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A note on the real inverse spectral problem for doubly stochastic matrices

Rafic Nadera,b,∗, Bassam Mourada,, Alain Brettob,, Hassan Abbasa,

aDepartment of Mathematics, Faculty of Science, Lebanese University, Beirut, Lebanon
bNormandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Abstract

The real (resp. symmetric) doubly stochastic inverse spectral problem is the problem of determining nec-
essary and sufficient conditions for a real n-tuple λ = (1, λ2, ..., λn) to be the spectrum of an n × n (resp.
symmetric) doubly stochastic matrix. If λi ≤ 0 for all i = 2, ..., n and the sum of all the entries in λ is
nonnegative, then we refer to such λ as a normalized Suleimanova spectrum.

The purpose of this paper is to first fix an error in Theorem 9 of the recent paper [ I. Adeli, M.
Taheria, M.M Moghadama, A recursive method for constructing doubly stochastic matrices and inverse
eigenvalue problem, Linear Algebra Appl. 537 (2018) 318-331], after giving a counterexample. Secondly,
we give a negative answer to a question posed in [C.R. Johnson, P. Paparella, Perron spectratopes and
the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 493 (2016) 281-300] concerning the
realizability of normalized Suleimanova spectra for the case when n is odd. Some sufficient conditions for a
positive answer to this question are given.

Keywords: Symmetric doubly stochastic matrices, Inverse eigenvalue problem, Normalized Suleimanova
spectrum
2000 MSC: 15A12, 15A18, 15A51

1. Introduction

An n × n matrix A with real entries is said to be nonnegative if all of its entries are nonnegative. A
nonnegative matrix A is said to be doubly stochastic if each of its row and column sum is equal to 1. Let In
and Jn be the n× n identity matrix and the n× n matrix whose all entries are 1

n respectively. In addition,
if en = 1√

n
(1, ..., 1)T then clearly an n×n nonnegative matrix A is doubly stochastic if and only if Aen = en

and AT en = en or equivalently AJn = JnA = Jn.
The real (resp. symmetric) doubly stochastic inverse eigenvalue problem RDIEP (resp. SDIEP) is the

problem of determining necessary and sufficient conditions for a real n-tuple σ = {1, λ2, ..., λn} to be the
spectrum of an n×n (resp. symmetric) doubly stochastic matrix. If there exists a doubly stochastic matrix
A whose spectrum is σ, then we shall say that σ is realizable and A realizes σ.

So far, the SDIEP has only been solved for the case n = 3 by Perfect and Mirsky [12] and remains open
for the cases n ≥ 4 (see [4, 6, 7, 8, 10, 12, 13] for a collection of most sufficient conditions for the SDIEP).
Until now, there are two principal methods to solve the SDIEP. The first one relies on taking a diagonal
matrix Λ = diag(1, λ2, ..., λn) and a nonsingular matrix P , and then exploring the conditions under which
A = P−1ΛP is doubly stochastic. The second method falls into the category of constructing new doubly
stochastic matrices from smaller size matrices with known spectra. Our paper here falls under the second
category.

We call σ = {1, λ2, ..., λn} ⊂ R a normalized Suleimanova spectrum if 1 + λ2 + ... + λn ≥ 0 and
0 ≥ λi ≥ −1 for all i = 2, ..., n. In [3], the following question was posed.
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Question 1. If σ is a normalized Suleimanova spectrum, is σ realizable by a doubly stochastic matrix?

The authors in [3] proved that the answer is yes for all Hadamard orders (i.e. n = 2k) and in this case the
realizing matrix is symmetric. We will denote by NS-SDIEP to be the problem which asks what sets of
normalized Suleimanova spectrum occur as the spectrum of a symmetric doubly stochastic matrix.

This paper is organised as follows. In Section 2, we collect some preliminary results that will be used
later. In section 3, we give a counterexample to Theorem 9 in [1] in the case where n is odd and we present
an alternative statement though in this case it will not be an improvement of the results in [13] (as was
claimed in [1]) but rather a new independent sufficient condition for the SDIEP. In Section 4, we give a
negative answer to Question 1 in the case where n is odd and we present some sufficient conditions for the
realizability of normalized Suleimanova spectrum.

2. Auxiliary materials

We present in this section auxiliary results concerning spectral properties of certain block doubly stochas-
tic matrices. We start with the following theorem from [8, 9].

Theorem 1. Let A be an n × n doubly stochastic matrix whose eigenvalues are given by 1, λ2, ..., λn and
let B be an m×m doubly stochastic matrix with eigenvalues 1, µ2, ..., µm. Then for any ρ ≥ 0 and for any
r ≥ 0 such that ρ and r do not vanish simultaneously, the (m+ n)× (m+ n) matrix C defined by

• For m ≥ n,

C =
1

r + ρm√
mn

(
rA ρene

T
m

ρeme
T
n (r + ρm−n√

mn
)B

)
is doubly stochastic with eigenvalues

1,
r
√
mn− ρn

r
√
mn+ ρm

,
r

r + ρm√
mn

λ2, ...,
r

r + ρm√
mn

λn,
r
√
mn+ ρ(m− n)

r
√
mn+ ρm

µ2, ...,
r
√
mn+ ρ(m− n)

r
√
mn+ ρm

µm.

• For n ≥ m,

C =
1

r + ρn√
mn

(
(r + ρn−m√

mn
)A ρene

T
m

ρeme
T
n rB

)
is doubly stochastic with eigenvalues

1,
r
√
mn− ρm

r
√
mn+ ρn

,
r
√
mn+ ρ(n−m)

r
√
mn+ ρn

λ2, ...,
r
√
mn+ ρ(n−m)

r
√
mn+ ρn

λn,
r

r + ρn√
mn

µ2, ...,
r

r + ρn√
mn

µm.

Remark 1. It is worthy to mention here that the preceding theorem is a specialisation of a result in [9] that
deals with k diagonal blocks instead of only two. Its proof relies on a result which is presented in Perfect [11]
and is due to R. Rado. An alternative1 proof can be achieved from Fiedler [2]. Indeed, the proof of Lemma
2.2 there, is essentially the same as the proof of Theorem 1. One simply replaces the symmetry assumption
in Fiedler’s paper by the property that the algebraic and geometric multiplicities of the eigenvalue 1 of any
doubly stochastic matrix are the same.

As a conclusion, we have the following two lemmas that are Theorem 1 and Theorem 2 in [1] and which
constitute the basis for their results.

Lemma 1. Let A be an n × n doubly stochastic matrix with eigenvalues 1, λ2, ..., λn. Then, for any
0 ≤ r ≤ 1, there exists an (n + 1) × (n + 1) doubly stochastic matrix C with eigenvalues given by
1, 1− n+1

n r, n−rn λ2, ...,
n−r
n λn.

1Many thanks go to the reviewer for pointing out this.
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Proof: It suffices to check that the matrix C =

(
1− r r√

n
eTn

r√
n
en (n−rn )A

)
is doubly stochastic with eigenvalues

1, 1− n+1
n r, n−rn λ2, ...,

n−r
n λn.

Lemma 2. Let A be an n×n doubly stochastic matrix with eigenvalues 1, λ2, ..., λn. In addition, let B be an
m×m doubly stochastic matrix with eigenvalues 1, µ2, ..., µm. Then for any 0 ≤ r ≤ 1 and n ≥ m, there exists
an (n+m)×(n+m) doubly stochastic matrix C with eigenvalues given by 1, α+r−1, αλ2, ..., αλn, rµ2, ..., rµm
where 1−α

m = 1−r
n .

Proof: It suffices to check that the matrix C =

(
αA (1−r)

√
m√

n
ene

T
m

(1−r)
√
m√

n
eme

T
n rB

)
is doubly stochastic with

eigenvalues 1, α+ r − 1, αλ2, ..., αλn, rµ2, ..., rµm.

For our purposes, the following result due to Soules [13], is also needed.

Theorem 2. [13] If 1 ≥ λ2 ≥ ... ≥ λn ≥ −1 and

1

n
+
n−m− 1

n(m+ 1)
λ2 +

m∑
k=1

λn−2k+2

(k + 1)k
≥ 0, (1)

holds with n = 2m + 2 if n even and n = 2m + 1 if n odd, then there exists an n × n symmetric doubly
stochastic matrix D such that D has eigenvalues 1, λ2, ...., λn.

Remark 2. The proof of the preceding theorem is done by constructing an n× n matrix whose off-diagonal
entries are all nonnegative and its smallest diagonal entry is given by the left-hand side of (1). So if (1) is
valid then we obtain the symmetric doubly stochastic matrix D mentioned in the preceding theorem and so
its trace is nonnegative. Consequently, if 1 ≥ λ2 ≥ ... ≥ λn ≥ −1 and (1) is true, then 1 + λ2 + ...+ λn ≥ 0.

Finally, we have the following simple observation which is very useful for us and will be used later.

Lemma 3. Let n > 1 be a positive integer. Then, the following statements hold.

i) 1
n + 1

n(n−1) + ...+ 1
3×2 + 1

2×1 = 1.

ii) Let p be any positive integer which is greater than 1. If n > 2p, then

1

n
+

1

n(n− 1)
+ ...+

1

2p(2p + 1)
+

2p − 1

2p
= 1.

iii) For any positive integer m ≥ 1, it holds that
m∑
k=1

1
(k+1)k = 1 − 1

m+1 = m
m+1 . Consequently, for any

positive integer m ≥ 2, we have
m∑
k=2

1
(k+1)k = m

m+1 −
1
2 .

iv) For any positive even integer m ≥ 2, it holds that
m−1∑
k=m

2

1
(k+1)k = 1

m . Hence, for any positive even

integer m ≥ 4, we have
m−2∑
k=m

2

1
(k+1)k = 1

m −
1

m(m−1) .

