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Abstract. We consider methods for estimating the relative contributions of different
demographic components, and their associated vital rates, to population growth. We identify
components of the population at time i (including a component for animals not in the
population at i). For each such component we ask the following question: ‘‘What is the
probability that an individual randomly selected from the population at time i 1 1 was a
member of this component at i?’’ The estimation methods for these probabilities (gi) are
based on capture–recapture studies of marked animal populations and use reverse-time
modeling. We consider several different sampling situations and present example analyses
for meadow voles, Microtus pennsylvanicus. The relationship between these gi parameters
and elasticities (and other parameters based on projection matrix asymptotics) is noted and
discussed. We conclude by suggesting that model-based asymptotics be viewed as demo-
graphic theory and that direct estimation approaches be used to test this theory with data
from sampled populations with marked animals.

Key words: animal population ecology; asymptotic theory of population growth; contributions
of demographic components; elasticity; meadow voles; Microtus pennsylvanicus; population growth
rate; population projection matrix; reverse-time capture–recapture models.

INTRODUCTION

Population growth is a process of fundamental in-
terest in the study of animal population dynamics. At
any time, i 1 1, in the history of an animal population,
it is possible to ask the following question: ‘‘What is
the composition of this population, Ni11, with respect
to classes of animals the previous time period, i?’’ For
example, if we deal with a single patch or subpopu-
lation within a metapopulation system, we might ask
what proportion of the subpopulation at time i 1 1
comprises survivors from the same subpopulation at
time i, and what proportion is instead new animals that
were outside the subpopulation at i, but immigrated
between i and i 1 1. Certainly this kind of question is
relevant to the identification of source and sink areas
(Pulliam 1988) and to general questions about meta-
population dynamics. Alternatively, we might classify
animals by age and ask about the relative contributions
of young and adults at time i to the adult population
at time i 1 1.

The finite rate of increase of a population between
two periods, i and i 1 1, is usually defined as li 5
Ni11/Ni, where Ni is the population size for time i. Thus,
contributions of different classes of animals at time i
to Ni11 also represent contributions of these classes to
population growth, li. In this paper, we show how re-
verse-time capture–recapture methods (Pollock et al.
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1974, Nichols et al. 1986, Pradel 1996) can be used to
directly estimate such contributions to population size
and growth rate. We illustrate the approach with ex-
amples, and finally discuss the relationship between
these estimated contributions to population growth and
other quantities developed to address similar sorts of
questions (e.g., sensitivity, elasticity, or relative sen-
sitivity; see Caswell [1989]).

Specifically, we examine three scenarios that differ
with respect to the number of subpopulations and the
number of age classes considered. For each scenario,
we express population change in terms of the relevant
demographic components and show the corresponding
decomposition of population growth rate. We write the
numbers of animals in each component as a binomial
or multinomial random variable conditional on Ni11 and
focus attention on the cell probability parameters. We
then turn to estimation of these parameters and consider
the use of reverse-time capture–recapture methods for
this purpose. Finally, we present an example of the use
of these estimators with data from field studies of mead-
ow voles, Microtus pennsylvanicus, at Patuxent Wild-
life Research Center, Laurel, Maryland.

ONE AGE, ONE STRATUM

Demographic components

Assume interest in a single, open (birth, death, em-
igration, and immigration can occur between sample
periods) animal population with no age-specificity. We
would like to estimate the relative contributions to pop-
ulation growth or change between i and i 1 1 (li) of
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two demographic components: (1) surviving animals
from the population at time i (denote these as Si), and
(2) new recruits (denote these as Bi). (Note that we
follow the convention of referring to li as population
growth rate despite the fact that it can reflect decreases
in population size [li , 1] and stasis [li 5 1], as well
as increases [li . 1]). The recruits are animals not in
the population at time i, but instead result from repro-
duction and/or immigration, enter the population be-
tween times i and i 1 1, and are present at i 1 1. We
view population size, Ni11, number of survivors, Si, and
number of new recruits, Bi, as random variables. Pop-
ulation size at time i 1 1 can be written as the sum of
these two demographic components:

N 5 S 1 B .i11 i i (1)

We can view these two components (Si and Bi) of
Ni11 as following a binomial distribution conditional
on Ni11 and governed by a parameter, gi11, denoting the
probability that a member of Ni11 is a survivor from
the previous period (i.e., a member of Si). Thus, we
can write the probability distribution of Si, conditional
on Ni11, as follows:

(N )!i11 S N 2Si i11 iPr(S z N ) 5 g (1 2 g ) (2)i i11 i11 i11(S )!(N 2 S )!i i11 i

where Bi 5 Ni11 2 Si.
Based on Eqs. 1 and 2, we can decompose the ex-

pectation for population growth rate as follows:

E(S ) 1 E(B )i iE(l ) øi E(N )i

g N 1 (1 2 g )Ni11 i11 i11 i115 . (3)
E(N )i

We believe that the gi11 parameters provide useful
information about the components of population
growth. For example, if gi11 5 0.5, then we can regard
survivors from Ni and new recruits as equally important
to population growth over the interval i to i 1 1. If
gi11 5 0.75, then a member of Ni11 is three times more
likely to be a survivor from time i than to be a new
recruit, and survival within the population can be
viewed as three times more important to population
growth over the interval i to i 1 1.

These parameters, gi11, can be used to draw infer-
ences about the relative effect of hypothetical changes
in the two demographic components on the population
growth between i and i 1 1. For example, assume that
recruitment had been reduced by proportion a between
i and i 1 1, such that recruitment during this interval
was really (1 2 a)Bi. The proportional change in li

resulting from proportional change a in recruitment is
given by a(1 2 gi11). Thus, we can compute the new
population growth rate resulting from a proportional
reduction in recruitment of magnitude a as li[1 2 a(1
2 gi11)].

Estimation

Capture–recapture studies provide information that
can be used to estimate the gi11 parameters. In sampling
period i 1 1, we may catch an animal that was captured
and marked in some previous period, period # i. We
know that such an animal was a member of Si. However,
if we catch an unmarked animal at time i 1 1, we cannot
be certain of its status at time i. The animal could have
been in the population before sampling period i 1 1
and not caught, or it could have been a new recruit at
i 1 1, consequently not available for capture before i
1 1. Estimation of gi11 thus requires consideration of
capture probabilities, pi (probability that an animal in
the population at i is caught or observed in sampling
efforts at i), and the use of capture–recapture modeling
(e.g., Lebreton et al. 1992).

Survival rate estimation under capture–recapture
models for open populations, such as the Cormack-
Jolly-Seber (CJS) model (Cormack 1964, Jolly 1965,
Seber 1965), proceeds by conditioning on releases in
earlier time periods and following fates of these ani-
mals in later time periods. Pollock et al. (1974) noted
that if the capture history data are considered in reverse
time order, conditioning on animals caught in later time
periods and observing their captures in earlier occa-
sions, then inference can be made about the recruitment
process. Specifically, ‘‘a backward process with re-
cruitment and no mortality is statistically equivalent to
a forward process with mortality and no recruitment’’
(Pollock et al. 1974:85–86).

Data from capture–recapture studies are typically
summarized as capture histories. For example, the cap-
ture history 0101100 indicates an animal captured only
in periods 2, 4, and 5 of a seven-period study (each
element of the row vector represents observation (1)
or nonobservation (0) of the animal at a sampling pe-
riod, where such periods are numbered consecutively
beginning at period 1). Standard capture–recapture sur-
vival analysis (e.g., Lebreton et al. 1992) proceeds by
first conditioning on the period of initial capture of an
animal (period 2 for capture history 0101100) and then
modeling the subsequent capture history using two
kinds of parameters, fi (the probability that an animal
present in the population at sampling period i survives
and is still in the population at period i 1 1) and pi.
So conditional on capture in period 2, the probability
associated with the remainder of the above capture his-
tory would be: f2(1 2 p3)f3 p4f4 p5x5, where the xi

parameters denote the probability of not being seen at
any time after i, given that the animal is alive at i. The
xi are not really new parameters, in the sense that they
are written recursively as a function of subsequent fi

and pi [in the example, x5 for a seven-period study can
be written as (1 2 f5) 1 f5(1 2 p6)(1 2 f6 p7)]. Capture
history data such as these lead to conditional product–
multinomial models from which maximum likelihood
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estimates of the fi can be directly obtained (Seber
1982, Lebreton et al. 1992).

