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A note on the real inverse spectral problem for doubly stochastic matrices
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Abstract

The real (resp. symmetric) doubly stochastic inverse spectral problem is the problem of determining nec-
essary and sufficient conditions for a real n-tuple A = (1, Aa, ..., A,) to be the spectrum of an n x n (resp.
symmetric) doubly stochastic matrix. If A; < 0 for all ¢ = 2,...,n and the sum of all the entries in A is
nonnegative, then we refer to such A as a normalized Suleimanova spectrum.

The purpose of this paper is to first fix an error in Theorem 9 of the recent paper [ I. Adeli, M.
Taheria, M.M Moghadama, A recursive method for constructing doubly stochastic matrices and inverse
eigenvalue problem, Linear Algebra Appl. 537 (2018) 318-331], after giving a counterexample. Secondly,
we give a negative answer to a question posed in [C.R. Johnson, P. Paparella, Perron spectratopes and
the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 493 (2016) 281-300] concerning the
realizability of normalized Suleimanova spectra for the case when n is odd. Some sufficient conditions for a
positive answer to this question are given.

Keywords: Symmetric doubly stochastic matrices, Inverse eigenvalue problem, Normalized Suleimanova
spectrum
2000 MSC: 156A12, 15A18, 15A51

1. Introduction

An n x n matrix A with real entries is said to be nonnegative if all of its entries are nonnegative. A
nonnegative matrix A is said to be doubly stochastic if each of its row and column sum is equal to 1. Let I,
and J, be the n x n identity matrix and the n X n matrix whose all entries are % respectively. In addition,

ife, = %(1, ..., 1)T then clearly an n x n nonnegative matrix A is doubly stochastic if and only if Ae,, = e,

and ATe,, = e, or equivalently AJ, = J, A = J,.

The real (resp. symmetric) doubly stochastic inverse eigenvalue problem RDIEP (resp. SDIEP) is the
problem of determining necessary and sufficient conditions for a real n-tuple o = {1, Aa, ..., Ay} to be the
spectrum of an n x n (resp. symmetric) doubly stochastic matrix. If there exists a doubly stochastic matrix
A whose spectrum is o, then we shall say that o is realizable and A realizes o.

So far, the SDIEP has only been solved for the case n = 3 by Perfect and Mirsky [12] and remains open
for the cases n > 4 (see [4, 6, 7, 8, 10, 12, 13] for a collection of most sufficient conditions for the SDIEP).
Until now, there are two principal methods to solve the SDIEP. The first one relies on taking a diagonal
matrix A = diag(1, A\a, ..., \,) and a nonsingular matrix P, and then exploring the conditions under which
A = P7'AP is doubly stochastic. The second method falls into the category of constructing new doubly
stochastic matrices from smaller size matrices with known spectra. Our paper here falls under the second
category.

We call 0 = {1,Xq,..,A\,} C R a normalized Suleimanova spectrum if 1 + Ao + ... + A, > 0 and
0>\ >—1foralli=2,..n. In [3], the following question was posed.
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Question 1. If o is a normalized Suleimanova spectrum, is o realizable by a doubly stochastic matrix?

The authors in [3] proved that the answer is yes for all Hadamard orders (i.e. n = 2¥) and in this case the
realizing matrix is symmetric. We will denote by NS-SDIEP to be the problem which asks what sets of
normalized Suleimanova spectrum occur as the spectrum of a symmetric doubly stochastic matrix.

This paper is organised as follows. In Section 2, we collect some preliminary results that will be used
later. In section 3, we give a counterexample to Theorem 9 in [1] in the case where n is odd and we present
an alternative statement though in this case it will not be an improvement of the results in [13] (as was
claimed in [1]) but rather a new independent sufficient condition for the SDIEP. In Section 4, we give a
negative answer to Question 1 in the case where n is odd and we present some sufficient conditions for the
realizability of normalized Suleimanova spectrum.

2. Auxiliary materials

We present in this section auxiliary results concerning spectral properties of certain block doubly stochas-
tic matrices. We start with the following theorem from [8, 9].

Theorem 1. Let A be an n x n doubly stochastic matriz whose eigenvalues are given by 1, Ag, ..., Ay, and
let B be an m x m doubly stochastic matriz with eigenvalues 1, i, ..., t. Then for any p > 0 and for any
r > 0 such that p and r do not vanish simultaneously, the (m 4+ n) x (m +n) matriz C defined by

e Form >n,

o 1 rA pener,
=2 el (r+p2E2)B

mn

s doubly stochastic with eigenvalues

L TVmn—pn r r rv/mn + p(m —n) rv/mn+ p(m —n)
25

rv/mn + pm r—|—j% r—|—\f% " ry/mn+ pm h2 rv/mn + pm Hom
e Form >m,
O 1 ((7" + p’\’/;?mn)A peneg)
3
r—i—\/‘:m PEmeEr rB

is doubly stochastic with eigenvalues

1 rv/mn — pm r\/mn—l—p(n—m))\ T\/mn—&—p(n—m)/\ r r
"rymn+pn’ ry/mn+pn 2 rv/mn + pn n’r—i——pmin Mz’m’r—i——pmin Hom-

Remark 1. It is worthy to mention here that the preceding theorem is a specialisation of a result in [9] that
deals with k diagonal blocks instead of only two. Its proof relies on a result which is presented in Perfect [11]
and is due to R. Rado. An alternative! proof can be achieved from Fiedler [2]. Indeed, the proof of Lemma
2.2 there, is essentially the same as the proof of Theorem 1. One simply replaces the symmetry assumption
in Fiedler’s paper by the property that the algebraic and geometric multiplicities of the eigenvalue 1 of any
doubly stochastic matriz are the same.

As a conclusion, we have the following two lemmas that are Theorem 1 and Theorem 2 in [1] and which
constitute the basis for their results.

Lemma 1. Let A be an n X n doubly stochastic matriz with eigenvalues 1,As,...,\,. Then, for any
0 < r < 1, there exists an (n + 1) x (n + 1) doubly stochastic matriz C with eigenvalues given by

n+1 n—r n—r
1,1— P T, n )\2,..., n )\n

IMany thanks go to the reviewer for pointing out this.
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Proof: It suffices to check that the matrix C' = ( ”

Bt

A is doubly stochastic with eigenvalues
Vnn ( P )A

n+1 n—r n—r
11— milp nory,  nery W

n

Lemma 2. Let A be an nxn doubly stochastic matriz with eigenvalues 1, Az, ..., A, In addition, let B be an
mxm doubly stochastic matriz with eigenvalues 1, pia, ..., - Then for any 0 < r < 1 and n > m, there exists

an (n+m) x (n+m) doubly stochastic matriz C with eigenvalues given by 1, a+r—1,ala, ..., @Ay, T2, «ooy Tl
where 1_70‘ = 1?.
. OéA 1 r)feﬂern . . .
Proof: It suffices to check that the matrix C' = (1—r)/m . v is doubly stochastic with
T emey, rB
eigenvalues 1, + 7 — 1, Mo, ..o, @Ay, T2,y ey T by T
For our purposes, the following result due to Soules [13], is also needed.
Theorem 2. [13/ If1> Xy > ... >\, > —1 and
1 n- —1 An—2k+42
— 1
n Jr Azt Z (k+1) k; - (1)
holds with n = 2m + 2 if n even and n = 2m + 1 if n odd, then there exists an n X n symmetric doubly

stochastic matriz D such that D has eigenvalues 1, g, ..., Ap.

Remark 2. The proof of the preceding theorem is done by constructing an n X n matriz whose off-diagonal
entries are all nonnegative and its smallest diagonal entry is given by the left-hand side of (1). So if (1) is
valid then we obtain the symmetric doubly stochastic matrix D mentioned in the preceding theorem and so
its trace is nonnegative. Consequently, if 1 > Ao > ... > X\, > —1 and (1) is true, then 1+ Ao+ ...+ X\, > 0.

Finally, we have the following simple observation which is very useful for us and will be used later.
Lemma 3. Let n > 1 be a positive integer. Then, the following statements hold.

