α,β) |n| (θ) - i λ (α,β) n d dθ ϕ (α,β) |n| (θ) if n ∈ Z \ {0}, 1 if n = 0, (2) 
and satisfies

∀n ∈ Z, ∀θ ∈ - π 2 , π 2 , ψ (α,β) n (θ) ≤ 1.
For all n, p ∈ Z, we have the following orthogonality property

π 2 -π 2 ψ (α,β) n (θ)ψ (α,β) p (θ)A α,β (θ) dθ = h (α,β) n -1 δ n,p , (3) 
where

h (α,β) n = π 2 -π 2 ψ (α,β) n (θ) 2 A α,β (θ) dθ -1 : h (α,β) 0 = Γ(ρ + 1) 2 2ρ Γ(α + 1)Γ(β + 1) and ∀ n ∈ Z \ {0}, h (α,β) n = (2|n| + ρ)Γ(α + |n| + 1)Γ(ρ + |n|) 2 2ρ+1 (Γ(α + 1)) 2 Γ(|n| + 1)Γ(β + |n| + 1)
.

Let p ∈ [1, +∞]. We denote by • L p α,β = L p - π 2 , π 2 , A α,β (θ) dθ : the space of measurable functions f on - π 2 , π 2 such that          f p,α,β = π 2 -π 2 |f (θ)| p A α,β (θ) dθ 1 p < +∞ if 1 ≤ p < +∞, f ∞,α,β = ess sup θ∈[-π 2 , π 2 ] |f (θ)| < +∞ if p = +∞. • L p α,β = L p 0, π 2 , A α,β (θ) dθ the space of measurable functions g on 0, π 2 such that          π 2 0 |g(θ)| p A α,β (θ) dθ 1 p < +∞ if 1 ≤ p < +∞, ess sup θ∈[0, π 2 ] |g(θ)| < +∞ if p = +∞.
The Jacobi coefficients (see [START_REF] Gasper | Positivity and the convolution structure for Jacobi series[END_REF]) of a function g ∈ L 1 α,β are defined by

∀ m ∈ N, F α,β (g)(m) = π 2 0 g(θ)ϕ (α,β) m (θ)A α,β (θ) dθ.
The Jacobi-Dunkl coefficients (see [START_REF] Chouchene | Harmonic analysis associated with the Jacobi-Dunkl operator on -π 2 , π 2[END_REF]) of a function f ∈ L 1 α,β are defined by

∀ n ∈ Z, Ff (n) := π 2 -π 2 f (θ)ψ (α,β) n (θ)A α,β (θ) dθ,
and satisfy

∀ n ∈ Z, |Ff (n)| ≤ f 1,α,β
. Now, we consider the analog of the Fourier series given by

+∞ n=-∞ Ff (n)ψ (α,β) n (θ)h (α,β) n , θ ∈ - π 2 , π 2 .
For n ∈ N, we denote its partial sum by

S f n (θ) := n k=-n Ff (k)ψ (α,β) k (θ)h (α,β) k , θ ∈ - π 2 , π 2 .

Jacobi-Dunkl coefficients

Let f ∈ L 1 α,β . We put for all k ∈ N, a k (f ) := Ff (k) + Ff (-k),
and

b k (f ) :=    - i λ (α,β) k [Ff (k) -Ff (-k)] if k ∈ N \ {0}, 0 if k = 0.
Hence, by (2) we can write S f n (θ), for n ∈ N \ {0} and θ ∈ -

π 2 , π 2 , as S f n (θ) = a 0 (f ) 2 h (α,β) 0 + n k=1 a k (f )ϕ (α,β) k (θ) + b k (f ) d dθ ϕ (α,β) k (θ) h (α,β) k . Remark 3.1.
For all k ∈ N, we have these relations:

(1) Ff (k) = a k (f ) + iλ (α,β) k b k (f ) 2 .
(

) Ff (-k) = a k (f ) -iλ (α,β) k b k (f ) 2 . Proposition 3.2. 2 
For all k ∈ N, we have the following integral representations:

(1) a k (f ) = 2 π 2 -π 2 f (θ)ϕ (α,β) k (θ)A α,β (θ) dθ. (2) b k (f ) = 2 λ (α,β) k 2 π 2 -π 2 f (θ) d dθ ϕ (α,β) k (θ)A α,β (θ) dθ, k = 0.
Proof.

(1)

a k (f ) = Ff (k) + Ff (-k) = π 2 -π 2 f (θ) ψ (α,β) k (θ) + ψ (α,β) -k (θ) A α,β (θ) dθ. Since we know that ψ (α,β) k (θ) + ψ (α,β) -k (θ) = 2 ψ (α,β) k (θ) = 2ϕ (α,β) k (θ),
then, we obtain the result.