Proof:

i) The left hand side in Part i) can be rewritten as

1

n
+

n−1∑
k=1

1

k(k + 1)
=

1

n
+

n−1∑
k=1

(
1

k
− 1

k + 1

)
=

1

n
+

(
1

n− 1
− 1

n

)
+ ...+

(
1

2
− 1

3

)
+

(
1− 1

2

)
= 1.
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ii) From Part i), we can write

1

2p(2p − 1)
+

1

(2p − 1)(2p − 2)
...+

1

3× 2
+

1

2× 1
= 1− 1

2p
=

2p − 1

2p
.

It follows that

1

n
+

1

n(n− 1)
+...+

1

2p(2p + 1)
+

2p − 1

2p
=

1

n
+

1

n(n− 1)
+...+

1

2p(2p + 1)
+

1

2p(2p − 1)
+...+

1

2× 1
= 1.

iii) It follows easily from the first part.

iv) For m = 2, the assertion is true. Suppose m > 2, then from Part i), we certainly know that
m−1∑
k=1

1
(k+1)k = 1− 1

m = m−1
m . Therefore,

m
2 −1∑
k=1

1
(k+1)k +

m−1∑
k=m

2

1
(k+1)k = m−1

m , and thus we obtain

m−1∑
k=m

2

1

(k + 1)k
=
m− 1

m
−

m
2 −1∑
k=1

1

(k + 1)k
=
m− 1

m
−
(

1− 1
m
2

)
=

1

m
.

3. Main observations

In a recent paper [1], the authors used Lemma 1 and Lemma 2 to obtain a recursive method for con-
structing doubly stochastic matrices for the inverse eigenvalue problem by distinguishing between the cases
n even and n odd. In addition, it is claimed that these new sufficient conditions improve Soules condition
(1) in both cases.

Theorem 3. [1] Let n ≥ 5. If 1 ≥ λ2 ≥ .... ≥ λn ≥ −1 and

1

n
+

1

n
λ2 +

n
2 − [n+2

4 ](
n
2

)
[n+2

4 ]
λ4 +

[n+2
4 ]−1∑
k=1

λn−4k+4

(k + 1)k
≥ 0, (2)

for n even ([.] stands for the integer part) and

1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ3 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k
≥ 0, (3)

for n odd, holds. Then there exists an n × n symmetric doubly stochastic matrix C whose eigenvalues are
1, λ2, λ3, ..., λn.

Next we give a counterexample to the preceding theorem in the case when n is odd. Consider the
following list of real numbers σ = (1, 1, 1,− 2

3 ,−
2
3 ,−

2
3 ,−1). It is easy to see that σ satisfies (3). Hence, by

Theorem 3, there exists a 7×7 symmetric doubly stochastic matrix A with spectrum σ. On the other hand,
σ cannot be the spectrum of any 7×7 nonnegative matrix since otherwise by the Perron-Frobenius theorem
(see [5]), there would exist a reducible nonnegative matrix with spectrum σ. However, there is no way of
splitting σ into 3 subsets where each subset has a nonnegative sum. That leads to a contradiction.

More explicitly, the authors in [1] claimed (without justification) that when n is odd, and (3) is verified,
then we have

1
n+1
2

+
n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]

1

α
λ3 +

[n+3
4 ]−1∑
k=1

1

α

λn−4k+4

(k + 1)k
≥ 0, (4)
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and

1
n−1
2

+
n−1
2 − [n+1

4 ](
n−1
2

)
[n+1

4 ]

1

r
λ4 +

[n+1
4 ]−1∑
k=1

1

r

λn−4k+3

(k + 1)k
≥ 0, (5)

where α = (n−1)λ2+(n+1)
2n and r = (n+1)λ2+(n−1)

2n . In fact, if (3) is valid then it holds that

0 ≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ3 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k

=
(n− 1)λ2 + (n+ 1)

2n

 1
n+1
2

+
n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]

1

α
λ3 +

[n+3
4 ]−1∑
k=1

1

α

λn−4k+4

(k + 1)k


= α

 1
n+1
2

+
n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]

1

α
λ3 +

[n+3
4 ]−1∑
k=1

1

α

λn−4k+4

(k + 1)k

 .

As α is positive, then this shows that if (3) is valid then inequality (4) is always true. However,
inequality (5) may not necessarily be true when (3) is valid, as can be easily checked for the list σ =
(1, 1, 1,− 2

3 ,−
2
3 ,−

2
3 ,−1) that satisfies (3) and does not verify (5).

Next, we shall present an alternative sufficient condition for the odd case by using the same recursive
method for constructing doubly stochastic matrices. However, this will not be an improvement of Soules
condition, but rather an independent condition as we shall prove. Before doing so, we need the following
auxiliary lemma.

Lemma 4. Let n ≥ 5 be odd and let 1 ≥ λ2 ≥ .... ≥ λn ≥ −1. Then

1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

4

(n− 1)(n+ 1)
λ2 +

n−1
2 − [n+1

4 ](
n−1
2

)
[n+1

4 ]
λ4 +

[n+1
4 ]−1∑
k=1

λn−4k+3

(k + 1)k
.

Proof: We distinguish between the cases n = 4m+ 1 and n = 4m+ 3 (since n here takes only odd values).
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For n = 4m+ 1, we have

1

n
+

n− 1

n(n+ 1)
λ2 +

m

(2m+ 1)(m+ 1)
λ4 +

m∑
k=1

λn−4k+4

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

m

(2m+ 1)(m+ 1)
λ4 +

m∑
k=1

λn−4k+3

(k + 1)k
(since λn−4k+4 ≤ λn−4k+3)

=
1

n
+

n− 1

n(n+ 1)
λ2 +

m

(2m+ 1)(m+ 1)
λ4 +

1

m(m+ 1)
λ4 +

m−1∑
k=1

λn−4k+3

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

m+ 1

m(2m+ 1)
λ4 +

m−1∑
k=1

λn−4k+3

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

(
1

2m(2m+ 1)
+

1

2m

)
λ4 +

m−1∑
k=1

λn−4k+3

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

1

2m
λ4 +

m−1∑
k=1

λn−4k+3

(k + 1)k
(since λ4 ≤ λ2)

=
1

n
+

n− 1

n(n+ 1)
λ2 +

4

(n− 1)(n+ 1)
λ2 +

n−1
2 − [n+1

4 ](
n−1
2

)
[n+1

4 ]
λ4 +

[n+1
4 ]−1∑
k=1

λn−4k+3

(k + 1)k
.

For n = 4m+ 3, we have

1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m+ 2
λ4 +

m∑
k=1

λn−4k+4

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

(
1

(2m+ 2)(2m+ 1)
+

m

(m+ 1)(2m+ 1)

)
λ4 +

m∑
k=1

λn−4k+4

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

1

(2m+ 2)(2m+ 1)
λ2 +

m

(m+ 1)(2m+ 1)
λ4 +

m∑
k=1

λn−4k+3

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

4

(n− 1)(n+ 1)
λ2 +

n−1
2 − [n+1

4 ](
n−1
2

)
[n+1

4 ]
λ4 +

[n+1
4 ]−1∑
k=1

λn−4k+3

(k + 1)k
.

Thus the proof is complete.

Theorem 4. Let n ≥ 5 be odd and let 1 ≥ λ2 ≥ .... ≥ λn ≥ −1. If

1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k
≥ 0, (6)

then there exists an n× n symmetric doubly stochastic matrix C with eigenvalues 1, λ2, λ3, ..., λn.

Proof: As n is odd, then by (6), we know that

6



0 ≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ3 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k
(since λ4 ≤ λ3 and its coefficient is > 0)

=

(
(n− 1)λ2 + (n+ 1)

2n

)
1
n+1
2

+
n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ3 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k

= α

 1
n+1
2

+
n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]

1

α
λ3 +

[n+3
4 ]−1∑
k=1

1

α

λn−4k+4

(k + 1)k

 ,

where α = (n−1)λ2+(n+1)
2n > 0. In order to apply Theorem 2, we first show by contradiction that λn

α ≥ −1 and
λ3

α ≤ 1 (since the λi are in the decreasing order). Suppose that λn

α < −1, that is, 2nλn+(n−1)λ2+(n+1) < 0.
It then follows that, 1

n + n−1
n(n+1)λ2 + 2

n+1λn < 0, and hence (6) implies that

1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k
≥ 0 >

1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λn,

that is,

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=2

λn−4k+4

(k + 1)k
+

1

2
λn −

2

n+ 1
λn > 0.

Since 1 ≥ λ2 ≥ ... ≥ λn ≥ −1, then we can write

0 <
n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ2 +

[n+3
4 ]−1∑
k=2

λ2
(k + 1)k

+
1

2
λn −

2

n+ 1
λn

=

 n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
+

[n+3
4 ]−1∑
k=2

1

(k + 1)k

λ2 +

(
1

2
− 2

n+ 1

)
λn

=

(
n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
+

[n+3
4 ]− 1

[n+3
4 ]

− 1

2

)
λ2 +

(
1

2
− 2

n+ 1

)
λn (using Lemma 3, Part iii) with m = [n+3

4 ]− 1)

=
n− 3

2(n+ 1)
(λ2 + λn).

