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Abstract

Trap-awareness and related phenomena whereby successive capture events are not independent is a feature of the majority
of capture-recapture studies. This phenomenon was up to now difficult to incorporate in open population models and most
authors have chosen to neglect it although this may have damaging consequences. Focusing on the situation where
animals exhibit a trap response at the occasion immediately following one where they have been trapped but revert to their
original naı̈ve state if they are missed once, we show that trap-dependence is more naturally viewed as a state transition
and is amenable to the current models of capture-recapture. This approach has the potential to accommodate lasting or
progressively waning trap effects.
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Introduction

Live-trapping is a fundamental tool in the study of wildlife

species and populations. When different trapping methods are

used, empirical studies have found that different devices tend to

catch different individuals [1–3]. While trappability with a

particular device can sometimes be related to an identifiable

feature (sex, age, weight [1], temperament [4]), this is not

always possible. There is also evidence that knowledge of the

trap fades with the passing of time [2]. The trap response issue

is thus particularly acute when intervals between trapping

occasions are short as is the case in closed population studies

aiming at estimating population size. In these studies, it is

generally considered that once an individual has been captured,

its trappability changes for the rest of the study. Because trap

response in this context is strong and because population size

tends to be largely underestimated when the phenomenon is

ignored, most work has been devoted to correcting for it in

closed population models [5–7]. On the other hand, trap

response in open population studies where occasions are

generally separated by long intervals, typically a year, is much

less considered. Yet, although the phenomenon is probably less

intense, underestimation of survival is a true risk [8]. In this

paper, we focus on short-time trap response in open

populations, namely response affecting trappability solely at

the occasion following one when the animal was trapped. This

situation results in successive capture events being correlated

and can be detected by appropriate tests—‘Test 2.CT’ for data

from a single site [9] and ‘Test M.ITEC’ for multisite or

multistate data [10]. However, the reciprocal is not true. With

the above tests, trap dependence between successive occasions

has been found when animals are captured in baited traps

(trap-dependence stricto sensu) (e.g. [11–13]) but also in studies

where individuals are not physically captured (trap-dependence

lato sensu). Some situations where trap-dependence lato sensu

occurs are: 1) When observers tend to visit some parts of the

study area more often when marked individuals have been

detected [14–15]; 2) When some patches of a heterogeneous

habitat are more accessible so that individuals stationed there

have higher resighting probabilities [16–17]; 3) When age, sex

or social status are unknown, but determine individual

movements or activity patterns so that the susceptibility to be

recaptured or resighted varies [18–19]; 4) Or when non

random temporary emigration occurs [8], often in relation to

skipped reproduction [20–22]. For simplicity, we speak

hereafter of ‘trap dependence’ to designate any correlation

between capture events whatever its nature, as it is difficult to

know for sure what type of trap dependence is at play in a

particular study.

A survey of the literature shows that trap-dependence is a

frequent phenomenon (Appendix S1). However, although the

corresponding tests are largely available (program U-CARE, [23]),

not all studies examine trap-dependence and it is not always clear

whether this has been done in a particular study. Taking as a

yardstick the papers citing Pradel (1993) where details of the way

to detect and model trap-dependence in open populations were

first expounded, the prevalence of trap dependence can be

estimated at 71% (94/133) and touches several animal groups:

birds, mammals, reptiles, amphibians, fish and insects (see

Appendix S1). As for its nature, 32 papers put forward no

interpretation, 26 evoke temporary emigration, 16 trap response, 8

individual heterogeneity, 7 the sampling protocol (biased sampling

of known nests [14–15], unequal nest accessibility [3,24]) and 5

some behavioral feature not directly related to the trap such as

dominance. For some, in particular those evoking individual

heterogeneity, the restriction of sighting dependence to one
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occasion may be too crude an approximation; specific models

would be more appropriate [25]. Similarly, there exist specific

models for temporary emigration [26]. Remarkably, only 76 of the

94 studies went on to incorporate trap-dependence at the data

analysis stage. The method originally proposed to model trap-

dependence [9] is indeed cumbersome and unnatural as a single

individual has to be represented by several capture histories. In

particular, it is difficult to combine with age-dependency. Another

approach using individual covariates to code for capture at the

preceding occasion [27–28] is probably more natural but still

uneasy to put in practice. We propose here a new approach where

trap-dependence is modeled as a change of state allowing it to be

naturally incorporated in the current capture-recapture models

[29].

Methods

Immediate Trap Effect seen as an animal state
Here, we describe the implementation of the basic

Immediate Trap Effect on Capture model (ITEC, [9]) using

trappability states. This model assumes that, when an animal is

caught, it becomes aware of the trap and, depending on the

case, will seek it or try to avoid it at the next occasion.

However, if it is not caught, it reverts immediately to the ‘trap

unaware’ state. This model is best described by examining the

state of the animal at the end of each recapture session

(denoted t+ when the precise timing need be specified) and how

this state changes from one session to the next (alternatively, it

is possible to consider the state at the beginning of each

recapture session, but this approach would cause difficulties in

the treatment of censored individuals, a situation frequently

encountered). The individual is actually moving back and forth

in a Markovian way between the state ‘trap aware’ (A) –its

original state when it is first released after marking– and the

state ‘trap unaware’ (U) which follows any occasion where it is

not captured. At one point, the animal may also enter the state

‘dead’ ({), never to leave it again. To describe the capture

histories under this model, we need three kinds of parameters:

survival probabilities between capture sessions (w), capture

probabilities of trap aware individuals (p9), and capture

probabilities of trap unaware individuals (p). Several kinds of

dependency may be considered on these parameters (e.g.,

constancy, time or age dependency or individual characteris-

tics, etc.) but the treatment of trap-dependence remains the

same. Hence, for simplicity, we present the model as if

parameters were constant.

The transition matrix, W:t: from the state at t+ (in line) to the

state at t+1+ (in column) can be written as

A U {

Wt~

A

U

{

wp0 w(1{p0) 1{w

wp w(1{p) 1{w

0 0 1

0
BB@

1
CCA:

But it may be useful to separate the survival process (S), which

takes place between times t+ and t+12 (i.e. the instant just before

occasion t+1) from the trap awareness process (P) assumed to take

place between t+12 and t+1+. Below, the time is specified as an

index.