Reverse-time capture–recapture analyses (Pollock et
al. 1974, Nichols et al. 1986, Pradel 1996) proceed in
a straightforward manner by simply reversing the order
of the capture history data. If we reverse the time order
of the above capture history, we obtain 0011010, where
the first zero represents period 7, the second represents
period 6, and the final zero represents period 1. The
reverse-time approach to capture–recapture analysis is
to model the reverse capture history data with pi and
gi, where gi reflects the probability that an animal pre-
sent in sampling period i was also present in period i
2 1 (this is the same parameter that was defined pre-
viously and used to decompose the population growth
rate). The gi thus concern the ‘‘survival’’ of an animal
into the previous sampling period. Conditional on final
recapture in period 5, reverse capture history 0011010
would be modeled as: g5 p4g4(1 2 p3)g3p2(1 2 g2 p1).
Such capture history data lead to the same kind of
product–multinomial models as standard-time data, and
maximum likelihood estimation of the gi proceeds in
exactly the same manner as for estimation of fi that
we have presented.

As noted by Pradel (1996), the software packages
(e.g., SURGE [Lebreton et al. 1992], MARK [White
and Burnham 1999]) used to estimate fi from standard-
time capture–recapture data provide estimates of gi

when applied to reverse-time data. A similar, but al-
ternative, approach to estimation of gi does not con-
dition on final captures, but is instead based on the full
likelihood also introduced by Pradel (1996). Although
we have based our recommendations and examples on
the conditional approach because of its ease of imple-
mentation, it may be that the full likelihood approach
of Pradel (1996) (also implemented in MARK) pro-
vides slightly more precise estimates in some situa-
tions. This topic merits exploration.

In capture–recapture studies animals sometimes die
in traps or are not released following sampling for other
reasons. We note that when this occurs, it is usually
appropriate to define li as where and2 1 2l 5 N /N , Ni i11 i i

denote population size just before and after sam-1Ni

pling at time i, respectively. This definition restricts
attention to changes in abundance that are not asso-
ciated with the sampling process. The gi estimated from
capture–recapture studies as described here reflect pro-
portional contributions to and, hence, to li as de-2Ni11

fined here. In the example analysis, we assume no loss-
es on capture, but this modified definition of li will be
applicable in studies that do have losses.

Example analysis

We use capture–recapture data from a study of mead-
ow voles, Microtus pennsylvanicus, conducted in old-
field habitat at Patuxent Wildlife Research Center in
Laurel, Maryland (also see Nichols et al. 1994). Here
we focus on one of eight experimental trapping grids,

grid 4A, and use data from the first 11 sampling periods
extending from November 1991–May 1993. The grid
was a 7 3 15 rectangle of trapping stations with ad-
jacent stations within each row or column separated by
7.6 m (25 ft). The robust design (Pollock 1982) was
used, with primary trapping periods occurring at ;8-
wk intervals. For primary periods 1–9, secondary sam-
pling included five consecutive days of trapping,
whereas for periods 10–11, only two consecutive days
were trapped.

A single Sherman live trap containing cotton and
baited with rolled oats was placed at each station. The
trapping schedule consisted of setting traps one even-
ing, checking them for animals and closing them the
following morning, setting them again in the late af-
ternoon, checking them the following morning, etc.
Newly captured animals were marked with individually
coded monel fingerling tags placed in their ears. If tags
of previously marked animals showed signs of pulling
out, we applied a new tag on the opposite ear and/or
clipped toes. Animals were sexed and masses were
measured on each occasion, and external reproductive
characteristics were recorded.

For this analysis, we focused on adult and subadult
voles (defined as .22 g body mass) of both sexes. Both
the data set and the analysis are available as Supple-
mentary Materials. We used an open model approach,
focusing only on whether or not an animal had been
captured at least once at each of the 11 primary trapping
periods. The analysis used 874 captures of 451 adult
and subadult (hereafter simply termed ‘‘adult’’) ani-
mals. As this is a single-age, single-stratum problem,
we assessed the fit of the standard Cormack-Jolly-Seber
model (Cormack 1964, Jolly 1965, Seber 1965) and
found it adequate (x 5 19.1, P 5 0.16; Pollock et al.2

14

1985, 1990).
We estimated the time-specific rates of population

increase (corresponding to approximate two-month pe-
riods) using the approach of Pradel (1996). Estimates,

, ranged 0.59–1.73, as the population exhibited ap-l̂i

parent increases and declines over the 1.5-yr study pe-
riod (Table 1). We used reverse-time capture–recapture
to estimate the relative contributions of adult survival
( ) and recruitment ( ) to population growth be-ĝ 1 2 ĝi i

tween i 2 1 and i (i.e., li–1 and gi both correspond to
the interval, i 2 1 to i). The point estimates of gi ranged
0.40–0.83, indicating substantial variation in the rel-
ative contribution of adult survival to population
growth (Table 1). Nevertheless, for all but two inter-
vals, , indicating a tendency for adult survivalĝ . 0.5i

to be more important to population growth than re-
cruitment. Recall that recruitment, in this situation, re-
fers to adults that are ‘‘new’’ in period i, in the sense
that they were not adults on the area in period i 2 1.
Such recruits could have resulted from reproduction on
the grid or from animals moving onto the grid from
outside areas. We distinguish between these two re-
cruitment components in subsequent examples.

pradel
Texte surligné 
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TABLE 1. Estimates of population growth rate i and relative contributions to population growth of adult survival ( i) andl̂ ĝ
recruitment (1 2 i) for adult meadow voles trapped on grid 4A, Patuxent Wildlife Research Center, Laurel, Maryland,ĝ
November 1991–May 1993.

Trapping
period Date† i (SE [ i])‡l̂ l̂ i (SE [ i])§ĝ ĝ 1 2 i (SE [1 2 i])§ĝ ĝ

2
3
4
5
6

1 January 1992
26 February 1992
22 April 1992
17 June 1992
12 August 1992

1.06 (0.362)
0.59 (0.209)
1.73 (0.560)
0.97 (0.232)
0.87 (0.126)

···
0.60 (0.109)
0.64 (0.117)
0.40 (0.055)
0.50 (0.064)

···
0.40 (0.109)
0.36 (0.117)
0.60 (0.055)
0.50 (0.064)

7
8
9

10
11

7 October 1992
1 December 1992

27 January 1993
25 March 1993
20 May 1993

1.39 (0.140)
0.70 (0.107)
0.59 (0.183)

···
···

0.65 (0.049)
0.53 (0.043)
0.83 (0.049)
0.70 (0.081)
0.58 (0.109)

0.35 (0.049)
0.47 (0.043)
0.17 (0.049)
0.30 (0.081)
0.42 (0.109)

† Midpoint of five-day (periods 1–8) trapping period and first of two-day (9–11) periods.
‡ Estimated directly using the approach of Pradel (1996).
§ Estimated using reverse-time capture–recapture.

We can use these estimates, , to draw inferencesĝi

about the degree to which population growth would
have differed had either recruitment or adult survival
been different. For example, , indicating thatĝ 5 0.7010

an estimated 70% of the adult population at period 10
were surviving adults from period 9. The rate of pop-
ulation increase between periods 9 and 10 was esti-
mated to be , reflecting a decline in adultl̂ 5 0.599

population size over this interval. What would have
been the population growth rate over this interval if
adult survival had been 5% higher or 5% lower than
it actually was (we refer to fi 6 0.05fi and not fi 6
0.05)? We compute the change in growth rate corre-
sponding to a 5% change in adult survival as 0.05

or 3.5% (estimated SE 5 0.405%). So a 5% increaseĝ10

in adult survival over the interval between sampling
periods 9 and 10 would have increased byl̂ 5 0.599

3.5% to a projected 1.035 . Similarly, a 5%l̂ 5 0.619

decrease in adult survival would have reduced l to
0.965 .l̂ 5 0.579

ONE AGE, TWO STRATA

Interest focused on one stratum

Demographic components.—Assume a sampling sit-
uation where we mark and recapture animals at two
different study areas (denoted areas 1 and 2) and that
animals can move between these two areas. Further
assume that our primary interest is in population
growth on one of these areas (say area 1). Define rsSi

as the number of animals located on area r at time i
that are alive on area s at time i 1 1. Using superscripts
to denote the study area, we can write the population
size on area 1 as the sum of three components:

1 11 21 1N 5 S 1 S 1 B .i11 i i i (4)

The first term on the right-hand side of Eq. 4 represents
the number of animals that survived from i to i 1 1
and remained on area 1. The second term denotes an-
imals present on area 2 at time i that survived until i
1 1 and moved to area 1. The final term simply rep-

resents the recruitment to area 1 between i and i 1 1,
including results of any reproduction on areas 1 and 2,
and immigration from locations outside the boundaries
of the two study areas. Thus, .1 1 11 21B 5 N 2 S 2 Si i11 i i

We can model these random variables reflecting the
demographic components contributing to as a con-1Ni11

ditional trinomial:

1(N )!i11 1111 21 1 1 11 S1 2iP(S , S , B z N ) 5 (g )i i i i1 1 i1111 21 1(S )!(S )!(B )!i i i

21 112 S 11 12 B1 2 1 2i i3 (g ) (1 2 g 2 g ) .i11 i11 i11

(5)

The are defined as the probability that an animalrsgi11

present in area r during period i 1 1 was in area s in
period i. In this simple case of two study areas, 11gi11

gives the probability that a member of was a mem-1Ni11

ber of the previous period, is the probability1 12N gi i11

that a member of was a member of the previous1 2N Ni11 i

period, and represents the probability11 121 2 g 2 gi11 i11

that a member of was in neither area 1 nor 2 at1Ni11

time i, but was recruited (either via reproduction or
immigration) between times i and i 1 1. The pa-rsgi11

rameters quantify the relative contributions of these
different demographic components to the population at
time i 1 1 and thus to population growth between i
and i 1 1. Based on Eqs. 4 and 5, we can decompose
the expectation for population growth rate of area 1 as
follows:

11 21 1E(S ) 1 E(S ) 1 E(B )i i i1E(l ) øi 1E(N )i

11 1 12 1 11 12 1g N 1 g N 1 (1 2 g 2 g )Ni11 i11 i11 i11 i11 i11 i115 .
1E(N )i

(6)

The parameters can be used to address questionsrsgi11

such as the following: ‘‘How would the rate of increase
in area 1 ( ) have differed if the contribution from1li

area 2 had been reduced by 25%.’’ Let a be the pro-
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TABLE 2. Estimates of population change ( ) for patch 1 of a two-patch system and relative contributions to population1l̂i

size and growth of adult survival on patch 1 ( ), adult survival and movement from patch 2 to patch 1 ( ), and recruitment11 12ĝ ĝi i

to patch 1 from outside the two-patch system (1 2 2 ) for meadow voles trapped on grid 4A, Patuxent Wildlife11 12ĝ ĝi i

Research Center, Laurel, Maryland, November 1991–May 1993.

Trapping
period Date† (SE )‡1 1l̂ l̂i i (SE [ ])§11 11ĝ ĝi i (SE [ ])§12 12ĝ ĝi i

1 2 211 12ĝ ĝi i

(SE [1 2 2 ])§11 12ĝ ĝi i

2
3
4
5
6

1 January 1992
26 February 1992
22 April 1992
17 June 1992
12 August 1992

1.25 (0.735)
0.51 (0.360)
1.03 (0.767)
1.36 (0.832)
0.88 (0.249)

···
0.49 (0.126)
0.62 (0.166)
0.49 (0.091)
0.30 (0.069)

···
0.00 (0.000)
0.04 (0.035)
0.00 (0.000)
0.08 (0.040)

···
0.51 (0.126)
0.34 (0.169)
0.51 (0.091)
0.62 (0.076)

7
8
9

10

7 October 1992
1 December 1992

27 January 1993
25 March 1993

1.54 (0.238)
0.67 (0.185)
0.65 (0.472)

···

0.57 (0.065)
0.51 (0.056)
0.83 (0.065)
0.66 (0.113)

0.02 (0.017)
0.03 (0.020)
0.00 (0.000)
0.04 (0.046)

0.41 (0.065)
0.45 (0.056)
0.17 (0.065)
0.29 (0.111)

11 20 May 1993 ··· 0.43 (0.139) 0.14 (0.099) 0.43 (0.141)

† Midpoint of five-day (periods 1–8) trapping period and first day of two-day (9–11) periods.
‡ Estimated from patch 1 capture history data using the approach of Pradel (1996).
§ Estimated using reverse capture–recapture with multistate models.

portional reduction in the contribution from area 2.
Then we can predict the proportional reduction in

, and thus in , as .1 1 12N l agi11 i i11

As an aside, we note the analogy between the rsgi

parameters and the quantity known as ‘‘derivation of
the harvest’’ in studies of harvested animal populations
(e.g., Munro and Kimball 1982, Schwarz and Arnason
1990). Studies of derivation of the harvest attempt to
estimate the relative contributions of various source
populations to the animals harvested in a particular
area. In such studies, efforts are made to estimate the
probabilities that an animal harvested in the area of
interest originated in each of a specified number of
potential contributing source populations/areas. We be-
lieve that use of reverse-time, multistate, tag–recovery
modeling deserves consideration as a possible means
of estimating these probabilities more directly.

Estimation.—By analogy with the single-stratum sit-
uation, reverse-time capture–recapture analysis pro-
ceeds by using multistate estimation methods (e.g., Ar-
nason 1972, 1973, Hestbeck et al. 1991, Brownie et al.
1993, Schwarz et al. 1993) on the reverse capture his-
tory. For example, a capture history for a three-sample
study might be 102. This animal was caught during
sample period 1 at area 1, not caught during sample
period 2, and then caught at area 2 during sample period
3. The reverse-time capture history for such an indi-
vidual would be 201. Recall that is the probabilityrsgi

that an animal present in area r during period i was in
area s in period i 2 1. We can then model the reverse-
time history, conditional on capture in area 2 at time
3, as . The first term21 1 11 1 22 2 21 1g (1 2 p )g p 1 g (1 2 p )g p3 2 2 1 3 2 2 1

represents the probability that the individual was on
area 1 in period 2, whereas the second term reflects the
probability that the animal was on area 2 at time 2. As
the true location of the animal at period 2 is unknown,
the probabilistic modeling must account for both pos-
sibilities. Note that the capture probabilities carry su-
perscripts permitting the possibility of differences be-
tween the two study areas. As with the single-stratum

models, standard software for multistate models
(MSSURVIV [Hines 1994], MARK [White and Burn-
ham 1999]) can be used to analyze reverse-time capture
history data, and the usual survival–transition param-
eters (the of Brownie et al. 1993) become the .rs rsf gi i

Example analysis.—Here, we again use the data of
the previous example, but we focus attention on one
half of the grid. We divide the rectangular grid 4A into
two square strata. Stratum 1 is defined by trapping rows
1–7 and stratum 2 is defined by trapping rows 9–15.
As the overall grid contains seven columns of traps,
both strata are squares with 7 3 7 trapping stations.
We again consider only adults and subadults (we will
refer to these as adults) defined as animals of mass .22
g. The protocol for trapping and handling animals has
been described (see One stage, one stratum: Example
analysis; see the Supplementary Material for data).