(2) b k (f ) = i λ (α,β) k π 2 -π 2 f (θ) ψ (α,β) -k (θ) -ψ (α,β) k (θ) A α,β (θ) dθ, k = 0.
As we have

ψ (α,β) -k (θ) -ψ (α,β) k (θ) = 2i ψ (α,β) k (θ) = - 2i λ (α,β) k d dθ ϕ (α,β) |k| (θ),
then, we get the equality.

Remarks 3.3. Let k ∈ N. (1) If the function f is even, then b k (f ) = 0 and a k (f ) = 4 π 2 0 f (θ)ϕ (α,β) k (θ)A α,β (θ) dθ.
(2) If the function f is odd, then

a k (f ) = 0 and b k (f ) = 4 λ (α,β) k 2 π 2 0 f (θ) d dθ ϕ (α,β) k (θ)A α,β (θ) dθ, k = 0. Proposition 3.4.
Let f be in L 1 α,β , a real-valued function. For all k ∈ N, we have these properties:

(1) Ff (-k) = Ff (k).
(

) a k (f ) = 2 (Ff (k)) ∈ R. 2 
(

) b k (f ) = 2 λ (α,β) k (Ff (k)) ∈ R, k = 0. 3 
Proof.

(

) Ff (-k) = π 2 -π 2 f (θ)ψ (α,β) -k (θ)A α,β (θ) dθ = π 2 -π 2 f (θ)ψ (α,β) k (θ)A α,β (θ) dθ = Ff (k). (2) a k (f ) = Ff (k) + Ff (-k) = Ff (k) + Ff (k) = 2 (Ff (k)). 1 
(3) For all k ∈ Z \ {0}, we have

b k (f ) = i λ (α,β) k [Ff (-k) -Ff (k)] = i λ (α,β) k Ff (k) -Ff (k) = 2 λ (α,β) k (Ff (k)).
In the following parts, we will study for a suitable given function f , the convergence of the series

+∞ n=-∞ Ff (n)ψ (α,β) n (θ)h (α,β) n .

Convergence in quadratic mean

Theorem 4.1. For all f ∈ L 2 α,β , we have

lim n→+∞ S f n -f 2,α,β = 0. Proof. Let f ∈ L 2 α,β and n ∈ N. π 2 -π 2 S f n (θ) -f (θ) 2 A α,β (θ) dθ = π 2 -π 2 S f n (θ) -f (θ) S f n (θ) -f (θ) A α,β (θ) dθ = π 2 -π 2 S f n (θ) 2 A α,β (θ) dθ - π 2 -π 2 S f n (θ)f (θ)A α,β (θ) dθ - π 2 -π 2 f (θ)S f n (θ)A α,β (θ) dθ + π 2 -π 2 |f (θ)| 2 A α,β (θ) dθ := I 1 + I 2 + I 3 + I 4 .
We have by the orthogonality property (3),

I 1 = π 2 -π 2 n k=-n Ff (k)ψ (α,β) k (θ)h (α,β) k (θ) n p=-n Ff (p)ψ (α,β) p (θ)h (α,β) p (θ) A α,β (θ) dθ = n k=-n n p=-n Ff (k)Ff (p)h (α,β) p h (α,β) k π 2 -π 2 ψ (α,β) k (θ)ψ (α,β) p (θ)A α,β (θ) dθ = n k=-n n p=-n Ff (k)Ff (p)h (α,β) p h (α,β) k h (α,β) k -1 δ k,p = n k=-n Ff (k)Ff (k)h (α,β) k = n k=-n |Ff (k)| 2 h (α,β) k . Furthermore I 2 = - π 2 -π 2 n k=-n Ff (k)ψ (α,β) k (θ)h (α,β) k f (θ)A α,β (θ) dθ = - n k=-n Ff (k)h (α,β) k π 2 -π 2 f (θ)ψ (α,β) k (θ)A α,β (θ) dθ = - n k=-n Ff (k)Ff (k)h (α,β) k = - n k=-n |Ff (k)| 2 h (α,β) k = -I 1 .
We also have

I 3 = I 2 = I 2 = -I 1 . Then π 2 -π 2 S f n (θ) -f (θ) 2 A α,β (θ) dθ = f 2,α,β - n k=-n |Ff (k)| 2 h (α,β) k
.