1 _

i) 5 am-p Tt 3><2 + 2Tl L.

it) Let p be any positive integer which is greater than 1. If n > 2P, then

PRSI ik
n o nn-—1) 7 2020 +1) 2
m
iit) For any positive integer m > 1, it holds that kz_jl m =1- ﬁ = . Consequently, for any
m
positive integer m > 2, we have kZQ m = - 1.
m—1
iv) For any positive even integer m > 2, it holds that k—zm m = % Hence, for any positive even
-z

m—2

: 1 1 1
integer m > 4, we have Y. GiDF = m — mm D
k=1

2

Proof:

i) The left hand side in Part i) can be rewritten as

1 1 1 1 1 1
— — - | == - — - — = 1-- =1
+Zkk—|—1 n+;< k:—|—1) n+<n—1 n)+ +<2 3>+< 2)
3




ii) From Part i), we can write

L 1 R S BN B s |
27(20 —1) (2P —-1)(2? —-2)""  3x2 2x1 o» 20
It follows that
LU SIS St S SR S I S ——
n nn—1) "7 222 +1) 22 n nn-1) T 2x2r+1) 202 —-1) T 2x1
iii) It follows easily from the first part.
iv) For m = 2, the assertion is true. Suppose m > 2, then from Part i), we certainly know that

m_q
Z oE = 1 — = = ™5t Therefore, Z (k+1)k+ Z Ginr = " and thus we obtain

m—1 %*1
L _mot Lo w1 (1) _ 1
(k+Dk  m — k+Dk  m m) o m

—_m
k=74

3. Main observations

In a recent paper [1], the authors used Lemma 1 and Lemma 2 to obtain a recursive method for con-
structing doubly stochastic matrices for the inverse eigenvalue problem by distinguishing between the cases
n even and n odd. In addition, it is claimed that these new sufficient conditions improve Soules condition
(1) in both cases.

Theorem 3. [1] Letn>5. If1> X > ... > X\, > —1 and

1 + l)\2+ 5 — [nTH])\AH_ Z An—dk+4 0 @)
(5) %3] — (k+1k ~
for n even ([.] stands for the integer part) and
221
1 ~1 ndl _ [ndd Ao
R P [[i]Ag + Z 4’“*4 > 0, (3)

n nn+1) (”+1)
for m odd, holds. Then there exists an n X n symmetric doubly stochastic matrix C' whose eigenvalues are
1, A2, A3, -y A

Next we give a counterexample to the preceding theorem in the case when n is odd. Consider the
following list of real numbers o = (1,1,1,—2,—2,—2 —1). It is easy to see that o satisfies (3). Hence, by
Theorem 3, there exists a 7 x 7 symmetric doubly stochastic matrix A with spectrum o. On the other hand,
o cannot be the spectrum of any 7 x 7 nonnegative matrix since otherwise by the Perron-Frobenius theorem
(see [5]), there would exist a reducible nonnegative matrix with spectrum o. However, there is no way of
splitting o into 3 subsets where each subset has a nonnegative sum. That leads to a contradiction.

More explicitly, the authors in [1] claimed (without justification) that when n is odd, and (3) is verified,

then we have

[n+3]_1
1 ol (3] 1 A—dkya
T T Ty sy e PRV (4)
= () [P e ,; a(k+ 1)k



and

1
1 ool (2] 1 A—4r43

At Y S >, (5)
= (5 = rk+ Dk

(=DAetntl) opg p = FA2 82D Ty fact if (3) is valid then it holds that

where o = 5 5

[nIS]_l

0<1+ n—1 )\+nTH_[nTﬁ])\+ Z An—ak+4
<= 2 -~ - 3 T
n  n(n+1) () [ = (k+1k
=Dty (1 oy P
= ot e Mt X S
2n = () = a(k+1)k
n n [*32]-1
0y n ol [t l)\:), n R 1 An—apya
= () e = a(k+1)k

As « is positive, then this shows that if (3) is valid then inequality (4) is always true. However,
inequality (5) may not necessarily be true when (3) is valid, as can be easily checked for the list o =
(1,1,1,-2,—2,—2 —1) that satisfies (3) and does not verify (5).

Next, we shall present an alternative sufficient condition for the odd case by using the same recursive
method for constructing doubly stochastic matrices. However, this will not be an improvement of Soules
condition, but rather an independent condition as we shall prove. Before doing so, we need the following

auxiliary lemma.

Lemma 4. Letn > 5 be odd and let 1 > Xy > .... > X\, > —1. Then

) . n+1 [ [n+3] 1
n— n 4k+4
— A 4
n+n(n+1) QJF(T [i 4+t Z (k+ 1)k
1 [+ nII] 1
1 n—1 4 el >\n 4k+3
<=+ A2 + Ao+ 2 il +
“n am+D) 7 (n-D+ 1) () = = (k+ 1)k

Proof: We distinguish between the cases n = 4m + 1 and n = 4m + 3 (since n here takes only odd values).



For n = 4m + 1, we have

1 n—1

m n 4k+4
— A
n+n(n—|—1) 2+(2m+ 1)(m+1) 4+Z (k+ 1)k
- 1 n—1 Mo b 4+Z An—dk+3 (since A\p—_akta < An—akt3)
“n nln+1) (2m+1)(m—|—1) (k+ 1)k -
1 n—1 m 1 n 4/€+3
n+n(n+1) 2+(2m+1)(m+1) S m+1) 4+Z (k+1)k
m—1
1 n—1 m+1 An—ak+3
= = A
n e T mem +; k+ 1k
1 n—1 1 & An_ An—dk+3
n+n(n+1) 2+<2m(2m+1) ) 4+z:: k+1)k
-1
1 n—1 1 An—4k+3 :
_1 N )\ A< A
< n(n+1) 2+2m(2m+1) 2+ 4+Z k—l—l (smce 4 S 2)
1 n-1 4 D_[%ﬂ} = W
n o+ 1) (- 1)(n+ 1) 2t (275 %] o (R Dk

For n = 4m + 3, we have

1 n—1 An—dkt4
— A
n+n(n—|—1) 2+ 4+Z (k+ 1Dk

1 n—1 1 m An—ak+4
=—4+—A
n+n(n+1) 2+((2m+2)(2m+1)+(m+1)(2m+1> 4+Z (k4 1)k

l n—1 1 n 4k+3
n+n(n+1)/\2+(2m+2)(2m+1))\2+( +1)(2 +1)A4+Z (k+ 1)k

IN

1 -1 n-l _ [ntl
1, om-1 4 (241
n  n(n+1)

Thus the proof is complete.
]

Theorem 4. Letn > 5 be odd and let 1 > Xy > ... > X\, > —1. If

-

1 n—1 ol [nd3 A
[i] + Z 4k:+4 07

ﬁ—’_ n(n—|—1))\2+ (”+1)[

then there exists an n x n symmetric doubly stochastic matriz C' with eigenvalues 1, Ao, A3, ..., Ap.

Proof: As n is odd, then by (6), we know that



0 1 n—1 o 4 ntl ["T"'?’]/\ N 423 An—dk+4
2 - o 4
n nn+1) ntl) [nd3] = (k+1)k
nt31_1

< ! + n-l A2 + il Az + 42 An— g4 (since Ay < Az and its coefficient is > 0)
=~ 2 3 1 4 S A3 1

n o n(n+1) () [ —~ (k+1k

n+1 n+3 [n+3] 1
:<(n_1)>\2+(”+1)) 1 L2 - s+ Z An—dkt4
2n 5 () [ o Dk
n+l [n+3 1 ["Is]— 1\ A
=« + 2 4 —A3 + - An—dk+4 ;
ol ©(nHl) [nd3] o ; a(k+1)k

where av = % > 0. In order to apply Theorem 2, we first show by contradiction that )‘" > —1and

23 <1 (since the \; are in the decreasing order). Suppose that 2= < —1, that is, 2n\,+(n— 1)/\2—|—(n—|—1) < 0.
It then follows that, ; + =550 + 25\ <0, and hence (6) 1mphes that

(2521

1 n—1 ntl _ |nt3] A n—dhta 1 n—1 2
Ao + 2 4+ T > 0> — + A2 + An,
non(n+ 1) (e e kzzl k+Dk~ " n nn+1)"7 7 n+1
that is,
n+3

ntl _ [nt3) [(*r2]-1 A\ 1

2 4 n—4k—+4

- - A+ + n Ap >0

(L) [t = (k+1)k 2 1

Since 1 > Ay >

%
>
%
I
—
+
=
@
=]
B
e}
&
=]
=
=
=
®

e N W T
0< 2 L= + 2+ A
() [z = (k+1)k 2 n+1

LH_[L%] 1 1 2
_(()[]+ > o)t () >

n;rl [nir&] [njlrS] -1 1 1 2 . . _ n+3
(n+1 o= + n+3] —Z X+ Y] An (using Lemma 3, Part iii) with m = [23=] — 1)