For this example, we focus attention on stratum 1
and on the number of adults ( ) and the rate of increase1Ni

in number of adults ( ) in this stratum. We1 1 1l 5 N /Ni i11 i

first used the model of Pradel (1996), with capture–
recapture data only from stratum 1 (captures from row
8 or stratum 2 were simply entered as zero), to estimate
population growth rates for this stratum. With some
exceptions (e.g., sampling periods 4 and 5), the (Ta-1l̂i

ble 2) were not dissimilar from the estimated rates of
increase for the entire grid, (Table 1).l̂i

We used reverse-time multistate modeling to esti-
mate the relative contributions to population size and
growth on stratum 1 from adults on stratum 1 ( ),11ĝi

adults on stratum 2 ( ), and new recruits (12ĝ 1 2i

). Estimated contributions to stratum 1 of11 12ĝ 2 ĝi i

adults from stratum 2 were not large: 120.00 # ĝ #i

(Table 2). Consider the population change in stra-0.14
tum 1 between sampling periods 6 and 7. The estimated
contributions from adults on stratum 1, adults on stra-
tum 2 and new recruits were 0.57, 0.02, and 0.41, re-
spectively (Table 2). So a 5% change in adult survival
on stratum 1, or in the probability of an adult remaining
on (not moving from) stratum 1, would have yielded
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a 2.85% (estimated SE 5 0.325%) change in adult pop-
ulation growth on stratum 1 during the interval between
periods 6 and 7. A 5% change in adult survival on
stratum 2, or in the probability that an adult on stratum
2 would move to stratum 1, would have produced a
change of only 0.10% (estimated SE 5 0.085%) in .1l6

A 5% change in the number of recruits to stratum 1
would have produced a 2.05% (estimated SE 5 0.325%)
change in .1l6

Interest focused on the summed animals
in multiple strata

Demographic components.—Consider a population
with no age structure, existing on a single study area.
The population contains two types of individuals cat-
egorized by a threshold body mass, such that each an-
imal’s mass can be measured upon capture, and clas-
sification can be assigned as either heavy (stratum 1)
or light (stratum 2). Animals are categorized at each
capture period and can change state from one sampling
period to another. An important difference between this
situation and the previous one involving two locations
is that, in the present case, we are interested in the
entire population representing the sum of animals in
the two states. We define the rate of increase of the
population in the following manner:

1 2N 1 Ni11 i11l 5 (7)i 1 2N 1 Ni i

where the superscripts denote the two mass classes or
states. The number of animals in the two classes in
period i 1 1 can be written as

1 11 21 1N 5 S 1 S 1 Bi11 i i i

2 12 22 2N 5 S 1 S 1 B (8)i11 i i i

where denotes the number of animals in state r atrsSi

time i that are alive and in state s at time i 1 1, and
denotes the number of new (not present at i) recruitssBi

to the population that are members of state s at time i
1 1. The number of animals in each state at time i 1
1 thus represents the sum of (1) surviving animals from
the same state in the previous time period, (2) surviving
animals from the other state in the previous time period
that made a transition between states, and (3) new re-
cruits that were not members of the population the
previous period.

We can model the numbers of animals in each of the
three demographic components at time i contributing
to (Eq. 8) as one trinomial (the same trinomial as1Ni11

in Eq. 5) and the numbers of animals in each of the
three components contributing to (Eq. 8) as a dif-2Ni11

ferent trinomial:

2(N )!i11 1212 22 2 2 21 SiP(S , S , B z N ) 5 (g )i i i i11 i1112 22 2(S )!(S )!(B )!i i i

22 222 S 21 22 Bi i3 (g ) (1 2 g 2 g ) .i11 i11 i11

(9)

The are defined in a manner similar to the previousrsgi

case as the probability that an animal in state r during
period i was alive in state s in period i 2 1.

Based on Expressions 5–9, decomposition of E(li)
is accomplished as follows:

11 21 1 12 22E(l ) ø [E(S ) 1 E(S ) 1 E(B ) 1 E(S ) 1 E(S )i i i i i i

2 1 2 211 E(B )1][E(N ) 1 E(N )]i i i

11 1 12 1 11 12 15 [g N 1 g N 1 (1 2 g 2g )Ni11 i11 i11 i11 i11 i11 i11

21 2 22 2 21 22 21 g N 1 g N 1 (1 2 g 2 g )N ]i11 i11 i11 i11 i11 i11 i+1

1 2 213 [E(N ) 1 E(N )] .i i (10)

In Expression 10, the members of each state of the
population at time i 1 1 are classified using the rsgi11

into their respective components from the previous
time period, i. So , , and ( ) reflect11 12 11 12g g 1 2 g 2 gi11 i11 i11 i11

the relative contributions of the three components to
, and , , and ( ) represent the1 21 22 21 22N g g 1 2 g 2 gi11 i11 i11 i11 i11

contributions to . Because population growth is de-2Ni11

fined in terms of both states (1 and 2; Eq. 7), however,
the relative influence of a demographic component on
li now requires information not only on the , butrsgi11

also on the relative composition of the population at
time i 1 1 with respect to the two states. The relative
state composition of the population at time i 1 1 is
simply given by , for r 5 1 or 2.r 1 2N /(N 1 N )i11 i11 i11

Estimation.—As in the previous multistate applica-
tion, we can use reverse-time multistate estimation
methods (Brownie et al. 1993) to estimate the , thersgi11

probability that a member of state r at time i 1 1 was
in state s in period i. The relative effect on population
growth (li, Eq. 7) of a proportional reduction of a in
one of the recruitment variables ( ) can be estimatedrBi

as , where the ra-r1 r2 r 1 2ˆ ˆ ˆa(1 2 ĝ 2 ĝ )(N /[N 1 N ])i11 i11 i11 i11 i11

tio, , estimates the proportion of an-r 1 2ˆ ˆ ˆN /[N 1 N ]i11 i11 i11

imals in the population at time i 1 1 in state r. Note
that one way of obtaining the state-specific abundance
estimates needed for this estimation is to simply divide
the number of animals captured in a state, , by therni

corresponding estimated time- and state-specific cap-
ture probability (N̂r

i 5 nr
i/p̂r

i).
As another example, the relative effect on li of a

proportional reduction of a in survival of animals in
state 1 at time i (survival of ; recall that some of1Ni

these animals remain in state 1 and others move to state
2) can be estimated as

11 1 21 2ˆ ˆa(ĝ N 1 ĝ N )i11 i11 i11 i11 .
1 2ˆ ˆN 1 Ni11 i11

This expression effectively weights the parameterrsgi11

estimates by the estimated proportional compositions
of the population (at i 1 1) to which they pertain.

Estimation of the relative state composition of the
population at i 1 1 using representsr 1 2ˆ ˆ ˆN /[N 1 N ]i11 i11 i11

a very general approach that is appropriate even if the
animals in the two states exhibit different capture prob-
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abilities. However, if animals in the two states exhibit
similar capture probabilities, then this estimator is like-
ly inefficient (e.g., see Skalski and Robson 1992) and
can be replaced by . The hypothesis ofr 1 2n /(n 1 n )i11 i11 i11

can be formally tested using a likelihood1 2p 5 pi11 i11

ratio test of competing multistate capture–recapture
models (e.g., Brownie et al. 1993). The approach of
conducting such a test and, when there is no evidence
of different capture probabilities, using the estimator
based on count statistics ( ), rather than the estimatorrni11

based on estimated abundance ( ), is similar to thatrN̂i11

recommended by Skalski and Robson (1992) and used
by Nichols et al. (1994) in a closely related context.

TWO AGES, ONE STRATUM

Assume that we conduct a capture–recapture study
at a single location and that animals can be classified
upon capture as either young or adult. Further assume
that the sampling takes place soon after reproduction
(toward the end of the breeding season for seasonal
breeders). We consider the situation where the length
of time separating consecutive sample occasions cor-
responds to the time required for young animals to
become adults. An example might be a population of
ducks that we sample each year at the end of the breed-
ing season. The sampling should be timed to follow
the production of young sufficiently closely that the
young animals caught represent young produced on (or
very close to) the study area.

The sampling for this situation must follow the ro-
bust design of Pollock (1982) because of the need to
estimate capture probability for young animals (see
Discussion). This design includes primary sampling pe-
riods, between which the population is assumed to be
open to gains and losses (the annual samples would be
the primary samples in our duck example). Within each
primary sample, there are two or more secondary sam-
pling occasions. The secondary samples are typically
spaced very close together in time in order to provide
a good likelihood that the population is closed to gains
and losses between secondary samples. In the duck
example, we might catch birds on three consecutive
days or perhaps two consecutive weeks, and in small
mammal examples we might trap for five consecutive
days.

Demographic components

Using superscripts to denote age class (2 5 adult, 1
5 young; e.g., the number of adults at i 1 1 is denoted
as ), the finite rate of increase for the entire pop-2Ni11

ulation (both age classes) can be written as:

1 2N 1 Ni11 i11112l 5 . (11)i 1 2N 1 Ni i

The finite rate of increase for the adult component of
the population is given by the following:

2N i112l 5 . (12)i 2N i

For a population at stable age distribution, these two
growth rates will be equal, , but for a popu-112 2l 5 li i

lation exhibiting transient dynamics or experiencing
temporal variation in vital rates, the two growth rates
can be different.