Wt~ St Ptz1 with

Atz1{Utz1{{tz1{

St~

At

Ut

{t

w 0 1{w

0 w 1{w

0 0 1

0
BB@

1
CCA and

Atz1z Utz1z {tz1z

Ptz1~

Atz1{

Utz1{

{tz1{

p0 1{p0 0

p 1{p 0

0 0 1

0
BB@

1
CCA:

This model can be implemented as a multievent model [29] in

program E-SURGE [30] or as a state-space model [31–32]. We

detail here the first approach. Besides the transitions between

states, the multievent formulation, which has a hidden Markov

model structure, requires that probabilities of initial states be

specified along with probabilities of the two events (‘encountered’,

‘not encountered’) conditional on the underlying state. However,

initial state, assessed at the time of initial release, is necessarily

‘trap aware’ (A). As for the event probabilities, they are also trivial.

If an animal is trap-aware at t+, that means that it has just been

captured (conventional code ‘1’). If it is trap unaware or dead, it

has not been captured during this session (conventional code ‘0’).

This is summarized in the following matrix of event probabilities

(E) with states in row and events in column.

000 010

Et~

At

Ut

{t

0 1

1 0

1 0

0
BB@

1
CCA:

Using this approach, we were able to reproduce an analysis of

survival of Cory’s shearwaters (Calonectris diomedea) in presence of

temporary emigration [20]. The new multievent approach proved

strictly equivalent to the old approach where capture histories had

to be split after each capture (Table 1). Table 1 also shows that

ignoring trap-dependence would have led to an underestimation of

survival. The practical implementation in program E-SURGE of

model 5 of Table 2 in Sanz-Aguilar et al. (2011) is given in

Appendix S2.

For more complex situations where there are several types of

observations, probabilities associated to each type of observation

appear in the event matrix [29]. Appendix S2 contains such an

example.

Immediate Trap Effect with several sites or states
Most often, an analysis will involve state considerations, such as

the breeding status or the geographical location. We treat here the

multistate version of the ITEC model where, further to being ‘trap

aware’ or ‘trap unaware’, individuals support another state

classification. Without loss of generality, we assume that there

are only two ‘other’ states. When combined with ‘aware’ and

‘unaware’, this leads to 4 (live) operational states: ‘aware’ and

‘unaware’ in state 1 (A1 and U1 respectively); ‘aware’ and

‘unaware’ in state 2 (A2 and U2 respectively). To which we add

the state ‘dead’ ({). In what follows, we reserve the term ‘state’ for

the states of ‘interest’. In addition to survival and capture

Capture-Recapture Trap-Dependence Models

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e32666



probabilities as in the previous section, we consider now transition

probabilities ø between the states of interest 1 and 2. In what

follows, all parameters are explicitly shown as state-specific. Like in

the single-site case, the model can be summarized through a

transition matrix.

A1 U1 A2 U2 {

Wt~

A1

U1

A2

U2

{

w1y11p1
0 w1y11(1{p1

0) w1y12p2
0 w1y12(1{p2

0) 1{w1

w1y11p1 w1y11(1{p1) w1y12p2 w1y12(1{p2) 1{w1

w2y21p1
0 w2y21(1{p1

0) w2y22p2
0 w2y22p2

0 1{w2

w2y21p1 w2y21(1{p1) w2y22p2 w2y22p2 1{w2

0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

For instance, an individual which is in state 1 and is trap aware at t

(operational state A1) may survive, remain in state 1, and not be

caught at occasion t+1. In which case, it reverts to being trap unaware

at t+1+. Its operational state at this moment changes to U1. The

associated probability w1y11(1{p
0
1) is found in row 1, column 2 of

matrix Wt. Now, it may be more illuminating to consider 3 steps: the

survival process (S), which takes place between times t and t+12, the

state transition process (T), assumed to take place by the end of the

interval at t+12, and eventually the trap awareness process (P)

assumed to take place between t+12 and t+1+. Again, the time is

specified through an index.

Wt~St Tt Ptz1 with

A1tz1{ U1tz1{ A2tz1{U2tz1{{tz1{

St~

A1t

U1t

A2t

U2t

{t

w1 0 0 0 1{w1

0 w1 0 0 1{w1

0 0 w2 0 1{w2

0 0 0 w2 1{w2

0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

,

A1tz1{ U1tz1{ A2tz1{U2tz1{{tz1{

Tt~

A1tz1{

U1tz1{

A2tz1{

U2tz1{

{tz1{

y11 0 y12 0 0

0 y11 0 y12 0

y21 0 y22 0 0

0 y21 0 y22 0

0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

, and

A1tz1zU1tz1z A2tz1zU2tz1z{tz1z

Ptz1~

A1tz1{

U1tz1{

A2tz1{

U2tz1{

{tz1{

p01 1{p01 0 0 0

p1 1{p1 0 0 0

0 0 p02 1{p02 0

0 0 p2 1{p2 0

0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
:

When an individual is initially released, it is trap aware but may be in

state 1 or 2. There is thus a probability p1 that it is in state 1

(operational state A1) and the complementary probability 1{p1 that

it is in state 2 (operational state A2). This is summarized by the

following vector of initial state probabilities.

A1 U1 A2 U2 {

Pt~ p1 0 1{p1 0 0ð Þ

Like in the single state case, the specification of event probabilities is

trivial. Like in the previous section, the code will necessarily be ‘0’ (not

encountered) for trap-unaware and dead individuals. As for trap-

aware individuals, we assume here that their state is recognized

without error: ‘1’ for individuals in state 1, ‘2’ for individuals in state 2.

000 010 020

Et~

A1t

U1t

A2t

U2t

{t

0 1

1 0

0 0

1 0

1 0

0

0

1

0

0

0
BBBBBBBB@

1
CCCCCCCCA

For a practical implementation of this model with program E-

SURGE, see Appendix S2.

Discussion

In the above models, unlike in traditional multistate capture-

recapture models, capture probabilities appear among the

transitions. This may be surprising to those used to the traditional

models but is perfectly understandable when one realizes that, in

presence of trap-dependence stricto sensu, the capture process does

effect a change of state: after being captured, the animal knows of

the trap and will adapt its behavior; the capture probability is thus

Table 1. An example of incorporating trap-dependence in
capture-recapture models.