So A2+ A, > 0, and this implies that 0 > 2nA, +(n—1) 2+ (n+1) = n(A2+A,) +n(1+A,)+1—A2 > 0, and
we get a contradiction. Therefore, %“ > —1. Suppose now that % > 1, that is, 2nA\3— (n—1)A\a—(n+1) > 0.
But this implies that 2nA3 — (n — 1)Ada — (n+1) = (n — 1)(A3 — A2) + (n + 1)(A3 — 1) > 0, and we also

get a contradiction. Therefore, 2—3 < 1 and hence by Soules condition (1), there exists an (241) x (241)

symmetric doubly stochastic matrix A with eigenvalues 1, éAg, é)\5, . é)\n. On the other hand, by (6) and




Lemma 4, we have

n n [n+3]_1
o< Ly n-1 /\2+%1_[IS]A4+ S Dnaers
n o n(n+1) () [ = (k+1)k
1ot 4 il U S WY
< — —+ >\ —+ )\ + 2 4 )\ + n—
“n an+1)77 T (n-1)n+1)" T () (= Z; (k+ 1)k
(n+DAa+(m—-1)\ 1 oot — [ [”11]_1)\ 4k+3
= Tt e e M =
(5 e &
n—1 n+1 [nTl]_l
— L—i— ?*[T]})\Zﬁ_ 1 An—ak+s
= () r(k+ 1)k

%. Next, we prove that r is positive. Indeed, by (6), we know that

where r =
(23] 1
1 n—1 nfl 4k+4
0< = by 2 4 n n—4k+4
“n nln+1) 2—’_(”T [i 4+t Z (k+ 1)k
1 n—1 ntl [LJF?)] [njj] ! Ao
< Ao + Z n4 Ao + ——=— (since Ay > Ag > ..., and their coefficients are > 0)
n  n(n+1) (L) (28] ; (k+ 1)k
n+l [L-&-S} [nT%]*l 1

1 -1 ntl _ nt3 1
= — n 21 [43]+1 3 )\2
no \n(n+1) - (2) % (3]
1 —1
=+
n

So obviously Ay # —1, and it follows that (n+ 1)Aa+(n—1) =14+ (n—1)Aa+ (n —2) + 2X3 > 0 for n > 4.
This implies that » > 0. Also, as (n+ D)X+ (n—1) <n+1+mn—1=2n, then r < 1. Next, in order to

again apply Theorem 2, we shall show that )‘: > -1 and >‘3 <1 by contradlctlon Suppose that >‘" < -1,

that is, 2n\, + (n + 1))\2 + (n—1) <0. It follows that, = Jr nz’bn+11))\2 + =5 An < 0. From (6), we get

-

1 n—1 ot [”—+3 thotd 1 n+1 2
= A 4 Mncdkid o L A A
n n(n+1)2+(7)[i ot Z (k+ 1k — >n+n(n—1) 2 T
that is,
n—1 n+1 nfl _ [ndd) An-aksa 1 2
A # An— —Ap— —A, > 0.
(n(n+1) n(nl)) 2+(%+1)[i g (k+1)k T3 n_1"”



Since 1 > Ay > ... > A\, > —1, then we can write

[=£2]-1
n—1 n+1 ) ntl _ (23] Ao 1 2
0< Do+ 2 e W
(n n+1l) n(n-1) () [ kZZQ (k+ 1k 2 n—1
n—1 n+1  nil_qnis) [E 12
- 1 Dt eIt 2 G ’\2+<21) g
nn+1) nm-1) ()3 ~Z k+1) -
n—1 n+1 nfl ) nd1_g g (1 2 )
= = St — = |+ 5 — An (by Lemma 3, Part iii))
<n<n+ D a-n T EE O 2 2 1
n—1 n+1 1 1 1 1) (1 2 )
= n n +1 Tnt37 9 )\2 +1{35 o1 n
(n<n+1> n(n—1) = [=2] = (]2 2 n-1
n—>5
2(n—1) (A2 +An)

Hence Ay + A, > 0, and it then follows that 0 > 2n\, + (n + DAs + (n — 1) = n(Aa + \,) + (n —
(14 An) 4+ (A2 + Ay) > 0, and we have a contradiction. Suppose now that 2¢ > 1. This implies that
2ndg —(m+ DA —(n—1) = (n+1) (A3 — A2) + (n — 1)(A3 — 1) > 0, and we again get a contradiction.
Therefore, by Soules condition (1), there exists an (%51) x (251) symmetric doubly stochastic matrix B
with eigenvalues 1, %)\4, %)\67 s %)\n,l.

Finally, applying Lemma 2 with A = Aand B = §7 we obtain an n x n symmetric doubly stochastic
matrix C' whose eigenvalues are 1, Az, ..., A,.

Notation 1. We will say that New condition 1 holds if (2) is satisfied when n is even, while (6) is satisfied
if n is odd.

Observation 1. For n even, Soules implies New condition 1. For n odd, Soules and New condition 1 are
independent.

Proof: Let n be even. Suppose now that o satisfies Soules condition. Since

An_4i 2 >\n—2i, i = 1a2a EE) [LH:I -2

and
Ay >N, 1 =26,8,...,n— [%]4—2,

then o obviously satisfies New condition 1. For the second part, it suffices to check that for n = 7, the

list (1,0,0,0, —%, —%, —%) satisfies New condition 1 and does not satisfy Soules condition, while the list
3 3

(1,0,0, —1—34, — 11 11 —13—4) does the opposite i.e. it satisfies Soules condition and does not satisfy New

condition 1.
Next, we present the following auxiliary lemma.

Lemma 5. Letn =4m + 1 > 9 where m is a positive integer and 1 > Ao > ... > Ay, > —1. Then

(2£7]-1
1 n—1 2(n—1) o3 _ [n47) A8kt s
—+ A2 + Ay + As + s chn
n o+ 1) (nt(n+3) T () [ kZ:l (k+ 1)k
1 n—1 4 2 nl _ [2fd) [%3]_1/\ %
< —+ Ao + Ao + M+ 4 8 g n—8k+7
“n o+ (n-Dn+1)7 T a1 () (=B  (k+ 1)k



Proof: As n=4m + 1, we have

1 n—1 2(n—1 ntd _ (il = A
n+n(n+1)/\2+(n+(1)(n—)k3)/\4+(if’) [[%]]A” ; (kﬁ;/i
1 n—1 1 m—1 o3 _ [ndT) S An—8k+8
n+n(n+1))\2+<2m(2m+1)+2m(m+1)>>\4+("1‘3 ["T”]A8+ k; (k+ 1k
1 n—1 1 m—1 nts _ [ndT] - 1)\77, 8k+7
§ﬁ+n(n+1)>\2+2m(2m—|—1) 2+2m(m+1)/\4+ (=3 [HT”]A“ — (k+ 1)k

Next, we distinguish between the cases m odd and m even.
Case 1: For m = 2p + 1, then n = 8p + 5 and hence

42

Therefore,

[n+7

1 n—1 1 m—1 ne [i 8k+7
_ )\ /\ /\ 4 8 n +
n+n(n+1) 2+2m(2m—&—1) 2+2m(m+1) 4+(NT+3 [i 8+ Z (k+ 1)k

1 n—1 1 m—1 1 L W
= - A A A A Cn8kiT
a0 2 T mem ) 2 e ™ T 22 8+};(k+1)k

SN ek 5 VR S Y m_l/\+< ! + P ) +Z
T+ 2m2m+ 1) 2m(m+ 1) 2p+1)2p+2)  2p+Dp+1))7°

<lintl oy LI VO [t S Y L by P +Z
0 nn+D) 2 mm+ ) 2mm+ )T @p+ D)(2p+2)"t T @2+ D+ 1) As
1 n-1 1 1 p E A—she7
=— A Mot — A+ —— )
a2 mmem ) ™M T ) D 8+Z:1(k+1)k:
1 n-1 4 2 nol _ [nd3] RSt Sk
S 1 Ao + Ay + A 8 s + .
n a7 =D D a1 (e 2B T & (k+ Dk
Case 2: For m = 2p, then n = 8p + 1 and in this case, we have
n+7] (n+3 fl—pat
s |7 |8 P