So λ2+λn > 0, and this implies that 0 > 2nλn+(n−1)λ2+(n+1) = n(λ2+λn)+n(1+λn)+1−λ2 > 0, and
we get a contradiction. Therefore, λn

α ≥ −1. Suppose now that λ3

α > 1, that is, 2nλ3−(n−1)λ2−(n+1) > 0.
But this implies that 2nλ3 − (n − 1)λ2 − (n + 1) = (n − 1)(λ3 − λ2) + (n + 1)(λ3 − 1) > 0, and we also
get a contradiction. Therefore, λ3

α ≤ 1 and hence by Soules condition (1), there exists an (n+1
2 ) × (n+1

2 )

symmetric doubly stochastic matrix Â with eigenvalues 1, 1
αλ3,

1
αλ5, ...,

1
αλn. On the other hand, by (6) and

7



Lemma 4, we have

0 ≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

4

(n− 1)(n+ 1)
λ2 +

n−1
2 − [n+1

4 ](
n−1
2

)
[n+1

4 ]
λ4 +

[n+1
4 ]−1∑
k=1

λn−4k+3

(k + 1)k

=

(
(n+ 1)λ2 + (n− 1)

2n

)
1
n−1
2

+
n−1
2 − [n+1

4 ](
n−1
2

)
[n+1

4 ]
λ4 +

[n+1
4 ]−1∑
k=1

λn−4k+3

(k + 1)k

= r

 1
n−1
2

+
n−1
2 − [n+1

4 ](
n−1
2

)
[n+1

4 ]

1

r
λ4 +

[n+1
4 ]−1∑
k=1

1

r

λn−4k+3

(k + 1)k

 ,

where r = (n+1)λ2+(n−1)
2n . Next, we prove that r is positive. Indeed, by (6), we know that

0 ≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ2 +

[n+3
4 ]−1∑
k=1

λ2
(k + 1)k

(since λ2 ≥ λ4 ≥ ..., and their coefficients are > 0)

=
1

n
+

 n− 1

n(n+ 1)
+

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
+

[n+3
4 ]−1∑
k=1

1

(k + 1)k

λ2

=
1

n
+

(
n− 1

n(n+ 1)
+

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
+ 1− 1

[n+3
4 ]

)
λ2

=
1

n
+
n− 1

n
λ2.

So obviously λ2 6= −1, and it follows that (n+ 1)λ2 + (n− 1) = 1 + (n− 1)λ2 + (n− 2) + 2λ2 > 0 for n > 4.
This implies that r > 0. Also, as (n + 1)λ2 + (n − 1) ≤ n + 1 + n − 1 = 2n, then r ≤ 1. Next, in order to
again apply Theorem 2, we shall show that λn

r ≥ −1 and λ3

r ≤ 1 by contradiction. Suppose that λn

r < −1,
that is, 2nλn + (n+ 1)λ2 + (n− 1) < 0. It follows that, 1

n + n+1
n(n−1)λ2 + 2

n−1λn < 0. From (6), we get

1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=1

λn−4k+4

(k + 1)k
≥ 0 >

1

n
+

n+ 1

n(n− 1)
λ2 +

2

n− 1
λn,

that is,

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)

)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
k=2

λn−4k+4

(k + 1)k
+

1

2
λn −

2

n− 1
λn > 0.

8



Since 1 ≥ λ2 ≥ ... ≥ λn ≥ −1, then we can write

0 <

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)

)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ2 +

[n+3
4 ]−1∑
k=2

λ2
(k + 1)k

+
1

2
λn −

2

n− 1
λn

=

 n− 1

n(n+ 1)
− n+ 1

n(n− 1)
+

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
+

[n+3
4 ]−1∑
k=2

1

(k + 1)k

λ2 +

(
1

2
− 2

n− 1

)
λn

=

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)
+

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
+

[n+3
4 ]− 1

[n+3
4 ]

− 1

2

)
λ2 +

(
1

2
− 2

n− 1

)
λn (by Lemma 3, Part iii))

=

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)
+

1

[n+3
4 ]
− 1

n+1
2

+ 1− 1

[n+3
4 ]
− 1

2

)
λ2 +

(
1

2
− 2

n− 1

)
λn

=
n− 5

2(n− 1)
(λ2 + λn).

Hence λ2 + λn > 0, and it then follows that 0 > 2nλn + (n + 1)λ2 + (n − 1) = n(λ2 + λn) + (n −
1)(1 + λn) + (λ2 + λn) > 0, and we have a contradiction. Suppose now that λ3

r > 1. This implies that
2nλ3 − (n + 1)λ2 − (n − 1) = (n + 1)(λ3 − λ2) + (n − 1)(λ3 − 1) > 0, and we again get a contradiction.

Therefore, by Soules condition (1), there exists an (n−12 ) × (n−12 ) symmetric doubly stochastic matrix B̂
with eigenvalues 1, 1rλ4,

1
rλ6, ...,

1
rλn−1.

Finally, applying Lemma 2 with A = Â and B = B̂, we obtain an n × n symmetric doubly stochastic
matrix C whose eigenvalues are 1, λ2, ..., λn.

Notation 1. We will say that New condition 1 holds if (2) is satisfied when n is even, while (6) is satisfied
if n is odd.

Observation 1. For n even, Soules implies New condition 1. For n odd, Soules and New condition 1 are
independent.

Proof: Let n be even. Suppose now that σ satisfies Soules condition. Since

λn−4i ≥ λn−2i, i = 1, 2, ...,
[
n+2
4

]
− 2

and
λ4 ≥ λi, i = 6, 8, ..., n−

[
n+2
2

]
+ 2,

then σ obviously satisfies New condition 1. For the second part, it suffices to check that for n = 7, the
list (1, 0, 0, 0,− 2

7 ,−
2
7 ,−

2
7 ) satisfies New condition 1 and does not satisfy Soules condition, while the list

(1, 0, 0,− 3
14 ,−

3
14 ,−

3
14 ,−

3
14 ) does the opposite i.e. it satisfies Soules condition and does not satisfy New

condition 1.

Next, we present the following auxiliary lemma.

Lemma 5. Let n = 4m+ 1 ≥ 9 where m is a positive integer and 1 ≥ λ2 ≥ ... ≥ λn ≥ −1. Then

1

n
+

n− 1

n(n+ 1)
λ2 +

2(n− 1)

(n+ 1)(n+ 3)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

4

(n− 1)(n+ 1)
λ2 +

2

n− 1
λ4 +

n−1
4 − [n+3

8 ](
n−1
4

)
[n+3

8 ]
λ8 +

[n+3
8 ]−1∑
k=1

λn−8k+7

(k + 1)k
.
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Proof: As n = 4m+ 1, we have

1

n
+

n− 1

n(n+ 1)
λ2 +

2(n− 1)

(n+ 1)(n+ 3)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

(
1

2m(2m+ 1)
+

m− 1

2m(m+ 1)

)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+7

(k + 1)k
.

Next, we distinguish between the cases m odd and m even.
Case 1: For m = 2p+ 1, then n = 8p+ 5 and hence[

n+ 7

8

]
=

[
n+ 3

8

]
= p+ 1.

Therefore,

1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

1

2p+ 2
λ8 +

p∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

(
1

(2p+ 1)(2p+ 2)
+

p

(2p+ 1)(p+ 1)

)
λ8 +

p∑
k=1

λn−8k+7

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

1

(2p+ 1)(2p+ 2)
λ4 +

p

(2p+ 1)(p+ 1)
λ8 +

p∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

1

2m
λ4 +

p

(2p+ 1)(p+ 1)
λ8 +

p∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

4

(n− 1)(n+ 1)
λ2 +

2

n− 1
λ4 +

n−1
4 − [n+3

8 ](
n−1
4

)
[n+3

8 ]
λ8 +

[n+3
8 ]−1∑
k=1

λn−8k+7

(k + 1)k
.

Case 2: For m = 2p, then n = 8p+ 1 and in this case, we have[
n+ 7

8

]
=

[
n+ 3

8

]
+ 1 = p+ 1.
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Therefore,

1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

p

(2p+ 1)(p+ 1)
λ8 +

p∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

p

(2p+ 1)(p+ 1)
λ8 +

1

p(p+ 1)
λ8 +

p−1∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

p+ 1

p(2p+ 1)
λ8 +

p−1∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

(
1

2p(2p+ 1)
+

1

2p

)
λ8 +

p−1∑
k=1

λn−8k+7

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

m− 1

2m(m+ 1)
λ4 +

1

2p(2p+ 1)
λ4 +

1

2p
λ8 +

p−1∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

1

2m(2m+ 1)
λ2 +

1

2m
λ4 +

1

2p
λ8 +

p−1∑
k=1

λn−8k+7

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

4

(n− 1)(n+ 1)
λ2 +

2

n− 1
λ4 +

n−1
4 − [n+3

8 ](
n−1
4

)
[n+3

8 ]
λ8 +

[n+3
8 ]−1∑
k=1

λn−8k+7

(k + 1)k
.

Thus the proof is complete.

By substituting in Lemma 2, the doubly stochastic matrices obtained when New condition 1 holds, we
have the following theorem. It is worthy to point out here that its proof (and the proofs of many other
theorems below) may appear to be somewhat tedious, however the technique used in each case of the proof
is similar to that of Theorem 4 with only minor difference, namely in the expressions of α and r in each case
(see below).