Model (w1,w2, pt) (w1,w2, pt+m) (w1,w2, pt+m)

no treatment new approach traditional approach

of trap dependence (trap-awareness states) (split capture histories)

w1 0.75 (0.69–0.80) 0.77 (0.70–0.82) 0.77 (0.70–0.82)

w2 0.84 (0.80–0.87) 0.87 (0.82–0.90) 0.87 (0.82–0.90)

The current approach to modelling trap-dependence is compared to the
traditional approach and to the model that ignores trap-dependence in a
survival analysis of Cory’s shearwaters (from [10]). Because there are transient
individuals in this data set, two survival values are estimated: w1, the apparent
survival of newly-marked individuals, which is affected by the presence of
transients, and w2, the survival of previously marked individuals. Capture
probability p is time-dependent-only in model (w1,w2, pt) and time- and trap-
dependent in model (w1,w2, pt+m). In this last model, trap and time
dependencies are additive. This model was fitted with the current approach,
which considers trap-awareness states and with the traditional approach as in
([10] Model 5, Table 2), which involves the special preparation of the data
detailed in [12]. The 95% confidence intervals are in parentheses.
doi:10.1371/journal.pone.0032666.t001
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a legitimate transition probability. In cases of trap-dependence lato

sensu (overlap of survey area with territory, dominant individual

with a conspicuous behavior, reproductive skipping, etc.), the

capture event does not truly effect a change of state, but rather

unveils a preexisting state (e.g. [20]). In these cases, dependence

among sighting probabilities may well extend beyond one

occasion, the extreme being intrinsic individual heterogeneity

where the same individuals are always the highly catchable. For

this last case, mixture models [27] are clearly more appropriate.

One-step dependence and fixed heterogeneity represent actually

two extremes of a gradient where the correlation lasts a more or

less long time and may weaken progressively. With genuine trap

response, this can be related to fading memory. When correlation

is due to the overlap of the survey area with the individual

territories, it may also be lost over time if territories and sampling

protocol evolve progressively. The proposed approach could be

extended to treat such cases by introducing appropriate holding

times in the trap-aware state (semi-Markov process). At the

moment, we recommend that in the absence of a clear

understanding of the situation in a particular study where the

tests for trap-dependence are significant, both immediate trap

dependence and mixture models be tried. Temporary emigration

models may accommodate intermediate situations even when

transitions do not correspond to geographical movements.

Supporting Information
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Appendix S1 

Studies investigating trap-dependence 
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TOTAL 76 (80.85 %) 18 (19.14 %) 
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Appendix S2 

Practical implementation of multievent trap-dependence models with program E-

SURGE: a medium-term monitoring program on Cory’s Shearwater (Calonectris 

diomedea) as a case example. 

 

The Cory’s shearwater (Calonectris diomedea) is a long-lived burrow nesting seabird. 

Skipping reproduction is typical among them and usually confounded with a recapture failure. 

Because skippers in one year have a higher probability of skipping the following year, trap-

dependence (lato sensu) is usually found when analyzing Cory’s Shearwater capture histories. 

Sanz-Aguilar et al. (2011) combined individual-based information with nest-based 

information collected as part of the Cory’s Shearwater monitoring program of the Population 

Ecology Group (IMEDEA, Esporles, Spain) carried out at Pantaleu Island (Balearic Islands, 

Spain). Using multievent models, they estimated simultaneously recapture, survival, 

reproductive skipping and within-colony breeding dispersal probabilities. Here, for the sake of 

illustrating how to treat trap-dependence in different contexts, we consider simpler and more 

typical situations which use only part of the available information. 

I) We start with the situation described in the first section of the methods, i.e. we 

keep only the information about whether the individual is ‘seen’ (code 1) or ‘not 

seen’ (code 0), and we show how to fit the single state model with trap-

dependence allowing the estimation of survival and capture probabilities. 

II) We next illustrate the second section of the methods by considering 2 observable 

states: the bird occupies its ‘last known burrow’ (code 1) or the bird occupies a 

‘new burrow’ (code 2). We show how to fit a multistate model with trap-

dependence allowing the estimation of survival, capture probabilities and the 

probability of burrow change.  

http://www.cefe.cnrs.fr/BIOM/logiciels.htm
http://www.cefe.cnrs.fr/BIOM/logiciels.htm
http://www.imedea.uib.es/bc/gep/
http://www.imedea.uib.es/bc/gep/


III) Finally, we consider a situation with two ambiguous events relative to the 

underlying state: the classical event ‘not seen with no further information’ (code 0) 

and the more informative but still imperfect event ‘not seen but known to be 

absent from its previous burrow’ (previous burrow is empty or occupied by others) 

(code 2). Code 1 is kept as usual for the event ‘seen’. We show how to fit this pure 

multievent model with trap dependence to estimate survival, capture probabilities 

and the probability of knowing that the bird is absent from its previous burrow. 

This model has no more interest than showing the basics of how trap-dependence 

and ambiguous events can be combined. For a fuller exploitation of burrow 

information, we refer the reader to Sanz-Aguilar et al. (2011).  

 

Specification of the multievent modelling approach in program E-SURGE (extracted 

from Sanz-Aguilar et al. 2011) 

 

Multievent models are built in several stages using program E-SURGE (Choquet et al. 2009). 

Each step represents one type of the different parameters to estimate. This is done by means 

of row-stochastic matrices, i.e. each row corresponds to a multinomial. Consequently, the 

total of cell probabilities in the same row is 1. Because of this constraint, one and only one 

cell probability in each row will be calculated as the complement to 1 of the others. This 

particular cell is denoted with a ‘*’ symbol. Inactive cells, i.e. cells whose associated 

probability is structurally 0 are denoted with a ‘-’ symbol. An active cell receives an arbitrary 

letter. Note that the same letter in two cells does not mean that the two values should be equal.  

 

Case I: Estimating survival and recapture probabilities. 