The number of adults at time i 1 1 can be written
as the sum of the three demographic components with
respect to time i:

2 22 12 2N 5 S 1 S 1 B .i11 i i i (13)

where is the number of adults present in the pop-22Si

ulation at time i that survive and are still present at
time i 1 1, is the number of young animals present12Si

at time i that survive to become adults at time i 1 1,
and denotes the number of immigrants between i2Bi

and i 1 1 that are present as adults at time i 1 1.
As in the previous cases, we can view these com-

ponents as random variables following a trinomial dis-
tribution conditional on and governed by param-2Ni11

eters . These parameters reflect the probability2s 2sg gi11 i11

that an adult animal at time i 1 1 was in a particular
demographic category (young, s 5 1; adult, s 5 2) at
time i. The probability distribution of these different
components contributing to the adult population at i 1
1 can be written as follows:

2(N )!i11 1212 22 2 2 21 SiP(S , S , B z N ) 5 (g )i i i i11 i1112 22 2(S )!(S )!(B )!i i i

22 222 S 21 22 Bi i3 (g ) (1 2 g 2 g ) .i11 i11 i11

(14)

In this two-age situation, we use the to decompose2sgi11

the adult population at time i 1 1 ( ) into relative2Ni11

contributions of adults at i, young at i, and immigrants.
The corresponding decomposition for the growth rate
of the adult component (defined in Eq. 12) is

12 22 2E(S ) 1 E(S ) 1 E(B )i i i2E(l ) øi 2E(N )i

21 2 22 2 21 22 2g N 1 g N 1 (1 2 g 2 g )Ni11 i11 i11 i11 i11 i11 i115 .
2E(N )i

(15)

Assume an example in which ,22 21g 5 0.7 g 5i11 i11

, and . Under this scenario, we22 210.2 1 2 g 2 g 5 0.1i11 i11

would conclude that recruitment resulting from in situ
reproduction made twice the contribution to adult pop-
ulation growth over the interval i to i 1 1 as recruitment
from immigration. Relative contributions of these two
types of recruitment are relevant to characterizing hab-
itats as sources or sinks (e.g., Pulliam 1988). These
quantities can be used to draw inferences about the
change in population growth of the adult component,

, that would have resulted from a specified change2li

in a demographic component at i. For example, a pro-
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portional reduction, a, in young survival [i.e., new sur-
vival given by ] produces a proportional re-1(1 2 a)fi

duction in adult population growth of [i.e., new21agi11

adult growth rate can be obtained as ].2 21l (1 2 ag )i i11

If interest is focused on the growth rate of the entire
population (young and adults), then we use Expression
12 for . Relative effects of changes in vital rates112li

now involve the age composition of the population at
i 1 1, as well as the relative contributions to the adult
component at i 1 1, and the computations initially seem
more complicated than for . However, in many sam-2li

pling situations, the young animals in the population
at i 1 1 can be viewed as the product of number of
adults at i 1 1 and a per capita reproductive rate for
adults. Thus, a proportional reduction of in the21agi11

adult population at i 1 1 produces an identical pro-
portional reduction in the number of new young at i 1
1. The consequence of this reasoning is simply that

gives the proportional reduction in both and21 2ag li11 i

that would have resulted from proportional reduc-112li

tion a in young survival between i and i 1 1.
It may be of interest to make inference about the

influence of a reduction in reproductive rate, or one of
its multiplicative components (e.g., probability of an
adult breeding, clutch size, nest success), on population
size or growth rate. For such inference, we would go
directly to Eq. 11 and focus on Proportional re-1Ni11

duction of magnitude a in reproductive rate, or one of
its components, just prior to i 1 1, should lead to pro-
portional reduction in of . In112 1 1 2ˆ ˆ ˆl aN /(N 1 N )i i11 i11 i11

the case of changes in reproductive rate, we would
simply compute effects of such changes on using112li

the age-specific estimates of population size, with no
need to resort to reverse-time estimation.

Estimation

As in the previous cases, we would like to use re-
verse-time capture–recapture to estimate relative con-
tributions of different components at time i to popu-
lation growth between i and i 1 1. However, the sit-
uation with multiple age classes is not as straightfor-
ward as in the previously described situations, where
we simply reversed the time order of capture histories
and applied the same models as used for standard time
data. The standard models for estimating age-specific
parameters (Pollock 1981, Lebreton et al. 1992) con-
dition on animals released in the different age cate-
gories and model their capture histories separately.

For example, assume a two-age model (e.g., young
and adult) and consider an animal caught in periods 1
and 3 but not in period 2. First assume that the animal
was an adult (age, r 5 2) when released at period 1,
yielding capture history 202. Conditional on this re-
lease in period 1, the probability associated with the
remainder of the capture history is ,2 2 2 2f (1 2 p )f p1 2 2 3

where superscript again denotes age and where is2fi

the probability that an adult alive and in the population
at time i survives and is still in the population at i 1

1. Now assume that a young animal (age, r 5 1) was
released at time 1. Conditional on this release, the cor-
responding probability for capture history 102 is:

, where is the probability that a young1 2 2 2 1f (1 2 p )f p f1 2 2 3 i

animal at time i survives and is an adult in the popu-
lation at i 1 1. The only difference between the prob-
abilities associated with these young and adult capture
histories involves the initial survival probability that
corresponds to the age of the released animal. After
the interval between periods 1 and 2, the young animal
becomes an adult and experiences the same survival
and capture probabilities as the animal marked as an
adult.

When we reverse the time order of the capture his-
tory data, it is clear that we cannot simply use the
standard multi-age capture–recapture models. In the
two-age case, we will be conditioning on animals that
are all adults at time i 1 1 and then asking what pro-
portion of these animals were adults at time i, young
at time i, or immigrants entering between i and i 1 1
(see Eqs. 13 and 14). So, instead of conditioning on
animals in two distinct age classes and estimating their
respective probabilities of appearing in a single age
class in the next time period, we are conditioning on
animals in one age class (adults) and estimating their
probabilities of having been in one of three different
classes (young, adult, immigrant) in the previous time
period. The reverse-time approach to multi-age mod-
eling thus requires multistate modeling.

Conditional on capture of an adult at period 3, we
would model reverse history 202 as ,22 2 22 2g (1 2 p )g p3 2 2 1

where the parameters reflect the probability that an22gi

adult animal alive in period i was an adult in the pop-
ulation at time i 2 1. Reverse capture history 201, again
conditional on release of an adult in period 3, can be
modeled as , where denotes the22 2 21 1 21g (1 2 p )g p g3 2 2 1 i

probability that an adult at time i was a young animal
at time i 2 1. Note that unlike the previous modeling
with multistate models, the probability structure as-
sociated with a ‘‘0’’ in the capture history is modeled
as a single path rather than as the sum of alternative
possible pathways. This is because an animal that is
young in period 1 cannot also have been young at pe-
riod 2, because of the correspondence of the interval
between sample periods and the interval required to
make an age transition (an animal grows determinis-
tically from young to adult in a single interval).

The other aspect of the probability modeling that
differs between standard and reverse-time parameter-
izations is the need for capture probabilities for young
animals ( ) with the reverse-time approach. Under1pi

standard time, animals are released as young, but sur-
vivors to the next sampling period are adults and are
thus recaptured with probability . However, estima-2pi

tion of under the reverse-time approach requires21gi

information about . This requirement explains the1pi21

need for the robust design when using reverse-time
modeling with data from multiple age classes. Capture
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TABLE 3. Definitions of unknown random variables that re-
quire estimation and statistics that result from a capture–
recapture study of a population with young (state, r 5 1)
and adult (state, r 5 2) age classes.

Symbol Definition

Statistics
n1

i Total no. young animals caught in primary pe-
riod i.

n2
i Total no. adult animals caught in primary peri-

od i.
m21

i,i21 Members of n that were caught as young ani-2
i

mals in primary period i 2 1.
m22

i, i21 Members of n that were caught as adult ani-2
i

mals in primary period i 2 1.
Unknown random variables that require estimation

M21
i,i21 Members of n that were in the sampled area as2

i

young animals in primary period i 2 1 (but
not necessarily captured in i 2 1).

M22
i,i21 Members of n that were in the sampled area as2

i

adult animals in primary period i 2 1 (but
not necessarily captured in i 2 1).

probability for young animals cannot be estimated from
standard age-specific capture–recapture models for
open populations. Instead, captures and recaptures of
young from secondary samples under a robust design
approach are needed in order to estimate capture prob-
ability for young (also see Nichols and Pollock 1990).