Theorem 5. Let n ≥ 8 and let 1 ≥ λ2 ≥ .... ≥ λn ≥ −1. If

1

n
+

1

n
λ2 +

2

n
λ4 +

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]
λ8 +

[n+4
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
≥ 0, (7)

for n = 4m,

1

n
+

1

n
λ2 +

2(n− 2)

n(n+ 2)
λ4 +

n+2
4 − [n+6

8 ](
n+2
4

)
[n+6

8 ]
λ8 +

[n+6
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
≥ 0, (8)

for n = 4m+ 2,

1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λ4 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
≥ 0, (9)

for n = 4m+ 3, and

1

n
+

n− 1

n(n+ 1)
λ2 +

2(n− 1)

(n+ 1)(n+ 3)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
≥ 0, (10)
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for n = 4m + 1 hold, then there exists an n × n symmetric doubly stochastic matrix with eigenvalues
1, λ2, ..., λn.

Proof: The proof is similar to that of Theorem 4. First suppose that n = 4m. By (7), we have

α

 2

n
+

2

n

1

α
λ4 +

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]

1

α
λ8 +

[n+4
8 ]−1∑
k=1

1

α

λn−8k+8

(k + 1)k

 ≥ 0,

where α = 1+λ2

2 ≥ 0. We show by contradiction that α > 0. Suppose that α = 0. Then, λ2 = −1, which
implies that λ3 = .... = λn = −1. It follows that

1

n
+

1

n
λ2 +

2

n
λ4 +

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]
λ8 +

[n+4
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
< 0,

and this contradicts (7). Equivalently, we have

1
n
2

+
1
n
2

1

α
λ4 +

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]

1

α
λ8 +

[n+4
8 ]−1∑
k=1

1

α

λn−8k+8

(k + 1)k
≥ 0,

and hence

1
n
2

+
1
n
2

1

α
λ3 +

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]

1

α
λ7 +

[n+4
8 ]−1∑
k=1

1

α

λn−8k+7

(k + 1)k
≥ 0.

We first show by contradiction that λn

α ≥ −1. The proof of this, is virtually the same as earlier with only

minor difference. Indeed, suppose that λn

α < −1, that is, 2λn+λ2+1 < 0. It follows that, 1
n+ 1

nλ2+ 2
nλn < 0.

From condition (7), we conclude that

1

n
+

1

n
λ2 +

2

n
λ4 +

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]
λ8 +

[n+4
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
≥ 0 >

1

n
+

1

n
λ2 +

2

n
λn,

that is,

2

n
λ4 +

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]
λ8 +

[n+4
8 ]−1∑
k=2

λn−8k+8

(k + 1)k
+

1

2
λn −

2

n
λn > 0.

Since 1 ≥ λ2 ≥ ... ≥ λn ≥ −1, then we clearly have

0 <

 2

n
+

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]
+

[n+4
8 ]−1∑
k=2

1

(k + 1)k

λ2 +
1

2
λn −

2

n
λn

=

(
2

n
+

n
4 − [n+4

8 ](
n
4

)
[n+4

8 ]
+

[n+4
8 ]− 1

[n+4
8 ]

− 1

2

)
λ2 +

1

2
λn −

2

n
λn (using Lemma 3, Part iii) with m = [n+4

8 ]− 1)

=
n− 4

2n
(λ2 + λn).

Therefore λ2 + λn > 0. It follows that 0 > 2λn + λ2 + 1 = (λ2 + λn) + (1 + λn) > 0, and we have a
contradiction. Next, we show that λ3

α ≤ 1 by contradiction. If λ3

α > 1, then clearly 2λ3−λ2− 1 > 0, and we

get a contradiction. Thus, by New condition 1, there are (n2 )× (n2 ) symmetric doubly stochastic matrices Â

and B̂ with eigenvalues 1, 1
αλ4,

1
αλ6, ...,

1
αλn and 1, 1

αλ3,
1
αλ5, ...,

1
αλn−1 respectively. Now applying Lemma
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2 with A = Â, B = B̂ and r = α = 1+λ2

2 , we obtain an n× n symmetric doubly stochastic matrix C whose
eigenvalues are 1, λ2, ..., λn.

For n = 4m+ 2, using (8), we conclude that

1
n
2

+
n
2 − 1

n
2 (n2 + 1)

1

α
λ4 +

n+2
4 − [n+6

8 ](
n+2
4

)
[n+6

8 ]

1

α
λ8 +

[n+6
8 ]−1∑
k=1

1

α

λn−8k+8

(k + 1)k
≥ 0,

and

1
n
2

+
n
2 − 1

n
2 (n2 + 1)

1

α
λ3 +

n+2
4 − [n+6

8 ](
n+2
4

)
[n+6

8 ]

1

α
λ7 +

[n+6
8 ]−1∑
k=1

1

α

λn−8k+7

(k + 1)k
≥ 0,

where α = 1+λ2

2 > 0. We show that λn

α ≥ −1 by a similar argument as in the previous case. Suppose that
λn

α < −1, that is, 2λn + λ2 + 1 < 0. It follows that, 1
n + 1

nλ2 + 2
nλn < 0. Then by (8), it holds that

1

n
+

1

n
λ2 +

2(n− 2)

n(n+ 2)
λ4 +

n+2
4 − [n+6

8 ](
n+2
4

)
[n+6

8 ]
λ8 +

[n+6
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
≥ 0 >

1

n
+

1

n
λ2 +

2

n
λn,

that is,

2(n− 2)

n(n+ 2)
λ4 +

n+2
4 − [n+6

8 ](
n+2
4

)
[n+6

8 ]
λ8 +

[n+6
8 ]−1∑
k=2

λn−8k+8

(k + 1)k
+

1

2
λn −

2

n
λn > 0.

Since 1 ≥ λ2 ≥ ... ≥ λn ≥ −1, we have

0 <

 2(n− 2)

n(n+ 2)
+

n+2
4 − [n+6

8 ](
n+2
4

)
[n+6

8 ]
+

[n+6
8 ]−1∑
k=2

1

(k + 1)k

λ2 +
1

2
λn −

2

n
λn

=

(
2(n− 2)

n(n+ 2)
+

n+2
4 − [n+6

8 ](
n+2
4

)
[n+6

8 ]
+

[n+6
8 ]− 1

[n+6
8 ]

− 1

2

)
λ2 +

1

2
λn −

2

n
λn (using Lemma 3, Part iii) with m = [n+6

8 ]− 1)

=
n− 4

2n
(λ2 + λn).

Hence λ2 + λn > 0, and it then follows that 0 > 2λn + λ2 + 1 = (λ2 + λn) + (1 + λn) > 0, and we have
a contradiction. Note that λ3

α ≤ 1 by a similar argument as in the previous case. Thus, by New condition

1, there are (n2 )× (n2 ) symmetric doubly stochastic matrices Â and B̂ with eigenvalues 1, 1
αλ4,

1
αλ6, ...,

1
αλn

and 1, 1
αλ3,

1
αλ5, ...,

1
αλn−1 respectively. Now by applying Lemma 2 with A = Â, B = B̂ and r = α = 1+λ2

2 ,
the proof of the second part can be achieved.

For the case n = 4m+ 3, using (9) we can write

0 ≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λ4 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λ3 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ7 +

[n+5
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

= α

 1
n+1
2

+
1
n+1
2

1

α
λ3 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]

1

α
λ7 +

[n+5
8 ]−1∑
k=1

1

α

λn−8k+8

(k + 1)k

 ,
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where α = (n−1)λ2+(n+1)
2n > 0. As earlier, we shall show now that λn

α ≥ −1 by contradiction. Suppose that
λn

α < −1, that is, 2nλn + (n− 1)λ2 + (n+ 1) < 0. It follows that 1
n + n−1

n(n+1)λ2 + 2
n+1λn < 0. From (9), we

conclude that

1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λ4 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
≥ 0 >

1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λn,

that is,

2

n+ 1
λ4 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=2

λn−8k+8

(k + 1)k
+

1

2
λn −

2

n+ 1
λn > 0.

Since 1 ≥ λ2 ≥ ... ≥ λn ≥ −1, we have

0 <

 2

n+ 1
+

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
+

[n+5
8 ]−1∑
k=2

1

(k + 1)k

λ2 +
1

2
λn −

2

n+ 1
λn

=

(
2

n+ 1
+

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
+

[n+5
8 ]− 1

[n+5
8 ]

− 1

2

)
λ2 +

1

2
λn −

2

n+ 1
λn (using Lemma 3, Part iii) with m = [n+5

8 ]− 1)

=
n− 3

2(n+ 1)
(λ2 + λn).

Hence λ2+λn > 0, and it then follows that 0 > 2nλn+(n−1)λ2+(n+1) = n(λ2+λn)+n(1+λn)+1−λ2 > 0,
and again we get a contradiction. In addition, λ3

α ≤ 1 by a similar argument as in the proof of Theorem 4.