 



The individual states considered are:  

A, “trap-aware”  

U, “trap-unaware”  

D, dead  

 

The possible events are: 

0, not recaptured 

1, captured or recaptured  

 

The symbols for parameters are: 

φ, survival probability 

p, capture probability 

 

Initial State probabilities 

A U 

* - 

 

Transition probabilities, step 1: Survival 

 A t+1
- U t+1

- D t+1
- 

A t φ - * 

U t - φ * 

 

  



Transition probabilities, step 2: Trap awareness process 

 A t+1 U t+1 D t+1 

A t+1
- p * - 

U t+1
- p * - 

D t+1
- - - * 

 

Event probabilities:  

 0 1 

At - * 

U t * - 

D t * - 

 
 
 
Detailed example of fitting model 5, Table 2 of Sanz-aguilar et al. (2011) with program E-
SURGE  
 
  



After reading the data into program E-SURGE, the number of states is changed to 3 and the 
number of age-classes is changed to 2 (2 age-classes are needed to account for the presence 
of transients in this data set, see Pradel et al. 1997). 
 

 
 
  



Then, enter the GEPAT interface to specify the patterns as we have seen above: first, for the 
initial state probabilities, 
 

 
 
  



 then for the transitions for which 2 steps must be specified. 
 

 



  
  



and eventually for the events. 
 

  
  



After that, click EXIT and, back on the main window, GEMACO to enter the GEMACO 
interface where effects are specified on each type of parameter in turn. 
 
For the initial state probability, there is no active parameter. The keyword ‘i’ will do. 
 

  
  



The first step of transitions corresponds to survival probabilities which depend only on age: 
keyword ‘a’. 
 

  
  



The second step involves capture probabilities, which in this model depend on the trap-
awareness status and on time, the two effects being additive: phrase ‘f+t’. (‘f’ short for ‘from’ 
means that there is a row effect, which here is the trap-awareness status effect).  
 

  
  



Event probabilities are not active. The keyword ‘i’ will do the job. 
 

 
 
After clicking EXIT, then back in the main windows, IVFV and EXIT again, you can run the 
model by clicking RUN. 
 
  



 
Case II: Estimating survival, nest dispersal and recapture probabilities.  

 

The individual states considered are:  

A1, “trap-aware” and breeding in the same nest as in the previous year  

U1, “trap-unaware” and breeding in the same nest as in the previous year  

A2, “trap-aware” and breeding in another nest 

U2, “trap-unaware” and breeding in another nest 

D, dead  

 

The possible events are: 

0, not recaptured 

1, captured for the first time or recaptured breeding in the last known nest  

2, recaptured breeding in a different nest 

 

The symbols for parameters are: 

φ, survival probability 

ψ, nest dispersal probability, conditional on survival   

p, capture probability 

 

Initial State probabilities 

A1 U1 A2 U2 

π - * - 

 

  



Transition probabilities, step 1: Survival 

 A1 t+1
- U1 t+1

- A2 t+1
- U2 t+1

- D t+1
- 

A1 t φ - - - * 

U1 t - φ - - * 

A2 t - - φ - * 

U2 t - - - φ * 

D t - - - - * 

 

Transition probabilities, step 2: Nest dispersal 

 A1 t+1
- U1 t+1

- A2 t+1
- U2 t+1

- D t+1
- 

A1 t+1
- * - ψ - - 

U1 t+1
- - * - ψ - 

A2 t+1
- * - ψ - - 

U2 t+1
- - * - ψ - 

D t+1
- - - - - * 

 

Transition probabilities, step 3: Trap awareness process 

 A1 t+1 U1 t+1 A2 t+1 U2 t+1 D t+1 

A1 t+1
- p * - - - 

U1 t+1
- p * - - - 

A2 t+1
- - - p * - 

U2 t+1
- - - p * - 

D t+1
- - - - - * 

 



Event probabilities:  

 0 1 2 

A1t - * - 

U1 t * - - 

A2 t - - * 

U2 t * - - 

D t * - - 

 

Detailed example of fitting a multistate model with trap-dependence with program E-
SURGE  
 
After reading the data into program E-SURGE, the number of states is changed to 5 and the 
number of age-classes to 2 (this is to deal with transients). Then we go through GEPAT to 
specify the patterns as indicated above. 
 



 



 



 



 
 
  



In GEMACO, we specify that the initial state probabilities will be constant using the keyword 
‘i’. This will suffice because all Cory’s shearwaters are arbitrarily assumed to be in the same 
nest as the year before when first encountered, i.e. initial state A1. (Alternatively, for this 
particular data set, we could have entered (∗ − − −) in GEPAT) 
 

 
 
  



Survival as above is assumed to depend on age to account for the presence of transients. 
 

 
 
  



Burrow transition is assumed independent of a previous transition, trap-awareness, etc.: 
keyword ‘i’. 
 

 
 

  



Capture probability depends as before on time and trap-awareness status additively. Because 
trap-aware individuals are those in the operative states A1 (row 1) and A2 (row 3), the 
phrase is ‘t+f(1 3)’. 
 

 

 
  



There is no active event probability. This step is as above. 
 
 

 
 

  



The rest is pretty much unchanged, except that in IVFV it may help to fix the initial state 
probability to 1 as we know that all individuals start in state A1. 
 

 
  



 
 

Case III: Estimating survival and recapture probabilities, and the probability of 

knowing that a bird is absent from its previous burrow.  

 

The individual states considered are:  

A, “trap-aware”  

U, “trap-unaware”  

D, dead  

 

The possible events are: 

0, not recaptured without further information 

1, captured or recaptured  

2, not recaptured and known to be absent from its previous burrow (previous burrow is found 

empty or occupied by others) 

 

The symbols for parameters are: 

φ, survival probability 

p, capture probability 

Ɛ, probability of knowledge of absence from previous burrow 

 

Initial State probabilities 

A U 

* - 

 

  



Transition probabilities, step 1: Survival 

 A t+1
- U t+1

- D t+1
- 

A t φ - * 

U t - φ * 

 

Transition probabilities, step 2: Trap awareness process 

 A t+1 U t+1 D t+1 

A t+1
- p * - 

U t+1
- p * - 

D t+1
- - - * 

 

Event probabilities:  

 0 1 2 

At - * - 

U t * - Ɛ 

D t * - Ɛ 

 
Detailed example of fitting a pure multievent model with trap-dependence with program E-
SURGE  
 
After reading the data into program E-SURGE, the number of states is changed to 3 and the 
number of age-classes to 2 (this last point is to account for the presence of transients). Then 
we go through GEPAT to specify the patterns as indicated above. 
 