Estimation using multistate models with the robust
design can be carried out in either of two ways. First,
we can build a joint likelihood (e.g., Kendall et al.
1995, 1997; Schwarz and Stobo 1997) with separate
components for modeling the capture–recapture data
over secondary and primary periods. This approach is
appropriate when the models being used for the sec-
ondary sample data are those for which direct maxi-
mum likelihood estimation of model parameters is
straightforward (e.g., closed models involving behav-
ioral response and time are in this category).

When direct maximum likelihood estimation under
a closed model is not so straightforward (e.g., as in
estimators for abundance and average capture proba-
bility under models that include heterogeneity of cap-
ture probability such as model Mh; Burnham and Ov-
erton 1978), then we can follow a second possible ap-
proach to estimation of the parameters. Table 3 listsrsgi

definitions of the statistics that result from a capture–
recapture study of a population with young and adult
age classes. Table 3 further delineates two unknown
random variables requiring estimation.

Estimation of the requires estimation of thersgi

, and this can be done using either of two ap-rsMi,i21

proaches. One straightforward approach is to simply
condition on the (all of these animals were caughtrsmi,i21

in both time periods, i and i 2 1). The capture histories
of these animals over the secondary trapping periods
of primary period i 2 1 can be used to estimate

using the jackknife estimator for Mh proposed byrsMi,i21

Burnham and Overton (1978), or any other estimator
appropriate for the secondary period data (e.g., Otis et

al. 1978, Rexstad and Burnham 1991, Lee and Chao
1994). In this manner we obtain an estimate of ‘‘pop-
ulation size’’ for a subset of the animals captured in
state s at i 2 1; those that were also captured at i in
state r. So for estimation of , we would condition21M i,i21

on all the animals caught as adults (state 2) at time i
and as young (state 1) at time i 2 1 (the ). Use21mi,i21

of the capture histories of these animals over the sec-
ondary periods of primary period i 2 1 would be used
with a capture–recapture estimator (typically from a
closed model), and the resulting abundance estimate
would correspond to .21M̂ i,i21

The other approach to estimation of is to focusrsMi,i21

on all animals of state s caught at i 2 1, regardless of
whether they were also caught in state r at time i (we
have denoted these animals as ). Use of the capturesni21

histories of these animals over the secondary periods
of primary period i 2 1 with a closed model estimator
yields an abundance estimate for members of that state
in period i 2 1 ( ). The average probability that ansN̂i21

animal in state s at primary period i 2 1 is caught at
least once during i 2 1 (we denote this probability as

) is then estimated in the following manner:sp̄i21

sni21sˆ̄p 5 . (16)i21 sN̂ i21

We can then estimate asrsMi,i21

rsmi,i21rsM̂ 5 . (17)i,i21 sˆ̄pi21

This latter estimator should be more efficient than the
former estimator that was based on the subset of ani-
mals caught at i 2 1 in state s that were also caught
at i in state r.

Estimates of the can then be used to estimatersMi,i21

. In the two-age problem presented here, we estimatersgi

the two relevant parameters, and , as follows:21 22g gi i

2sM̂ i,i212sĝ 5 s 5 1, 2. (18)i 2ni

Use of reverse-time, two-age, capture–recapture data
obtained under a robust design can thus involve either
joint multistate likelihoods or estimators such as that
in Eq. 18 to directly estimate the .2sgi

Example analysis

The data for this example again involve meadow
voles trapped at Patuxent Wildlife Research Center, this
time during the summer and fall of 1981 (Nichols et
al. 1984a). This older data set used the robust design
with primary sampling conducted at six monthly pe-
riods. This interval between sampling periods was
more likely than our recent sampling schedule to meet
the assumptions underlying our estimation approach for
separating recruitment resulting from in situ reproduc-
tion and from immigration (see Nichols and Pollock
1990, Yoccoz et al. 1993). The grid was a 10 3 10
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TABLE 4. Estimates of population change for both adults ( ) and adults 1 young ( ), and relative contributions to adult2 112l̂ l̂i i

population growth of adult survival ( ), fecundity and young survival ( ), and immigration from outside the study area22 21ĝ ĝi i

(1 2 2 ) for meadow voles trapped at Patuxent Wildlife Research Center, Laurel, Maryland, June–December, 1981.22 21ĝ ĝi i

Trapping
period Date† (SE [ ])‡2 2l̂ l̂i i

112l̂i

(SE [ ])‡112l̂i (SE [ ])§22 22ĝ ĝi i (SE [ ])§21 21ĝ ĝi i

1 2 2 (SE22 21ĝ ĝi i

[1 2 2 ])§22 21ĝ ĝi i

1
2
3
4
5
6

29 June 1981
3 August 1981

31 August 1981
5 October 1981
2 November 1981
6 December 1981

1.24 (0.039)
0.81 (0.036)
0.97 (0.041)
0.97 (0.030)
1.51 (0.041)

···

1.20 (0.052)
0.80 (0.045)
1.24 (0.066)
1.00 (0.048)
1.13 (0.044)

···

···
0.68 (0.042)
0.74 (0.045)
0.74 (0.046)
0.60 (0.049)
0.62 (0.040)

···
0.11 (0.051)
0.03 (0.025)
0.02 (0.018)
0.25 (0.056)
0.22 (0.044)

···
0.22 (0.058)
0.23 (0.047)
0.25 (0.047)
0.15 (0.052)
0.16 (0.041)

† Midpoint of five-day trapping period.
‡ Estimated as ratios of Lincoln-Petersen abundance estimates.
§ Estimated using reverse capture–recapture with multistate models under the robust design.

square of trapping stations with 7.6 m trap spacing.
This study used Fitch traps (Rose 1973) baited with
whole corn and containing hay. The protocol for mark-
ing and handling animals was the same as described
for the more recent study. Adults were defined as voles
.22 g, and animals of smaller mass were designated
as young. The data and analysis are again provided in
the Supplementary Material.

As noted in the description of the approach to esti-
mation with two ages, we required a robust design with
multistate modeling. We first developed a single like-
lihood containing both closed and open components
(Kendall et al. 1995, 1997). For the modeling of closed
data, we used a Lincoln-Petersen approach considering
the first two days of trapping as ‘‘period 1’’ and the
second three days as ‘‘period 2’’ (see Menkins and
Anderson 1988). One of these period-specific capture
probability parameters was then rewritten as a function
of the overall probability of being caught in at least
one of the two periods (see Kendall et al. 1995, 1997),
as it is this latter parameter that corresponds to the
open-model portion of the likelihood. Closed-model
data (obtained over secondary periods) were stratified
by age (young, adult) in order to estimate capture prob-
ability for each age class. The young data were ade-
quate to estimate capture probability well for primary
periods 4 and 5, but not for periods 1–3. So the sec-
ondary capture–recapture data for young voles in pe-
riods 1–3 were modeled with the same parameters (as-
sumed to be constant over the three primary periods)
in order to permit estimation. The open-model portion
of the likelihood was based on a multistate model. Be-
cause we used a reverse-time approach, certain tran-
sition probabilities were not possible and set equal to
zero (a young animal at i could not have existed at time
i 2 1, so ).11 12g 5 g 5 0i i

Population sizes were estimated using Lincoln–Pe-
tersen estimates of abundance by age (e.g., Seber 1982,
Menkins and Anderson 1988). We used these popula-
tion size estimates to estimate two different rates of
increase, one corresponding to only the adult compo-
nent of the population ( ) and the other corresponding2li

to the sum of adults and young ( ).112li

The multistate model for the robust design approach
was implemented using program SURVIV (White
1983) coded in a manner similar to that used in
MSSURVIV (Hines 1994). The fit of the vole data to
the model was judged to be acceptable. Estimated rates
of increase ranged 0.81–1.51 for adults and 0.80–1.24
for adults and young combined (Table 4). The reverse-
order modeling indicated that surviving adults were the
largest contributors to population growth rate, consti-
tuting 0.60–0.74 of the adult population throughout the
study (values of in Table 4). The proportion of adults22ĝi

that were young on the study area in the previous period
was estimated to range 0.02–0.25 (values of in Table21ĝi

4). The estimated proportion of adults that were new
immigrants ranged 0.15–0.25 (values of 22[1 2 ĝ 2i

in Table 4). Recruitment of adults was dominated21ĝ ]i

by immigrants in some periods (3 and 4) and by sur-
viving young in others (5 and 6), indicating substantial
temporal variation in the mechanisms responsible for
population growth. Knowledge of such changes in the
source of new recruits to a population is important to
understanding animal population dynamics and regu-
lation and to managing animal populations.