Therefore by New condition 1, there exists an (n+1
2 ) × (n+1

2 ) symmetric doubly stochastic matrix Â with
eigenvalues 1, 1

αλ3,
1
αλ5, ...,

1
αλn. Now from (9), we can write

0 ≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λ4 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

=
1

n
+

n− 1

n(n+ 1)
λ2 +

(
1(

n+1
2

) (
n−1
2

) +
n−3
2(

n+1
2

) (
n−1
2

))λ4 +
n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

1(
n+1
2

) (
n−1
2

)λ2 +
n−3
2(

n+1
2

) (
n−1
2

)λ4 +
n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=1

λn−8k+7

(k + 1)k

= r

 1
n−1
2

+
n−3
2(

n+1
2

) (
n−1
2

) 1

r
λ4 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]

1

r
λ8 +

[n+5
8 ]−1∑
k=1

1

r

λn−8k+7

(k + 1)k

 ,

where r = (n+1)λ2+(n−1)
2n . A virtually identical proof to that used in Theorem 4 for the same claim, shows

that 0 < r ≤ 1. Next, in order to apply Lemma 2, we shall show as earlier that λn

r ≥ −1 by contradiction.

Suppose that λn

r < −1, that is, 2nλn + (n+ 1)λ2 + (n− 1) < 0. It follows that 1
n + n+1

n(n−1)λ2 + 2
n−1λn < 0,

and hence using (9), we obtain

1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λ4 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=1

λn−8k+8

(k + 1)k
≥ 0 >

1

n
+

n+ 1

n(n− 1)
λ2 +

2

n− 1
λn,
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that is,

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)

)
λ2 +

2

n+ 1
λ4 +

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
λ8 +

[n+5
8 ]−1∑
k=2

λn−8k+8

(k + 1)k
+

1

2
λn −

2

n− 1
λn > 0.

Since 1 ≥ λ2 ≥ ... ≥ λn ≥ −1, then we have

0 <

 n− 1

n(n+ 1)
− n+ 1

n(n− 1)
+

2

n+ 1
+

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
+

[n+5
8 ]−1∑
k=2

1

(k + 1)k

λ2 +
1

2
λn −

2

n− 1
λn

=

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)
+

2

n+ 1
+

n+1
4 − [n+5

8 ](
n+1
4

)
[n+5

8 ]
+

[n+5
8 ]− 1

[n+5
8 ]

− 1

2

)
λ2 +

(
1

2
− 2

n− 1

)
λn

=
n− 5

2(n− 1)
(λ2 + λn).

It then follows that 0 > 2nλn + (n+ 1)λ2 + (n− 1) = n(λ2 + λn) + (n− 1)(1 + λn) + (λ2 + λn) > 0, and we
have a contradiction. In addition, the proof that λ3

r ≤ 1 can be easily done as that of Theorem 4. Therefore,

by New condition 1, there exists an (n−12 )× (n−12 ) symmetric doubly stochastic matrix B̂ with eigenvalues

1, 1rλ4,
1
rλ6, ...,

1
rλn−1. Now applying Lemma 2 with A = Â and B = B̂, we obtain an n × n symmetric

doubly stochastic matrix C with eigenvalues 1, λ2, ..., λn.
Finally, let n = 4m+ 1. From (10), we conclude that

0 ≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

2(n− 1)

(n+ 1)(n+ 3)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

2(n− 1)

(n+ 1)(n+ 3)
λ3 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ7 +

[n+7
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

= α

 1
n+1
2

+
n+1
2 − 1

n+1
2 (n+1

2 + 1)

1

α
λ3 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]

1

α
λ7 +

[n+7
8 ]−1∑
k=1

1

α

λn−8k+8

(k + 1)k

 ,

where α = (n−1)λ2+(n+1)
2n > 0. By a similar argument as the one used in the previous case, we can show

that λn

α ≥ −1 and λ3

α ≤ 1. On the other hand, by (10) and Lemma 5 we also have

0 ≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

2(n− 1)

(n+ 1)(n+ 3)
λ4 +

n+3
4 − [n+7

8 ](
n+3
4

)
[n+7

8 ]
λ8 +

[n+7
8 ]−1∑
k=1

λn−8k+8

(k + 1)k

≤ 1

n
+

n− 1

n(n+ 1)
λ2 +

4

(n− 1)(n+ 1)
λ2 +

2

n− 1
λ4 +

n−1
4 − [n+3

8 ](
n−1
4

)
[n+3

8 ]
λ8 +

[n+3
8 ]−1∑
k=1

λn−8k+7

(k + 1)k

= r

 1
n−1
2

+
1
n−1
2

1

r
λ4 +

n−1
4 − [n+3

8 ](
n−1
4

)
[n+3

8 ]

1

r
λ8 +

[n+3
8 ]−1∑
k=1

1

r

λn−8k+7

(k + 1)k

 ,

where r = (n+1)λ2+(n−1)
2n with λn

r ≥ −1 and λ3

r ≤ 1 (again for this, a similar proof as above can be employed).

Thus by New condition 1, there are (n+1
2 )×(n+1

2 ) and (n−12 )×(n−12 ) symmetric doubly stochastic matrices Â
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and B̂ with eigenvalues 1, 1
αλ3,

1
αλ5, ...,

1
αλn and 1, 1rλ4,

1
rλ6, ...,

1
rλn−1 respectively and such that 0 < r ≤ 1

as earlier. Finally, applying Lemma 2 with A = Â and B = B̂, we obtain an n × n symmetric doubly
stochastic matrix C whose eigenvalues are 1, λ2, ..., λn.

Notation 2. The conditions of Theorem 5 are referred to as New condition 2.

Observation 2. New condition 2 and New condition 1 are independent. For n = 14, the list given by

(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,−2

3
)

satisfies New condition 1 and does not satisfy neither New condition 2 nor Soules condition (1). However
the list

(1, 0, 0, 0, 0,− 3

50
,− 3

50
,− 3

35
,− 3

35
,− 1

10
,− 1

10
,− 1

10
,− 1

10
,− 1

10
)

satisfies New condition 2 and does not satisfy neither New condition 1 nor Soules condition (1).

We can recursively apply the same process to obtain more general sufficient conditions for the SDIEP.
Although, it seems that there is no systematic way of doing this for general n, however we put forward the
following conjecture.

Conjecture 1. Let k and n be any positive integers such that n ≥ 2k, and let 1 ≥ λ2 ≥ ... ≥ λn ≥ −1. For
each i = 1, ..., k, denote by αi−1 to be the remainder of the Euclidean division of n by 2i−1 and define

r
(n)
i =

{
2i−1 − αi−1 if αi−1 6= 0

0 if αi−1 = 0.

If

1

n
+
n− [n+1

2 ]

n[n+1
2 ]

λ2 +

n+r
(n)
2

2 −
[
n+2+r

(n)
2

4

]
(
n+r

(n)
2

2

)[
n+2+r

(n)
2

4

]λ4 +

n+r
(n)
3

4 −
[
n+4+r

(n)
3

8

]
(
n+r

(n)
3

4

)[
n+4+r

(n)
3

8

]λ8 + ...

...+

n+r
(n)
k

2k−1 −
[
n+2k−1+r

(n)
k

2k

]
(
n+r

(n)
k

2k−1

)[
n+2k−1+r

(n)
k

2k

]λ2k +

[
n+2k−1+r

(n)
k

2k

]
−1∑

i=1

λn−2ki+2k

(i+ 1)i
≥ 0,

then there exists a n× n symmetric doubly stochastic matrix with eigenvalues 1, λ2, ..., λn.

Note that for k = 1, k = 2 and k = 3, we obtain respectively Soules condition, New condition 1 and New
condition 2. In order to support this conjecture, we shall verify it for the case n = 26 and we refer to the
new condition in this case as New condition 3.

Example 1. Let σ = {1, λ2, ..., λ26} be a list of 26 real numbers such that 1 ≥ λ2 ≥ ... ≥ λ26 ≥ −1. In this
case, New condition 3 states

0 ≤ 1

26
+

1

26
λ2 +

6

(13)(7)
λ4 +

3

28
λ8 +

1

4
λ16 +

1

2
λ26

= α

(
1

13
+

6

(13)(7)

1

α
λ4 +

3

28

1

α
λ8 +

1

4

1

α
λ16 +

1

2

1

α
λ26

)
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with α = 1+λ2

2 . By (10) of Theorem 5, there exists a 13 × 13 symmetric doubly stochastic matrix Â with

eigenvalues 1, λ4

α ,
λ6

α , ...,
λ26

α . On the other hand, since 1 ≥ λ2 ≥ ... ≥ λn ≥ −1, we conclude that

1

13
+

6

(13)(7)

1

α
λ3 +

3

28

1

α
λ7 +

1

4

1

α
λ15 +

1

2

1

α
λ25 ≥ 0.

Hence, there exists a 13× 13 symmetric doubly stochastic matrix B̂with eigenvalues 1, λ3

α ,
λ5

α , ...,
λ25

α . Again

applying Lemma 2 with A = Â and B = B̂ and r = α = 1+λ2

2 , we obtain a 26 × 26 symmetric doubly
stochastic matrix C with eigenvalues 1, λ2, ..., λ26. Note that the list given by

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− 1

13
,− 1

13
,− 1

13
,− 1

13
,− 1

13
,− 1

13
,− 1

13
,− 1

13
,− 1

13
)

satisfies New condition 3 and does not satisfy New condition 1 nor New condition 2.

Notation 3. For convenience, we shall denote by S, N the sets of all n-tuples σ satisfying Soules condition,
and New condition 1, respectively.

4. On the realizability of normalized Suleimanova spectra

4.1. A negative answer to Question 1

We begin with a lemma whose proof can be found in [5].

Lemma 6. Let A be an n × n indecomposable doubly stochastic matrix. If A has exactly r roots of unit
modulus, then these are the r-roots of unity. If r > 1, then r is a divisor of n. Moreover, A is cogredient to
a matrix of the form 

0 A1 0 . . . 0
0 0 A1 . . . 0
...

...
...