 
 



 
 



 
 



 
 
 
  



In GEMACO, as there is no active parameter in the initial state probabilities, we can use the 
keyword ‘i’. 
 

 
 
 
  



For the survival probabilities, we need age to account for transients.

 
 
  



For capture probabilities, we specify an additive effect of time and trap-awareness status. 
Here, trap-aware individuals are those in state A1, the first state.  
 

 
 
  



The event probabilities step is where a new parameter appears: the probability of knowing 
that an individual is absent from its previous burrow. We assume that this probability is 
unique over time, etc.: keyword ‘i’.  
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Appendix S1

Studies investigating trap-dependence



Studies citing Pradel (1993) in which a trap-dependence effect has been found (research on ISI Web of Knowledge).

		Species group

		Number of studies treating trap-dependence

		Number of studies not treating trap-dependence



		Birds

		52 (83.87%)

		10 (16.13%)



		Mammals

		18 (82.82%)

		4 (18.18%)



		Reptiles

		2 (40%)

		3 (60%)



		Amphibians

		2 (100%)

		0



		Fish

		1 (50%)

		1 (50%)



		Insects

		1 (100%)

		0



		TOTAL

		76 (80.85 %)

		18 (19.14 %)







Bird studies correcting for trap-dependence

Bachler E, Schaub M (2007) The effects of permanent local emigration and encounter technique on stopover duration estimates as revealed by telemetry and mark-recapture. Condor 109: 142-154.

Balanca G, Schaub M (2005) Post-breeding migration ecology of Reed Acrocephalus scirpaceus, Moustached A-melanopogon and Cetti's Warblers Cettia cetti at a Mediterranean stopover site. Ardea 93: 245-257.

Barbraud C, Weimerskirch H (2003) Climate and density shape population dynamics of a marine top predator. Proc Roy Soc Lond B 270: 2111-2116.

Barbraud C, Weimerskirch H, Guinet C, Jouventin P (2000) Effect of sea-ice extent on adult survival of an Antarctic top predator: the snow petrel Pagodroma nivea. Oecol 125: 483-488.

Belda EJ, Barba E, Monros JS (2007) Resident and transient dynamics, site fidelity and survival in wintering Blackcaps Sylvia atricapilla: evidence from capture-recapture analyses. Ibis 149: 396-404.

Bokony V, Liker A, Lendvai AZ, Kulcsár A (2008) Risk-taking and survival in the House Sparrow Passer domesticus: are plumage ornaments costly? Ibis 150: 139-151.

Cam E, Oro D, Pradel R, Jimenez J (2004) Assessment of hypotheses about dispersal in a long-lived seabird using multistate capture-recapture models. J Anim Ecol 73: 723-736.

Clobert J (1995) Capture-recapture and evolutionary ecology: A difficult wedding? J Appl Stat 22: 989-1008.

Clucas RJ, Fletcher DJ, Moller H (2008) Estimates of adult survival rate for three colonies of Sooty Shearwater (Puffinus griseus) in New Zealand. Emu 108: 237-250.

Crespin L, Harris MP, Lebreton JD, Wanless S (2006) Increased adult mortality and reduced breeding success with age in a population of common guillemot Uria aalge using marked birds of unknown age. J Avian Biol 37: 273-282.

Erikstad KE, Sandvik H, Fauchald P, Tveraa T (2009) Short- and long-term consequences of reproductive decisions: an experimental study in the puffin. Ecology 90: 3197-3208.

Evans RJ, Wilson JD, Amar A, Douse A, Maclennan A, et al. (2009) Growth and demography of a re-introduced population of White-tailed Eagles Haliaeetus albicilla. Ibis 151: 244-254.

Forero MG, Tella JL, Oro D (2001) Annual survival rates of adult Red-necked Nightjars Caprimulgus ruficollis. Ibis 143: 273-277.

Frederiksen M, Wanless S, Harris MP, Rothery P, Wilson LJ  (2004) The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. J Appl Ecol 41: 1129-1139.

Gauthier, G, Pradel R, Menu S, Lebreton JD (2001) Seasonal survival of Greater Snow Geese and effect of hunting under dependence in sighting probability. Ecology 82: 3105-3119. 

Grosbois V, Harris MP, Anker-Nilssen T, McCleery RH, Shaw DN, et al. (2009) Modeling survival at multi-population scales using mark-recapture data. Ecology 90: 2922-2932.

Grosbois V, Thompson PM (2005)  North Atlantic climate variation influences survival in adult fulmars. Oikos 109: 273-290.

Hario M, Mazerolle MJ, Saurola PS (2009) Survival of female common eiders Somateria m. mollissima in a declining population of the northern Baltic Sea. Oecol 159: 747-756.

Harris, M. P, Anker-Nilssen T, Mccleery RH, Erikstad KE, Shaw DN, et al. (2005) Effect of wintering area and climate on the survival of adult Atlantic puffins Fratercula arctica in the eastern Atlantic. Mar Ecol Progr Ser 297: 283-296.

Harris MP, Freeman SN, Wanless S, Morgan BJT, Wernham CV (1997) Factors influencing the survival of Puffins Fratercula arctica at a North Sea colony over a 20-year period. J Avian Biol 28: 287-295.

Jenouvrier S, Barbraud C, Weimerskirch H (2003) Effects of climate variability on the temporal population dynamics of southern fulmars. J Anim Ecol 72: 576-587.

Jenouvrier S, Barbraud C, Weimerskirch H (2005) Long-term contrasted responses to climate of two Antarctic seabird species. Ecology 86: 2889-2903.

Jenouvrier S, Thibault J C, Viallefont A, Vidals P, Ristow D et al. (2009) Global climate patterns explain range-wide synchronicity in survival of a migratory seabird. Glob Ch Biol 15: 268-279.