DISCUSSION

Reverse-time capture–recapture methods

The methods that we have presented permit retro-
spective looks at population growth and assignment of
proportional contributions of different demographic
components to this growth. For several sampling sit-
uations that differ with respect to number of ages and
strata (with respect to either location or animal char-
acteristics) sampled, we have presented methods for
estimating gi11 parameters using reverse-time capture–
recapture. These parameters reflect the probability that
an animal in a population (or a component of a pop-
ulation) at time i 1 1 was a member of some sampled
group at time i or was instead a new recruit (not a
member of one of the sampled groups). Depending on
the sampling situation and the population growth rate
that is of primary interest (e.g., that of adults or that
of both young and adults), the estimated gi11 parameters
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either represent the proportional contributions of the
different components to population growth, or else can
be used to compute these contributions.

As noted, traditional CJS modeling (Cormack 1964,
Jolly 1965, Seber 1965) of capture–recapture data con-
ditions on numbers of animals released and models the
subsequent capture history with survival and capture
probability parameters, fi and pi, respectively. Our re-
verse-time approach conditions on final captures and
models with gi and pi parameters. However, the usual
Jolly-Seber (Jolly 1965, Seber 1965) approach to cap-
ture–recapture modeling also permits estimation of the
unknown random variables, Ni 5 population size at
time i, and Bi 5 no. new animals entering the popu-
lation between times i and i 1 1 and present in the
population at i 1 1. For those more familiar with stan-
dard Jolly-Seber modeling, we provide the following
relationships for the single-age, single-location sam-
pling situation:

N f Bi i ig 5 E 5 1 2 Ei11 1 2 1 2N Ni11 i11

N Bi11 iE(l ) 5 E 5 f 1 E . (19)i i1 2 1 2N Ni i

As shown by Pradel (1996), we can also write li as a
function of fi and gi. This can be seen by first writing
in two different ways the expected number of animals
alive in two consecutive sampling periods, i and i 1 1:

E(N f ) 5 E(N g ).i i i11 i11 (20)

Rearrangement of Eq. 20 yields the following equality:

fiE(l ) 5 . (21)i gi11

The Jolly-Seber estimators, and , are known toˆ ˆN Bi i

be less robust to deviations from the underlying model
assumption of homogeneous capture probabilities than
estimators for other parameters such as (e.g., seef̂i

Carothers 1973, Pollock 1982, Pollock et al. 1990). The
relationships shown in Eq. 19 show that both li and gi

can be written as functions of and , and this shouldˆ ˆN Bi i

provide cause for concern about the robustness of the
reverse-time and the of Pradel (1996). For ex-ĝ l̂i i

ample, is not biased by permanent trap response inf̂i

capture probabilities (inducing different capture prob-
abilities for marked and unmarked animals), because
the estimator is based on application of the capture
probability estimates to marked animals only (Nichols
et al. 1984b). However, the reverse-time estimator, ,ĝi

involves application of estimated (based on marked
animals only) capture probabilities to both marked and
unmarked animals, and should thus be biased by per-
manent trap response behavior (e.g., also see Franklin
et al. [1999]). Until additional work is done on these
estimators, it seems wise to view them as being similar

to the Jolly-Seber and with respect to robustness.ˆ ˆN Bi i

In particular, the assumption of equal capture proba-
bilities for marked and unmarked animals will be im-
portant to these estimators, in contrast to their lack of
importance for , and should thus receive consider-f̂i

ation in designs of studies that will involve these es-
timators.

Related concepts and methods

Key factor analysis and sensitivity/elasticity analy-
ses are methods used to address questions similar to
those for which our gi can be used. Key factor analysis
(e.g., Morris 1959, Varley and Gradwell 1960) and re-
lated approaches (e.g., Reynolds and Sauer 1991, John-
son et al. 1992) are based on time series of estimates
of population size or growth rate. Morris (1959:580)
defined key factors as those ‘‘that cause a vari-
able . . . mortality and appear to be largely responsible
for the observed changes in population size.’’ Corre-
lation and regression analyses are used to investigate
the relative correspondence between temporal variation
in the different vital rates and in population size or
growth. Such analyses are used to draw inferences
about which vital rates are most closely associated with
temporal variation in population growth. Key factor
analysis and related approaches have seen only limited
success in animal population ecology. An important
reason for this is the failure to properly incorporate
sampling variation and covariation in applications of
the key factor approach (Kuno 1971, Manly 1977,
1979).

Like key factor analysis, our approach to estimating
gi is retrospective in nature. However, our approach
does not share the key factor focus on temporal co-
variation of population change and demographic com-
ponents or vital rates. Instead, we present a direct de-
composition of population growth rate into demograph-
ic components. Our gi parameters are not based on
temporal covariation with population growth, but in-
stead reflect the magnitudes of contributions to growth.

An alternative approach for considering the relative
influences of the different vital rates on population
growth is to focus on the sensitivity of the asymptotic
rate of increase to changes in the vital rates. This ap-
proach is not based on observed temporal variation and
covariation, but instead uses population projection
models (e.g., Bernardelli 1941, Lewis 1942, Leslie
1945, Caswell 1989) and focuses on potential changes
in vital rates and corresponding effects on the asymp-
totic rate of increase (the rate of increase that would
apply if the population were exposed to the same set
of vital rates repeatedly). Numerical investigations
were initially used in following this general approach
(e.g., Lewontin 1965, Leslie 1966, Mertz 1971), and,
more recently, analytic expressions have been devel-
oped for investigating sensitivity (Caswell 1978, 1989)
and elasticity (Caswell et al. 1984, de Kroon et al. 1986,
van Groenendael et al. 1988, Caswell 1989).
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Sensitivity analyses compute effects on rate of in-
crease of absolute changes in vital rates, whereas elas-
ticity analyses compute effects on rate of increase of
proportional changes in vital rates (Caswell 1989). For
example, if aij is an element (a vital rate or a function
of such rates) of a projection matrix that defines an
asymptotic rate of increase of l, then the sensitivity
(sij) of l to changes in aij is defined by (e.g., Caswell
1989) as follows:

]l
s 5 . (22)i j ]aij

Relative sensitivity or elasticity (eij) is then defined as
follows (e.g., Caswell 1989):

] log l ]l aije 5 5 . (23)i j ] log a ]a li j i j

The gi11 parameters estimated using our approach
are closely related to the concept of elasticity of li with
respect to demographic components and their associ-
ated vital rates. Consider our first example in which
we decomposed expected population growth rate, E(li),
into components associated with survivors from the
previous period, E(Si), and new recruits, E(Bi) (Eq. 3).
We can compute a time-specific analog of elasticity for
the survivor component as

] log E(l )i 5 g . (24)i11] log E(S )i

If we prefer to focus on vital rates associated with
demographic components rather than the components
themselves, then we can express the numbers of sur-
vivors and recruits as functions of the population at
time i and again compute an analog of elasticity. If we
denote survival rate from time i to i 1 1 as E(Si/Ni) 5
fi, then the analog of elasticity of E(li) with respect
to fi is given by

] log E(l )i 5 g . (25)i11] log fi

Although these proportional contribution parameters
(gi) are, in a sense, analogous to elasticities derived
from population projection matrices, these quantities
differ in several respects. Perhaps the most obvious
difference involves the asymptotic nature of elasticity
measures derived from projection matrices, contrasted
with the applicability of the gi parameters to specific
time intervals (i 2 1 to i). So we cannot comfortably
use a specific to characterize a population over aĝi

long period of time (although a mean of might beĝi

useful for such a purpose), and neither can we expect
an asymptotic elasticity value to necessarily be a useful
descriptor for population change over a specific inter-
val. The asymptotic nature of sensitivity and elasticity
analyses leads to uncertainty about their relevance to
situations involving either transient dynamics that pre-
cede asymptotic behavior, or simple temporal variation

in vital rates and population growth. With respect to
temporal variation in vital rates, we might expect sen-
sitivity and elasticity analyses to provide reasonable
approximations for situations involving relatively
small temporal variation, but perhaps not for popula-
tions inhabiting highly variable environments. Gener-
ally, we would expect the gi parameters to be more
useful in retrospective analyses, and true elasticities to
be more useful for prospective analyses.