10



Therefore,

71+7

+ [n+ w1

1 n—1 1 m—1

n n(n+1))\2+2m(2m+1))\2+2m(m+ & ( ) [ i As kZ::l IZ—FST?
- % nzlnjrll))q + zm(2;+ 1)A2 2ngW:Ji 1)A4 LTy 11))(p+ 1)A8 + Zp: m
:%+n(nn_+11) 2t m(271n—|—1) 2 QmTELﬂz_—I}l)MjL(Qp—I—lZ))(p-&-l))\ng - ) 1:4-8?7
:% n(nn_+11)A2+ 2m(27}n+1))\2+ zmn(lm_j 1)A4Jr p+1 8+Z ,:ﬁ”
- % n(nn_+11)A2 + 2m(271n—|— 1)A2 * anZn;i T (2(2;+1 ) As + Z ,:ﬁ”
S% n:njrll)A2+ 2m(271n+1) 2 2ngﬂ;i pMt 2p(2;+1)>\4+ A“Z ,Zﬁ”
:% nzlnjrll))\g—y 2m(271n+1))\2+ gt )\8+Z ]:+811+7
1 n—1 4 2 "——1—[73 Sl P An-sk47
T n(n+1)/\2+(n—1)(n+1)/\2+n— & (4)i)\8+ £ (k+ 1)k

Thus the proof is complete. B

By substituting in Lemma 2, the doubly stochastic matrices obtained when New condition 1 holds, we
have the following theorem. It is worthy to point out here that its proof (and the proofs of many other

theorems below) may appear to be somewhat tedious, however the technique used in each

case of the proof

is similar to that of Theorem 4 with only minor difference, namely in the expressions of a and r in each case

(see below).

Theorem 5. Letn>8 andlet 1 > Mo > ... > N\, > —1. If
1 1 2 o=t Iy k
*+*/\2+*)\4+4n nS Ag + n—8 +8_0,
(%) %] o (k+Dk
for n =4m,
11 2(n —2) nTH_ nT—FG] ! An—8k+8
—+ =X+ A+ - o Ag + — >0,
n ( 2) (TQ [%6] ; (k+ 1)k
form=4m+ 2,
S SR S —hele = FNE = R VST R
— 2 4 - - 8 >0,
n (n+1) n+1 (md) [nd5] = (k+1)k
formn=4m+ 3, and
1 n-1 2(n—1) ns _ [nd) B
n (n+1) (n+1)(n+3) (23) [T Pt (k+1)k =

>0,



for n = 4m + 1 hold, then there exists an n X n symmetric doubly stochastic matriz with eigenvalues
1, A2,y An-

Proof: The proof is similar to that of Theorem 4. First suppose that n = 4m. By (7), we have

2 21, -1

1 /\n
/\4 + An—8k+8

ak+1Dk | =7

(5) [ e -

(67

Mm

- ——
n nao

where a = % > 0. We show by contradiction that « > 0. Suppose that & = 0. Then, Ay = —1, which
implies that A3 = .... = \,, = —1. It follows that

n

n n+4 [
*—F /\2+ )‘4+4[ni4]])‘8+
8

()1

and this contradicts (7). Equivalently, we have

2—4]_1 A
n—8k+8
E — <0

[n+4]_1
1 11 T - [ ! Anosits
W+W*)‘4+ 4n nS —Ag + >0
5 ga () %] ;; (k+ 1)k

and hence

n+4 _
1 11 2 [ 1 /\n 8k+7
=3+ 8 )\7+ > 0.

We first show by contradiction that 22 > —1. The proof of this, is virtually the same as earlier with only

minor difference. Indeed, suppose that A{; < —1, that is, 2\, +A2+1 < 0. It follows that, %—1—5)\2—1—%)\” < 0.
From condition (7), we conclude that

1 n— [ ul An—8k+8 1 1 2
~+ )\2+ )\4-1—4n 85 As + T > 0> = 4 = A4 =M,
(2) [ kZ:l (k+ 1)k non n
that is,
[(n4] 1
n— [ 3 An—skts | 1 2
S YR el - S Y SA, = 2A, > 0.
(%) 1] &~ (k+Dk 27" n

Since 1 > Ay > ... > )\, > —1, then we clearly have

1 1 2
+ vl DRI WP
n

2
O — Z - S -
R (k+ D)k )

= 7+(%)[+4 + - = 24—5 n = An (using Lemma 3, Part iii) with m = [*5=] — 1)

Il
>
[}
+
>~
.

Therefore Ay + A, > 0. Tt follows that 0 > 2A, + A2 +1 = (A2 + A) + (1 + A) > 0, and we have a
contradiction. Next, we show that % < 1 by contradiction. If %3 > 1, then clearly 2A3 — Ay — 1 > 0, and we

get a contradiction. Thus, by New condition 1, there are (3 ) x (%) symmetric doubly stochastic matrices A
and B with eigenvalues 1, 1Xs, 26, ..., LA, and 1, 1a3, 15, ..

12

. a>‘n—1 respectively. Now applying Lemma



2 with A = fT, B=DBandr=a= 1"'2)‘2, we obtain an n X n symmetric doubly stochastic matrix C' whose
eigenvalues are 1, Ag, ..., Ap.
For n = 4m + 2, using (8), we conclude that

[ ]-1
1 5-11 n2 -1 w1 Anoskts
=+ 72 Mt S A+ — =SS >,
st rE oM et 2 Gk Dk
and
1 n _ 1 1 n+2 _ [n+6 [HTH}]*l 1 /\ St
gt A B T ZAno8kHT S
M e L e

where o = 1“‘2 > 0. We show that 22 > —1 by a similar argument as in the previous case. Suppose that
o;‘ < -1, that is, 2\, + A2 +1 < 0. It follows that, L =+ 5)\2 + E)\n < 0. Then by (8), it holds that

[(*5°]-1
L1 2(n—2) nr2 — [nf0] An—8k+8
—+ = A 8 )\ >0 )\ )\n,
n+n2+n(n+2) 4+(nT2 [i 8+ 2 (k+1k:_ > — -|- 2 +
that is,
n—2) o2 _ [ndd [%]ﬂk sk+8 | 1
A 1 52 o A= A >0
nnt2) T ey e et kzzz (k+ 1)k 2
Since 1 > Ay > ... > \,, > —1, we have
2(n — 2) nt+2 _ [n-&-ﬁ} [2£°]-1 1 1
0< + 4 8-+ ——— | At A — =,
n(n+2)  ("2) [0 = (k+1)k 2
2(n—2) P[0 [%-1 1 1 2 . N i
= (n(n—l—?) + (nTH) [HT%] + [RTG] ~3 )\2+§/\n— EA" (using Lemma 3, Part iii) with m = [%]
n—4
= on (/\Q—F)\n).

Hence Ay + A\, > 0, and it then follows that 0 > 2\, + A2 +1 = (A2 + A,) + (1 + A,) > 0, and we have
a contradiction. Note that )‘3 < 1 by a similar argument as in the previoub case. Thus, by New condition
o aAn
and 1, )\3, i/\5, ey /\” 1 respectively. Now by applying Lemma 2 with A = A B=B and r=a= H’;‘Q,
the proof of the Second part can be achieved.