Kaiser A  (1995) Estimating turnover, movements and capture parameters of resting passerines in standardized capture-recapture studies. J Appl Stat 22: 1039-1047. 

Kauffman MJ, Frick WF, Linthicum J (2003) Estimation of habitat-specific demography and population growth for peregrine falcons in California. Ecol Appl 13: 1802-1816.

Kendall WL, Nichols JD (1995) On the use of secondary capture-recapture samples to estimate temporary emigration and breeding proportions. J Appl Stat 22: 751-762.

Kery M, Madsen J, Lebreton JD (2006) Survival of Svalbard pink-footed geese Anser brachyrhynchus in relation to winter climate, density and land-use. J Anim Ecol 75: 1172-1181.

Madsen J, Frederiksen M, Ganter B (2002) Trends in annual and seasonal survival of Pink-footed Geese Anser brachyrhynchus. Ibis 144: 218-226.

Monticelli D, Ramos JA, Guerreiro-Milheiras SA, Doucet JL (2008)  Adult survival of Tropical Roseate Terns breeding on Aride Island, Seychelles, Western Indian Ocean. Waterbirds 31: 330-337.

Nevoux M, Barbraud C (2006) Relationships between sea ice concentration, sea surface temperature and demographic traits of thin-billed prions. Polar Biol 29: 445-453.

Nevoux M, Weimerskirch H, Barbraud C (2010) Long- and short-term influence of environment on recruitment in a species with highly delayed maturity. Oecol 162: 383-392.

Oro D, De Leon A, Minguez E, Furness RW (2005)  Estimating predation on breeding European storm-petrels (Hydrobates pelagicus) by yellow-legged gulls (Larus Michahellis). J Zool 265: 421-429.

Peron G, Crochet PA, Choquet R, Pradel R, Lebreton JD, et al. (2010) Capture-recapture models with heterogeneity to study survival senescence in the wild. Oikos 119: 524-532.

Pons J, Migot M (1995) Life-history strategy of The Herring Gull - changes in survival and fecundity in a population subjected to various feeding conditions. J Anim Ecol 64: 592-599. 

Pradel R, Rioux N, Tamisier A, Lebreton JD (1997) Individual turnover among wintering teal in Camargue: a mark-recapture study. J Wildl Manage 61: 816-821.

Pugesek BH, Nations C, Diem KL, Pradel R (1995) Mark-resighting analysis of a California gull population. J Appl Stat 22: 625-639.

Ratcliffe N, Newton S, Morrison P, Merne O, Cadwallender T, et al. (2008) Adult survival and breeding dispersal of Roseate Terns within the Northwest European metapopulation. Waterbirds 31: 320-329.

Rolland V, Barbraud C, Weimerskirch H (2008) Combined effects of fisheries and climate on a migratory long-lived marine predator. J Appl Ecol 45: 4-13.

Rolland V, Barbraud C, Weimerskirch H (2009) Assessing the impact of fisheries, climate and disease on the dynamics of the Indian yellow-nosed Albatross. Biol Cons 142: 1084-1095.

Rolland V, Nevoux M, Barbraud C, Weimerskirch H (2009) Respective impact of climate and fisheries on the growth of an albatross population. Ecol App 19: 1336-1346.

Sandvik, H, Erikstad K E, Barrett R T, Yoccoz N G (2005) The effect of climate on adult survival in five species of North Atlantic seabirds. J Anim Ecol 74: 817-831.

Sandvik H, Erikstad KE, Fauchald P, Tveraa T (2008) High survival of immatures in a long-lived seabird: Insights from a long-term study of the Atlantic Puffin (Fratercula arctica). Auk 125: 723-730.

Sanz-Aguilar A, Tavecchia G, Mínguez E, Massa B, Lo Valvo F, et al. (2010) Recapture processes and biological inference in monitoring burrowing nesting seabirds. J Ornithol 151: 133-146.

Sanz-Aguilar A, Tavecchia G, Genovart M, Igual JM, Oro D, et al. (2011) Studying the reproductive skipping behavior in long-lived birds by adding nest-inspection to individual-based data. Ecol Appl 21: 555-564. 

Schaub M, Kania W, Koppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74: 656-666. 

Spendelow JA , Nichols JD, Hines JE, Lebreton JD,  Pradel R (2002) Modelling postfledging survival and age-specific c breeding probabilities in species with delayed maturity: a case study of Roseate Terns at Falkner Island, Connecticut. J Appl Stat, 29: 385-405.

Szep T (1999) Effects of age- and sex-biased dispersal on the estimation of survival rates of the Sand Martin Riparia riparia population in Hungary. Bird Stu 46: 169-177. 

Tavecchia G, Minguez E, De León A, Louzao M, Oro D (2008) Living close, doing differently: Small-scale asynchrony in demography of two species of seabirds. Ecology 89: 77-85.

Tavecchia G, Viedma C, Martínez-Abraín A, Bartolomé MA, Gómez JA, et al. (2009) Maximizing re-introduction success: Assessing the immediate cost of release in a threatened waterfowl. Biological Conservation, 142, 3005-3012.

Viallefont A, Cooch EG, Cooke F (1995) Estimation of trade-offs with capture-recapture models: A case study on the lesser snow goose. J Appl Stat 22: 847-861.

Viallefont A, Cooke F, Lebreton JD (1995) Age-specific costs of first-time breeding. Auk 112: 67-76.

Votier SC, Hatchwell BJ, Beckerman A, McCleery RH, Hunter FM, et al. (2005) Oil pollution and climate have wide-scale impacts on seabird demographics. Ecol Lett 8: 1157-1164.

Bird studies not correcting for trap-dependence

Bearhop S, Ward RM, Evans PR (2003) Long-term survival rates in colour-ringed shorebirds - practical considerations in the application of mark-recapture models. Bird Stu 50: 271-279.

Cooch, E. G, Blank DB, Rockwell RF, Cooke F (1999) Body size and age of recruitment in Snow Geese Anser c. caerulescens. Bird Stu 46: 112-119.

Dugger, K. M, Ainley DG, Lyver POB, Barton K, Ballardef G (2010) Survival differences and the effect of environmental instability on breeding dispersal in an Adelie penguin meta-population. Proc Natl Acad Sci USA 107: 12375-12380. 