By the Plancherel formula [2, Theorem 3.4], we obtain

lim n→+∞ π 2 -π 2 S f n (θ) -f (θ) 2 A α,β (θ) dθ = 0. 5. Dirichlet type convergence Notation 5.1. For all n ∈ N, θ, φ ∈ - π 2 , π 2 
. We denote by

D (α,β) n (θ, φ) := n k=-n ψ (α,β) k (θ)ψ (α,β) k (φ)h (α,β) k . D (α,β) n (θ, φ)
is the analog of the Dirichlet kernel associated with the Fourier series.

Proposition 5.2. Let f ∈ L 1 α,β , n ∈ N and θ ∈ - π 2 , π 2 
. We have

S f n (θ) = π 2 -π 2 f (φ)D (α,β) n (θ, φ)A α,β (φ) dφ.
Proof.

S f n (θ) = n k=-n π 2 -π 2 f (φ)ψ (α,β) k (φ)A α,β (φ) dφ ψ (α,β) k (θ)h (α,β) k = π 2 -π 2 f (φ) n k=-n ψ (α,β) k (φ)ψ (α,β) k (θ)h (α,β) k A α,β (φ) dφ = π 2 -π 2 f (φ)D (α,β) n (θ, φ)A α,β (φ) dφ. Proposition 5.3. Let n ∈ N and θ ∈ - π 2 , π 2 
. We have

π 2 -π 2 D (α,β) n (θ, φ)A α,β (φ) dφ = 1.
Proof.

π 2 -π 2 D (α,β) n (θ, φ)A α,β (φ) dφ = n k=-n π 2 -π 2 ψ (α,β) k (φ)A α,β (φ) dφ ψ (α,β) k (θ)h (α,β) k .
As we know, by the orthogonality property (3), that

π 2 -π 2 ψ (α,β) k (φ)A α,β (φ) dφ = h (α,β) 0 -1 δ 0,k , then, we get π 2 -π 2 D (α,β) n (θ, φ)A α,β (φ) dφ = ψ (α,β) 0 (θ) = 1.
Proposition 5.4.

(

) ∀ n ∈ N, ∀ θ, φ ∈ - π 2 , π 1 
; θ = ±φ, we have

D (α,β) n (θ, φ) = Γ(α + n + 2)Γ(ρ + n + 1) 2 2ρ-1 (Γ(α + 1)) 2 (2n + ρ + 1)n! Γ(β + n + 1) × 1 cos(2θ) -cos(2φ) × ϕ (α,β) n+1 (θ)ϕ (α,β) n (φ) -ϕ (α,β) n (θ)ϕ (α,β) n+1 (φ) + λ (α,β) n λ (α,β) n+1 4(n + 1)(n + ρ) × ψ (α,β) n+1 (θ) ψ (α,β) n (φ) -ψ (α,β) n (θ) ψ (α,β) n+1 (φ) , with ψ (α,β) n (θ) = ψ n (θ) -ψ n (-θ) 2i .
(

) ∀ n ∈ N, ∀ θ, φ ∈ - π 2 , π 2 
, we have

(a) D (α,β) n (θ, φ) ∈ R. (b) D (α,β) n (θ, θ) > 0. (c) D (α,β) n (φ, θ) = D (α,β) n (θ, φ).
Proof.

(1) The case n = 0 is obvious, and we have the result in [4, theorem 3.1], for n ∈ N \ {0}.

(2) (a) We deduce the result from (1), for θ = ±φ. We also have

D (α,β) n (θ, θ) = n k=-n ψ (α,β) k (θ) 2 h (α,β) k ∈ R, and 
D (α,β) n (θ, -θ) = n k=-n ψ (α,β) k (θ) 2 h (α,β) k = h (α,β) 0 + n k=1 ψ (α,β) k (θ) 2 + (ψ (α,β) k (θ) 2 h (α,β) k = h (α,β) 0 + 2 n k=1 ψ (α,β) k (θ) 2 ∈ R. (b) D (α,β) n (θ, θ) = h (α,β) 0 + n k=-n,k =0 ψ (α,β) k (θ) 2 h (α,β) k > 0. (c) D (α,β) n (φ, θ) = D (α,β) n (θ, φ) = D (α,β) n (θ, φ). Theorem 5.5. Let f be a piecewise continuous function on - π 2 , π 2 and θ ∈ - π 2 , π 2 \ {0} such that i) f (-θ) = f (θ),
ii) f is differentiable on θ and -θ.

Then we have

lim n→+∞ S f n (θ) = f (θ).
Proof.