For the case n = 4m + 3, using (9) we can write

1, there are () x (3 ) symmetrlc doubly stochastic matrices A and B with elgenvalueb I e, -

(28] -1
1 n—1 2 o [ 3 An—8k+8
0< =+ A2 + M+ s s s
n  n(n+1) n+1 () [2t2) kz::l (k+ 1)k
1 n—1 9 LH,[L%] [n;s]—l)\ g
< —+ A2 + Az + A + ——
n  n(n+1) n+1 (2 [2E2] — (k+1)k
1 |1, Rl _qmespg PR,
=a| o7+t TNt e A 2 Ano8ki8 )
IS B ET T X a0k

_]_)



where o = % > 0. As earlier, we shall show now that % —1 by contradiction. Suppose that
% < —1, that is, 2n\, + (n — 1)A2 + (n+ 1) < 0. It follows that + + n(nH))\g + n+1>‘ < 0. From (9), we

conclude that

(2811
1 n—1 2 ntl _ ["—“’] Shts 1 n—1 2
- A A 4 8 Anshis o 1 A A
n+n(n+1)2+n+1 4+("T [i 8 Z (k+1)k — >n+n(n+1) 2+n—&—1 "
that is,
9 ol (5 sl 1 9
A As + Cno8kE8 L N, — —=— )\, > 0.
n+17t (7'+1)[ 58T (ke Dk 2 1
Since 1 > A\q ..> A, > —1, we have
[245]-1
2 ntl _ [nd8) 3 1 1 2
0< 4 A An n
e +  (k+ 1)k 2+ 3 n+1

9 n+l _ [ntbd n+51 1 1 1 2)
= ( + (:t I nl + el — = | A2+ A — ——A, (using Lemma 3, Part iii) with m = [%2] —
n

+1

C2(n+1)

Hence A2+ A, > 0, and it then follows that 0 > Qn)\ +F(n—1DA2+(n+1) = n(Aa+Ap)+n(l+A,)+1—X3 > 0,
and again we get a contradiction. In addition, 22 ~2 <1 by a similar argument as in the proof of Theorem 4.

Therefore by New condition 1, there exists an (%) x (2£!) symmetric doubly stochastic matrix A with

eigenvalues 1, é)\g,, é)\5, ey é)\n. Now from (9), we can write
1 1 2 n+1 [n+5] [%] 1 )\
n— 4 s n—8k+8
0<—+ A2 + A+ — & s + T
“n an+ D) 1™ (2 [222)] s kZ:l (k+ Dk
1 n—1 ( n—3 ) L [n§_l An—8k+8
=—+ + n n— + n 2n7 )\4+ ;ll n85 )\8+ -
n - n(n+1) (=) (1) () (%5 (=) %] —  (k+ 1)k
1 n—1 1 nre ol [nfl] I An—8k+7
= A2 + - po Ao + - 2 po— A+ ;41 ng As + ne
noon+1)77 0 (2 (55 T () () () %P = (k+1k
1 n—3 1 ntl [LJFE’] 1 (2211 1A T
=7 | =1+ fanaeny oM T T sy s -t
D G G E T & ek

where r = % A virtually identical proof to that used in Theorem 4 for the same claim, shows
that 0 < r < 1. Next, in order to apply Lemma 2, we shall show as earlier that )‘T" > —1by contradiction
Suppose that )‘7 < —1, that is, 2n\, + (n+ 1)A2 + (n — 1) < 0. It follows that L + ("+1 A2 + 757 An <0,

and hence using (9), we obtain

[71.;5]71

1 n—1 2 ntl _ [nts) M—8k-t8 1 n+1 2
- A A 4 CHED S ) A An
T M e SO YT R ;;1 Grik= "0 T amon 2t

14
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that is,

n—1 n+1 ) 2 ndl _ [nd8) = An—skis | 1 2
- Ao + A+ A8 + TRIEES L A — ——— X, > 0.
(n(n—l—l) n(n—1) n+1 (2L (245 — (k+Dk 2 "op—1""
Since 1 > Ay > ... > \,, > —1, then we have
n—1 | 9 mil_qmgs) [ 2
0< - + + = S+ | Ao+ A — ——= Ny
RS T AT =8 = P DR ) K A
n—1 n+1 2 ol _[nd8)  [mdS] 1 g 1 2
= - + + ;411 [nik’)}—‘r[ Sn]f) ) )\2+ 5 1 )\”
nn+1) nn-1) n+1 (2H)[22] o] 2 2 n-1
n—>5
=— A2+ M)
Q(n—l)( 2+ An)

It then follows that 0 > 2nA, + (n+ DAs+ (n—1) =n(A2 + X))+ (n— 1)(1+ X)) + (A2 + ) > 0, and we
have a contradiction. In addition, the proof that % < 1 can be easily done as that of Theorem 4. Therefore,

by New condition 1, there exists an (2%52) x (251) symmetric doubly stochastic matrix B with eigenvalues

1, %/\47 %/\6, e %)\n_l. Now applying Lemma 2 with A = A and B = §, we obtain an n X n symmetric

doubly stochastic matrix C' with eigenvalues 1, A, ..., A,.
Finally, let n = 4m + 1. From (10), we conclude that

(2471
T s N
0< —+ A2 + A+ s A8 —
n  nn+1) (n+1)(n+3) (43 [T ; (k+ 1)k
n+3 n+7 [HT” -1
1 -1 2(n—1 - === An—
<1 n , (n—1) s [ 87])\7+ Z n—8k+8
n  nn+1) (n+1)(n+3) (23 [ — (k+1)k
1 ntl1 1 nt+3 _ [LW] 1 (2511 1 M shrs
=a| 07 + — 2n s+ 4 8 A7+ < An— ’
T PET Y X el bk

where a = % > 0. By a similar argument as the one used in the previous case, we can show

that % > —1 and % < 1. On the other hand, by (10) and Lemma 5 we also have

[%£)-1
1 -1 2n - 1) mad _ [neT] M sis
0< =+ Ay + A+ A As + ZnSkis
o nm+ )T Dn+3)" T (2R [T & (k+ 1k
1 n-1 2 el L N =P W
- + Az + A+ 8 s+ T
n oAD" T =D T e 1T (2 ) 2T L (k- 1k
1 11 omelqmesyy o PRIy,
=r|—+- A+ 4_ 8 “dsg + 2 0n—8kt7 ;
PR T L T
where r = % with )‘7" > —1and % < 1 (again for this, a similar proof as above can be employed).
Thus by New condition 1, there are (241) x (2£L) and (251) x (%52) symmetric doubly stochastic matrices A
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and B with eigenvalues 1, é)\g,, %)\5, - é/\n and 1, %)\4, %)\6, s %)\n,l respectively and such that 0 <r <1
as earlier. Finally, applying Lemma 2 with A = A and B = B, we obtain an n X n symmetric doubly

stochastic matrix C' whose eigenvalues are 1, Ao, ..., A\,,. B
Notation 2. The conditions of Theorem 5 are referred to as New condition 2.

Observation 2. New condition 2 and New condition 1 are independent. For n = 14, the list given by

2
(1,1,1,1,1, 1,070,07070,070,—5)
satisfies New condition 1 and does not satisfy neither New condition 2 nor Soules condition (1). However

the list 3 3 3 3 1 1 1 1 1
10000 -2 -2 =2 =5 -~ >~ > > =
(1,0,0,0.0, =55~ 56 "35 735" "10’ 10’ 10’ 10 10’

satisfies New condition 2 and does not satisfy neither New condition 1 nor Soules condition (1).

We can recursively apply the same process to obtain more general sufficient conditions for the SDIEP.
Although, it seems that there is no systematic way of doing this for general n, however we put forward the
following conjecture.

Conjecture 1. Let k and n be any positive integers such that n > 2’“, andlet1 > Xy > ... >\, > —1. For
each i =1,....k, denote by c;y_, to be the remainder of the Euclidean division of n by 2~ and define

S _ {2 “aim e #0

0 Zf Qi1 = 0.
If
n+r;") |:n+2+rgn):| n+r§") |:n+4+ré") :|
_ [ntl 2 4 4 8
Lyl A A
+ A2+ 4+ g+ ...
n n[i] n+7'(n) n+2+7'(") n+7'fn> n+4+r,(")
2 2 2 3 3
2 4 4 8
np2k—14,.(n)
n+r,(€n) . |:n+2k_1+r£") |:27kk -1
2k—1 2k A
_ok;i9k
.t : Aok + > X!
n+r,(c"> n+2k*1+r,(€") — ('L + 1)'L
ok—1 ok =

then there exists a n x n symmetric doubly stochastic matriz with eigenvalues 1, Aa, ..., A

Note that for k = 1, k = 2 and k = 3, we obtain respectively Soules condition, New condition 1 and New
condition 2. In order to support this conjecture, we shall verify it for the case n = 26 and we refer to the
new condition in this case as New condition 3.