Faustino, C.R, Jennelle CS, Connolly V, Davis AK, Swarthout EC, et al. (2004) Mycoplasma gallisepticum infection dynamics in a house finch population: seasonal variation in survival, encounter and transmission rate. J Anim Ecol 73: 651-669.

Frederiksen M, Bregnballe T (2000) Evidence for density-dependent survival in adult cormorants from a combined analysis of recoveries and resightings. J Anim Ecol 69: 737-752.

Frederiksen M, Bregnballe T (2001) Conspecific reproductive success affects age of recruitment in a great cormorant, Phalacrocorax carbo sinensis, colony. Proc Roy Soc Lond  B 268: 1519-1526.

Lebreton, J. D, Hines JE, Pradel R, Nichols JD, Spendelow JA (2003)  Estimation by capture-recapture of recruitment and dispersal over several sites. Oikos 101: 253-264.

Peach WJ, Hanmer DB, Oatley TB (2001) Do southern African songbirds live longer than their European counterparts? Oikos 93: 235-249.

Schaub M, Jenni L (2001) Stopover durations of three warbler species along their autumn migration route. Oecol 128: 217-227.

Votier SC, Birkhead TR, Oro D, Trinder M, Grantham MJ, et al. (2008)  Recruitment and survival of immature seabirds in relation to oil spills and climate variability. J Anim Ecol 77: 974-983.

Mammal studies correcting for trap-dependence
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Langtimm CA, O’Shea TJ, Pradel R, Beck CA (1998) Estimates of annual survival probabilities for adult Florida manatees (Trichechus manatus latirostris). Ecology 79: 981-997.

Largo E, Gaillard JM, Festa-Bianchet M Toïgo C, Bassano B, et al. (2008) Can ground counts reliably monitor ibex Capra ibex populations? Wildl Biol 14: 489-499.

Letty J, Ubineau JA, Marchandeau S, Lobert JC (2003) Effect of translocation on survival in wild rabbit (Oryctolagus cuniculus). Mammal Biol 68: 250-255.
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Appendix S2

Practical implementation of multievent trap-dependence models with program E-SURGE: a medium-term monitoring program on Cory’s Shearwater (Calonectris diomedea) as a case example.



The Cory’s shearwater (Calonectris diomedea) is a long-lived burrow nesting seabird. Skipping reproduction is typical among them and usually confounded with a recapture failure. Because skippers in one year have a higher probability of skipping the following year, trap-dependence (lato sensu) is usually found when analyzing Cory’s Shearwater capture histories. Sanz-Aguilar et al. (2011) combined individual-based information with nest-based information collected as part of the Cory’s Shearwater monitoring program of the Population Ecology Group (IMEDEA, Esporles, Spain) carried out at Pantaleu Island (Balearic Islands, Spain). Using multievent models, they estimated simultaneously recapture, survival, reproductive skipping and within-colony breeding dispersal probabilities. Here, for the sake of illustrating how to treat trap-dependence in different contexts, we consider simpler and more typical situations which use only part of the available information.

I) We start with the situation described in the first section of the methods, i.e. we keep only the information about whether the individual is ‘seen’ (code 1) or ‘not seen’ (code 0), and we show how to fit the single state model with trap-dependence allowing the estimation of survival and capture probabilities.

II) We next illustrate the second section of the methods by considering 2 observable states: the bird occupies its ‘last known burrow’ (code 1) or the bird occupies a ‘new burrow’ (code 2). We show how to fit a multistate model with trap-dependence allowing the estimation of survival, capture probabilities and the probability of burrow change. 

III) Finally, we consider a situation with two ambiguous events relative to the underlying state: the classical event ‘not seen with no further information’ (code 0) and the more informative but still imperfect event ‘not seen but known to be absent from its previous burrow’ (previous burrow is empty or occupied by others) (code 2). Code 1 is kept as usual for the event ‘seen’. We show how to fit this pure multievent model with trap dependence to estimate survival, capture probabilities and the probability of knowing that the bird is absent from its previous burrow. This model has no more interest than showing the basics of how trap-dependence and ambiguous events can be combined. For a fuller exploitation of burrow information, we refer the reader to Sanz-Aguilar et al. (2011). 



Specification of the multievent modelling approach in program E-SURGE (extracted from Sanz-Aguilar et al. 2011)



Multievent models are built in several stages using program E-SURGE (Choquet et al. 2009). Each step represents one type of the different parameters to estimate. This is done by means of row-stochastic matrices, i.e. each row corresponds to a multinomial. Consequently, the total of cell probabilities in the same row is 1. Because of this constraint, one and only one cell probability in each row will be calculated as the complement to 1 of the others. This particular cell is denoted with a ‘*’ symbol. Inactive cells, i.e. cells whose associated probability is structurally 0 are denoted with a ‘-’ symbol. An active cell receives an arbitrary letter. Note that the same letter in two cells does not mean that the two values should be equal. 



Case I: Estimating survival and recapture probabilities.



The individual states considered are: 

A, “trap-aware” 

U, “trap-unaware” 

D, dead 



The possible events are:

0, not recaptured

1, captured or recaptured 



The symbols for parameters are:

, survival probability

p, capture probability



Initial State probabilities

		A

		U



		*

		-







Transition probabilities, step 1: Survival

		

		A t+1-

		U t+1-

		D t+1-



		A t

		

		-

		*



		U t

		-

		

		*










Transition probabilities, step 2: Trap awareness process

		

		A t+1

		U t+1

		D t+1



		A t+1-

		p

		*

		-



		U t+1-

		p

		*

		-



		D t+1-

		-

		-

		*







Event probabilities: 

		

		0

		1



		At

		-

		*



		U t

		*

		-



		D t

		*

		-











Detailed example of fitting model 5, Table 2 of Sanz-aguilar et al. (2011) with program E-SURGE 






After reading the data into program E-SURGE, the number of states is changed to 3 and the number of age-classes is changed to 2 (2 age-classes are needed to account for the presence of transients in this data set, see Pradel et al. 1997).
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Then, enter the GEPAT interface to specify the patterns as we have seen above: first, for the initial state probabilities,



[image: ]






 then for the transitions for which 2 steps must be specified.



