
HAL Id: hal-02126173
https://hal.science/hal-02126173

Submitted on 10 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robotically Assisted CBCT-Guided Needle Insertions:
Preliminary Results in a Phantom Model

Antoine Pfeil, Roberto Luigi Cazzato, Laurent Barbé, Pierre de Marini,
Jeanie Betsy Chiang, Julien Garnon, Pierre Renaud, Afshin Gangi

To cite this version:
Antoine Pfeil, Roberto Luigi Cazzato, Laurent Barbé, Pierre de Marini, Jeanie Betsy Chiang, et
al.. Robotically Assisted CBCT-Guided Needle Insertions: Preliminary Results in a Phantom Model.
CardioVascular and Interventional Radiology, 2019, 42 (2), pp.283-288. �10.1007/s00270-018-2088-8�.
�hal-02126173�

https://hal.science/hal-02126173
https://hal.archives-ouvertes.fr


Robotically assisted CBCT-guided needle insertions: Preliminary 

results in a phantom model 

A. Pfeil, R.L. Cazzatto, L. Barbé, P. de Marini, J.B. Chiang, J. Garnon, P. Renaud, A. Gangi 

 



AIM 

To compare robotic-assisted needle insertions performed under CBCT-guidance to standard 

manual needle insertions. 

 

MATERIALS AND METHODS 

A homemade robotic prototype was used by two operators to perform robotic and manual needle 

insertions on a custom-made phantom. Both the operators had no experience with the prototype 

before starting the trial.  

The primary endpoint was accuracy (i.e. the minimal distance between the needle tip and the 

centre of the target) between robotic and manual insertions. Secondary endpoints included total 

procedure time and operators’ radiation exposure.  

The Wilcoxon test was used. A P value less than 0.05 was considered statistically significant. 

 

RESULTS 

Thirty-three (17 manual, 16 robotic) needle insertions were performed. Mean accuracy for robotic 

insertion was 2.3 ± 0.9 mm (median 2.1; range 0.8-4.2) vs 2.3 ± 1 mm (median 2.1; range 0.7-4.4) 

for manual insertion (p=0.84). Mean procedure time was 683 ± 57 sec (median 670; range 671-

849) for the robotic group vs 552 ± 40 sec (median 548; range 486-62) for the manual group 

(p=0.0002).  

Mean radiation exposure was 3.25 times less for the robotic insertion on comparison to manual 

insertion for the operator 1 (0.4 vs 1.3 µGy); and 4.15 times less for the operator 2 (1.9 vs 7.9 

µGy). 

 

CONCLUSION 

The tested robotic prototype showed accuracy comparable to that achieved with manual punctures 

coupled to a significant reduction of operators’ radiation exposure. Further in-vivo studies are 

necessary to confirm the efficiency of the system.



INTRODUCTION 

In the modern era of medicine with increased need for tailored therapy (1), the demand for 

interventional radiologists performing percutaneous image-guided biopsy has rapidly increased (2). 

Although ultrasound and computed tomography (CT) remain the most commonly used guidance 

techniques, an expansion of other modalities has been observed (2–4). In this regard, flat-panel 

cone-beam CT (CBCT) has been a rapidly emerging modality. It combines real time fluoroscopy 

and CT-like imaging designed to be used for interventional purposes (5–7). In addition, the 

development of navigation software that accurately facilitates needle tracking and deployment has 

contributed to the popularity of these machines. However, despite all the aforementioned 

advantages, CBCT does have its shortcomings, such as exposing operators to radiation. 

Moreover, successful tissue sampling largely depends on precise targeting thus requiring 

experienced operators, which is not always available in all institutions. Accordingly, assisting the 

human with robotic systems has been proposed; and experimental tests have been performed 

mainly on phantom models, to highlight the advantages and drawbacks of robotic systems (8,9). 

Schulz et al (8) proved on a phantom model under CBCT-guidance the feasibility and accuracy of 

a commercially available robotic system. However, no comparison with standard manual punctures 

and no operators’ radiation exposure was reported; moreover, the used device did not allow 

remote needle insertion. Hiraki et al (9) tested a floor-mounted system with remote needle insertion 

and demonstrated that the system was accurate when used in phantoms (as compared to manual 

punctures) and animals, without radiation exposure to the physician. However, their device was 

specially designed for CT scanners provided with a sliding gantry thus, not being of easy use with 

all the CT machines. 