...
...

0 0 0 . . . Ar−1
Ar 0 0 . . . 0

 , (11)

where the Ai are doubly stochastic of order n
r ×

n
r , i = 1, . . . , r.

Making use of the above lemma we have the following:

Proposition 1. If n is odd and λ = (1, λ2, ..., λn−1,−1) with |λi| < 1 for all i = 2, ..., n− 1, then λ cannot
be the spectrum of any n× n doubly stochastic matrix.

Proof: Suppose that λ = (1, λ2, . . . , λn−1,−1) is the spectrum of an n×n doubly stochastic matrix A. Now
as A has 2 eigenvalues of unit modulus which are 1 and −1, then by virtue of the preceding lemma, 2 must
be a divisor of n which is a contradiction as n is odd.

A direct conclusion is the following corollary that gives a negative answer for Question 1 in the case
when n is odd.

Corollary 1. If n is odd, then λ = (1, 0, ..., 0,−1) cannot be the spectrum of any n × n doubly stochastic
matrix.

It should be noted here that for n odd, λ = (1, 0, ..., 0,−1) is not the only normalized Suleimanova
spectrum that is not realizable by an n × n doubly stochastic matrix. Indeed, for n = 3 there exists an
infinite number of such points. To see this, we first recall the following result from Perfect and Mirsky[12].
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Theorem 6. [12] Let 1 ≥ λ2 ≥ λ3 ≥ −1, and 1 +λ2 +λ3 ≥ 0. There exists a 3× 3 doubly stochastic matrix
with spectrum (1, λ2, λ3) if and only if 2 + λ2 + 3λ3 ≥ 0.

As a conclusion, we have the following.

Corollary 2. Let 1 ≥ λ2 ≥ λ3 ≥ −1,and 1 + λ2 + λ3 ≥ 0. There exists a 3 × 3 doubly stochastic matrix
with spectrum (1, λ2, λ3) if and only if (1, λ2, λ3) is in Convhull[(1, 1, 1), (1, 1,−1), (1,−1/2,−1/2)] where
Convhull stands for convex hull.

Thus we have the following conclusion.

Corollary 3. The region of R3 that contains all decreasingly ordered normalized Suleimanova spectra that
are realizable by doubly stochastic matrices, is

Convhull[(1,−1/2,−1/2), (1, 0, 0), (1, 0,−2/3)],

and the region of all decreasingly ordered normalized Suleimanova spectra that are not realizable by doubly
stochastic matrices, is

Convhull[(1,−1/2,−1/2), (1, 0,−1), (1, 0,−2/3)] \ [(1,−1/2,−1/2), (1, 0,−2/3)],

where [(1,−1/2,−1/2), (1, 0,−2/3)] is the line-segment joining (1,−1/2,−1/2) to (1, 0,−2/3).

4.2. Some improvement

Here we will derive new sufficient conditions for a normalized Suleimanova spectrum to be the spectrum
of a symmetric doubly stochastic matrix. We shall start with the following definition.

Definition 1. An n× n matrix H is a Hadamard matrix if hij ∈ {±1} and HHT = nIn. If n is a positive
integer such that an n× n Hadamard matrix exists, then n is said to be a Hadamard order.

Let H0 = (1), H1 =

(
1 1
1 −1

)
, and for n ∈ N\{0, 1} (where N is the set of natural numbers), define

Hn := H1 ⊗Hn−1 =

(
Hn−1 Hn−1
Hn−1 −Hn−1

)
∈M2n(R).

It is well-known that Hn is a Hadamard matrix for every n ∈ N, and the matrix Hn obtained from
the previous construction is known as the Walsh matrix of order 2n. Note that Walsh matrices satisfy the
following additional well-known properties:

• HT
n = Hn;

• H−1n = 1
2nHn.

Next, we recall the following result which is due to Johnson and Paparella [3].

Theorem 7. [3] For any positive integer k and for any n = 2k, let λ = (1, λ2, λ3, ..., λn) be a list of n real
numbers with

1 > λ2 > λ3 > ... > λn > −1,

λi ≤ 0 for i = 2, ..., n,

and

1 +

n∑
i=2

λi ≥ 0.

Then there exists an n× n symmetric doubly stochastic matrix with spectrum λ.
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It is worth mentioning here that the proof of the preceding theorem is constructive. Indeed, with the same
notation as above, the authors prove that Hkdiag(1, λ2, λ3, ..., λn)H−1k is actually an n×n symmetric doubly
stochastic matrix with spectrum (1, λ2, λ3, ..., λn).

Our next objective is to exploit the recursive method described earlier in order to find new families
of sufficient conditions for NS-SDIEP that improve Soules condition, and New condition 1 for the case of
normalized Suleimanova spectra.

Theorem 8. Let p and n be two positive integers such that p ≥ 2 and n ≥ 2p, and let 0 ≥ λ2 ≥ ... ≥ λn ≥
−1. If

1 + λ2 + ...+ λn−1 + λn ≥ 0, (12)

for n = 2p, and

1

n
+

1

n(n− 1)
λ2 + ...+

1

2p(2p + 1)
λn−2p+1 +

1

2p
(λn−2p+2 + ...+ λn−1 + λn) ≥ 0, (13)

for n > 2p, then there is an n×n symmetric doubly stochastic matrix with normalized Suleimanova spectrum
1, λ2, ..., λn.

Proof: We will proceed by induction. For n = 2p, this is true by Theorem 7. Let n > 2p and suppose that
the assertion is true for n− 1. Since

0 ≤ 1

n
+

1

n(n− 1)
λ2 + ...+

1

2p(2p + 1)
λn−2p+1 +

1

2p
(λn−2p+2 + ...+ λn−1 + λn)

=
n− 1 + λ2
n(n− 1)

+
1

(n− 1)(n− 2)
λ3 + ...+

1

2p(2p + 1)
λn−2p+1 +

1

2p
(λn−2p+2 + ...+ λn−1 + λn)

= θ

(
1

n− 1
+

1

(n− 1)(n− 2)

λ3
θ

+ ...+
1

2p(2p + 1)

λn−2p+1

θ
+

1

2p

(
λn−2p+2

θ
+ ...+

λn−1
θ

+
λn
θ

))
,

with θ = n−1+λ2

n > 0, and consequently λi

θ ≤ 0 for i = 3, ..., n. Next, we show that λi

θ ≥ −1 by contradiction.

Suppose that λn

θ < −1, then 1
n + 1

n(n−1)λ2 + 1
n−1λn < 0. In view of (13), we conclude that

1

n
+

1

n(n− 1)
λ2 + ...+

1

2p(2p + 1)
λn−2p+1 +

1

2p
(λn−2p+2 + ...+λn−1 +λn) ≥ 0 >

1

n
+

1

n(n− 1)
λ2 +

1

n− 1
λn,

that is,

1

(n− 1)(n− 2)
λ3 + ...+

1

2p(2p + 1)
λn−2p+1 +

1

2p
(λn−2p+2 + ...+ λn−1) +

(
1

2p
− 1

n− 1

)
λn > 0.

As n > 2p and all the λi ≤ 0, we get a contradiction. Thus, we arrive at the following inequality:

1

n− 1
+

1

(n− 1)(n− 2)

λ3
θ

+ ...+
1

2p(2p + 1)

λn−2p+1

θ
+

1

2p

(
λn−2p+2

θ
+ ...+

λn−1
θ

+
λn
θ

)
≥ 0.

Therefore, by the induction hypothesis, there exists an (n−1)× (n−1) symmetric doubly stochastic matrix

Â with eigenvalues (1, λ3

θ , ...,
λn

θ ). Next, let r = n−1
n (1 − λ2) = 1 − 1+(n−1)λ2

n . In order to apply Lemma 1,
we shall prove that 0 ≤ r ≤ 1. First observe that n ≥ 1 + (n− 1)λ2. Moreover, using (13), we can write

0 ≤ 1

n
+

1

n(n− 1)
λ2 + ...+

1

2p(2p + 1)
λn−2p+1 +

1

2p
(λn−2p+2 + ...+ λn−1 + λn)

≤ 1

n
+

(
1

n(n− 1)
+ ...+

1

2p(2p + 1)
+

2p − 1

2p

)
λ2

=
1

n
+
n− 1

n
λ2.
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Hence 1 + (n− 1)λ2 ≥ 0 and therefore 0 ≤ r ≤ 1. Now applying Lemma 1 with this r and with A = Â, we
obtain an n× n symmetric doubly stochastic matrix C with eigenvalues 1, λ2, ..., λn.

Next, we present the following remark.

Remark 3. In the sequel, we shall make the convention that a summation over the empty index set is
defined to be zero.

Now substituting in Lemma 2, the doubly stochastic matrices obtained from Theorem 8, we arrive at the
following theorem.

Theorem 9. Let p and n be two positive integers such that p ≥ 2 and n ≥ 2p+1, and let 0 ≥ λ2 ≥ ... ≥
λn ≥ −1. If

1

n
+
n− k − 1

n(k + 1)
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2 ≥ 0, (14)

holds with n = 2k + 2 for n even and n = 2k + 1 for n odd, then there exists an n × n symmetric doubly
stochastic matrix with eigenvalues 1, λ2, ..., λn.