[image: ] [image: ] 




and eventually for the events.



[image: ] 




After that, click EXIT and, back on the main window, GEMACO to enter the GEMACO interface where effects are specified on each type of parameter in turn.



For the initial state probability, there is no active parameter. The keyword ‘i’ will do.



[image: ] 




The first step of transitions corresponds to survival probabilities which depend only on age: keyword ‘a’.



[image: ] 




The second step involves capture probabilities, which in this model depend on the trap-awareness status and on time, the two effects being additive: phrase ‘f+t’. (‘f’ short for ‘from’ means that there is a row effect, which here is the trap-awareness status effect). 



[image: ] 




Event probabilities are not active. The keyword ‘i’ will do the job.



[image: ]



After clicking EXIT, then back in the main windows, IVFV and EXIT again, you can run the model by clicking RUN.








Case II: Estimating survival, nest dispersal and recapture probabilities. 



The individual states considered are: 

A1, “trap-aware” and breeding in the same nest as in the previous year 

U1, “trap-unaware” and breeding in the same nest as in the previous year 

A2, “trap-aware” and breeding in another nest

U2, “trap-unaware” and breeding in another nest

D, dead 



The possible events are:

0, not recaptured

1, captured for the first time or recaptured breeding in the last known nest 

2, recaptured breeding in a different nest



The symbols for parameters are:

, survival probability

, nest dispersal probability, conditional on survival  

p, capture probability



Initial State probabilities

		A1

		U1

		A2

		U2



		π

		-

		*

		-










Transition probabilities, step 1: Survival

		

		A1 t+1-

		U1 t+1-

		A2 t+1-

		U2 t+1-

		D t+1-



		A1 t

		

		-

		-

		-

		*



		U1 t

		-

		

		-

		-

		*



		A2 t

		-

		-

		

		-

		*



		U2 t

		-

		-

		-

		

		*



		D t

		-

		-

		-

		-

		*







Transition probabilities, step 2: Nest dispersal

		

		A1 t+1-

		U1 t+1-

		A2 t+1-

		U2 t+1-

		D t+1-



		A1 t+1-

		*

		-

		

		-

		-



		U1 t+1-

		-

		*

		-

		

		-



		A2 t+1-

		*

		-

		

		-

		-



		U2 t+1-

		-

		*

		-

		

		-



		D t+1-

		-

		-

		-

		-

		*







Transition probabilities, step 3: Trap awareness process

		

		A1 t+1

		U1 t+1

		A2 t+1

		U2 t+1

		D t+1



		A1 t+1-

		p

		*

		-

		-

		-



		U1 t+1-

		p

		*

		-

		-

		-



		A2 t+1-

		-

		-

		p

		*

		-



		U2 t+1-

		-

		-

		p

		*

		-



		D t+1-

		-

		-

		-

		-

		*







Event probabilities: 

		

		0

		1

		2



		A1t

		-

		*

		-



		U1 t

		*

		-

		-



		A2 t

		-

		-

		*



		U2 t

		*

		-

		-



		D t

		*

		-

		-







Detailed example of fitting a multistate model with trap-dependence with program E-SURGE 



After reading the data into program E-SURGE, the number of states is changed to 5 and the number of age-classes to 2 (this is to deal with transients). Then we go through GEPAT to specify the patterns as indicated above.



[image: ]

[image: ]

[image: ]

[image: ]






In GEMACO, we specify that the initial state probabilities will be constant using the keyword ‘i’. This will suffice because all Cory’s shearwaters are arbitrarily assumed to be in the same nest as the year before when first encountered, i.e. initial state A1. (Alternatively, for this particular data set, we could have entered  in GEPAT)



[image: ]






Survival as above is assumed to depend on age to account for the presence of transients.



[image: ]






Burrow transition is assumed independent of a previous transition, trap-awareness, etc.: keyword ‘i’.



[image: ]






Capture probability depends as before on time and trap-awareness status additively. Because trap-aware individuals are those in the operative states A1 (row 1) and A2 (row 3), the phrase is ‘t+f(1 3)’.



[image: ]






There is no active event probability. This step is as above.



 [image: ]






The rest is pretty much unchanged, except that in IVFV it may help to fix the initial state probability to 1 as we know that all individuals start in state A1.



[image: ]








Case III: Estimating survival and recapture probabilities, and the probability of knowing that a bird is absent from its previous burrow. 



The individual states considered are: 

A, “trap-aware” 

U, “trap-unaware” 

D, dead 



The possible events are:

0, not recaptured without further information

1, captured or recaptured 

2, not recaptured and known to be absent from its previous burrow (previous burrow is found empty or occupied by others)



The symbols for parameters are:

, survival probability

p, capture probability

Ɛ, probability of knowledge of absence from previous burrow



Initial State probabilities

		A

		U



		*

		-










Transition probabilities, step 1: Survival

		

		A t+1-

		U t+1-

		D t+1-



		A t

		

		-

		*



		U t

		-

		

		*







Transition probabilities, step 2: Trap awareness process

		

		A t+1

		U t+1

		D t+1



		A t+1-

		p

		*

		-



		U t+1-

		p

		*

		-



		D t+1-

		-

		-

		*







Event probabilities: 

		

		0

		1

		2



		At

		-

		*

		-



		U t

		*

		-

		Ɛ



		D t

		*

		-

		Ɛ







Detailed example of fitting a pure multievent model with trap-dependence with program E-SURGE 



After reading the data into program E-SURGE, the number of states is changed to 3 and the number of age-classes to 2 (this last point is to account for the presence of transients). Then we go through GEPAT to specify the patterns as indicated above.



[image: ]



[image: ]



[image: ]



[image: ]








In GEMACO, as there is no active parameter in the initial state probabilities, we can use the keyword ‘i’.



[image: ]








For the survival probabilities, we need age to account for transients.[image: ]






For capture probabilities, we specify an additive effect of time and trap-awareness status. Here, trap-aware individuals are those in state A1, the first state. 



[image: ]






The event probabilities step is where a new parameter appears: the probability of knowing that an individual is absent from its previous burrow. We assume that this probability is unique over time, etc.: keyword ‘i’. 



[image: ]
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