In this study, a prototype robot allowing remote needle control during CBCT-guided needle 

insertions was tested on a phantom to evaluate the accuracy, operator’s radiation exposure and 

procedure time as compared to standard manual needle insertions. 

 

MATERIALS AND METHODS 

No local Institution Review Board approval was needed for this study.  



Robotic system 

The robot is a light (250g) homemade prototype composed of a slave device (110 mm high, 250 

mm long) and a master interface (Fig. 1). The slave component consists of three modules: the first 

allows manual installation of the robot on the phantom by four suction cups; the second allows for 

needle orientation; and the third for needle insertion.  

The needle orientation module permits two degrees of freedom by the means of two rotational 

joints. Each joint is remotely controlled by a pair of antagonistic cables wound-up around a pulley 

on the master interface. The operator can adjust the angle of the joints by manually turning two 

knobs on the master interface. Needle orientation can vary ± 40 degrees in the cranio-caudal plane 

and ± 36 degrees in the transverse plane regardless of the entry point. 

The insertion module consists of a pneumatic actuator where the needle is held; it generates force 

up to 10 N, allowing for needle progression at a speed of 1.4 mm/s. Operators activate needle 

insertion through a foot pedal. 

 

Needle insertions 

Two operators with 3 and 5 years of experience respectively in percutaneous image-guided biopsy 

performed a series of robotic and manual needle insertions on a custom-made phantom (60 mm x 

250 mm x 140 mm), which was made of a superficial sheet of silicone and an inner layer of soft 

poly-vinyl chloride (Bricoleurre, Mont Saint Aignan, France). The surface of the phantom mimics 

the elastic properties of human skin and the inner part mimics that of human liver (10). The 

phantom contained 40 radiopaque spherical targets (diameter 6 mm). Each target was identified by 

a number. All targets were located 50 mm deep from the surface and were placed in the phantom 

with the intention of being approached with a double-angulated puncture (i.e. the operator was 

obliged to move the robotic arm on both cranio-caudal and axial directions in order to reach the 

selected target). As a result, in all cases, the targets were approached with a 60mm needle 

pathway, which was angulated 33.5° with respect to the vertical axis of the phantom. Given the 

fixed distance of the targets from the surface of the phantom, and the need for a double-angulated 



approach in all cases, it could be reasonably estimated that all punctures were equivalent in terms 

of technical dexterity.  

Both the operators were blinded to the targets’ location before starting the trial. For each insertion, 

the operator randomly selected a sealed envelope containing the number corresponding to the 

assigned target to be punctured either manually either with the robotic assistance.  

All the insertions were performed under CBCT-guidance (Allura FD20, Philips Healthcare, the 

Netherlands). The CBCT unit was provided of software for needle planning and deployment 

(XperCT and XperGuide, Philips Healthcare). Applied parameters of image acquisition were: 

source–detector distance 1,200 mm; rotation speed 18°/s; rotation duration 10 sec, 30 images/s; 

total arc trajectory range 180; number of projections 300 images; matrix size 1024 x 1024; and 

automatic exposure control. 

During all needle insertions, operators wore plastic gloves containing 8 thermo-luminescent 

dosimeters (TLD, type GR200A, Fimel, France) to measure the radiation exposure. Each operator 

wore different pair of gloves for robotic and manual insertion, allowing interpretation of the 

difference in radiation exposure between the two techniques. In both manual and robotic insertion, 

a 15G needle was used.  

 

Robotic insertions 

None of the operators had experience with the robot before starting the trial. Each operator was 

allowed a 10-minute initial practice with the robot to familiarise with the workings of the robotic 

prototype before starting the trial; during this phase, no needle insertions on the phantom were 

allowed. Operators were instructed to perform robotic insertions first followed by manual insertions.  

The procedure started with a CBCT imaging acquisition and the acquired frames were transferred 

on a dedicated workstation (Xtravision R8.8, Philips Healthcare). Thereafter, the operator randomly 

selected the envelope indicating the assigned target, which was subsequently identified on the 

acquired images; needle trajectory using the XperGuide software was subsequently planned, and 

a fusion of the fluoroscopic image and the CBCT slice with the trajectory (displayed either with a 

“bulls’ eye” view or a “sagittal view”) was created and used to deploy the needle. The operator 



manually positioned the robot holding the needle at the planned entry point, and fixed it on the 

phantom by activating the suction cups. The needle was then remotely orientated to align with the 

fused CBCT image containing the needle trajectory on the “bulls’ eye” view.  