Proof: Case 1: For n = 2k + 2, Inequality (14) can be rewritten as

0 ≤ 1

n
+

1

n
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2

= α

(
1

k + 1
+

k∑
i=2p

1

α

λn−2i+2

(i+ 1)i
+

1

2p
1

α

2p−1∑
i=1

λn−2i+2

)
,

with α = 1+λ2

2 ≥ 0. We show by contradiction that α > 0. Suppose that α = 0. Then, λ2 = −1, which
implies that λ3 = .... = λn = −1. It follows that

1

n
+

1

n
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2 < 0,

and this contradicts (14). As before, we show next that λn

α ≥ −1 by contradiction. Suppose that λn

α < −1,
that is, 2λn + λ2 + 1 < 0 so that 1

n + 1
nλ2 + 2

nλn < 0. From condition (14), we conclude that

1

n
+

1

n
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2 ≥ 0 >
1

n
+

1

n
λ2 +

2

n
λn,

that is,

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=2

λn−2i+2 +

(
1

2p
− 2

n

)
λn > 0.

Again as n ≥ 2p+1 and all λi ≤ 0, we have a contradiction. Hence by Theorem 8, there exists a (k+1)×(k+1)

symmetric doubly stochastic matrix Â with eigenvalues 1, 1
αλ4, ...,

1
αλ2k+2. Moreover, since 1 ≥ λ2 ≥ ... ≥

λn ≥ −1, then

1

k + 1
+

k∑
i=2p

1

α

λn−2i+1

(i+ 1)i
+

1

2p
1

α

2p−1∑
i=1

λn−2i+1 ≥ 0,

and therefore, there exists a (k + 1) × (k + 1) symmetric doubly stochastic matrix B̂ with eigenvalues

1, 1
αλ3, ...,

1
αλ2k+1. Applying now Lemma 2, with A = Â, B = B̂ and α = r, we obtain an n× n symmetric
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doubly stochastic matrix C with eigenvalues 1, λ2, ..., λn.
Case 2: For n = 2k + 1, we have

0 ≤ 1

2k + 1
+

k

(2k + 1)(k + 1)
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2

= α

(
1

k + 1
+

k∑
i=2p

1

α

λn−2i+2

(i+ 1)i
+

1

2p
1

α

2p−1∑
i=1

λn−2i+2

)
,

with α = (k+1)+kλ2

2k+1 = (n+1)+(n−1)λ2

2n = 2+(n−1)(1+λ2)
2n > 0. Again, at this point we shall show by contra-

diction that λn

α ≥ −1. Suppose that λn

α < −1, that is, 2nλn + (n − 1)λ2 + (n + 1) < 0. It follows that
1
n + n−1

n(n+1)λ2 + 2
n+1λn < 0, and hence by (14), we conclude that

1

n
+

n− 1

n(n+ 1)
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2 ≥ 0 >
1

n
+

n− 1

n(n+ 1)
λ2 +

2

n+ 1
λn,

that is,

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=2

λn−2i+2 +

(
1

2p
− 2

n+ 1

)
λn > 0.

As n ≥ 2p+1 and all the λi ≤ 0, this leads to a contradiction. Hence, by Theorem 8, there exists a
(k+1)×(k+1) symmetric doubly stochastic matrix with eigenvalues 1, 1

αλ3, ...,
1
αλ2k+1. On the other hand,

we know that

0 ≤ 1

2k + 1
+

k

(2k + 1)(k + 1)
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2

≤ 1

2k + 1
+

k

(2k + 1)(k + 1)
λ2 +

1

k(k + 1)
λ2 +

k−1∑
i=2p

λn−2i+1

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+1

= r

(
1

k
+

k−1∑
i=2p

1

r

λn−2i+1

(i+ 1)i
+

1

2p
1

r

2p−1∑
i=1

λn−2i+1

)
,

where r = (k+1)λ2+k
2k+1 . In order to apply Lemma 2, we need to show that 0 < r ≤ 1. Now since r can

be rewritten as r = (k+1)λ2+k
2k+1 = (n+1)λ2+(n−1)

2n = (n−1)λ2+1+2λ2+n−2
2n , then it is enough to show that

1 + (n− 1)λ2 ≥ 0 (as n > 4). From (14), we conclude that

0 ≤ 1

2k + 1
+

k

(2k + 1)(k + 1)
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2

≤ 1

2k + 1
+

(
k

(2k + 1)(k + 1)
+

k∑
i=2p

1

(i+ 1)i
+

1

2p

2p−1∑
i=1

1

)
λ2

=
1

2k + 1
+

(
k

(2k + 1)(k + 1)
+

k

k + 1
− 2p − 1

2p
+

2p − 1

2p

)
λ2

=
1

2k + 1
+

2k

2k + 1
λ2

=
1

n
+
n− 1

n
λ2.
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Hence 1 + (n− 1)λ2 ≥ 0 and so 1 + (n− 1)λ2 + 2λ2 + n− 2 ≥ 1 + (n− 1)λ2 − 2 + n− 2 > 0. Hence, r > 0.
Also, as (n+ 1)λ2 + (n− 1) ≤ n+ 1 + n− 1 = 2n, then r ≤ 1.

As earlier, we next show by contradiction that λn

r ≥ −1. Suppose that λn

r < −1, that is, 2nλn + (n +
1)λ2 + (n− 1) < 0. It follows that 1

n + n+1
n(n−1)λ2 + 2

n−1λn < 0, and therefore by (14), we conclude that

1

n
+

n− 1

n(n+ 1)
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2 ≥ 0 >
1

n
+

n+ 1

n(n− 1)
λ2 +

2

n− 1
λn,

that is, (
n− 1

n(n+ 1)
− n+ 1

n(n− 1)

)
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=2

λn−2i+2 +

(
1

2p
− 2

n− 1

)
λn > 0.

Since 1 ≥ λ2 ≥ ... ≥ λn ≥ −1, then we can write

0 <

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)
+

k∑
i=2p

1

(i+ 1)i
+

1

2p

2p−1∑
i=2

1

)
λ2 +

(
1

2p
− 2

n− 1

)
λn

=

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)
+

k

k + 1
− 2p − 1

2p
+

2p − 2

2p

)
λ2 +

(
1

2p
− 2

n− 1

)
λn

=

(
n− 1

n(n+ 1)
− n+ 1

n(n− 1)
+
n− 1

n+ 1
− 1 +

1

2p
+ 1− 2

2p

)
λ2 +

(
1

2p
− 2

n− 1

)
λn

(
since k =

n− 1

2

)
=

(
n− 5

n− 1
+

2

n− 1
− 1

2p

)
λ2 +

(
1

2p
− 2

n− 1

)
λn

=
n− 5

n− 1
λ2 +

(
1

2p
− 2

n− 1

)
(λn − λ2).

Since n = 2k + 1 and n ≥ 2p+1, then obviously n ≥ 2p+1 + 1. However, this leads to a contradiction as
λ2 ≤ 0 and (λn−λ2) ≤ 0. Therefore, by Theorem 8, there exists a k×k symmetric doubly stochastic matrix

with eigenvalues 1, 1rλ4, ...,
1
rλ2k. Now the proof can be easily completed by applying Lemma 2, with A = Â

and B = B̂.

Again, substituting in Lemma 2 the doubly stochastic matrices obtained from Theorem 9, we obtain the
following theorem for which its proof is virtually identical to that of Theorem 4. So only, a sketch of its
proof is given here.

Theorem 10. Let p and n be two positive integers such that p ≥ 2 and n ≥ 2p+2, and let 0 ≥ λ2 ≥ ... ≥
λn ≥ −1. Suppose that

1

n
+

1

n
λ2 +

n
2 − [n+2

4 ](
n
2

)
[n+2

4 ]
λ4 +

[n+2
4 ]−1∑
i=2p

λn−4i+4

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−4i+4 ≥ 0, (15)

for n even and

1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
i=2p

λn−4i+4

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−4i+4 ≥ 0, (16)

for n odd, hold. Then there exists an n × n symmetric doubly stochastic matrix D whose eigenvalues are
1, λ2, ..., λn.
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Proof: If n is even, then by (15) and Theorem 9, there are (n2 )× (n2 ) symmetric doubly stochastic matrices

Â and B̂ with eigenvalues 1, 1
αλ4,

1
αλ6, ...,

1
αλn and 1, 1

αλ3,
1
αλ5, ...,

1
αλn−1 respectively, where α = 1+λ2

2 .

Apply now Lemma 2, with A = Â and B = B̂, then we obtain an n×n symmetric doubly stochastic C with
eigenvalues 1, λ2, ..., λn.
If n is odd, then by (16) and Theorem 9, there are (n+1

2 ) × (n+1
2 ) and (n−12 ) × (n−12 ) symmetric doubly

stochastic matrices Â and B̂ with eigenvalues 1, 1
αλ3,

1
αλ5, ...,

1
αλn and 1, 1rλ4,

1
rλ6, ...,

1
rλn−1 respectively

with α = (n−1)λ2+(n+1)
2n and r = (n+1)λ2+(n−1)

2n . Applying Lemma 2 (the reason we can apply it, can be

justified as earlier) with A = Â and B = B̂, we obtain an n×n symmetric doubly stochastic matrix C with
eigenvalues 1, λ2, .., λn.

Notation 4. For convenience, we denote by Mp the condition of Theorem 8, Sp the condition of Theorem
9 and Np the condition of Theorem 10.

With these new notations, we have the following observations.

Observation 3. Let σ = {1, λ2, ..., λn} be a normalized Suleimanova spectrum with n ≥ 8. If σ satisfies S
then σ satisfies S2. Consequently, with a slight abuse of notation, we conclude that S ⊂ S2.