Example 1. Let 0 = {1, \a, ..., Aag} be a list of 26 real numbers such that 1 > Ao > ... > Ao > —1. In this
case, New condition 8 states

11 6 3. 1. 1
0< o+ o Ao+ Ay + A+ = Arg + 2 A
=96 2672 T gyt T st T ge Tt

1 6 1 31, 11 11
S (R R T Al V) WA
a<13+(13)(7)a TR T I T oy 26)
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with o = % By (10) of Theorem 5, there exists a 13 x 13 symmetric doubly stochastic matrix A with

etgenvalues 1, %, %, e % On the other hand, since 1 > Xy > ... > A\, > —1, we conclude that
1 6 1 31 11 11
— A3+ —=—X\+-=A ——MXa5 > 0.
BT mma? T ®a T 1 T a7
Hence, there exists a 13 x 13 symmetric doubly stochastic matriz Buwith eigenvalues 1, %3, %, e % Again

applying Lemma 2 with A = Aand B=B andr = a = 1+2)‘2, we obtain a 26 x 26 symmetric doubly

stochastic matriz C with eigenvalues 1, Ag, ..., Aog. Note that the list given by

1 1 1 1 1 1 1 1 1
(150707OaOa050707()’0’0)07070’0’0507 T a0

33 B B 13 13 B B 13

satisfies New condition 8 and does not satisfy New condition 1 nor New condition 2.

Notation 3. For convenience, we shall denote by S, N the sets of all n-tuples o satisfying Soules condition,
and New condition 1, respectively.

4. On the realizability of normalized Suleimanova spectra

4.1. A negative answer to Question 1
We begin with a lemma whose proof can be found in [5].
Lemma 6. Let A be an n x n indecomposable doubly stochastic matriz. If A has exactly r roots of unit

modulus, then these are the r-roots of unity. If r > 1, then r is a divisor of n. Moreover, A is cogredient to
a matriz of the form

0 A O 0
0o 0 A 0
: : (11)
0o 0 O Ar_q
A 0 O 0
where the A; are doubly stochastic of order % x =, i=1,...,7.

Making use of the above lemma we have the following:

Proposition 1. If n is odd and A = (1, Aa, ..., An—1, —1) with |X\;| <1 for alli =2,...,n—1, then X cannot
be the spectrum of any n x n doubly stochastic matriz.

Proof: Suppose that A = (1, Aa, ..., Ap—1, —1) is the spectrum of an n x n doubly stochastic matrix A. Now
as A has 2 eigenvalues of unit modulus which are 1 and —1, then by virtue of the preceding lemma, 2 must
be a divisor of n which is a contradiction as n is odd.H

A direct conclusion is the following corollary that gives a negative answer for Question 1 in the case
when n is odd.

Corollary 1. If n is odd, then A = (1,0,...,0,—1) cannot be the spectrum of any n X n doubly stochastic
matriz.

It should be noted here that for n odd, A = (1,0,...,0,—1) is not the only normalized Suleimanova
spectrum that is not realizable by an n x n doubly stochastic matrix. Indeed, for n = 3 there exists an
infinite number of such points. To see this, we first recall the following result from Perfect and Mirsky[12].
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Theorem 6. [12] Let 1 > Xy > A3 > —1, and 1+ Xy + A3 > 0. There exists a 3 x 3 doubly stochastic matriz
with spectrum (1, Aa, A3) if and only if 24+ Ay + 33 > 0.

As a conclusion, we have the following.

Corollary 2. Let 1 > Ay > A3 > —1l,and 1 + Ay + A3 > 0. There exists a 3 x 3 doubly stochastic matrix
with spectrum (1, Ao, A3) if and only if (1, A2, A3) is in Convhull[(1,1,1),(1,1,-1),(1,-1/2,—1/2)] where
Convhull stands for convexr hull.

Thus we have the following conclusion.

Corollary 3. The region of R? that contains all decreasingly ordered normalized Suleimanova spectra that
are realizable by doubly stochastic matrices, is

Convhull](1,-1/2,-1/2),(1,0,0), (1,0,—2/3)],

and the region of all decreasingly ordered normalized Suleimanova spectra that are not realizable by doubly
stochastic matrices, is

Convhull|(1,-1/2,-1/2),(1,0,-1),(1,0,-2/3)] \ [(1,-1/2,-1/2),(1,0,—-2/3)],
where [(1,—1/2,—1/2),(1,0,—2/3)] is the line-segment joining (1, —1/2,—1/2) to (1,0,—2/3).

4.2.  Some improvement

Here we will derive new sufficient conditions for a normalized Suleimanova spectrum to be the spectrum
of a symmetric doubly stochastic matrix. We shall start with the following definition.

Definition 1. Ann x n matriz H is a Hadamard matriz if h;; € {1} and HH' = nl,,. If n is a positive
integer such that an n x n Hadamard matrix exists, then n is said to be a Hadamard order.

1 1

Let HO = (1), H1 = <1 1

>, and for n € N\{0,1} (where N is the set of natural numbers), define

H, _ H, _
H,=H ®H, 1= (H 71 B 11> € M (R).

It is well-known that H, is a Hadamard matrix for every n € N, and the matrix H,, obtained from
the previous construction is known as the Walsh matrix of order 2". Note that Walsh matrices satisfy the
following additional well-known properties:

o HI = H,;
o H'=21H,.
Next, we recall the following result which is due to Johnson and Paparella [3].

Theorem 7. [3] For any positive integer k and for any n = 2%, let X = (1, Xa, A3, ..., \n) be a list of n real
numbers with

and
n
1+) A >0.
i=2
Then there exists an n x n symmetric doubly stochastic matriz with spectrum A.
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It is worth mentioning here that the proof of the preceding theorem is constructive. Indeed, with the same
notation as above, the authors prove that Hypdiag(1, Az, Az, ..., )\n)Hk_l is actually an n x n symmetric doubly
stochastic matrix with spectrum (1, \a, Az, ..., A\p).

Our next objective is to exploit the recursive method described earlier in order to find new families
of sufficient conditions for NS-SDIEP that improve Soules condition, and New condition 1 for the case of
normalized Suleimanova spectra.

Theorem 8. Let p and n be two positive integers such that p > 2 andn > 2P, and let 0 > Ao > ... > A\ >
—1. If

14+X+.. .+ X1+, 20, (12)
forn=2P and
NP S VI TG FoeF Aum1+ M) 20 (13)
n n(n—l) 2 2p(2p+1) n—2P41 2 n—2P+42 n—1 n) Z Y,

forn > 2P, then there is an n xn symmetric doubly stochastic matrixz with normalized Suleimanova spectrum
1, A2, ey Ap

Proof: We will proceed by induction. For n = 2P, this is true by Theorem 7. Let n > 2P and suppose that
the assertion is true for n — 1. Since

1 1
<4 e Ao — (An_2p o A .
O_n+n(n—l))\2+ +2p(2p+1))\n 2+1+2p()\ 219+ e + A1 + M)
_n—l-l-)\z 1 1
= D) + e 1)(n—2))\5 + ..+ (@ + I)An72p+1 + 2 (An—2pg2 + oo+ Apm1 + )
_ 1 1 A3 1 /\n_2p+1 1 )\n_2p+2 An_1 An
_9(n_1+(n_1)(n_2)9+...+2p(2p+1) ; +2p( T o)),

with § = %“‘2 > 0, and consequently % < 0fori = 3,...,n. Next, we show that % > —1 by contradiction.

Suppose that %" < =1, then L + L), + L), < 0. In view of (13), we conclude that

(n—1)

1 1 1 1 1 1 1
—F Xt A —(Ap—2r et A1+ ) > 0> — A Ans
R ) 2+ +2p(2p+1) 2+1+2p( 22+ A1+ An) nJrn(n—l) 2t
that is,

A3t A +i(/\ +ot A1) + L P

(n — 1)(7’L — 2) 3 2]3(2]3 n 1) n—2P+1 op n—2P+2 n—1 o n_1 n .
As n > 2P and all the \; < 0, we get a contradiction. Thus, we arrive at the following inequality:

1 1 )\3 1 A77,—213—&-1 1 )\n—2P+2 >\n—1 >\n
— 4+ ... — | ——=+..+——+—] >0.
=1 m-Dm=20 Tt ¢ w\ "9 T TH)7

Therefore, by the induction hypothesis, there exists an (n— 1) x (n — 1) symmetric doubly stochastic matrix
A with eigenvalues (1,22, ..., 22). Next, let r = i=l(l—Ng) =1-— 1+(nn;1)>\2 In order to apply Lemma 1,

[ IR
we shall prove that 0 < r < 1. First observe that n > 1+ (n — 1)A2. Moreover, using (13), we can write
o<t L A I ot Ay 2
=n n(n — 1) 2 21)(21) + 1) n—2rP41 9 n—2P42 n—1 "
< ! + ! 4t 1 i 2r —1 \
n n(n—1) 7 2r(2r +1) op 2
1 n-1
=—+ )\2.
n n
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Hence 1+ (n — 1)A2 > 0 and therefore 0 < r < 1. Now applying Lemma 1 with this » and with A = E, we
obtain an n X n symmetric doubly stochastic matrix C' with eigenvalues 1, Az, ..., A,,.