After a small incision on the surface of the phantom, the needle was advanced by activating the 

pneumatic actuator until the needle reached the target on the “sagittal view” (Fig. 2). During the 

first 2 cm of needle insertion, if needed, operators were allowed to adjust the needle orientation in 

both directions. 

At any time during targeting and needle deployment, operators were allowed to perform real-time 

fluoroscopy as per their usual. A final 3D CBCT acquisition was performed to show the final 

position of the needle tip in relation to the target.  

 

Manual insertions  

Manual insertions followed the same workflow as robotic insertions. The operator started with the 

“bulls’ eye” view to target the assigned entry point by handling the needle with a surgical forceps. 

After a small incision on the surface of the phantom, the needle was advanced step by step by 

operators by using the “bulls’ eye” and the “sagittal” views. As it happened for robotic insertions, 

operators were allowed to perform real-time fluoroscopy during needle deployment as per their 

usual. A final 3D CBCT acquisition was performed to show the final position of the needle tip in 

relation to the target. 

 

Data collection and analysis 

For each insertion, accuracy and total procedure time were collected. Accuracy was defined as the 

minimal distance between the needle tip and the centre of the target according to the latest multi-

planar 3D CBCT images. The 3D distance was measured directly on the imaging software 

(XperCT, Philips Healthcare, the Netherlands) at the end of each puncture in consensus by one 

author (non-performing the puncture) and one technician. 

The number of required needle insertions was calculated to determine 1 mm of equivalence in 

accuracy between the robotic and the manual insertions. Absolute mean difference of accuracy 



between both groups was estimated to be 1 mm (with 1 mm standard deviation for both groups). 

With α value of 0.05 and β value of 0.2, at least 16 insertions were required for each group. 

Total procedure time included the time needed to acquire the 3D dataset for trajectory planning, 

orientation and deployment of needle, as well as the time needed to acquire CBCT images to 

check accuracy. 

Operator’s radiation exposure for both series of insertions (manual vs robotic) was measured on 

the operators’ hands. In particular, it was calculated by subtracting the background dose registered 

by a control TLD dosimeter placed in the control room from the highest final cumulative dose 

registered by any of the TLD embedded on one of the two gloves worn by the operator.  

The primary endpoint was accuracy between manual and robotic punctures; secondary endpoints 

included total procedure time and operators’ radiation exposure.  

The Wilcoxon test was used to compare all the tested variables. A P value less than 0.05 was 

considered statistically significant. 

 

RESULTS 

Thirty-three (17 manual, 16 robotic) needle insertions were performed. During robotic insertions, 

needle orientation was adjusted while advancing the needle in the first 2 cm of the planned 

trajectory in 12/16 (75%) cases.  

Mean accuracy for robotic insertion was 2.3 ± 0.9 mm (median 2.1; range 0.8-4.2) vs 2.3 ± 1 mm 

(median 2.1; range 0.7-4.4) for manual insertion (p=0.84; Fig. 3). Mean procedure time was 683 ± 

57 sec (median 670; range 671-849) for the robotic group vs 552 ± 40 sec (median 548; range 

486-62) for the manual group (p=0.0002). There was no significant difference in accuracy and 

procedure time between both operators in either manual or robotic insertions (Table 1).  

Mean radiation exposure was 3.25 times less for the robotic insertions on comparison to manual 

ones for the operator 1 (0.4 vs 1.3 µGy); and 4.15 times less for the operator 2 (1.9 vs 7.9 µGy). 

 

 

 



DISCUSSION 

Several different robotic systems have been developed and are commercially available to facilitate 

percutaneous targeting and needle deployment (11); most of these systems have been designed 

for CT-guidance with a reported accuracy ≤ 1.5 mm. In the present study, a robotic prototype was 

tested under CBCT-guidance on a homemade phantom. Assuming a tolerated 1 mm difference in 

accuracy between robotic and manual insertions, similar accuracies were noted in both groups by 

both operators in all the different punctures performed. Results also indicated that the operators 

were equivalent in terms of experience, as demonstrated by the comparable accuracy in manual 

insertions. On average, the robot demonstrated accuracy of 2.3 ± 0.9 mm, which is within the 

accepted range if one assumes that most of the commonly biopsy targets measure ≥10 mm 

(11,12). Despite differing operator habits and the fact that radiation dose was only estimated by 

one of the several embedded TLD, the radiation dose to operators’ hands was significantly 

reduced with the robotic insertions. This result was largely expected since needle orientation and 

deployment with the robot were performed remotely. Such approach represents one of the main 

advantages granted by robotic insertion (9), which allows the operator to monitor needle 

advancement through fluoroscopy without receiving significant radiation exposure.  