Proof: Suppose that σ satisfies S. If n = 2k + 1 for n odd and n = 2k + 2 for n even, then clearly we have

0 ≤ 1

n
+
n− k − 1

n(k + 1)
λ2 +

k∑
i=4

λn−2i+2

(i+ 1)i
+

1

12
λn−4 +

1

6
λn−2 +

1

2
λn

≤ 1

n
+
n− k − 1

n(k + 1)
λ2 +

k∑
i=4

λn−2i+2

(i+ 1)i
+

1

12
λn−4 +

1

6
λn−4 +

1

4
λn−2 +

1

4
λn

=
1

n
+
n− k − 1

n(k + 1)
λ2 +

k∑
i=4

λn−2i+2

(i+ 1)i
+

1

4
λn−4 +

1

4
λn−2 +

1

4
λn.

Therefore, σ satisfies S2.

Observation 4. Let σ = {1, λ2, ..., λn} be a normalized Suleimanova spectrum with n ≥ 16. If σ satisfies
N then σ satisfies N2. Thus, with a slight abuse of notation, we have N ⊂ N2.

Proof: If n is even and σ satisfies N , then

0 ≤ 1

n
+

1

n
λ2 +

n
2 − [n+2

4 ](
n
2

)
[n+2

4 ]
λ4 +

[n+2
4 ]−1∑
i=4

λn−4i+4

(i+ 1)i
+

1

12
λn−8 +

1

6
λn−4 +

1

2
λn

≤ 1

n
+

1

n
λ2 +

n
2 − [n+2

4 ](
n
2

)
[n+2

4 ]
λ4 +

[n+2
4 ]−1∑
i=4

λn−4i+4

(i+ 1)i
+

1

12
λn−8 +

1

6
λn−8 +

1

4
λn−4 +

1

4
λn

=
1

n
+

1

n
λ2 +

n
2 − [n+2

4 ](
n
2

)
[n+2

4 ]
λ4 +

[n+2
4 ]−1∑
i=4

λn−4i+4

(i+ 1)i
+

1

4
λn−8 +

1

4
λn−4 +

1

4
λn.

Therefore, σ satisfies N2. A similar argument can also be employed, for the case when n is odd.

Theorem 11. Let n ≥ 4 be an integer, and let 0 ≥ λ2 ≥ ... ≥ λn ≥ −1. Define wp, vp, zp and yp as follows.
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• For any positive integer p ≥ 2 with 2p ≤ n, let

wp :=
1

n
+

1

n(n− 1)
λ2 + ...+

1

2p(2p + 1)
λn−2p+1 +

1

2p
(λn−2p+2 + ...+ λn−1 + λn).

• For n =

{
2k + 1 if n is odd

2k + 2 if n is even
, and for all positive integers p ≥ 2 with 2p+1 ≤ n, let

vp :=
1

n
+
n− k − 1

n(k + 1)
λ2 +

k∑
i=2p

λn−2i+2

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−2i+2.

• For n even, and for all positive integers p ≥ 2 with 2p+2 ≤ n, let

zp :=
1

n
+

1

n
λ2 +

n
2 − [n+2

4 ](
n
2

)
[n+2

4 ]
λ4 +

[n+2
4 ]−1∑
i=2p

λn−4i+4

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−4i+4.

• For n odd, and for any positive integer p ≥ 2 with 2p+2 ≤ n, define

yp :=
1

n
+

n− 1

n(n+ 1)
λ2 +

n+1
2 − [n+3

4 ](
n+1
2

)
[n+3

4 ]
λ4 +

[n+3
4 ]−1∑
i=2p

λn−4i+4

(i+ 1)i
+

1

2p

2p−1∑
i=1

λn−4i+4.

Then, for p > 2,

1) wp − wp−1 ≥ 0,

2) vp − vp−1 ≥ 0,

3) zp − zp−1 ≥ 0,

4) yp − yp−1 ≥ 0,

Proof: We shall only give the proof of Part 1), as the rest can be proved similarly. For simplicity, let us
denote m = 2p. Then,

wp =
1

n
+

n−1∑
i=m

λn−i+1

i(i+ 1)
+

1

m

m−1∑
i=1

λn−i+1,

and

wp−1 =
1

n
+

n−1∑
i=m

2

λn−i+1

i(i+ 1)
+

1
m
2

m
2 −1∑
i=1

λn−i+1.
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It follows that for p > 2,

wp − wp−1 = −
m−1∑
i=m

2

λn−i+1

i(i+ 1)
+

1

m

m−1∑
i=1

λn−i+1 −
1
m
2

m
2 −1∑
i=1

λn−i+1

=

m−1∑
i=m

2

(
1

m
− 1

i(i+ 1)

)
λn−i+1 +

(
1

m
− 1

m
2

) m
2 −1∑
i=1

λn−i+1

=

m−2∑
i=m

2

(
1

m
− 1

i(i+ 1)

)
λn−i+1 +

(
1

m
− 1

m(m− 1)

)
λn−m+2 −

1

m

m
2 −1∑
i=1

λn−i+1

=
1

m

m−2∑
i=m

2

λn−i+1 −
m
2 −1∑
i=1

λn−i+1

+

(
1

m
− 1

m(m− 1)

)
λn−m+2 −

m−2∑
i=m

2

1

i(i+ 1)
λn−i+1

=
1

m

m−2∑
i=m

2

λn−i+1 −
m
2 −1∑
i=1

λn−i+1

+

m−2∑
i=m

2

1

i(i+ 1)
λn−m+2 −

m−2∑
i=m

2

1

i(i+ 1)
λn−i+1 (using Lemma 3, Part iv)

=
1

m

m−2∑
i=m

2

λn−i+1 −
m
2 −1∑
i=1

λn−i+1

+

m−2∑
i=m

2

1

i(i+ 1)
(λn−m+2 − λn−i+1) ≥ 0,

since 0 ≥ λ2 ≥ ... ≥ λn ≥ −1. Thus the proof is complete.

As a result, we have the following observation (keeping in mind a slight abuse of notation).

Observation 5. For a normalized Suleimanova spectrum, we have

• M2 ⊂M3 ⊂ ... ⊂Mp ⊂Mp+1 ⊂ ....

• S2 ⊂ S3 ⊂ ... ⊂ Sp ⊂ Sp+1 ⊂ ....

• N2 ⊂ N3 ⊂ ... ⊂ Np ⊂ Np+1 ⊂ ....

Example 2. Consider the list σ = (1, 0, 0, 0, 0,− 2
3 ). It is easy to see that σ does not verify Soules condition

(1) but it verifies condition M2. Therefore, it is the spectrum of a 6× 6 symmetric doubly stochastic matrix.

Example 3. For n = 9, consider the list σ = (1, 0, 0, 0, 0,− 1
5 ,−

1
5 ,−

1
5 ,−

1
5 ). A simple check shows that

σ does not verify Soules condition (1). However, σ verifies conditions S2 and M3, and therefore it is the
spectrum of a 9× 9 symmetric doubly stochastic matrix.

Finally, by making use of Theorem 1, we end our discussion with the following sufficient condition
concerning realizable Suleimanova spectra of even order.

Theorem 12. For any two nonnegative powers of 2, n and m with m ≥ n, let σ = {1, λ2, ..., λn+m} ⊂
R, such that 0 ≥ λ2 ≥ ... ≥ λn+m ≥ −1. If there exists a permutation π on {λ2, ..., λn+m} such that
π(λ2, ..., λn+m) = (µ2, ..., µn+m) and

µ2 > −
n

m
,

µ3 + ...+ µn+1 ≥ −
mµ2 + n

m+ n
,
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and

µn+2 + ...+ µn+m ≥ −
nµ2 +m

m+ n
,

then σ is realizable by an (n+m)× (n+m) symmetric doubly stochastic matrix.

Proof: Since 0 ≥ m+n
mµ2+n

µ3 + ...+ m+n
mµ2+n

µn+1 ≥ −1, and n is a nonnegative power of 2, then in view of Theo-

rem 7, there exists an n×n symmetric doubly stochastic matrix Â with eigenvalues (1, m+n
mµ2+n

µ3, ...,
m+n
mµ2+n

µn+1).

Similarly, since 0 ≥ m+n
nµ2+m

λn+2+...+ m+n
nµ2+m

µn+m ≥ −1 and m is a nonnegative power of 2, then by Theorem

7, there exists anm×m symmetric doubly stochastic matrix B̂ with spectrum (1, m+n
nµ2+m

µn+2, ...,
m+n
nµ2+m

µn+m).

In Theorem 1, taking r = 1, ρ =
√
mn(1−µ2)
mµ2+n

(as µ2 > − n
m , then ρ > 0), A = Â and B = B̂, then we get an

(n+m)× (n+m) symmetric doubly stochastic matrix D with eigenvalues 1, λ2, λ3, ..., λn+m.

Example 4. Consider the list of 6 real numbers σ = {1, 0, 0,− 1
6 ,−

1
6 ,−

11
18}. It is easy to check that σ does

not verify S nor N . Moreover, σ does not verify M2 (note that S2 and N2 cannot be applied). However,
taking µ2 = − 1

6 , µ3 = − 1
6 , µ4 = 0, µ5 = 0, and µ6 = − 11

18 , then σ verifies Theorem 12 for the case of order
6 = m+ n with m = 4 and n = 2. Therefore, it is realizable by a 6× 6 symmetric doubly stochastic matrix.
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