Next, we present the following remark.

Remark 3. In the sequel, we shall make the convention that a summation over the empty index set s
defined to be zero.

Now substituting in Lemma 2, the doubly stochastic matrices obtained from Theorem 8, we arrive at the
following theorem.

Theorem 9. Let p and n be two positive integers such that p > 2 and n > 2Pt and let 0 > Ay > ... >
Ap > =1 If

2P —1

1 n— n27.+2 1
7+ +§ — An—2i12 > 0, 14
k:—l—l A2 (i + 1) pt Zit2 (14)

holds with n = 2k + 2 for n even and n = 2k + 1 for n odd, then there exists an n x n symmetric doubly
stochastic matrix with eigenvalues 1, Ag, ..., \y.

Proof: Case 1: For n = 2k + 2, Inequality (14) can be rewritten as
2P —1

1 n 22+2
0< = A § § An—2i
-|- 2+12p i+ 1) 2i+2

—o(phy eyt Z)\
kE+1 5 (i + 1) 2Pa e

with a = % > 0. We show by contradiction that @ > 0. Suppose that @« = 0. Then, Ao = —1, which
implies that A3 = .... = \,, = —1. It follows that

2P 1
n 2z+2
,—|— )\2"‘1‘2 Z—|—1 Z)\" 2i42 < 0,
and this contradicts (14). As before, We show next that )‘" > —1 by contradiction. Suppose that 22 < —1,

that is, 2\, + A2 + 1 < 0 so that 1 -+ )\2 + )\n < 0. From condition (14), we conclude that

2P —1

1
LRI Ej”%” E)\nz >0>~ A )\n
+ 2+22p Y 2i+2 —l— 2+ ,
that is,
k 2P 1
An—2it2 1 1 2
e A—2i —— A >0.
Z(i+1)z’+2p_ 22t g T

1=2P =2

Again asn > 2P*! and all \; < 0, we have a contradiction. Hence by Theorem 8, there exists a (k+1) x (k+1)

symmetric doubly stochastic matrix A with eigenvalues 1, é)\4,. L \oryo. Moreover, since 1 > Xy > ... >
An > —1, then

o

2P —1

1 ]-An 27.+1
AN )\n 1 >0
k+1+za(i 2paz 2

and therefore there exists a (k+ 1) x (k + 1) symmetric doubly stochastic matrix B with eigenvalues
1, é)\g,. /\2k+1 Applying now Lemma 2, with A = A B=DBanda= r, we obtain an n X n symmetric
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doubly stochastic matrix C' with eigenvalues 1, Ao, ..., Ay,.
Case 2: For n = 2k + 1, we have

2P _1
]. k n ¥ 1
0< + 2+§ i n An—2i42
i=1

“2%+1 (2k+1) (i +1)i
“a (e +z“" 22‘3
k‘—l—l ~ (Z+1 2p04 n—2i+2 |

with a = (k';?:'lm? = (nH)E(:_l)’\Q = 2+(n_212l(1+’\2) > 0. Again, at this point we shall show by contra-

dlctlon that 2= > —1. Suppose that ’\; < —1, that is, 2nA, + (n — 1)A2 + (n + 1) < 0. It follows that

14 o n+1))\2 i ’ﬂJrl)\ < 0, and hence by (14), we conclude that

1 n-1 gl L, n-1 2

- n 21+2 -
A’rL 7 > 0 - A )\n7

n+ 2+Z (i+ 1) Z a2 - (n—|—1)2+n—|—1

that is,
k or_1
)\n—2i+2 1 2
An—2i - An > 0.
g;p i)+ Z w2t 50 T T

As n > 2Pt! and all the \; < 0, this leads to a contradiction. Hence, by Theorem 8, there exists a
(k+1) x (k+1) symmetric doubly stochastic matrix with eigenvalues 1, éAg, - é)\zk_l,_l. On the other hand,
we know that

2P 1
1 k n 21+2 1
o< - )\n i
Sl Gkt DGETD) 2+Z 1) zpz 2042
1 k 1 =
< )\ A n21+1 /\n ;
Sl @R DR+ 2 Rk D) 2+Z G+ 1)i Z 2i1

2—1

1 1)\71 2z+1
= - >\n I
T<k+iz G+ 2PTZ 2t

=2P

where r = % In order to apply Lemma 2, we need to show that 0 < r < 1. Now since r can
be rewritten as r = (k+1))‘2+k = ("+1)’\2+(" D = (= 1)/\2+;:2’\2+"_2, then it is enough to show that

1+ (n—1)A2>0(asn > 4) From (14), We conclude that
1 271

1
0< A Mnczipz | g~y
Sl @R DR+ 1) 2+Z (i +1)i Ly (o
)

=1

1 k

<
EETE <(2k+1 ESY

k —
1
3 22)
i:2p 1
_ k Lk 2P—1+2P—1 \
T2%k+1  \Rk+D(k+1)  k+1 2p 20 2
1 2k
“ i g1
1 -1
- -+
n n
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Hence 1+ (n—1)Aa >0andso 1+ (n—1A2+2Xa4+n—2>14+(n—1)A2 —2+n—2> 0. Hence, r > 0.
Also,as (n+ 1)A2+(n—1)<n+14+n—1=2n, then r < 1.

As earlier, we next show by contradiction that )‘7" > —1. Suppose that 22 < —1, that is, 2n\, + (n+
DAz + (n—1) < 0. It follows that 1 + n(”ntll)kg + =5 < 0, and therefore by (14) we conclude that
1 n 27,+2 1 = 1 n —l—l 2
n+n 2+; i+ 1) 27’iz:;)\n72i+220>ﬁ—i_71(7”&—1))\2—~_7”L—1)\n7
that is,

n—1 n+1 ity 1 9
- A An—2it2 | Mo 2 ), >0.
(n(nJrl) n(nl) 2+Z (t+ 1) Z 2t 2% n—1 -

2p

Since 1 > Ay > ... > )\, > —1, then we can write

k 271
n—1 n+1 1 1 1 2
- S DY e An
<<n(n+1) n(n71)+izz21j(i+1)i+2pz > 2+<2P nl)

1=2
n—1 ntl ko1 o2 (1 2 )
nn+1) nn-1)  k+1  2r 20 T\ n-1)n
n—1 n+1 n—1 1 2 1 2 n—1
= 1t =4l ) A (= — An ince k =
(n+1) n(n71)+n+1 T 2p> 2+<2p nl) (Smee 2 )

n
n—>5 1 1 2

Ao+ (= — An
n— 1+n—1 2p> 2+(2p n—l)
5 1 2
— A +<2pn_1)(An/\2).

Since n = 2k + 1 and n > 2P*! then obviously n > 2P*! 4+ 1. However, this leads to a contradiction as
A2 < 0and (A, —A2) < 0. Therefore, by Theorem 8, there exists a k x k symmetric doubly stochastic matrix
with eigenvalues 1, %)\4, - %)\Qk. Now the proof can be easily completed by applying Lemma 2, with A = A

and B=5. 1

<
<
.

Again, substituting in Lemma 2 the doubly stochastic matrices obtained from Theorem 9, we obtain the
following theorem for which its proof is virtually identical to that of Theorem 4. So only, a sketch of its
proof is given here.