In terms of procedure time, robotic-assisted insertions required on average 2 minutes more than 

manual insertions merely because manual advancement of the needle was faster than the capped 

actuator speed of 1.4mm/sec (which can be increased). Nevertheless, overall procedure time with 

the robot was still acceptable particularly considering that this was the first time the operators used 

the device thus, suggesting a short learning time. 

The presented prototype is similar to the iSYS system (Medizintechnik GmbH, Kitzbuehel, Austria), 

which was tested in phantom, animal and human models under CBCT- or CT-guidance (8,12). 

Compared to the iSYS, the prototype used in the present study has the advantage to be attached 

directly to the phantom rather than to the CT or CBCT table, which allows the operator to work in a 

condition more similar to the classic manual puncture. Schulz et al (8) performed 40 iSYS-assisted 

needle insertions on a custom-made phantom under CBCT-guidance. Navigation software was 

used to assist the trajectory planning and needle deployment. They did not measure the operators’ 



radiation exposure nor did they compare to manual insertion. However, they noted an overall 

accuracy of 1.1mm; such gap was further reduced to 0.3 mm when the orientation process was 

done with the needle in place in the dedicated holder. It is probable that the discrepancy of 

accuracy between their study and the present study is due to the different material used to 

construct the phantom, as Schulz et al used simple sponge which was more easy to be penetrated 

by the needle compared to poly-vinyl used in this study. In fact, especially in the series of 

punctures performed by the second operator who intensively used the fluoroscopy to follow needle 

advancement, a certain degree of elastic recoil was noted while the needle approached the target. 

This phenomenon was also described by Kettenbach et al (12) who used a polymeric phantom to 

test the iSYS system under CT-guidance. Interestingly, their accuracy (2.3 ± 0.8 mm; range, 0.9–

3.7) was very similar to that noted in the present experience. Lastly, Groetz et al (13) successfully 

tested the iSYS system on an ex-vivo swine spinal model and in three humans undergoing spine 

biopsies. Nevertheless, clinical experience with robotic devices remains limited at the moment; and 

one of the most probable reasons accounts for the difficulty of robotic systems to compensate for 

target movements such as physiological breathing. Although some solutions such as a stepwise 

checks approach with progressive corrective angulations along the needle pathway (14) have been 

proposed, concerns still remain as shown by the fact that most of the experience gained with 

robots is confined to phantoms and animal tests; and when human applications started, relative 

immobile targets such as the spine (13), or relatively large targets (≥ 20mm) (15) were chosen. 

The main limitation of the present study is related to the lack of in-vivo tests thus not allowing 

estimation of accuracy with moving targets, located at different depths from the surface. Moreover, 

the phantom model underestimates the clinical scenario, where the needle will be required to pass 

through tissues with different elastic properties and different thicknesses according to the patients’ 

morphotype. Furthermore, a 15G needle was used, which is expected to be more easily directed 

and less subjected to deflection as compared the 18-20G needles that are more commonly used in 

clinical practice. Nevertheless, this preliminary experience was intended to validate the prototype 

before further implementations, development and tests. Lastly, despite the potential application of 



the prototype under CT- or MRI-guidance, further evaluation of these modalities will have to be 

tackled in the next future. 

In conclusion, the tested robotic prototype showed accuracy comparable to that achieved with 

manual punctures under CBCT-guidance in a phantom model; moreover, the robot allowed for a 

significant reduction of operators’ radiation exposure. Further in-vivo studies are necessary to 

confirm the efficiency of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 

1.  Tsai EB, Pomykala K, Ruchalski K, et al. Feasibility and Safety of Intrathoracic Biopsy and 

Repeat Biopsy for Evaluation of Programmed Cell Death Ligand-1 Expression for 

Immunotherapy in Non-Small Cell Lung Cancer. Radiology. 2018;287(1):326–32.  

2.  Veltri A, Bargellini I, Giorgi L, et al. CIRSE guidelines on percutaneous needle biopsy (PNB). 

Cardiovasc Intervent Radiol. 2017;40(10):1501–13.  

3.  Cazzato RL, Garnon J, Shaygi B, et al. PET/CT-guided interventions: Indications, 

advantages, disadvantages and the state of the art. Minim Invasive Ther Allied Technol. 

2018;27(1):27–32.  

4.  Garnon J, Koch G, Tsoumakidou G, et al. Ultrasound-Guided Biopsies of Bone Lesions 

Without Cortical Disruption Using Fusion Imaging and Needle Tracking: Proof of Concept. 