Let n ∈ N and θ ∈ -π 2 , π 2 \ {0}. By Proposition 5.3, we can write

f (θ) -S f n (θ) = π 2 -π 2 [f (θ) -f (φ)]D (α,β) n (θ, φ)A α,β (φ) dφ.
From [4, Theorem 3.1], we have for all θ = ±φ

f (θ) -S f n (θ) = l (α,β) n π 2 -π 2 f (θ) -f (φ) cos(2θ) -cos(2φ) ϕ (α,β) n+1 (θ)ϕ (α,β) n (φ) -ϕ (α,β) n (θ)ϕ (α,β) n+1 (φ) + λ (α,β) n λ (α,β) n+1 4(n + 1)(n + ρ) × ψ (α,β) n+1 (θ) ψ (α,β) n (φ) -ψ (α,β) n (θ) ψ (α,β) n+1 (φ) A α,β (φ) dφ,
where

l (α,β) n := Γ(α + n + 2)Γ(ρ + n + 1) 2 2ρ-1 (Γ(α + 1)) 2 (2n + ρ + 1)n! Γ(β + n + 1)
.

For all φ ∈ - π 2 , π 2 
\ {±θ}, we put

g θ (φ) := f (θ) -f (φ) cos(2θ) -cos(2φ)
.

Since we have supposed that f is a piecewise continuous function on -

π 2 , π 2 , then g θ is also piecewise continuous on - π 2 , π 2 \ {±θ}. Furthermore, we have lim φ→θ g θ (φ) = - 1 2 1 sin(2θ) f (θ).
And from hypothese i) of our theorem, we deduce that lim φ→-θ

g θ (φ) = 1 2 1 sin(2θ) f (-θ).
Under the assumption ii) of the theorem, these limits exist and are finite. We still call g θ the extension of g θ on -π 2 , π 2 . Thus, g θ ∈ L 2 α,β . In the following, we denote by

∨ g θ (φ) := g θ (-φ), φ ∈ - π 2 , π 2 , g 1 θ := (g θ ) | [0, π 2 ] , g 2 θ := (g θ ) |[-π 2 ,0] , ∨ g 2 θ (φ) := g 2 θ (-φ), φ ∈ 0, π 2 .
Now, we write

f (θ) -S f n (θ) = I 1 + I 2 + I 3 + I 4 ,
where

I 1 := l (α,β) n ϕ (α,β) n+1 (θ) π 2 -π 2 g θ (φ)ϕ (α,β) n (φ)A α,β (φ) dφ, I 2 := -l (α,β) n ϕ (α,β) n (θ) π 2 -π 2 g θ (φ)ϕ (α,β) n+1 (φ)A α,β (φ) dφ, I 3 := l (α,β) n λ (α,β) n λ (α,β) n+1 4(n + 1)(n + ρ) ψ (α,β) n+1 (θ) π 2 -π 2 g θ (φ) ψ (α,β) n (φ)A α,β (φ) dφ, I 4 := -l (α,β) n λ (α,β) n λ (α,β) n+1 4(n + 1)(n + ρ) ψ (α,β) n (θ) π 2 -π 2 g θ (φ) ψ (α,β) n+1 (φ)A α,β (φ) dφ.
Combining the fact that

l (α,β) n ∼ +∞ 1 2 2ρ (Γ(α + 1)) 2 n 2α+1 ,
and the result (35) of [START_REF] Chouchene | Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials[END_REF], we get

l (α,β) n ϕ (α,β) n+1 (θ) ∼ +∞ n α+ 1 2 cos (2n + 2 + ρ)|θ| -(2α + 1) π 4 √ πΓ(α + 1)A 2α-1 4 , 2β -1 4 (θ) 
.

Moreover, we have

π 2 -π 2 g θ (φ)ϕ (α,β) n (φ)A α,β (φ) dφ = F α,β   g 1 θ + ∨ g 2 θ   (n).
From the Parseval formula for the Jacobi coefficients (see [START_REF] Chouchene | Harmonic analysis associated with the Jacobi-Dunkl operator on -π 2 , π 2[END_REF]), we obtain

F α,β   g 1 θ + ∨ g 2 θ   (n) = o n -(α+ 1 2 ) .
Thus, lim n→+∞ I 1 = 0.

We use the same proof as for I 1 to show that Which achieves the proof.

2 g

 2 θ (φ) ψ (α,β) n (φ)A α,β (φ) dφ = 1 2i F ∨ g θ -g θ (n).By [2, corollary 3.5], we haveF ∨ g θ -g θ (n) = o n -(α+ 1 2 ) .

Furthermore 2 g

 2 θ (φ) ψ (α,β) n+1 (φ)A α,β (φ) dφ = 0.Hence, we obtainlim n→+∞ f (θ) -S f n (θ) = lim n→+∞ I 1 + I 2 + I 3 + I 4 = 0.