Another difference between elasticities and gi in-
volves geographic closure and the incorporation of
movement into inferences about population change. Pro-
jection matrix approaches are ideal for populations that
are geographically closed. As they are typically param-
eterized with birth and death rates, they are excellent
for studying evolutionary questions (movement is not a
fitness component and is only relevant to fitness to the
extent that it influences birth or death rates). If our at-
tention is focused on changes in numbers of animals
inhabiting a particular area of interest, however, move-
ment is likely to be a very important contributor to pop-
ulation dynamics. We can estimate gi parameters cor-
responding to contributions from other sampled loca-
tions and, in some cases, from all nonsampled areas (e.g.,
the example with two ages and one stratum). Thus, in-
ferences about the relative contributions of different de-
mographic components to actual populations in ecolog-
ical time are likely to be more easily addressed using
the reverse-time capture–recapture approach. In partic-
ular, the ability to make statements about the relative
contributions of, for example, in situ reproduction and
immigration to population growth (e.g., Connor et al.
1983, Nichols and Pollock 1990) seems very relevant
to questions about source–sink (Pulliam 1988) and open-
recruitment (Roughgarden et al. 1985, 1988) systems.

Single-location population projection matrices typ-
ically reflect an asymmetry with respect to movement.
The complements of survival rate estimates computed
using capture–recapture and several other methods in-
clude both mortality and permanent emigration from
the study area. Such survival estimates are often com-
bined in projection matrices with fecundity estimates
that are based solely on components of reproductive
rate (e.g., litter size, clutch size, brood size at fledging).
Matrices constructed using such estimates thus include
movement in the complements of survival rates (the
components of loss), but not in the fecundity param-
eters (the components of gain). One consequence of
the movement asymmetry is that asymptotic rates of
population increase computed from such matrices are
frequently too small. Another consequence is an in-
ability to draw inferences about the relative contribu-
tion of immigration to population growth.

Questions involving asymptotic rate of increase could
be addressed using multistratum projection models (e.g.,
Rogers 1966, Schoen 1988, Lebreton 1996) incorporat-
ing movement. However, use of this approach to deal
with movement requires that at least one of the modeled
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strata represent ‘‘the rest of the world’’ or all potential
sources of immigrants other than the locations under
detailed study. Although this is conceptually possible,
the modeling of the dynamics of such ‘‘catch-all’’ strata
is likely to be very difficult because of lack of infor-
mation, yet very important to asymptotic characteristics
of the metapopulation system.

A minor methodological point regarding the com-
parison of the gi and sensitivites/elasticities involves
statistical inference. Resampling approaches, such as
the jackknife and bootstrap, can be used for inference
on any demographic statistic computed from projection
matrices (Caswell 1989), including sensitivity or elas-
ticity values. The approach described in this paper per-
mits direct estimation of sampling variances and co-
variances associated with the gi parameters reflecting
relative contributions to population growth.

Although we have focused on the relationship be-
tween the gi and elasticity, we note additional rela-
tionships between gi and other quantities derived from
projection matrix asymptotics. The stable age- (or
stage-) vector provides the asymptotic proportion of
the population in each class or stage of the population
vector (e.g., Caswell 1989). In the case of a standard
age-structured Leslie (1945) matrix, for example, wi

represents the asymptotic proportion of the population
in age class i. Because of the deterministic nature of
age transitions, a member of class wi in one year was
necessarily a member of wi21 the previous year. So the
stable-age vector specifies the relative contributions of
different age classes in the previous year to the current
year’s population. Estimates of gi are especially useful
when members of age or stage class i at time t are
derived from two or more ages, stages, or locations at
time t 2 1.

Finally, we note that the thinking underlying Fisher’s
reproductive value (e.g., Fisher 1930, Caswell 1989)
is not dissimilar to that which underlies our view of
the gi. Reproductive value for an individual of age i,
vi, is often defined as the value of such an individual
to future population growth, expressed relative to the
values of individuals of different ages. Perhaps another
reasonable perspective results from viewing some ul-
timate population (a population viewed at some time
in the distant future) and asking the question: ‘‘What
fraction of the individuals in this future population are
descendants of each of the different age classes at some
time in the past (the time at which reproductive value
is computed)?’’ In this sense, reproductive value can
be viewed as a reverse-time look from some future
population, asking about the proportional contributions
to it of the different components of a specified past
population. It might be possible to compute analogs of
Fisher’s reproductive value using in conjunction withĝi

estimated fecundity or reproductive rates to compute
proportions of animals at some time k that are survivors
or descendants of animals in particular classes at some
previous time j.

Uses of ĝi

Direct estimation of the gi parameters permits as-
sessment of temporal variation in the relative contri-
butions of different demographic components, a topic
of recent interest in population dynamics (Gaillard et
al. 1998). Maximum likelihood estimation of the gi as
in our examples yields direct estimates of sampling
variances and covariances. Even with use of hetero-
geneity models requiring jackknife estimators of the gi

(e.g., the two-age, one-stratum example), variances can
be estimated using the bootstrap or other approaches.
Estimates of gi and associated sampling variances and
covariances over a period of time can then be used to
estimate true temporal variance in the relative contri-
bution of a component of interest using a variance com-
ponents approach (see Burnham et al. 1987, Skalski
and Robson 1992, Link and Nichols 1994, Gould and
Nichols 1998, White and Burnham 1999). The relative
variability vs. stability of a population with respect to
the contributions of different demographic components
to population growth would seem to be an interesting
characteristic relevant to predictions and projections of
future population dynamics.

The likelihood framework can also be used to assess
the utility of reduced-parameter models incorporating
restrictive assumptions about temporal variation in the
proportional contribution parameters. For example, we
might consider one model in which the relative contri-
bution of a particular demographic component varies
over time (gi, where the i denotes time) and another
where the component is modeled as a constant (gi 5 g).
The likelihood ratio test between these two models and
their relative Akaike’s Information Criterion (AIC) val-
ues (Burnham and Anderson 1998) provide information
about temporal variation in gi. In particular, evaluation
of the assumption that gi 5 g should be relevant to the
question of whether use of asymptotic elasticities de-
rived from projection matrices is reasonable.

In some instances, it may be useful to model the gi

using an ultrastructural modeling approach (e.g., Le-
breton et al. 1992). We might consider modeling the
gi as a function of environmental covariates or infor-
mation about neighboring populations. In our meadow
vole example, we might predict an increase in the gi

associated with immigration from areas surrounding
the sampled grid(s) during periods when surrounding
habitat experienced dramatic modification (e.g., mow-
ing). Similarly, environmental variables thought to be
associated with movement, reproduction, or survival
could be used to model the appropriate gi.

This paper has focused on the possible relevance of
quantities (the gi) that can be directly estimated from
capture–recapture data to quantities (elasticities) based
on deterministic theory for discrete-time populations.
However, the estimated gi do not require any restrictive
assumptions about absence of temporal variation in vi-
tal rates and may thus be useful in the context of sto-
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chastic population models as well. For example, Tul-
japurkar (1990) has presented a stochastic analog of
Caswell’s (1978) general sensitivity expression appro-
priate for stationary stochastic processes, and we might
expect a close relationship between this expression and
the estimated gi in the presence of stationarity. If the
demographic process is not stationary, then estimates
of gi (and estimates of their temporal variance) should
still provide useful information about the relative con-
tributions of demographic components to stochastic
population growth.

In conclusion, we hope that the methods presented
in this manuscript will be useful in the demographic
analysis of animal populations. We view these esti-
mation methods simply as contributions to the animal
ecologist’s toolbox, which already includes standard
capture–recapture methods for estimation of abundance
and vital rates, and projection matrix methods for in-
vestigating asymptotic characteristics of populations
governed by specified sets of vital rates. We also view
these methods, together with the methods of Pradel
(1996) for direct estimation of l from capture–recap-
ture data, as providing a step toward the unification of
distinct approaches to the study of animal population
dynamics. Demographic estimation and projection are
closely related endeavors, and it is important to rec-
ognize their similarities as well as their differences. It
is perhaps useful to think of demographic projection
methods as more closely tied to the theory of popu-
lation dynamics. If this perspective is reasonable, then
it is certainly important to test predictions deduced
from theory, and inference methods such as those pre-
sented here should be useful for that purpose.
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