Theorem 10. Let p and n be two positive integers such that p > 2 and n > 2PT2 and let 0 > Ay > ... >
An > —1. Suppose that

11 n _ [n42 (232~ Ly s

1 7)\ 2 4 n 4z+4 L )\n ; > 0 15

n+n2+(% [i 4+ Z G+ 1) 21)1':1 4itd 2 (15)

for n even and
L P

1 n—1 ntl [i ditd 271
- A 72 4 An— ’* An_diza >0 16
n+n(n+1) 2+ (nH)[i Z Z ditd = 5 (16)

for n odd, hold. Then there exists an n x n symmetric doubly stochastic matrix D whose eigenvalues are
1, A2, e Ap
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Proof: 1f n is even, then by (15) and Theorem 9, there are (%) x (%) symmetric doubly stochastic matrices
LXn and 1,105, L, ... a2,
Apply now Lemma 2, with A = Aand B=B , then we obtain an n x n symmetric doubly stochastic C' with
eigenvalues 1, A, ..., A,.

If n is odd, then by (16) and Theorem 9, there are (%) x (%) and (” 21y x (251) symmetric doubly

stochastic matrices A and B with eigenvalues 1, £ \3, L )5, ..., 1\, and 1, )\4, 16, ...
(n=1)ho+(nt1) (D)ot (n=1) 3 . |
. n— n n n—
with a = 7= e

A and B with eigenvalues 1, é)\4, é)\g,. 5 Y a)\ _1 respectively, where a =

. r)\”_l respectively
and r = . Applying Lemma 2 (the reason we can apply it, can be

justified as earlier) with A = Aand B=B , we obtain an n x n symmetric doubly stochastic matrix C with
eigenvalues 1, Ag, .., \,. H

Notation 4. For convenience, we denote by M, the condition of Theorem 8, S, the condition of Theorem
9 and N, the condition of Theorem 10.

With these new notations, we have the following observations.

Observation 3. Let o = {1, Aa, ..., \n} be a normalized Suleimanova spectrum with n > 8. If o satisfies S
then o satisfies So. Consequently, with a slight abuse of notation, we conclude that S C Ss.

Proof: Suppose that o satisfies S. If n = 2k + 1 for n odd and n = 2k 4 2 for n even, then clearly we have

k
1 n— n 21+2
0< — /\n )\n )\
_n+n z; 4+ 2+
k
1 n—k—1 An_gi_;'_g 1 1 1 1
< - —A AN, 7)\71— 7An— 7An— 7)\71
_n+n(k+1) 2+Z(i+1)i+12 4t gAn—at A2t g
1

_ - )\ n 21+2 )\n )\n A
k+1 2+Z S et P2t

Therefore, o satisfies So. B

Observation 4. Let 0 = {1, Aa, ..., \p} be a normalized Suleimanova spectrum with n > 16. If o satisfies
N then o satisfies No. Thus, with a slight abuse of notation, we have N C N.

Proof: If n is even and o satisfies IV, then

e 1 1 1
0<—+ A2+%A4+ TR S s+ S Aaa+ 5
(%) %] —~ (i+1)i 12 6 2
11, moqmezy RN 1 1 1
<=+ o+ St i vl e I P WP W D
S a T ()2 ; (i+1)i 127" et T Ty
1 1 Q_[LJ,_Q] [HTH]*lA 4
=+ o+ 2+ notte An s+ /\n i+ /\
n (%) [2£2] — (i+1)i

Therefore, o satisfies No. A similar argument can also be employed, for the case when n is odd. B

Theorem 11. Letn > 4 be an integer, and let 0 > Ay > ... > A\, > —1. Define wy, vy, 2p and y, as follows.
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For any positive integer p > 2 with 2P < n, let

1 1 1 1
==+ —X+ ... An—op — (Ap—or e F A1+ )
Wy n+n(n—1) 2+ +2p(2p+1)n2+1+2p(n2+2+ + A1+ An)
2k+1 if nis odd
o Forn=
2k +2

if nis even

1

n—k-1
vy = —
P

, and for all positive integers p > 2 with 2Pt < n, let

2P —1
n 21+2
Ao+ Z

Z +1 Z An 2142
For n even, and for all positive integers p > 2 with 2P12 < n, let

1 1 n _ [n£2] 211 Aucaita 271
Zpi= — 4+ —Xo + 2n n4 g+ n—s A 4it4-
? n n (5) [%2} i=2p (7’ + 1 Z
°

1

For n odd, and for any positive integer p > 2 with 2Pt2 < n, define
n—1
Yp = —

+ _[i [n+3] 2P—1
)\ 4 n 4z+4 /\n ;
n - n(n+1) ( )i 22: (i +1)i Z g
Then, for p > 2,
1) wp —wp—1 >0
2) vy, —vp_1 >0,
3) zp—2p—1 >0
4) Yp — Yp—1 20,

denote m = 2P. Then

Z n 1+1
and

m—1
1
(it 1) + E An—it1s
=1

Proof: We shall only give the proof of Part 1), as the rest can be proved similarly. For simplicity, let us
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It follows that for p > 2,

; 1
Wp — Wp—1 = — i + - Z An—itl = 7 An—it1
_ ; > -

m_1
1 1 1 3
- 3 )\n—m - A’I’L—i
m m<m1>> 2 e

1 1 m—2 1

S I W _ E I W

m m(m—l)) nom+2 — q(i+1) neitd
=3

=5 =1

(
(
_ % mfAn_M - Zl /\n_i+1> + <

m—2 %*1 m—2 m—2
1 1 1 . .
= Z An—it1 — Z; An—it1 DY) 1))\n—m+2 - Z ey 1))\n_i+1 (using Lemma 3, Part iv)
=1 = —m —m
1 m—2 % 1 m—2 1
= )\nfi - )\nfi T )\nfm - )\nfi > 0;
m | 2 A Zl 41+ Zﬂ GTD ( +2 +1)
=7 i= =7

since 0 > Ay > ... > A\, > —1. Thus the proof is complete.
[ |

As a result, we have the following observation (keeping in mind a slight abuse of notation).
Observation 5. For a normalized Suleimanova spectrum, we have

e My CMsC..CM,CM,1C...

® 55 CS3C...CS CSpy1C....

e Ny C N3 C...C N, CNpy1 C....

Example 2. Consider the list c = (1,0,0,0,0, —%) It is easy to see that o does not verify Soules condition
(1) but it verifies condition M. Therefore, it is the spectrum of a 6 X 6 symmetric doubly stochastic matriz.
Example 3. For n = 9, consider the list o = (1,0,0,0,0,7%,7%,7%,7%). A simple check shows that
o does not verify Soules condition (1). However, o verifies conditions So and Ms, and therefore it is the
spectrum of a 9 X 9 symmetric doubly stochastic matriz.

Finally, by making use of Theorem 1, we end our discussion with the following sufficient condition
concerning realizable Suleimanova spectra of even order.

Theorem 12. For any two nonnegative powers of 2, n and m with m > n, let ¢ = {1, A2, ..., \ptm} C
R, such that 0 > Ao > ... > Apim > —1. If there exists a permutation © on {Aa, ..., \pym} such that
W()‘Qa ey )\ner) = (/~L2a ~~7/Ln+m) and n
B2 > ——,
m
mpg +n
M3+...+ﬂn+12_ 12 )
m+mn
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and n
n m
Hnt2 + oo+ fintm = 7%7

then o is realizable by an (n +m) x (n +m) symmetric doubly stochastic matriz.

Proof: Since 0 > -4 yp 4 mdn_,, ., > —1 and n is a nonnegative power of 2, then in view of Theo-

mps+n mpa+n N
rem 7, there exists an nxn symmetric doubly stochastic matrix A with eigenvalues (1, mTZj_fn T % Pni1)-
Similarly, since 0 > %)\n+2+...+ %erm > -1 andAm is a nonnegative power of 2, then by Theorem
7, there exists an mxm symmetric doubly stochastic matrix B with spectrum (1, %un”, e %ﬂn+m)-
. / 1— ~ ~
In Theorem 1, taking r =1, p = % (as pg > —7+, then p > 0), A = A and B = B, then we get an

(n+m) x (n+m) symmetric doubly stochastic matrix D with eigenvalues 1, Ag, A3, ..., Ayt B

Example 4. Consider the list of 6 real numbers o = {1,0,0, —%, —%, —%}. It is easy to check that o does

not verify S nor N. Moreover, o does not verify My (note that Sy and Ny cannot be applied). However,
taking po = —%, L3 = —%, e =0, us =0, and ug = —%, then o verifies Theorem 12 for the case of order
6 =m+n with m =4 and n = 2. Therefore, it is realizable by a 6 x 6 symmetric doubly stochastic matriz.
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