Cardiovasc Intervent Radiol. 2017;40(8):1267–73.  

5.  Lee SM, Park CM, Lee KH, et al. C-arm cone-beam CT-guided percutaneous transthoracic 

needle biopsy of lung nodules: clinical experience in 1108 patients. Radiology. 

2014;271(1):291–300.  

6.  Braak SJ, van Melick HHE, Onaca MG, et al. 3D cone-beam CT guidance, a novel technique 

in renal biopsy--results in 41 patients with suspected renal masses. Eur Radiol. 

2012;22(11):2547–52.  

7.  Cazzato RL, Battistuzzi J-B, Catena V, et al. Cone-Beam Computed Tomography (CBCT) 

Versus CT in Lung Ablation Procedure: Which is Faster? Cardiovasc Intervent Radiol. 

2015;38(5):1231–6.  

8.  Schulz B, Eichler K, Siebenhandl P, et al. Accuracy and speed of robotic assisted needle 

interventions using a modern cone beam computed tomography intervention suite: a 

phantom study. Eur Radiol. 2013;23(1):198–204.  

9.  Hiraki T, Kamegawa T, Matsuno T, et al. Robotically Driven CT-guided Needle Insertion: 

Preliminary Results in Phantom and Animal Experiments. Radiology. 2017;285(2):454–61.  

10.  Lefebvre PM, Koon KT, Brusseau E, et al. Comparison of viscoelastic property 

characterization of plastisol phantoms with magnetic resonance elastography and high-



frequency rheometry. Conf Proc IEEE Eng Med Biol Soc. 2016;1216–9.  

11.  Kettenbach J, Kronreif G. Robotic systems for percutaneous needle-guided interventions. 

Minim Invasive Ther Allied Technol. 2015;24(1):45–53.  

12.  Kettenbach J, Kara L, Toporek G, et al. A robotic needle-positioning and guidance system for 

CT-guided puncture: Ex vivo results. Minim Invasive Ther Allied Technol. 2014;23(5):271–8.  

13.  Groetz S, Wilhelm K, Willinek W, et al. A new robotic assistance system for percutaneous 

CT-guided punctures: Initial experience. Minim Invasive Ther Allied Technol. 2016;25(2):79–

85.  

14.  Ben-David E, Shochat M, Roth I, et al. Evaluation of a CT-Guided Robotic System for 

Precise Percutaneous Needle Insertion. J Vasc Interv Radiol. 2018; doi: 

10.1016/j.jvir.2018.01.002. 

15.  Solomon SB, Patriciu A, Bohlman ME, et al. Robotically driven interventions: a method of 

using CT fluoroscopy without radiation exposure to the physician. Radiology. 

2002;225(1):277–82.  

 

 

 

 

 

 

 

 

 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 



TABLES 

Table 1. Tested variables according to different operators. 

Manual  

 Operator 1 Operator 2 P 

N. Insertions 8 9  

Accuracy (mm)    

Mean ± SD 2.2 ± 1.1 (0.7-4.4) 2.4 ± 1 (0.7-3.4) 0.44 

Median 2.1 2.8  

Total procedure time 

(min) 

   

Mean ± St. Dev. 536 ± 31 (496-596) 566 ± 45 (486-621) 0.14 

Median 534 571  

Total cumulative 

dose (µGy) 

10,55 71,3  

Robotic 

N. Insertions 7 9  

Accuracy (mm)    

Mean ± St. Dev. 2.6 ± 0.6 (1.9-3.9) 2.1 ± 1 (0.8-4.2) 0.09 

Median 2.4 1.9  

Total procedure time 

(sec) 

   

Mean ± St. Dev. 669 ± 50 (611-748) 694 ± 63 (633-849) 0.46 

Median 663 671  

Total cumulative 

dose (µGy) 

2,61 16,8  

 

 

 



Figure 1. The robotic prototype with all its different components: the slave device (A); the master 

interface (B). 

 

 

Figure 2. Robotic insertion. Once the robot was manually positioned and fixed on the phantom, the 

operator remotely orientated it (A) in order to align with the fused CBCT image containing the 

needle trajectory on the “bulls’ eye” view (B); after a small incision on the surface of the phantom, 

the needle was advanced by activating the pneumatic actuator until the needle reached the target 

on the “sagittal view” (C). 

 

Figure 3. Overall accuracy in the study (NS = p statistically not significant). 

 

 


